
ANALYZING DEVELOPER
CONTRIBUTIONS USING ARTIFACT

TRACEABILITY GRAPHS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Hamdi Alperen Çetin

December 2020

Analyzing Developer Contributions using Artifact Traceability Graphs

By Hamtli Alpernu ~diu

December 2020

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of l'vlastcr of Scif'nce.

/1

,.- Era~· Ti.iziin (Advisor)

U gur D ogrusi5z

Iv1e1unet Ak§it

Approved for the Graduate School of Engineering and Sd0ncf':

. -. - -i.-
' Ezhau Kara~an ·

Dircct ~r of the Graduate School

11

ABSTRACT

ANALYZING DEVELOPER CONTRIBUTIONS USING
ARTIFACT TRACEABILITY GRAPHS

Hamdi Alperen Çetin

M.S. in Computer Engineering

Advisor: Eray Tüzün

December 2020

Software artifacts are the by-products of the development process. Throughout

the life cycle of a project, developers produce different artifacts such as source

files and bug reports. To analyze developer contributions, we construct artifact

traceability graphs with these artifacts and their relations using the data from

software development and collaboration tools.

Developers are the main resource to build and maintain software projects.

Since they keep the knowledge of the projects, developer turnover is a critical risk

for software projects. From different viewpoints, some developers can be valuable

and indispensable for the project. They are the key developers of the project, and

identifying them is a crucial task for managerial decisions. Regardless of whether

they are key developers or not, when developers leave the project, their work

should be transferred to other developers. Even though all developers continue

to work on the project, the knowledge distribution can be imbalanced among

developers. Evaluating knowledge distribution is important since it might be an

early warning for future problems.

We employ algorithms on artifact traceability graphs to identify key develop-

ers, recommend replacements for leaving developers and evaluate knowledge dis-

tribution among developers. We conduct experiments on six open source projects:

Hadoop, Hive, Pig, HBase, Derby and Zookeeper. Then, we demonstrate that

the identified key developers match the top commenters up to 98%, recommended

replacements are correct up to 91% and identified knowledge distribution labels

are compatible with the baseline approach up to 94%.

Keywords: key developers, social networks, artifact traceability graphs, developer

replacement, developer turnover, knowledge distribution.

iii

ÖZET

YAPI İZLENEBİLİRLİK ÇİZGELERİ KULLANARAK
GELİŞTİRİCİ KATKILARINI ANALİZ ETME

Hamdi Alperen Çetin

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Eray Tüzün

Aralık 2020

Yazılım yapıları geliştirme sürecinin yan ürünleridir. Geliştiriciler projenin hayat

döngüsü boyunca kaynak dosyaları ve hata raporları gibi farklı yapılar üretirler.

Biz yazılım geliştirme ve işbirliği araçlarındaki veriyi kullanarak, yapılar ve ar-

alarındaki bağlantılar ile yapı izlenebilirlik çizgeleri oluşturduk.

Geliştiriciler bir yazılım projesini geliştirme ve sürdürme sürecinde kullanılan

asıl kaynaktırlar. Geliştiriciler projelerin bilgisine sahip oldukları için geliştirici

devri yazılım projeleri için kritik bir risktir. Bazı geliştiriciler farklı bakış

açılarından proje için değerli ve vazgeçilmez olabilir. Onlar projenin anahtar

geliştiricileridir ve onları belirlemek yönetimsel kararlar için çok önemlidir.

Anahtar geliştirici olsun veya olmasın, geliştiriciler projeden ayrıldığında işleri

başka geliştiricilere aktarılmalıdır. Bütün geliştiriciler çalışmaya devam etse

bile, geliştiriciler arasındaki bilgi dağılımı dengesiz olabilir. Bilgi dağılımını

değerlendirmek gelecekteki problemler için erken bir uyarı olabileceğinden

önemlidir.

Biz anahtar geliştiricileri belirlemek, ayrılan geliştirici yerine geliştiriciler

önermek ve takımdaki bilgi dağılımını değerlendirmek için yapı izlenebilirlik

çizgeleri üzerinde algoritmalar kullandık. Hadoop, Hive, Pig, HBase, Derby

ve Zookeeper isimli altı açık kaynak proje ile deneyler yaptık. Sonrasında,

anahtar geliştiricileri tanımlamada %98’e varan, ayrılan geliştiriciler için geliştirici

önermede %91’e varan doğrulukta sonuçlar elde ettik ve bilgi dağılımı için kul-

landığımız etiketler %94’e varan oranda temel yöntem ile uyumlu çıktı.

Anahtar sözcükler : Anahtar geliştiriciler, sosyal ağlar, yapı izlenebilirlik çizgeleri,

geliştirici değiştirme, geliştirici devri, bilgi dağılımı.

iv

Acknowledgement

First and foremost, I would like to express my gratitude to my advisor Asst. Prof.

Eray Tüzün for his guidance throughout my master’s studies and steering me in

the right direction whenever I needed. The door to Prof. Tüzün was always open

whenever I had a question or a problem with my research.

I also would like to thank the jury members, Prof. Uğur Doğrusöz and Prof.

Mehmet Akşit, for spending time to read my thesis and accepting to be on the

committee.

I would like to thank Emre Doğan, Barış Ardıç and other BILSEN (Bilkent

University Software Engineering and Data Analytics Research Group) members

for helping my studies with their valuable ideas and comments. Also, I would

like to thank my office mates at EA-527. I feel very lucky to have great memories

with them until the pandemic breakdown.

Last but not least, I would like to express my deepest gratitude to my family

for their unconditional support with love and understanding. Also, I would like

to thank everyone I am yet to mention.

In memory of my studies during the coronavirus pandemic.

December 2020, Ankara

v

Contents

1 Introduction 1

1.1 Research Problem . 2

1.2 Contributions . 4

2 Related Work 6

2.1 Truck Factor . 6

2.2 Developer Recommendation . 7

2.3 Developer Social Networks . 8

2.4 Developer Roles and Types . 8

3 Methodology 13

3.1 Artifact Traceability Graph . 13

3.2 Jacks (RQ 1.1) . 16

3.2.1 Finding Reachable Files 16

3.2.2 Identifying Jacks . 19

vi

CONTENTS vii

3.3 Mavens (RQ 1.2) . 20

3.3.1 Rarely Reached Files . 20

3.3.2 Identifying Mavens . 21

3.4 Connectors (RQ 1.3) . 21

3.4.1 Calculating Betweenness Centrality: 22

3.4.2 Constructing the Developer Graph 22

3.4.3 Identifying Connectors . 25

3.5 Identifying the Significant Set of Key Developers 26

3.6 Replacement for Leaving Developers (RQ 2) 26

3.7 Knowledge Distribution: Balanced or Hero (RQ 3) 28

4 Dataset 30

4.1 Selecting Datasets . 30

4.2 Preprocessing . 31

4.3 Handling Large Change Sets . 33

5 Case Studies 35

5.1 Evaluation Setup . 35

5.2 Results . 37

5.2.1 Results for Identifying Key Developers (RQ 1) 37

CONTENTS viii

5.2.2 Results for Developer Replacement (RQ 2) 41

5.2.3 Results for Knowledge Distribution (RQ 3) 45

6 Manager Dashboard Tool (Proof of Concept) 48

7 Discussion 52

7.1 Research Questions . 52

7.1.1 How to identify key developers (RQ1) 52

7.1.2 How to find replacements for leaving developers (RQ2) . . 54

7.1.3 How to decide whether knowledge distribution in a team is

balanced or not (RQ3) . 54

7.2 Scalability . 55

7.3 Practical Implications . 59

8 Threats to Validity 62

9 Conclusion and Future Work 65

A Data 74

B Source Code 75

List of Figures

3.1 Distance against recency . 14

3.2 Sample artifact traceability graph. (D: Developer, F: File, CS:

Change Set, I: Issue) . 15

3.3 Visited edges and reachable files are highlighted to illustrate how

the reachable files by D2 are found. (D: Developer, F: File, CS:

Change Set, I: Issue) . 18

3.4 Another sample artifact traceability graph. (D: Developer, F: File,

CS: Change Set) . 24

3.5 Sample developer graph. (D: Developer) 24

5.1 Evaluation Setup (one-year sliding window, Hive experiment) . . . 36

5.2 How to detect leaving developers for one-year absence limit 41

5.3 Validation setup of the recommended replacements for checking

the next 30 days . 42

5.4 File coverage histogram examples for balanced and hero projects

according to our approach (Shapiro-Wilk) (Sliding window size is

one year) . 46

ix

LIST OF FIGURES x

5.5 An example day (Hive, 14 January 2014) labeled as balanced by

the Shapiro-Wilk test and hero by the Pareto principle. (Sliding

window size is one year) . 47

6.1 Screenshot of selection parts, summary and Venn diagram (devel-

oper names are painted black) . 50

6.2 Screenshot of connectors and replacements divisions (developer

names are painted black) . 51

List of Tables

3.1 Reachable files and file coverage of each developer in the sample ar-

tifact traceability graph (Assuming there are five files in the project) 19

4.1 Dataset details before preprocessing [1] 31

4.2 Dataset details after preprocessing 33

5.1 Mean accuracies (%) for the key developers found by our approach

vs. the developers selected randomly in the Monte Carlo simu-

lation. Average improvement (%) means improvement of our ap-

proach over random selection. 40

5.2 Number of leaving developers . 42

5.3 Replacement accuracy (in percent) and MRR (in percent) when

absence limit is six months (Topk phrases refer to accuracy) . . . 44

5.4 Replacement accuracy (in percent) and MRR (in percent) when

absence limit is one year (Topk phrases refer to accuracy) 44

5.5 Results for balanced and hero projects (in percent) 46

7.1 Average number of artifacts and average time taken in jack, maven,

connector and knowledge distribution experiments. 58

xi

LIST OF TABLES xii

7.2 Average number of artifacts and average time taken in the replace-

ment experiments. 59

Chapter 1

Introduction

Software artifacts are produced throughout the development process. There is

a multitude of different types of software artifacts such as issues, design docu-

ments, data models and source files. Conway [2] claimed ”organizations which

design systems are constrained to produce designs which are copies of the com-

munication structures of these organizations” (also known as Conway’s Law).

Also, Herbsleb and Grinter [3] examined multi-site development and stated that

simple daily routines like meeting in hallways and finding the right person to ask

about a problem are an indispensable part of the work. Therefore, the structure

of the project reflects the connections and communication among artifacts and

developers.

In a typical development environment, software development and collaboration

tools are widely used. Artifacts and their relations can be extracted from these

tools (e.g., version control systems and issue tracking systems). Graphs are useful

basic data types to keep data points and relations among them. In order to keep

the structure of the organizations working on the projects, we construct artifact

traceability graphs representing artifacts as nodes and relations as edges. Since

software development mainly depends on human effort, developers are the most

important resource to build and maintain software projects. Therefore, we study

different perspectives by analyzing developer contributions.

1

1.1 Research Problem

In a project, some developers take more responsibility, and the success rate of

the project heavily depends on these developers. Thus, they are valuable and

essential to develop and maintain the project, in other words, they are the key

developers of the project. Developers leave and join projects due to numerous

reasons such as transferring to another project in the same company or leaving a

company to work in another one. When developers leave the project, they should

be replaced by other developers in a short period of time. This is also known

as developer turnover, which is a common phenomenon in software development.

For instance, median tenure at Google and Amazon are 1.1 years and 1 year

respectively according to a report published at Payscale1. Also, it is a critical

risk for software projects [4]. It is more critical when the key developers leave the

project. Therefore, identifying valuable and indispensable developers is a vital

and challenging task for project management.

All developers contribute to the project in various tasks, thus developers can

be valuable for the project in many different ways. For instance, a developer

may know a specific module very well, while another one knows a little related to

multiple modules. In our study, similar to our previous works [5, 6], we examine

key developers under three categories: jacks, mavens and connectors.

Our motivation for this categorization comes from The Tipping Point by Glad-

well [7]. The book discusses the reasons behind word-of-mouth epidemics. In The

Law of Few chapter, the author justifies that three kinds of people turn ideas into

epidemics and they are responsible for tipping ideas: connector, salesman and

maven. Connectors have connections to different social groups, and they allow

ideas to spread between these groups. Salesmen have a charisma that allows them

to persuade people and change their decisions. Mavens have a great knowledge

of specific topics and thus help people to make informed decisions.

Since there are traceable links among software artifacts, and they mirror the

1https://www.payscale.com/data-packages/employee-loyalty/least-loyal-employees (Ac-
cessed on 24 Sep 2020)

2

connections among people in real life, we propose to use a similar categorization,

connector and maven, as described in the book [7] to find the key developers in

a software project. A typical connector represents a developer who is involved

in different (sub)projects or different groups of developers. Connecting divergent

groups or (sub)projects increases this type of developers’ significance because they

connect the developers who are not in the same group (i.e., team) and touching

different parts of a project means collective knowledge from different aspects of

the project. The maven category represents the developers who are masters in

details of specific modules or files in the project. Being the rare experts of specific

parts of the source code makes these developers difficult to replace.

Jacks (of all trades) are the developers who have a broad knowledge of the

project. They use or modify files from different parts of the project. Here, jack

and connector definitions may interfere with each other since both define key

developers who touch different parts of the project. To make it more clear, the

jack category purely focuses on knowledge when the connector category focuses

on connecting developers. ”Jack” name comes from a figure of speech, jack of all

trades, to define people “who can do passable work at various tasks”2. For the

developers who have a broad knowledge of projects, we use jack to remind of this

phrase.

As mentioned above, developer turnover is a critical risk for software projects

[4]. Regardless of whether a key developer or not, the work should be transferred

to another developer when a developer leaves the project. Stakeholders of the

software project should handle such cases with a minimal negative effect on the

development. Using the traceable links between software artifacts, the best re-

placements for leaving developers can be found. These replacements can take

over all the work or can mentor newcomer developers in their learning process of

the jobs of the leaving developer.

The risks mentioned above do not just occur due to developer turnover. Even

though all the developers continue to work on the project, the knowledge distribu-

tion can be imbalanced among developers. In that case, the project depends on a

2https://www.merriam-webster.com/dictionary/jack-of-all-trades (Accessed on 24 Sep 2020)

3

very small group of developers (some of them may be key developers). Foreseeing

such cases are possible and considerably important for managerial decisions.

To discover the points mentioned above, in this study, we address the following

research questions (RQs):

RQ 1: How can we identify key developers in a software project?

RQ 1.1: How can we identify jacks in a software project?

RQ 1.2: How can we identify mavens in a software project?

RQ 1.3: How can we identify connectors in a software project?

RQ 2: How can we find replacements (successors) for leaving developers?

RQ 3: How can we evaluate knowledge distribution in a software project?

1.2 Contributions

The main contributions of this thesis are:

• By using artifact traceability graphs, we offer:

– A novel categorization of the key developers and algorithms to identify

the developers for each category.

– An algorithm to recommend replacements (successors) for leaving de-

velopers.

– An algorithm to evaluate knowledge distribution in development

teams.

• We provide a proof of concept tool presenting tables and charts for the

RQs. It visualizes the generated results of the experiments and shows how

a manager dashboard tool using our algorithms would seem like.

4

In the following chapter, we share related work. In Chapter 3, we explain

our methodology addressing the RQs. In Chapter 4, we share the details of the

datasets and the important points of the preprocessing. In Chapter 5, we perform

case studies in six different open source software (OSS) projects. In Chapter 6, we

present a proof of concept tool for traversing our results day by day. In Chapter

7, we discuss the RQs, scalability of the algorithms and practical impacts of the

study. In Chapter 8, we discuss the threats to validity of our study. In Chapter

9, we present our conclusions and possible future works.

5

Chapter 2

Related Work

In the literature, there are many studies on truck factor, developer recommenda-

tion, developer social networks and developer roles/types. In the following, we

present them under separate sections.

2.1 Truck Factor

Truck factor (i.e., bus factor) is the answer to the following question: What

is the minimum number of developers who have to leave the project before the

project becomes incapacitated and has serious problems? To address this problem,

Avelino et al. [8] associated files to authors by using the degree of authorship [9],

then they found the minimum number of developers whose total file coverage is

more than 50% of all files. Cosentino et al. [10] measured developers’ knowledge

on artifacts (e.g., files, directories and project itself) with different metrics such as

”last change takes it all” and ”multiple changes equally considered”. They defined

primary and secondary developers for the artifacts and proposed that the project

will have problems with the artifact if all primary and secondary developers leave

the project. Rigby et al. [11] studied a model on file abandonment. In their

study, the author of a line is assigned by using git blame, and a file is abandoned

6

when the authors of 90% of its lines left the project. They proposed to remove

developers randomly until a specific amount of file loss occurs, and use the number

of removed developers as the truck factor at that point.

Moreover, some researchers published empirical studies on existing truck factor

algorithms. Avelino et al. [12] investigated abandoned OSS projects. In their

definition, a project is abandoned when all truck factor developers leave. Ferreira

et al. [13] performed a comparative study on truck factor algorithms and made

a comprehensive discussion on them from many different viewpoints such as the

accuracy of the reported results in the studies and the reasons why the truck

factor algorithms fail in some circumstances.

2.2 Developer Recommendation

Developer recommendation has been a hot software engineering research topic.

Recommending proper developers for bug resolution, code reviewers for new code

changes and successors to replace leaving developers are some of the application

areas of developer recommendation.

Xia et al. [14] proposed a model suggesting developers for bug reports. Their

method is a linear combination of scores from bug-report-based analysis and

developer-based analysis. These analyses use terms and topics in the bug reports,

affected products and affected components. Balachandran [15] presented a code

reviewer recommendation model based on line change history. The model returns

a list of developers according to their scores calculated heuristically on line change

history of pull requests. Canfora et al. [16] proposed an approach, YODA, to

recommend mentors to the newcomers.

Rigby et al. [11] proposed a model for suggesting successors of leaving de-

velopers. For abandoned files, their model suggests five potential successors by

considering the number of files that are co-changed with abandoned files. Also,

7

the model suggests one new developer who has no co-change experience. To eval-

uate their approach, they used another model that suggests developers randomly,

and they compared the results. Nassif and Robillard [17] replicated the study

of Rigby et al. [11]. Other than validating the results shared by the first study,

they also extended the previous study by adding weights to files and conducting

experiments on different time periods.

2.3 Developer Social Networks

Many studies have been published on developer social networks [18]. Wu and Goh

[19] studied the long term effects of communication patterns on success. They

performed experiments on how graph centrality, graph density and leadership

centrality affect the success of OSS projects. Also, Kakimoto et al. [20] worked

on knowledge collaboration through communication tools. They applied social

network analysis to four OSS communities, and partially verified their hypoth-

esis, which claims ”Communications are actively encouraged before/after OSS

released, especially among community members with a variety of roles but not

among particular members” [20]. Also, Joblin et al. [21] worked on network-

based metrics (e.g., degree centrality) while investigating core and peripheral de-

velopers. Moreover, Allaho and Lee [22] conducted a social network analysis on

OSS projects and found that OSS social networks follow a power-law distribution

which means a small number of developers dominate the projects.

2.4 Developer Roles and Types

There have been a number of studies examining developer types from different

perspectives. Kosti et al. [23] investigated archetypal personalities of software

engineers. They chose extraversion and conscientiousness as their main criteria

and focused on the binary combinations of them. Cheng and Guo [24] made an

activity-based analysis of OSS contributors, then adopted a data-driven approach

8

to find out the dynamics and roles of the contributors. Milewicz, Pinto and

Rodeghero [25] worked on the contributor roles in scientific OSS projects. They

classified researchers as senior, junior and thirdparty.

Ortu et al. [26] inspected GitHub contributors as users (contributors without

a commit) and developers (contributors who have source code commits). Then,

they inspected developers as one-commit developers and multi-commit develop-

ers. By examining the received/sent comments of the contributors, they found

that different groups play different roles and have different communication pat-

terns (e.g., level of politeness).

In the literature, there are studies examining core and periphery [27, 21], core,

active, occasional and rare [28], core, external and mutant [29], key [30], hero [31]

and elite [32] developers in OSS projects. Likewise, Zhou and Mockus [33] claimed

that Long Term Contributors (LTCs) are valuable for projects. These developer

definitions (e.g., core and key) all have similar definitions and are closely related

to our study.

Goeminne and Mens [34] examined the activity distribution in three OSS com-

munities. They found that the contributions to commits, mailing list and bug

reports are imbalanced and the Pareto principle (20% of the contributors make

80% of the contributions) holds for the activities of committers, mailers and bug

report changers. Also, for each project, they reported Venn diagrams for these

three contributor types and showed the overlaps between the top 20 contributors.

In the reported diagrams, a small number of developers (2, 4 and 0) are at the

intersection of all three contributor types. This shows that different contributors

are active on different platforms.

Yamashita et al. [35] studied the Pareto principle in 2496 OSS projects. They

found that 47% of the projects are Pareto compliant in commit-based evaluation.

By referring to the study of Yamashita et al. [35], Agrawal et al. [31] worked

on hero developers in public and enterprise GitHub software projects. According

to their definition, a project has hero developers if 20% of the developers made

80% of the contributions. Then, they analyzed hero and non-hero projects and

9

claimed that the hero developers are very common particularly in medium to

large projects and organizations should work on keeping this type of developers.

In another study, Yamashita et al. [36] classified the OSS projects in a different

way. According to attracting new developers and retaining the existing ones, they

classified the projects as magnet or sticky. They found that the sticky and magnet

values of the projects change in time, and they shared the likelihood of those

transactions. Since developers need time to become an indispensable participant

(i.e., key developer) of the team and sticky projects are inclined to keep existing

developers, key developers may exist more in sticky projects. However, this aspect

needs further inspection.

Oliva et al. [30] worked on characterizing the key developers, that is ”the set of

developers who evolve the technical core”. First, they detected the core commits

by constructing a call-graph of the classes in the project. Then, they ranked the

developers according to their core commit counts and considered the developers

who made roughly 80% of the core commits as the key developers. They did not

share any validation for the identified key developers (e.g., making a developer

survey or using another data source showing similar results). Afterward, they

analyzed the identified key developers in terms of contribution characteristics,

communication and coordination within the project on a small project with 16

developers.

Bella, Sillitti and Succi [28] clustered OSS contributors by using the k-means

algorithm with the features from version control system such as number of com-

mits made by the developer, number of files edited by the developer and days

in the project of the developer. After the clustering analysis, they classified OSS

contributors as core, active, occasional and rare developers. It is an onion-like

structure. Core developers imply a small group of developers who develop most of

the project and make the most important contributions for a long period of time.

Active developers also contribute to different specific parts and handle important

jobs for a long time. Occasional developers refer to a large number of developers

contributing to a limited number of specific files occasionally. Rare developers

contribute to the project in limited time periods, then they stop contributing.

10

Crowston et al. [27] examined the core and periphery of OSS team commu-

nications. They analyzed if the following three methods produce similar results

or not: the contributors named officially (e.g., support manager and developer

labels extracted from SourceForge1), the contributors who contribute the most to

the bug reports, and the contributors who are defined by a pattern of interactions

in bug tracking systems.

Joblin et al.[21] studied core and peripheral developers. The core developers

are the essential developers in the projects as the key developers in our study.

They worked on count-based (e.g., number of commits as in [31]) and network-

based (e.g., degree centrality in developer graph from version control systems and

mailing lists) metrics. They established a ground truth by making a survey with

166 participants. We were not able to examine their data because the project

and survey data links are not accessible through their website2.

Padhye, Mani and Sinha [29] analyzed commits and developers (i.e., commit-

ters) in the fork-and-pull model of GitHub. They classified commits and develop-

ers as core, external and mutant. Core committers have access to the repository

of the project, and the commits made directly to the main repository are named

as core commits. External commits are made through a pull request and accepted

by core committers, and the author of these kinds of commits are considered as

external committers. The mutant category refers to the commits made in rejected

pull requests or the commits made for personal uses. Then, they shared some

statistics about these definitions for the 89 top-starred GitHub projects and their

forks. For example, they shared the distributions of the community sizes for core,

external and mutant categories. They defined core developers in an access-based

manner (access to the repository). Similarly, Wang et al. [32] checked whether

developers have write permission to the repository or not while identifying elite

developers. Then, they revealed elite developers’ activities. For example, elite de-

velopers manage supportive and communicative activities more when the project

grows.

1https://sourceforge.net/ (Accessed on 24 Sep 2020)
2http://siemens.github.io/codeface/icse2017/ (Accessed on 24 Sep 2020)

11

Zhou and Mockus [33] defined an LTC as ”a participant who stays with the

project for at least three years and is productive”. They claimed that LTCs are

crucial for the success of the projects. They mainly investigated how a new joiner

becomes an LTC (i.e., a valuable contributor).

12

Chapter 3

Methodology

To address the RQs, we first construct an artifact traceability graph of the project

by taking recency into account in Section 3.1. Then, we propose separate algo-

rithms for key developer types in Section 3.2 through Section 3.4. We propose

an approach to determine threshold scores for identifying the significant set of

key developers in each key developer category in Section 3.5. Afterward, we pro-

pose an algorithm to recommend replacements for leaving developers in Section

3.6 and another algorithm to evaluate the knowledge distribution in development

teams in Section 3.7.

3.1 Artifact Traceability Graph

Artifact traceability graphs include software artifacts and the connections be-

tween them. We denote nodes for software artifacts, which are developers, change

sets (e.g., commits in Git), source files and issues. Then, we denote undirected

edges for the relations (e.g., commit, review, include and linked) between those

artifacts. For example, we add an edge for a commit relation between the devel-

oper node and the change set node if the developer is the author of the change

set. The edges are undirected because reaching from one change set to another

13

Figure 3.1: Distance against recency

should be possible over the edges if they include the same files (i.e., co-changed

files). Developers commit or review change sets. Change sets include a set of

source files. Issues can be linked to a set of change sets and vice versa.

In the graph, we denote distances for each edge. Distances of the edges between

developers and change sets are always zero (0) because these connections are there

in order to keep track of who made commits and reviews. Other than commit

and review cases, edge distances are calculated by using the recency of the bound

change set. Our distance metric is inversely proportional to the recency of the

change set as shown in Fig. 3.1. Recency and distance metrics are calculated as

follows:

Recency = 1− # of days passed

of days in the graph
(3.1)

Distance =
1

Recency
(3.2)

14

CS2
(60) F2

I2

D1 0

F3

D2 CS3
(90) F4

I3CS4
(180)

D3

F5

 5

 5

 5

 3.33

 3.33 0

 3.33

 1.67

 1.67

 0

CS1
(1)

 0

F1 300 I1 300

Figure 3.2: Sample artifact traceability graph. (D: Developer, F: File, CS: Change
Set, I: Issue)

Fig. 3.2 shows a sample traceability graph, where the graph includes 300 days

of the project history, and the numbers in the parentheses are the days that the

commits are made. For example, CS3 was committed on the 90th day (i.e., 210

days ago). All the edges of CS3 have the same distance, which is calculated as

follows.

Distance =
1

Recency
=

1

1− 210
300

=
1

0.30
= 3.33

We add distance to the edges in the graph since assuming that all edges having

the same importance might be problematic since some edges represent recent

commits and reviews while others represent older ones. Our recency and distance

definitions are utilized here to distinguish these types of situations. For example,

the distance between CS3 and F4 is 3.33 while the distance between CS4 and F5

is 1.67, and there are around three months between the commit times of CS3 and

CS4.

15

3.2 Jacks (RQ 1.1)

To find Jacks in a software project, we analyze the general knowledge of the

developers on the project. By looking at the history of the project from its version

control data, we can say that the source files keep the knowledge, in other words,

the know-how of the project. There are studies to find the authors of source

files (e.g., degree of authorship [9]). Authorship is not only about being the first

author of the file but also about changing the source files in time depending on

the recency of the change. In our study, we define reachability similar to this

definition. If developers can reach a file, they know that file. Also, multiple

developers can reach the same file at the same time. In the following, we explain

how we find reachable files and file coverage for each developer.

3.2.1 Finding Reachable Files

We define reachable files of a developer as the files that are reached by the de-

veloper through the connections in the artifact traceability graph. For example,

in Fig. 3.2, the D2 node can reach every file node in the graph through change

sets, issues and other developers if there is no distance limit (i.e., a limit for the

sum of distances on the edges in the graph). Actually, every developer can reach

every file if the graph is connected and there is no distance limit. In that case,

every developer would know every file, and we could not distinguish which devel-

opers know which source files. Therefore, to handle these situations, we define

the following rules:

1. We need to set a threshold (limit) for distance while reaching from developer

nodes to file nodes. For example, in Fig. 3.3, D2 cannot reach F5 if the

threshold is 5 because 3.33 + 1.67 + 1.67 = 6.67 and 6.67 is beyond the

threshold 5.

2. One developer cannot reach files through other developers because it would

transfer reachable files of a developer to another developer if the distance

16

threshold is large enough. For example, in Fig. 3.3, D2 cannot reach F1

through D1, even if the distance threshold is 308.33 or more.

Distance threshold is a parameter, and it depends on the distance formula

given in Equation (3.2). Due to its nature, distance goes to infinity when recency

goes to zero as shown in Fig. 3.1. In the sample graph, the oldest relations are

the relations from the first day, and their edges have the highest distance. In this

case, their distance is calculated as follows:

Distance =
1

Recency
=

1

1− 299
300

=
1
1

300

= 300

Therefore, we need to set our threshold to 300 if we want to use every direct

relation in the graph. Since almost all recently changed files are reachable by

the developers who have recent commits in that case, using 300 as the threshold

would not enable us to distinguish which developers know which files.

We follow a simple way while deciding the distance threshold. In a 300-day

graph, the edges with 0.1 or less recency belong to the change sets committed in

the first 30 days. The rest of the graph corresponds to 90% of the time covered

in the graph. Therefore, we can set the distance threshold to 10 (See the marked

point in Fig. 3.1), which allows us to use all direct relations from the last 90% of

the days in the graph.

Distance =
1

Recency
=

1

1− 270
300

=
1
30
300

=
1

0.1
= 10

Also, 10 seems like a good trade-off point as you see in the plot of distance

against recency (Fig. 3.1). For example, a distance of 2 would not be useful

because even the most recent commits have a distance of 1 on their edges. Also,

if we use a larger distance limit like 100, nearly everybody could reach almost

every file. Thus, we continue with 10. After this point, we continue with 10 as

the distance threshold unless otherwise stated.

17

CS2
(60) F2

I2

D1 0

F3

D2 CS3
(90) F4

I3CS4
(180)

D3

F5

 5

 5

 5

 3.33

 3.33 0

 3.33

 1.67

 1.67

 0

CS1
(1)

 0

F1 300 I1 300

Figure 3.3: Visited edges and reachable files are highlighted to illustrate how the
reachable files by D2 are found. (D: Developer, F: File, CS: Change Set, I: Issue)

Algorithm 1 Finding Reachable Files

1: function DevToFiles(graph, threshold)
2: devs← GetDevelopers(graph) . list
3: devToReachableF iles← HashMap() . string to list
4: for dev in devs do
5: reachableF iles← DFS(graph, dev, threshold)
6: devToReachableF iles.put(dev, reachableF iles)

7: return devToReachableF iles

Fig. 3.3 shows how reachable files for D2 are found in the sample graph.

The highlighted files (F3, F4, F5) are reachable by D2. While finding these

reachable files, we run a depth-first search (DFS) algorithm starting from D2

with a stopping condition for reaching the distance threshold. The highlighted

edges show the visited edges when DFS is started from the D2 node. Also, the

DFS algorithm does not go through another developer node. For example, the

algorithm stopped when it encountered the node of D1. Algorithm 1 shows the

pseudo code for finding reachable files for each developer.

18

Table 3.1: Reachable files and file coverage of each developer in the sample artifact
traceability graph (Assuming there are five files in the project)

Developer Reachable Files File Coverage
D1 F2 and F3 40%
D2 F3, F4 and F5 60%
D3 F3, F4 and F5 60%

Algorithm 2 Finding Jacks

1: function FindJacks(graph)
2: devToF iles← DevToFiles(graph, threshold) . Algorithm 1
3: devToF ileCoverage← HashMap() . string to float
4: numFiles← GetNumFiles(graph)
5: for dev in devToF iles.keys() do
6: numDevFiles← devToF iles.get(dev).length()
7: fileCoverage← numDevFiles

numFiles

8: devToCoverage.put(dev, fileCoverage)

9: return SortByV alue(devToCoverage)

3.2.2 Identifying Jacks

While finding jacks, we sort the developers in descending order according to

their file coverage in the software project. File coverage is simply the ratio of

the number of reachable files by the developer to the number of all files in the

project, not just currently available files in the graph. Equation 3.3 shows the

file coverage of some developer d.

File Coveraged =
of reachable files by d

of all files in the project
(3.3)

Table 3.1 shows the reachable files and file coverages for each developer in

the sample artifact traceability graph given in Fig. 3.2. Algorithm 2 shows the

pseudo code of finding jacks. First, it finds reachable files for each developer,

then calculates file coverage scores for developers. Finally, it returns developers

in descending order according to their file coverage scores.

19

3.3 Mavens (RQ 1.2)

By definition, mavens are the rare experts of specific parts, files or modules of

the project. As we stated in Section 3.2, the source files in a software project

are the reflection of the knowledge (i.e., know-how). Since mavens are the rare

expert developers on specific parts, they have knowledge that the others do not

have. Thus, we need to find lesser-known parts of the project.

3.3.1 Rarely Reached Files

First, reaching a file through the edges in the artifact graph means knowing the

file. To meet the maven definition, we can use the files only reached by a limited

number of developers. We call such files rarely reached files, and we set this limit

to 1, which means that the files reached by only one developer are the rarely

reached files. This could be a configurable parameter according to the size of the

project. For example, for the graph given in Fig. 3.2, F2 is a rarely reached file.

Actually it is the only one as it can be seen in Table 3.1.

Algorithm 3 shows how to find rarely reached files. It is assumed that

devToRareF iles is initialized with developer names and empty lists. Also,

InvertMapping function generates a mapping from values to keys. For in-

stance, it inverts the hashmap {D1 : [F1], D2 : [F1, F2]} to the hashmap

{F1 : [D1, D2], F2 : [D2]}.

Algorithm 3 Finding Rarely Reached Files

1: function DevToRareFiles(graph, threshold)
2: devToF iles← DevToFiles(graph, threshold) . Algorithm 1
3: fileToDevs← InvertMapping(devToF iles)
4: devToRareF iles← HashMap() . string to list
5: for file in fileToDevs.keys() do
6: devs← fileToDevs.get(file)
7: if devs.length() is 1 then
8: devToRareF iles.get(devs.get(0)).append(file)

9: return devToRareF iles

20

Algorithm 4 Finding Mavens

1: function FindMavens(graph, threshold)
2: devToRareF iles← DevToRareF iles(graph, threshold) . Algorithm 3
3: devToMavenness← HashMap() . string to float
4: numRareF iles← GetNumRareF iles(devToRareF iles)
5: for dev in devToRareF iles.keys() do
6: numDevFiles← devToRareF iles.get(dev).length()
7: mavenness← numDevFiles

numRareF iles

8: devToMavenness.put(dev,mavenness)

9: return SortByV alue(devToMavenness)

3.3.2 Identifying Mavens

To find mavens, we consider the number of the rarely reached files of the de-

velopers. For a better comparison among developers, we define mavenness of a

developer d as follows:

Mavennessd =
of rarely reached files of d

of all rarely reached files
(3.4)

While finding mavens, first we find reachable files as explained in Section 3.2.1,

then we find rarely reached files as explained in Section 3.3.1 and given in Algo-

rithm 3. Finally, we calculate mavenness scores and sort the developers according

to their mavenness in descending order. Algorithm 4 shows the procedure.

3.4 Connectors (RQ 1.3)

Connectors are the developers who are involved in different sub-projects or teams.

The main idea behind the connector definition is connecting developers who have

no other connections, in other words, being the bridge between different groups of

developers. Using node centrality, we identify this type of developers on artifact

traceability graphs defined in Section 3.1.

21

3.4.1 Calculating Betweenness Centrality:

Betweenness centrality of a node is based on the number of shortest paths passing

through that node. Freeman [37] discussed that betweenness centrality is related

to control of communication. Also, Bird et al. [38] used betweenness centrality

to find the gatekeepers in the social networks of mail correspondents. Therefore,

we hypothesize that betweenness centrality can be a measure to find connectors.

Betweenness centrality of some node v where V is the set of nodes, s and t are

some nodes other than v:

cB(v) =
∑

s 6=v 6=tεV

of shortest paths passing through v

of shortest (s,t)-paths
(3.5)

For a better comparison among developers, betweenness values are normalized

with 2/((n − 1)(n − 2)) where n is the number of nodes in the graph. For

betweenness centrality related operations, we use NetworkX package [39], which

uses faster betweenness centrality algorithm of Brandes [40].

To use betweenness centrality, we need a graph composed of only developers

because we are looking for developers who connect other developers to each other.

Sulun et al.[41] proposed a metric, know-about, to find how much developers know

the files. They found different paths between the files and the developers in the

artifact graph and defined know-about as the summation of the reciprocals of the

path lengths. Similarly, we propose to use different paths between developers

to find how much they are connected in the artifact graph. The next section

explains the details.

3.4.2 Constructing the Developer Graph

The developer graph is a projection of the artifact traceability graph. It defines

distances directly between developers in a different way, not as we mentioned

in Section 3.1. When projecting an artifact graph to a developer graph, we

22

find all different simple paths (paths that do not have repeating nodes) between

each developer pair with a depth limit of 4. Since connector definition is not

about knowing the files but about connecting the other developers, recency is

not a concern and it is assumed that all edges in the artifact graph have the

same distance of 1. Thus, the depth limit of 4 means that the maximum path

length can be 4. Therefore, in the traceability graph, two developers can be

connected through the paths with a length of 2 (through a change set node), or

the paths with a length of 4 (through two different change set nodes and a file

node connected to them). These kinds of paths can be seen in the sample graph

in Fig. 3.4. We find the paths between two developers through software artifacts,

not through other developers. For example, in Fig. 3.4, there is a path between

D2 and D3 through D1, but we interpret this path as the combination of two

paths: D1-D2 and D1-D3. Since the developers in the same team potentially

work on the same group of files and these files will be close to each other (they

will be connected through change sets because they will be changed by the same

group frequently) in the traceability graph, the method mentioned above finds

the paths between the developers in the same group. So, the developers who

have connections in different groups will be favored in betweenness centrality

calculations.

After finding the paths between each developer pair, we define a new distance

metric, Reciprocal of Sum of Reciprocal Distances (RSRD). We define RSRD as

follows when D denotes the set of all distances between two developers (i.e., the

set of lengths of all different paths between two developers) and d is a distance

in D:

RSRD =
[∑
dεD

d−1
]−1

(3.6)

Reciprocals of distances make larger contributions to the score for closer nodes.

For example, 1
2
> 1

4
and the path with length of 2 makes a larger contribution.

After summing the contributions of all reciprocal distances, larger values represent

a stronger connection. For example, 1
2

+ 1
4

= 3
4

means a stronger connection than

23

D1

D2

D4

D3

CS2

CS3

CS1

F3F2

F1

F4

 include

 include

 include

 include

 include

 include

 commit

 commit

 commit review

review

review

Figure 3.4: Another sample artifact traceability graph. (D: Developer, F: File,
CS: Change Set)

D1 D2

D4 D3

D1 D2

D4 D3

RSRD

2,4,4,4

4,4,4 4,4,4

4

2,4

2,4

0.8

1.33 1.33

1.3
3

1.33

Figure 3.5: Sample developer graph. (D: Developer)

1
4

+ 1
4

= 2
4
. To use betweenness centrality, we need to inverse the result of this

summation, because the nodes with stronger connections need to be closer. For

example, for the numbers in the previous example, 4
3

= 1.33 is smaller than 4
2

= 2,

and it means a closer relation. At the end, a smaller RSRD score represents a

closer relationship between two developers, just like any other distance metric.

Fig. 3.5 shows how the developer graph is constructed from the sample artifact

graph in Fig. 3.4. For example, (2, 4, 4, 4) are the distances of the different paths

between D1 and D2 in Fig. 3.4, and the RSRD between these two developers is

calculated as follows:

(2−1 + 4−1 + 4−1 + 4−1)−1 =
[1

2
+

1

4
+

1

4
+

1

4

]−1
=

[5

4

]−1
= 0.8

24

Algorithm 5 Calculating RSRD

1: function CalculateRsrd(graph,maxDepth)
2: devs← CurrentDevelopers(graph) . list
3: targetDevs← devs . copy of devs to keep target developers
4: devPairToPaths← HashMap() . string pair to list
5: for startDev in devs do
6: targetDevs← targetDevs− startDev
7: paths← DFS(graph, startDev, targetDevs,maxDepth)
8: for path in paths do
9: endDev ← path.getLast()
10: devPairToPaths.get((startDev, endDev)).append(path)

11: devPairToRsrd← HashMap() . string pair to float
12: for devPair in devPairToPaths.keys() do
13: srd← 0
14: paths← devPairToPaths.get(devPair)
15: for path in paths do
16: srd← srd + 1

path.length()

17: rsrd← 1
srd

18: devPairToRsrd.put(devPair, rsrd)

19: return devPairToRsrd

Algorithm 5 shows the pseudo code for calculating RSRD values for a given

graph and a depth limit. First, it runs a DFS algorithm starting from each

developer node to find the paths to the nodes of the target developers. Then, for

each developer pair, it calculates an RSRD value by using the path lengths.

3.4.3 Identifying Connectors

When identifying connectors, we use the betweenness centrality of developers in

the developer graph. Algorithm 6 shows the procedure. First, it finds different

paths and RSRD values for each developer pair as mentioned above. Then, it cre-

ates a developer graph with these RSRD values and finds betweenness centrality

for each developer in that graph. Finally, it sorts developers in descending order

according to their centrality.

25

Algorithm 6 Finding Connectors

1: function FindConnectors(graph)
2: devPairToRsrd← CalculateRsrd(graph)
3: devGraph← DeveloperGraph(devPairToRsrd)
4: devToBtwn← BetweennessCentrality(devGraph)
5: return SortByV alue(devToBtwn)

3.5 Identifying the Significant Set of Key De-

velopers

We return a sorted list of developers for each type of key developer. We sort

developers according to file coverage (proportional to reachable files) for jacks,

mavenness (proportional to rarely reached files) for mavens and betweenness cen-

trality in the developer graph for connectors. In these sorted lists, the developers

near the top are more significant than the others, thus we can set a threshold

and call the developers above the threshold the significant set of developers. To

identify them, we find the developers who made at least 80% of the contributions

(similar to the Pareto principle) for each category separately. For jacks, we find

the developers who can reach at least 80% of the reachable files. For mavens, we

identify the developers who can reach at least 80% of the rarely reached files. For

connectors, we identify the developers who are directly connected to at least 80%

of the other developers in the developer graph.

3.6 Replacement for Leaving Developers (RQ 2)

Developers leave and join projects due to various reasons like changing the team

in the same company or starting to work in another company. Some level of

developer turnover happens all the time. It is a risk for the software projects [4]

and inevitable in practice. When a developer leaves the project, other developers

have to take over the jobs of that developer. By using the reachable files ex-

plained in Section 3.2.1, we propose to recommend developers who know the files

known by the leaving (i.e., former) developer. For a given developer in the artifact

26

Algorithm 7 Finding Replacements

1: function FindReplacement(leavingDev, threshold)
2: devToF iles← DevToFiles(graph, threshold) . Algorithm 1
3: leavingDevFiles← devToF iles.get(leavingDev)
4: allDevs← devToF iles.keys()
5: otherDevs← allDevs− leavingDev
6: devToOverlappingKnowledge← HashMap() . string to integer
7: for dev in otherDevs do
8: devF iles← devToF iles.get(dev)
9: intersection← Intersection(devF iles, leavingDevFiles)

10: overlappingKnowledge← intersection.length()
leavingDevF iles.length()

11: devToOverlappingKnowledge.put(dev, overlappingKnowledge)

12: return SortByV alue(devToOverlappingKnowledge)

graph, we recommend a list of developers sorted by the intersection percentage

of the reachable files of two developers, the former one and the recommended

one. In other words, we use overlapping knowledge amounts while recommend-

ing replacements. The following equation shows the overlapping knowledge of a

recommended developer (rd) and a leaving developer (ld) when F represents the

set of reachable files by the developer.

OverlappingKnowledge(rd, ld) =
|Frd ∩ Fld|
|Fld|

(3.7)

For example, overlapping knowledge is 0.33 when rd reaches [F1, F2] and ld

reaches [F2, F3, F4]. Algorithm 7 shows the pseudo code of our replacement

recommendation algorithm.

27

3.7 Knowledge Distribution: Balanced or Hero

(RQ 3)

While identifying jacks in the projects, we found which developers reach which

files, then the file coverage ratio of each developer. In a balanced team, it is

expected that the developers’ file coverage ratios should be close enough, and they

should not fluctuate much. In different studies [34, 35, 31], imbalance knowledge

distribution is found in software projects. Also, Agrawal et al. [31] called the

imbalanced projects hero projects and called the others non-hero projects. In our

case, we use a similar terminology, hero and balanced teams (or projects).

Even though all developers work on the same project, some contribute more

and some contribute less. Also, particularly in OSS projects, contribution fre-

quency affects the knowledge since a group of developers does not contribute

continuously every day or every week. Therefore, the contribution amount differs

among developers. We assume that the knowledge distribution in a balanced team

should follow a normal distribution. The file coverage score given in Equation

3.3 (Section 3.2.2) is to measure the knowledge of the developers. So, we assume

that the file coverage distribution should follow a normal distribution in a bal-

anced team. To decide whether the file coverage distribution is normal or not, we

propose to use statistical tests. The statistical tests for normality are to decide if

the samples come from a normally distributed population or not. In our case, file

coverage values are not the samples from a population but they somehow repre-

sent the knowledge distribution. Therefore, we claim that using a normality test

could decide whether a development team has a balanced knowledge distribution

or not.

Shapiro-Wilk test [42] is commonly used for testing normality and suitable for

smaller numbers of samples. Suitability for small sample counts is important in

our case since software projects are generally developed by tens of active develop-

ers. Also, Razali and Wah [43] inspected the power of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling normality tests. Then, they concluded

that the Shapiro-Wilk test is the most powerful normality test. Thus, we use

28

Algorithm 8 Finding if Balanced or Hero Team (or Project)

1: function BalancedOrHero(graph)
2: devToCoverage← FindJacks(graph) . Algorithm 2
3: if devToCoverage.length() < 3 then
4: return null
5:

6: p← ShapiroWilkTest(devToCoverage.values())
7: if p > 0.05 then
8: return ”balanced”
9:

10: return ”hero”

the Shapiro-Wilk normality test in our approach with the standard 0.05 alpha

value. It tests the null hypothesis(H0) which claims that the samples come from

a normal distribution. If the statistical test rejects H0, the distribution is statis-

tically significantly different from a normal distribution, and we label that team

as hero. If the test cannot reject H0, the samples are not statistically significantly

different from a normal distribution (i.e., they can be normally distributed), and

we label that team as balanced. Not rejecting H0 does not prove the samples are

normally distributed. It means the test cannot reject H0 with the available sam-

ples. Therefore, if we cannot label a team as hero team, we call them balanced.

A corner case of this approach is that the number of developers in a team can

be less than three in small-scale projects. In that case, performing a test is not

possible, and we do not label the team at all. Algorithm 8 shows the pseudo code

for finding whether the team is balanced or not.

29

Chapter 4

Dataset

4.1 Selecting Datasets

As we mentioned before, we use software artifacts from project history to con-

struct the artifact traceability graph. More specifically, our approach needs

change sets (i.e., commits) and their related data such as author, changed files

and linked issues. Rath and Mader [1] published datasets for 33 OSS projects,

SEOSS 33. All 33 datasets are available online.1 Out of 33 projects, we selected

Apache Hadoop2, Apache Hive3, Apache Pig4, Apache HBase5, Apache Derby6

and Apache Zookeeper7 since these six projects have the highest issue and change

set link ratios among SEOSS 33 datasets. The datasets include data from version

control systems (e.g., Git) and issue tracking systems (e.g., Jira). Table 4.1 shows

the details for each dataset with a varying number of issues and change sets.

1https://bit.ly/2wukCHc (Accessed on 24 Sep 2020)
2https://hadoop.apache.org/ (Accessed on 24 Sep 2020)
3https://hive.apache.org/ (Accessed on 24 Sep 2020)
4https://pig.apache.org/ (Accessed on 24 Sep 2020)
5https://hbase.apache.org/ (Accessed on 24 Sep 2020)
6http://db.apache.org/derby/ (Accessed on 24 Sep 2020)
7https://zookeeper.apache.org/ (Accessed on 24 Sep 2020)

30

Table 4.1: Dataset details before preprocessing [1]

Project
of

Developers

Time
Period

(months)

of
Issues

of
Change

Sets

Change Sets
Linked to

Any Issue (%)
Hadoop 216 150 39,086 27,776 97.13

Hive 222 113 18,025 11,179 96.34
Pig 29 123 5,234 3,134 92.85

Hbase 266 131 19,247 14,331 90.06
Derby 37 160 6,969 8,156 83.17

Zookeeper 69 116 2,907 1600 87.12

4.2 Preprocessing

Data is already extracted from the version control and issue tracking platforms

and provided in an SQL dataset. Nonetheless, we processed the data in order to

prevent errors and calculate specific fields. We did not use all the information

in the datasets; change set, code change and change set link tables were enough

to create nodes and edges for developers, changes sets, issues, files and relations

among them.

We processed change sets from the change set table ordered by commit date,

extracted the data required and dumped them into a file as a JSON formatted

string of change sets in the temporal order. For each change set, we extracted the

following information: commit hash, author, date (commit date), issues linked,

set of file paths with their change types, number of files in the project (after the

change set).

In the data extraction, the following points are important:

• We only extracted the code changes in java files which, we assumed, end

with ”.java” extension. If a change set has no code change including a java

file, we ignored it completely.

• We ignored the merge change sets (is merge is 1) since they could inflate

the contributions of some developers [31].

31

• We created a look-up table for each project to detect different author names

of the same authors. They are created manually by looking at the developer

names and their email addresses. For example, ”John Doe” and ”Doe John”

can be the same developer if they share a common email address. We used

this table to correct the author names by replacing them.

• In order to calculate file coverage score (See Section 3.2.2), we needed the

number of files in the project after each change set. Thus, we tracked the

set of current files over time. After each code change, we removed the file

if its change type is DELETE, and we added the file if its change type is

ADD.

• Git does not track RENAME situations explicitly. When a file is renamed,

it is a DELETE and an ADD for Git (if there is no change in the file)8. In

the code change table, there are three change types: ADD, DELETE and

MODIFY. In that case, we needed to handle renames because it would affect

our traceability graph and change the knowledge balance among developers.

We treated (DELETE, ADD) pairs in the same change set (commit) as

RENAME when the following conditions were satisfied:

– Both have the same file name (file paths are different).

– The number of lines deleted in DELETE code change and the number

of lines added in ADD code change are equal.

So, our rename algorithm only detects file path changes and does not

check file contents. For example, it detects RENAME when ”example.java”

moved from ”module1/example.java” to ”module2/example.java” but does

not detect it when the file content is changed. Since we used the datasets

from SQL tables [1] directly and we did not mine them from Git repositories

ourselves, we used the heuristic given above.

• In the Hadoop dataset, we detected that there were duplicate commits.

Even though the commit hashes were different, the rest of the extracted

8https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository (Ac-
cessed on 24 Sep 2020)

32

Table 4.2: Dataset details after preprocessing

Project
of

Developers
of

Change Sets

of Change Sets
added or modified
files more than 10

of Change Sets
added or modified
files more than 50

Hadoop 153 15,178 1,900 (12.52%) 129 (0.85%)
Hive 180 9,030 1,062 (11.76%) 127 (1.41%)
Pig 25 2,401 240 (10.00%) 32 (1.33%)

Hbase 197 10,963 1,314 (11.99%) 155 (1.41%)
Derby 34 6,831 475 (6.95) 65 (0.95)

Zookeeper 47 930 116 (12.47) 10 (1.08)

data were identical. This situation only applies to Hadoop, the same pre-

processing steps did not produce such a situation for Hive and Pig. We

removed these change sets by using string comparison for all parts of the

JSON string except the commit hash.

Table 4.2 shows the number of change sets for each dataset after preprocessing.

Also, we share our implementation online (See Appendix B), and it includes the

preprocessing script.

4.3 Handling Large Change Sets

Change set means a set of file changes, and it is called a large change set when

the number of changed files is more than a specific number. For example, initial

commits of a project most probably include many files, and it is a typical example

for large commits. Another example is moving a project into another project. In

that case, its change set includes all the files in the added project.

Committing a large number of files in one change set is not considered to be

a good practice in software engineering. Sadowski et al.[44] claimed that 90%

of the changes in Google modify less than 10 files. Also, Rigby and Bird [45]

excluded the changes that contain more than 10 files in their case studies. In our

experiments, we used a looser limit for excluding change sets. In the following,

we explain the details on removing the large change sets:

33

• Regardless of the size of a change set, we applied changes to the traceability

graph for DELETE and RENAME types since the knowledge of deleted files

is not required after that point and renamed files need to proceed with their

new names.

• If a change set includes more than 50 files which are added or modified,

we ignored these ADD and MODIFY code changes. We did not use 10 as

the limit because we did not want to lose 6.95-12.52% of the datasets (See

Table 4.2). Also, sometimes large commits can exist even though it is not a

good practice. Our purpose is to handle the initial commits of the projects

and project movements. So, choosing 50 is a good trade-off for the limit of

the number of files added or modified in a change set. It is neither small to

cause losing 6.95-12.52% of the datasets nor large to include commits like

initial commits.

Because we needed to keep track of DELETE and RENAME types, we did

not exclude large change sets in preprocessing. Instead, we detected large change

sets while adding change sets to the graph, then we applied changes according to

the rules given above.

34

Chapter 5

Case Studies

In this section, we share the details of our evaluation setup and the results for

each RQ.

5.1 Evaluation Setup

In the experiments, we used the NetworkX package [39] for graph operations. In

order to prevent potential bugs, we used its built-in functions whenever possi-

ble (e.g., calculating betweenness centrality, finding paths between developers).

However, we implemented the DFS algorithm for reachable files in Algorithm 1

because it was very specific to our case (e.g., the stopping condition is different).

Our source code is available online (See Appendix B).

How much time the artifact graph should cover is a parameter in our method.

We chose a sliding window approach over an incremental window in time, in other

words, the artifact graph always includes the change sets committed in a constant

time period. The followings are the reasons behind this choice:

35

• If the time period of the graph changes over time, the meaning of the

recency changes. For example, 0.9 recency means 30 days ago in a 300-

day graph while the same recency corresponds to 50 days ago in a 500-day

graph. Thus, keeping the time period (sliding window size) constant enables

recency scores to have the same meaning in different time points.

• Keeping every artifact from history enlarges the graph every day, and the

algorithms run slower in larger graphs. Therefore, removing unnecessary

parts (the artifacts older than one year) means less run time, in other words,

it is more efficient.

• In OSS projects, there is no data regarding leaving developers. If we keep

every artifact from history, we should calculate scores even for former de-

velopers. Therefore, removing old artifacts enables us to keep track of the

current developers. If the graph keeps the last 365 days, we assume the de-

velopers who contributed to the project in the last 365 days are the current

active developers.

We used six-month (180 days) and one-year (365 days) sliding windows in our

experiments. Figure 5.1 shows how the included days change in iterations. The

numbers on the figure come from the Hive dataset when the sliding window is

one-year. ”3367 days” corresponds to the number of days after preprocessing.

There are 3003 iterations including the initial window. We tracked the dates over

change sets. When forwarding the window one day, first we remove one day from

the beginning of the window, then we add one day to the end of the window. For

1 2 3 ... 365 366 367 368 369 ...

1 2 3 ... 365 366 367 368 369 ...

1 2 3 ... 365 366 367 368 369 ...

Step 1

Last
Step

Step 2

33673001 3002 3003 ... 3365 3366

 TIMELINE (days)

1 year (365 days)

33673001 3002 3003 ... 3365 3366

33673001 3002 3003 ... 3365 3366

Figure 5.1: Evaluation Setup (one-year sliding window, Hive experiment)

36

each iteration, we calculated scores for jacks, mavens and connectors, then we

reported them and their scores in descending order. Here we considered scores

less than 5e-6 as 0 (zero) to make the results more readable especially in the proof

of concept tool (See Section 6). The same procedure was repeated for all other

projects.

5.2 Results

In this section, we share the results for each RQ.

5.2.1 Results for Identifying Key Developers (RQ 1)

Since we propose to use jack, maven and connector as the key developer categories

for the first time and there is no classification of developers for these types in the

literature, we are not able to compare our approach with others. Also, since we

conducted our experiments on OSS projects, we have no data for developer labels

for these projects. However, we can show that the results of our approach are

compatible with other statistics of the projects.

To validate our approach, we propose to use developers’ comments on issues.

Jacks are the developers who have broad knowledge by definition, and we identi-

fied them by finding their file coverage in the project. Therefore, the jacks should

be involved in issues such as bugs and enhancements more than other develop-

ers. We claim that, by definition, the top jacks and the top commenters in the

project’s issue tracking system (e.g., Jira) should be mostly the same developers.

However, we cannot claim that mavens and connectors should be among the top

commenters. To validate the results of these categories, we offer to use the devel-

opers who are jack, maven and connector at the same time, in other words, the

intersection of all kinds of key developers. In that way, we include mavens and

connectors to our validation, and we show how the intersection developers over-

lap with the top commenters. While using the intersection developers, we sorted

37

them by their jack score (i.e., file coverage) since we cannot combine betweenness

centrality, mavenness score and file coverage properly. So, in the case studies, we

examined the jacks and the intersection developers.

The datasets [1] we used for experiments include data from issue tracking

systems (e.g., Jira). In the change set link table, there are links between issues

and change sets, which means we can use the comments made to issues in the

traceability graph. The datasets supply the display name of the commenters

in the issue comment table. The names in the display name field match the

developer names in the author field of the change set table. So, we can match

committers with commenters and find how many comments developers made to

the issues in the graph. To increase the validity of the number of comments for

each developer, we corrected the commenter names by using the look-up table

created manually in preprocessing (See Section 4.2).

The Key Developers columns in Table 5.1 show the accuracy of our approach

when we treat the top commenters as the actual key developers (i.e., ground

truth). ”Top commenters” means a ranked list of commenters according to the

number of comments that they made to the issues in the last six months or the

last year depending on the sliding window size. The predicted key developers by

our model are consistent with the top commenters up to 98%.

Accuracy is calculated as shown in Equation 5.1, where KD is the ranked list

of key developers, C is the ranked list of commenters, D is the set of dates (i.e.,

days or iterations in Figure 5.1) and k refers to the numbers in Topk phrases in

Table 5.1. For example, the accuracy of day d for (Top-3, Top-5) cell is calculated

as follows: If Cd(3) = {D1, D2, D3} and KDd(5) = {D1, D2, D4, D5, D6}, the

accuracy is |{D1,D2}|
|{D1,D2,D3}| = 2

3
= 0.67.

Mean Accuracy(k1, k2) =
1

|D|

D∑
d

|Cd(k1) ∩KDd(k2)|
|Cd(k1)|

(5.1)

Since there is no comparable approach that finds our subcategories of key

developers, we used the Monte Carlo simulation as a baseline approach. We

38

randomly selected the key developers for each day from the existing developers

in the graph, in other words, from the developers who committed changes to the

source code in the sliding window period. While producing random developers,

we considered the number of key developers in our results since the simulation

should provide random results in the same structure. For example, we selected

four random developers if our approach found four jacks on that day even if k2

is five. Then, we calculated mean accuracies in the same way shown in Equation

5.1. This experiment with random key developers is repeated 1000 times. The

Randomly Selected Developers columns in Table 5.1 show the average accuracies

of 1000 simulations. Also, Average Improvement columns show the improvement

of our approach over the random selection on average.

The selected projects have different scales as seen in Table 4.1 and Table 4.2.

Pig, Derby and Zookeeper are small projects with tens of developers while the

others have hundreds of developers in their whole history. Even though Hadoop,

Hive and HBase have hundreds of developers and their time periods are not

that different (See Table 4.1). Hadoop has a lot more change sets and issues

than Hive and HBase (See Table 4.1 and Table 4.2). The average number of

active developers (sliding window size 1 year) for each project, in other words,

the average numbers of developers in the traceability graph over time are 49.86

in Hadoop, 35.08 in Hive, 9.05 in Pig, 32.19 in HBase, 10.90 in Derby and 8.25

in Zookeeper. So, it is clear that Hadoop is a more active project than Hive

and HBase. Also, the differences between the results of projects in Table 5.1

infer the same conclusion. Both the results of our algorithms and the results

of the Monte Carlo simulation show that the more active developers exist, the

harder it becomes to predict key developers. Even though the accuracies are

different among the projects due to the fact mentioned above, our results are

better than the results of the random model for all cases (See Table 5.1). Also,

the key developers predicted by our approach and the top commenters overlap

up to 98%.

39

T
ab

le
5.

1:
M

ea
n

ac
cu

ra
ci

es
(%

)
fo

r
th

e
ke

y
d
ev

el
op

er
s

fo
u
n
d

b
y

ou
r

ap
p
ro

ac
h

v
s.

th
e

d
ev

el
op

er
s

se
le

ct
ed

ra
n
d
om

ly
in

th
e

M
on

te
C

ar
lo

si
m

u
la

ti
on

.
A

ve
ra

ge
im

p
ro

ve
m

en
t

(%
)

m
ea

n
s

im
p
ro

ve
m

en
t

of
ou

r
ap

p
ro

ac
h

ov
er

ra
n
d
om

se
le

ct
io

n
.

K
e
y

D
e
v
e
lo

p
e
r

C
a
te

g
o
ry

P
ro

je
ct

s
T

o
p

C
o
m

m
e
n
te

rs
S
li
d
in

g
W

in
d
o
w

S
iz

e
is

S
ix

M
o
n
th

s
S
li
d
in

g
W

in
d
o
w

S
iz

e
is

O
n
e

Y
e
a
r

K
e
y

D
e
v
e
lo

p
e
rs

R
a
n
d
o
m

ly
S
e
le

ct
e
d

D
e
v
e
lo

p
e
rs

A
v
e
ra

g
e

Im
p
ro

v
e
m

e
n
t

K
e
y
D

e
v
e
lo

p
e
rs

R
a
n
d
o
m

ly
S
e
le

ct
e
d

D
e
v
e
lo

p
e
rs

A
v
e
ra

g
e

Im
p
ro

v
e
m

e
n
t

T
o
p
-1

T
o
p
-3

T
o
p
-5

T
o
p
-1

0
T

o
p
-1

T
o
p
-3

T
o
p
-5

T
o
p
-1

0
T

o
p
-1

T
o
p
-3

T
o
p
-5

T
o
p
-1

0
T

o
p
-1

T
o
p
-3

T
o
p
-5

T
o
p
-1

0

J
A

C
K

H
A

D
O

O
P

T
o
p
-1

12
.8

8
29

.1
1

40
.4

5
60

.0
3

2.
54

7.
62

12
.7

3
25

.4
7

19
2.

43

6.
82

19
.0

4
27

.1
0

50
.4

7
1.

96
5.

86
9.

79
19

.5
7

19
6.

85
T

o
p
-3

-
23

.8
7

33
.0

1
51

.1
4

-
6.

84
11

.4
1

22
.8

6
-

22
.6

5
30

.2
0

47
.8

1
-

5.
58

9.
29

18
.5

9
T

o
p
-5

-
-

27
.2

6
45

.3
1

-
-

11
.4

7
22

.9
5

-
-

29
.6

2
47

.4
0

-
-

9.
58

19
.1

8
T

o
p
-1

0
-

-
-

41
.8

4
-

-
-

21
.6

3
-

-
-

41
.7

5
-

-
-

19
.1

3

H
IV

E

T
o
p
-1

37
.2

3
67

.7
2

79
.0

2
89

.1
8

8.
29

24
.8

8
40

.6
9

63
.8

5

10
3.

05

44
.1

6
71

.4
3

81
.6

5
92

.2
1

6.
24

18
.7

1
31

.2
1

58
.1

4

17
2.

38
T

o
p
-3

-
51

.6
5

65
.6

8
77

.2
7

-
22

.3
3

36
.6

0
57

.5
5

-
54

.7
8

70
.2

0
84

.1
2

-
17

.4
8

29
.1

2
54

.1
7

T
o
p
-5

-
-

54
.0

2
68

.9
6

-
-

32
.4

2
51

.6
8

-
-

57
.0

2
73

.2
8

-
-

26
.6

1
49

.5
4

T
o
p
-1

0
-

-
-

48
.8

8
-

-
-

36
.8

6
-

-
-

55
.3

1
-

-
-

38
.8

5

P
IG

T
o
p
-1

57
.5

5
85

.8
7

93
.9

5
95

.5
4

15
.2

8
45

.8
5

69
.6

5
92

.4
8

53
.8

8

59
.1

6
86

.2
3

88
.9

0
89

.9
1

11
.8

1
35

.3
7

56
.3

7
83

.5
7

84
.5

3
T

o
p
-3

-
70

.9
8

81
.6

0
85

.6
1

-
41

.2
8

62
.3

6
82

.6
1

-
75

.2
7

85
.2

6
89

.9
9

-
34

.9
6

55
.6

3
83

.0
7

T
o
p
-5

-
-

66
.3

5
74

.9
5

-
-

52
.6

1
72

.9
7

-
-

66
.9

1
79

.6
6

-
-

46
.6

0
73

.7
4

T
o
p
-1

0
-

-
-

51
.6

9
-

-
-

50
.6

9
-

-
-

59
.1

5
-

-
-

55
.8

4

H
B

A
S
E

T
o
p
-1

54
.6

7
80

.3
8

87
.0

8
93

.0
1

8.
39

25
.2

0
39

.5
5

58
.1

8

14
4.

69

59
.5

0
88

.8
1

94
.8

3
98

.6
4

6.
92

20
.7

4
34

.4
5

55
.8

2

20
4.

60
T

o
p
-3

-
58

.4
5

68
.5

9
74

.9
9

-
21

.8
1

33
.9

1
47

.9
6

-
62

.8
0

74
.6

9
80

.0
0

-
17

.7
9

29
.5

4
46

.6
0

T
o
p
-5

-
-

52
.5

6
60

.6
2

-
-

28
.3

7
40

.7
2

-
-

58
.7

6
66

.8
8

-
-

26
.5

6
42

.0
5

T
o
p
-1

0
-

-
-

45
.6

0
-

-
-

33
.1

2
-

-
-

50
.9

1
-

-
-

34
.5

4

D
E

R
B

Y

T
o
p
-1

26
.1

7
40

.2
8

43
.0

3
45

.1
8

7.
38

18
.1

6
24

.5
5

37
.5

9

70
.1

6

11
.8

9
27

.9
1

30
.3

7
30

.9
7

3.
31

9.
49

14
.2

5
21

.8
4

94
.6

4
T

o
p
-3

-
42

.3
3

50
.0

3
53

.5
7

-
21

.7
8

31
.0

3
48

.0
6

-
46

.4
3

54
.5

7
57

.8
1

-
19

.1
5

29
.0

0
48

.5
6

T
o
p
-5

-
-

39
.8

9
46

.3
5

-
-

26
.7

4
42

.5
5

-
-

43
.5

8
51

.8
0

-
-

26
.6

0
45

.0
2

T
o
p
-1

0
-

-
-

38
.7

0
-

-
-

36
.9

1
-

-
-

42
.4

7
-

-
-

38
.9

0

Z
O

O
K

E
E

P
E

R

T
o
p
-1

39
.0

3
62

.8
0

72
.7

0
75

.6
0

13
.5

8
40

.7
3

62
.8

2
70

.4
1

30
.5

1

39
.2

8
65

.9
0

77
.3

5
83

.1
0

12
.7

5
38

.2
9

62
.0

1
77

.1
0

39
.0

8
T

o
p
-3

-
47

.2
9

65
.1

1
69

.0
8

-
39

.0
9

60
.1

1
67

.0
2

-
48

.5
9

68
.2

8
75

.4
8

-
35

.8
5

58
.0

1
71

.4
1

T
o
p
-5

-
-

59
.2

3
63

.4
6

-
-

55
.8

0
62

.5
6

-
-

62
.3

4
71

.5
7

-
-

55
.2

3
68

.8
9

T
o
p
-1

0
-

-
-

43
.1

4
-

-
-

42
.7

2
-

-
-

50
.1

8
-

-
-

49
.3

4

IN
T

E
R

S
E

C
T

IO
N

O
F

A
L

L
(S

o
rt

e
d

B
y

J
a
ck

S
co

re
)

H
A

D
O

O
P

T
o
p
-1

13
.6

7
34

.4
0

48
.6

8
64

.9
5

2.
55

7.
65

12
.6

4
21

.3
0

24
7.

43

7.
22

21
.3

3
34

.9
7

59
.0

4
1.

95
5.

85
9.

75
17

.4
6

23
8.

68
T

o
p
-3

-
27

.4
2

38
.6

7
54

.4
7

-
6.

86
11

.3
2

19
.1

5
-

23
.8

0
32

.6
8

52
.0

5
-

5.
57

9.
28

16
.6

5
T

o
p
-5

-
-

32
.9

0
48

.6
8

-
-

11
.3

8
19

.3
2

-
-

31
.2

6
49

.0
8

-
-

9.
58

17
.1

4
T

o
p
-1

0
-

-
-

43
.8

2
-

-
-

18
.2

9
-

-
-

44
.3

8
-

-
-

17
.0

3

H
IV

E

T
o
p
-1

55
.8

0
75

.8
2

83
.5

3
89

.9
3

8.
26

14
.4

6
16

.3
7

19
.0

6

30
0.

92

56
.9

4
75

.9
2

81
.1

5
87

.9
8

6.
27

10
.9

5
12

.5
2

14
.6

9

42
3.

58
T

o
p
-3

-
45

.5
5

51
.0

5
57

.5
6

-
13

.0
2

14
.7

6
17

.3
0

-
49

.4
0

55
.1

7
61

.3
3

-
10

.3
9

11
.9

2
14

.0
2

T
o
p
-5

-
-

37
.7

6
44

.0
8

-
-

13
.4

0
15

.7
5

-
-

38
.8

6
44

.9
4

-
-

10
.8

1
12

.7
0

T
o
p
-1

0
-

-
-

29
.8

4
-

-
-

12
.6

1
-

-
-

30
.4

8
-

-
-

10
.7

0

P
IG

T
o
p
-1

59
.6

5
78

.8
1

79
.6

6
79

.6
6

14
.9

0
27

.8
3

28
.8

4
28

.8
4

13
1.

36

66
.2

6
86

.4
1

86
.6

3
86

.6
3

11
.8

1
22

.3
6

23
.5

8
23

.5
8

19
1.

85
T

o
p
-3

-
51

.5
7

52
.4

7
52

.4
7

-
24

.5
1

25
.3

9
25

.3
9

-
55

.5
4

56
.3

0
56

.3
0

-
22

.4
6

23
.7

9
23

.7
9

T
o
p
-5

-
-

37
.2

2
37

.2
2

-
-

22
.4

8
22

.4
8

-
-

39
.3

9
39

.3
9

-
-

20
.7

3
20

.7
3

T
o
p
-1

0
-

-
-

19
.5

3
-

-
-

15
.6

2
-

-
-

21
.2

9
-

-
-

15
.4

5

H
B

A
S
E

T
o
p
-1

59
.5

5
83

.1
6

89
.5

3
93

.4
7

8.
34

12
.7

6
14

.5
3

16
.8

9

36
4.

55

65
.8

6
90

.1
4

35
.2

6
97

.1
9

6.
92

11
.2

3
12

.5
1

14
.6

2

46
6.

60
T

o
p
-3

-
45

.5
5

51
.2

0
54

.2
5

-
10

.8
9

12
.3

9
14

.2
7

-
48

.4
5

53
.0

9
54

.6
8

-
9.

50
10

.6
0

12
.3

5
T

o
p
-5

-
-

35
.0

9
37

.4
2

-
-

10
.2

3
11

.8
1

-
-

36
.8

4
38

.3
2

-
-

9.
26

10
.7

4
T

o
p
-1

0
-

-
-

23
.6

0
-

-
-

9.
80

-
-

-
24

.2
8

-
-

-
9.

13

D
E

R
B

Y

T
o
p
-1

20
.6

7
33

.0
1

33
.6

3
33

.6
3

3.
16

8.
59

11
.0

9
11

.3
1

18
5.

22

11
.8

9
24

.4
1

24
.8

4
24

.8
4

2.
03

5.
43

7.
01

7.
24

20
3.

64
T

o
p
-3

-
31

.3
4

33
.9

4
33

.9
6

-
12

.4
9

14
.8

5
15

.0
4

-
37

.7
9

40
.7

9
40

.8
2

-
13

.1
0

15
.9

0
16

.2
1

T
o
p
-5

-
-

25
.8

5
25

.9
1

-
-

13
.5

6
13

.7
1

-
-

29
.0

2
29

.1
8

-
-

15
.2

7
15

.5
6

T
o
p
-1

0
-

-
-

16
.0

4
-

-
-

12
.4

4
-

-
-

17
.7

4
-

-
-

13
.5

4

Z
O

O
K

E
E

P
E

R

T
o
p
-1

42
.5

9
49

.4
7

49
.6

1
49

.6
1

12
.8

8
18

.2
8

18
.5

4
18

.6
1

10
3.

95

44
.9

7
55

.2
4

55
.7

8
55

.7
8

12
.6

3
19

.1
8

19
.4

9
19

.5
6

12
4.

83
T

o
p
-3

-
27

.4
9

27
.9

6
28

.0
3

-
16

.5
3

16
.7

0
16

.7
5

-
34

.7
6

35
.0

9
35

.3
3

-
17

.4
9

17
.7

3
17

.7
8

T
o
p
-5

-
-

21
.5

9
21

.6
3

-
-

15
.1

9
15

.2
3

-
-

26
.3

1
26

.5
8

-
-

17
.0

5
17

.1
1

T
o
p
-1

0
-

-
-

12
.5

3
-

-
-

10
.4

0
-

-
-

15
.4

0
-

-
-

12
.4

4

40

... i-1 i i+1 ... i+364 i+365 ...

 TIMELINE (days)

No contribution for 365 days
Developer

contributed to
the project

Figure 5.2: How to detect leaving developers for one-year absence limit

5.2.2 Results for Developer Replacement (RQ 2)

In a company, the developers who left or joined the projects are known by the

other developers or the manager of the development team. Thus, they can use

our algorithm to see who can take over the jobs of leaving developers. However,

the OSS projects generally do not record who joins or leaves the team. Even

if they keep such a record, it is not included in the git repositories and mining

them is mostly a manual job. We prefer to use an automated approach to detect

developer turnover in OSS projects with a simple condition. If a developer does

not contribute to the project for a period of time (e.g., for one year), we consider

that developer as a leaving developer.

To detect the developers who left the project, we benefit from the sliding

window experimental setup explained in Section 5.1. Figure 5.2 illustrates the

details of detecting developer turnover. If a developer contributes to the project

in the ith day and does not contribute for the following time period (one-year

in Figure 5.2), we consider that the developer left the project. Therefore, we

detect leaving developers when they leave the sliding window. In other words, if

developers do not contribute to the project for a period of time, which we call

absence limit, they are considered as leaving developers. Developers can have a

break on a project or go on a holiday for a short time. To avoid misinterpretation

of such situations, we do not consider a short time for absence limit, and we

use six months (180 days) and one year (365 days) in our experiments. Table

5.2 shows the number of leaving developers in the whole project history for each

project.

41

Table 5.2: Number of leaving developers

Absence
Limit

Project
Hadoop Hive Pig HBase Derby Zookeeper

Six Months 160 147 32 169 50 42
One Year 89 106 25 105 37 17

Rigby et al. [11] defined a line as abandoned when its developer found by git

blame left the project, and they defined a file as abandoned when 90% or more of

its lines are abandoned. They suggested successors (replacements) to abandoned

files. Then, they considered the suggested developers to be correct if they modify

the abandoned files in the future. Afterward, they reported the accuracy of their

suggested successors for abandoned files, and they compared the results with the

results of randomly suggested developers. We follow a similar and more explicitly

defined approach in our experiments. Differently, we limit the number of checked

days after a developer leaves.

In our approach, we suggest replacements by using the files reached by the

leaving developer (See Section 3.6). Then, we offer to validate our approach

by inspecting if the recommended replacements modify the files of the leaving

developers after they leave. As shown in Figure 5.3, we limit the inspection

with a time period, which is 30 days (one month) in the figure. Also, we only

consider the leaving developer’s files which are not reached by the recommended

replacements when the developer leaves. In other words, we only consider the

files that the leaving developer can reach but the recommended developers cannot

reach on ith day. For example, if a leaving developer can reach {F1, F2, F3, F4}
and a suggested replacement can reach {F1,F2} on ith day, we check the days

... i i+1 ... i+30 i+31 ...

 TIMELINE (days)

Last contribution
of the leaving

developer

Next 30 days
after s/he leaves

Figure 5.3: Validation setup of the recommended replacements for checking the
next 30 days

42

from (i+1)th to (i+30)th. If the suggested developer modifies the F3 or F4 in

these days, we consider our suggestion to be correct, otherwise incorrect. There

are two important points here. First, we only consider MODIFY type of changes,

not ADD, DELETE or RENAME (see Section 4.2) since adding an existing file is

not possible and deleting or renaming a file does not mean a modification of the file

content. Second, this approach favors the randomly selected developers because

their files will not intersect much with the files of the leaving developer. Thus, the

number of files to be checked will be more for randomly selected developers. Our

suggestion works in a way that is proportional to the intersection of the files of

the leaving developer and the files of the suggested developer. So, the number of

files to be checked will be less. For the previous example, if a randomly selected

developer can reach {F3}, we check if (s)he modifies F1, F2 or F4 in the future.

Therefore, we obviously favor randomly selected developers in our evaluation

setup.

We use Top-k Accuracy to evaluate our approach. Top-k Accuracy is calculated

as follows where isCorrect(r) returns 1 if any Top-k recommended replacement

modifies the target files in the next days, otherwise returns 0.

Top-k Accuracy =
1

|R|
∑
r∈R

isCorrect(r) (5.2)

We also evaluated our approach using mean reciprocal rank (MRR). MRR is

calculated as follows where rank(r) returns the rank of the first correct replace-

ment in the ranked list of recommended replacements, and if none of them is

correct, it returns ∞ to make the reciprocal zero (0). We used only the Top-3

recommended replacements in our experiments. Reciprocal ranks can be 1, 1
2
, 1

3

or 0.

MRR(R) =
1

|R|
∑
r∈R

1

rank(r)
(5.3)

Similar to Rigby et al. [11], as a baseline approach, we performed Monte

43

Table 5.3: Replacement accuracy (in percent) and MRR (in percent) when ab-
sence limit is six months (Topk phrases refer to accuracy)

Method Project
Check next 7 days Check next 30 days Check next 90 days

Top1 Top2 Top3 MRR Top1 Top2 Top3 MRR Top1 Top2 Top3 MRR

Our
Approach

Hadoop 13.42 21.48 30.87 20.58 28.19 45.64 56.38 40.49 43.62 59.73 69.80 55.03
Hive 9.68 15.32 25.00 15.73 19.35 40.32 51.61 33.60 36.29 56.45 66.13 49.60
Pig 11.54 15.38 19.23 14.74 26.92 65.38 73.08 48.72 46.15 80.77 80.77 63.46

HBase 11.11 21.57 30.72 19.39 24.84 46.41 62.75 41.07 39.22 65.36 79.08 56.86
Derby 9.09 13.64 20.45 13.64 27.27 45.45 47.73 37.12 43.18 68.18 75.00 57.95

Zookeeper 3.33 13.33 13.33 8.33 6.67 16.67 30.00 16.11 10.00 30.00 43.33 24.44

Random
Selection

Hadoop 5.67 10.83 15.23 9.72 15.24 27.05 36.69 24.36 26.34 44.01 56.15 39.22
Hive 7.39 14.36 20.39 12.88 19.95 35.42 46.73 31.45 35.20 55.50 67.93 49.49
Pig 6.50 13.19 18.77 11.71 25.19 45.50 61.23 40.59 40.77 65.38 78.65 57.50

HBase 7.88 14.71 20.50 13.22 21.24 36.22 47.16 32.28 35.16 55.28 67.44 49.27
Derby 8.52 15.59 21.77 14.12 23.82 40.16 51.11 35.64 42.50 62.93 71.70 55.64

Zookeeper 7.57 14.67 19.93 12.87 14.13 24.40 32.20 21.87 25.37 42.73 54.23 37.88

Table 5.4: Replacement accuracy (in percent) and MRR (in percent) when ab-
sence limit is one year (Topk phrases refer to accuracy)

Method Project
Check next 7 days Check next 30 days Check next 90 days

Top1 Top2 Top3 MRR Top1 Top2 Top3 MRR Top1 Top2 Top3 MRR

Our
Approach

Hadoop 12.20 25.61 36.59 22.56 29.27 54.88 65.85 45.73 45.12 69.51 76.83 59.76
Hive 8.70 20.65 28.26 17.21 17.39 36.96 50.00 31.52 30.43 55.43 72.83 48.73
Pig 9.09 22.73 27.27 17.42 45.45 68.18 72.73 58.33 77.27 90.91 90.91 84.09

HBase 19.19 25.25 32.32 24.58 46.46 58.59 70.71 56.67 64.65 78.79 86.87 74.41
Derby 8.82 11.76 23.53 14.22 26.47 38.24 58.82 39.22 47.06 70.59 79.41 61.76

Zookeeper 6.67 20.00 26.67 15.56 13.33 33.33 46.67 27.78 33.33 53.33 66.67 47.78

Random
Selection

Hadoop 4.93 9.40 13.62 8.57 14.40 26.63 36.34 23.75 25.18 42.91 54.90 38.04
Hive 6.48 12.71 18.47 11.51 15.39 28.86 39.67 25.73 27.62 46.60 59.63 41.45
Pig 5.77 11.36 16.73 10.36 16.59 29.95 41.45 27.11 34.91 57.00 71.95 50.94

HBase 6.88 13.00 18.72 11.85 18.75 32.88 44.22 29.59 31.34 51.24 64.58 45.74
Derby 7.71 15.03 21.71 13.59 23.35 40.03 52.29 35.78 43.44 64.65 75.26 57.58

Zookeeper 5.07 11.33 18.13 10.47 19.07 32.53 46.53 30.47 33.13 53.00 68.07 48.09

Carlo simulation with 100 iterations for each case. Table 5.3 presents Top-k

accuracy and MRR of both our algorithm and Monte Carlo simulation for six-

month absence limit, while Table 5.4 presents the the same for one-year absence

limit.

In these tables, when we look at the small-scale projects, which are Pig, Derby

and Zookeeper, the accuracy of our approach and the accuracy of the Monte Carlo

simulation is close for many cases. Even in some cases, the randomly selected

developers are more accurate than our approach. Therefore, suggesting replace-

ment in small-scale projects is not meaningful because the number of developers

is so small, and even random selection can work.

44

Algorithm 9 Finding if Balanced or Hero Team (or Project) according to the
Pareto principle [31]

1: function BalancedOrHeroPareto(devToCommitCount)
2: numCoveredCommits← 0
3: numCoveredDevs← 0
4: numAllDevs← devToCommitCount.keys().length()
5: commitCounts← SortDescending(devToCommitCount.values())
6: numAllCommits← Sum(commitCounts)
7:

8: for commitCount in commitCounts do
9: numCoveredCommits← numCoveredCommits + commitCount
10: numCoveredDevs← numCoveredDevs + 1
11: if numCoveredDevs

numAllDevs
>= 0.2 then

12: break
13:

14: if numCoveredCommits
numAllCommits

>= 0.8 then
15: return ”hero”
16: else
17: return ”balanced”

5.2.3 Results for Knowledge Distribution (RQ 3)

To compare our results, we implemented the algorithm of Agrawal et al.[31] as

given in Algorithm 9 by using the explanations in their paper. First, it finds the

number of commits made by the 20% or more of the top committers. Then, it

returns hero if the covered commits are 80% or more of all commits, otherwise

returns balanced.

For each project, we generated results of our algorithm (Shapiro-Wilk Test on

file coverage distribution given as in Algorithm 8) and the algorithm of Agrawal

et al. (Pareto principle on commit counts given in Algorithm 9). While deciding

if the project is hero or balanced project with both algorithms, we used the sliding

window approach as explained in Section 5.1. Thus, we used the commits made

in the sliding window period (e.g., the last 365 days when the sliding window size

is 365 days) for each iteration. Table 5.5 shows the results for our approach and

the Pareto principle approach. For example, our approach labeled the knowledge

distribution of the Hive project as balanced for 73.12% of all iterations when

45

Table 5.5: Results for balanced and hero projects (in percent)

Sliding
Window Size

Project
Shapiro-Wilk Test Pareto Principle

Accuracy
Balanced Hero Balanced Hero

six months

Hadoop 64.30 35.70 100.00 0.00 64.30
Hive 73.12 26.88 90.31 9.69 61.12
Pig 91.38 8.62 90.27 9.73 85.91

HBase 74.15 25.85 89.94 10.06 65.70
Derby 93.14 6.86 98.43 1.57 91.95

Zookeeper 76.63 23.37 96.47 3.53 75.16

one year

Hadoop 74.51 25.49 100.00 0.00 74.51
Hive 69.76 30.24 89.78 10.22 61.94
Pig 95.03 4.97 87.09 12.91 85.22

HBase 73.36 26.64 64.47 35.53 66.12
Derby 93.80 6.20 99.25 0.75 94.08

Zookeeper 85.80 14.20 99.73 0.27 85.52

(a) Balanced (Hadoop, 06 March 2017) (b) Hero (Hadoop, 30 August 2012)

Figure 5.4: File coverage histogram examples for balanced and hero projects
according to our approach (Shapiro-Wilk) (Sliding window size is one year)

the sliding window size is six months. Accuracy is the ratio of the number of

iterations in which both algorithms produced the same label over the number of

all the iterations.

Figure 5.4a presents the histogram of the file coverage distribution of Hadoop

developers in 06 March 2017, and Figure 5.4b presents the same histogram for

09 August 2012. The first one labeled as balanced and the latter one labeled as

hero by our algorithm. It is clearly seen that the balanced histogram is closer to

a normal distribution than the other one.

46

(a) File Coverage (b) Number of Commits

Figure 5.5: An example day (Hive, 14 January 2014) labeled as balanced by the
Shapiro-Wilk test and hero by the Pareto principle. (Sliding window size is one
year)

Figure 5.5 shows histograms for file coverage distribution and commit count

distribution of Hive developers on 14 January 2014. Our algorithm labels that

day as balanced, but the Pareto principle algorithm labels it as hero project.

Since the developers who made a small number of commits are dominant and one

developer made almost 500 commits, the Pareto principle algorithm labels that

as hero. However, the file coverage distribution seems like a normal distribution

since our algorithm is not only affected by the number of commits but also affected

by the co-changed files of different change sets (developers can reach the files that

they did not directly modify) and the recency of the contribution (recent commits

are more important). Therefore, according to our algorithm, the team does not

heavily depend on the top committer and that the other developers have enough

knowledge about the files changed in the last year.

47

Chapter 6

Manager Dashboard Tool (Proof

of Concept)

We implemented a proof of concept tool in Python using Plotly Dash framework1.

The tool provides a useful user interface to traverse the results of our experiments

over time. Traversing day by day (forward and backward) and selecting a specific

date in the whole experiment is possible. For the selected day, it provides the

following information:

• A summary which shows the list of developers sorted by name and their

scores for each key developer category.

• Number of all files in the project, number of reachable files, number of

rarely reached files, number of developers and knowledge distribution label

(”balanced” or ”hero”).

• A Venn diagram showing the key developers for different categories.

• For each key developer category (jacks, mavens and connectors), list of

developers sorted by their scores.

1https://plotly.com/dash/

48

• For each key developer category, a plot showing all developers in that cat-

egory with their scores over time (time period can be changed in the user

interface).

Fig. 6.1 is a screenshot of experiment selection, date selection, summary and

Venn diagram parts of the tool. Fig. 6.2 shares a screenshot of the connector

division which includes the list of connectors for the selected date and the past

betweenness centrality scores of these connectors. It also shows the replacement

division which includes the list of the leaving developers for the selected date and

three replacements for each leaving developer with corresponding overlapping

knowledge ratios. The source code is available online (See Appendix B). With

some configurations and additions, this proof of concept tool can be used for

monitoring development projects day by day by the practitioners.

49

F
igu

re
6.1:

S
creen

sh
ot

of
selection

p
arts,

su
m

m
ary

an
d

V
en

n
d
iagram

(d
evelop

er
n
am

es
are

p
ain

ted
b
lack

)

50

Manager Dashboard
Monitoririg key developers

Experiment name

hadoop_d110_nfl50_sw •

Summary

o ~vf'lop~r Nall(!'

-

-

Go backward or forward one day -- S elect a specific date from 14-No,·-2009 to 18-No, ·-2017.

02-Feb-2010

23 de, ,elopers (balanced team), 2189 files, 11 14 (50.89%) reachable files and 360 (16.45%) r.u-ely reached files.

Jacks MaYens

Connectors

Figure 6.2: Screenshot of connectors and replacements divisions (developer names
are painted black)

51

,1111111111
1 1 1 1 1 1 1 1 1 1 1

n
's'
0

l
0.

~

n
's'

t
8

~ ~

ci ci ci

a..o::is

ci

.'!!
C: ..
E
1l ..
Q. ..
II:

I

I

I

I

Chapter 7

Discussion

In this section, we discuss the RQs defined in Section 1, the implications of our

study and the scalability of our algorithms.

7.1 Research Questions

In this study, we investigated three RQs about how to identify key developers, how

to find replacements for leaving developers and how to decide whether knowledge

distribution in a team is balanced or not. We discuss the implications of them

one by one.

7.1.1 How to identify key developers (RQ1)

To identify key developers, we defined three different kinds: jack, maven and

connector. Then, we shared algorithms to identify them using artifact traceability

graphs. In the literature, there are studies on core and periphery [27, 21], core,

active, occasional and rare [28], core, external and mutant [29], key [30], hero [31]

and elite [32] developers in OSS projects and LTC type of developers [33]. These

52

developer definitions are closely related to our general key developer definition,

even though they are not exactly the same.

The main difference in our study is the subcategorization of key developers.

The others define either just one key developer category or categories for all devel-

opers and one of the categories is key developer. In our work, we shared different

key developer definitions using different perspectives and separate algorithms for

each of them. Jack, maven and connector are novel definitions for key developers.

Another difference is the evaluation setup in our study. We use a sliding

window approach and find key developers for each day, not just for one day in the

project history. Also, our validation approach is different. Since there is no real-

life label for key developers, researchers followed different approaches. Agrawal et

al. [31] used the Pareto principle in their definition from previous works [34, 35].

These previous studies just investigated the Pareto principle on commit counts of

the developers without providing a validation showing that the Pareto principle

is suitable for deciding whether a project is a hero project or not, and Agrawal et

al. [31] used the same definition. Bella, Sillitti and Succi [28] used clustering, and

thus their validation is only about performing a good enough clustering. Oliva et

al. [30] performed a case study on a small project with 16 developers. Crowston

et al. [27] somehow used the labels on SourceForge1. Joblin et al. [21] made

a survey with 166 developers, and their results are not available now. Padhye,

Mani and Sinha [29] and Wang et al. [32] defined core/elite developers using

their access rights to repositories. Zhou and Mockus [33] focused on how a new

joiner becomes an LTC, not validating the importance of LTC developers. In

our study, we perform case studies using six OSS projects which are different in

scale. Then, we validate our approach using a different data source that is not

used in our models, the comments to the issues in Jira. As the baseline approach,

we performed Monte Carlo simulations to detect key developers randomly. As a

result, our approach is more successful than the random model for all cases (See

Section 5.2.1).

1https://sourceforge.net/

53

7.1.2 How to find replacements for leaving developers

(RQ2)

We proposed to use overlap ratios of reachable files (i.e., overlapping knowledge)

to replace a leaving developer. Rigby et al. [11] proposed a successor (replace-

ment) recommendation approach while investigating turnover-induced knowledge

loss in software projects. They used random selection as their baseline approach

and compared their results. Since they did not share the implementation of their

approach, we were not able to use their approach as a baseline. Also, we used

data from SQL tables [1], not from git repositories and their approach depends

on git blame command. So, performing experiments with both their model and

our model is not possible if we do not change our data source. However, we

performed a Monte Carlo simulation (See Section 5.2.2) as a baseline approach.

Also, our validation for replacement recommendation is similar to theirs [11], and

we shared the relevant details more explicitly. Results show that our approach

works better than the random case for large-scale projects. For the small-scale

projects, the random case is as accurate as our approach for some cases (See

Section 5.2.2).

7.1.3 How to decide whether knowledge distribution in a

team is balanced or not (RQ3)

We assumed that the knowledge distribution of a balanced team would follow

a normal distribution. We proposed that the file coverage ratio represents the

developer’s knowledge about the project. Then, we used Shapiro-Wilk [42] nor-

mality test on file coverage ratios of all active developers in the project to decide

whether knowledge distribution in a team is balanced or not. Agrawal et al.[31]

classified a project as a hero project if 20% of the developers made 80% of the

contributions, otherwise they classified the project as a non-hero project. To

compare our results, we implemented their approach. Using both algorithms, we

labeled projects hero or balanced (non-hero) for each day of their history. Labels

54

of both algorithms overlapped 61-94% in all histories of the six OSS projects that

we used in our case studies (See Section 5.2.3).

7.2 Scalability

We presented eight different algorithms while addressing the RQs. We discuss

their time complexity one by one (N is the number of nodes, E is the number of

edges, D is the number of developers, F is the number of files, C is the number

of change sets and I is the number of issues):

• Algorithm 1 (Finding Reachable Files): First it finds the list of developers

by looking at every node in the graph, and it takes Θ(N) time. Then it runs

a DFS for each developer with a distance limit of 10. Since a single DFS

may search all of the graph and take O(N+E) time, the time complexity of

the algorithm is O(D(N+E)).

• Algorithm 2 (Finding Jacks): First, it calls Algorithm 1 to find reachable

files of developers, which takes O(D(N+E)) time. Then, it loops over the

developer and reachable files pairs and calculates file coverage. So, this

loop takes Θ(D) time, and the overall time complexity of this algorithm is

O(D(N+E)+D) = O(D(N+E+1)) = O(D(N+E)).

• Algorithm 3 (Finding Rarely Reached Files): First, it calls Algorithm 1 to

find reachable files of developers, which takes O(D(N+E)) time. Then, it

inverts the mapping by looping through all developers and their reachable

files. Since, theoretically, any file can be reached by every developer, this

step takes O(DF). Afterward, it loops over files and checks if the file is

reached by only one developer or not, which takes O(F) time. O(DF) and

O(F) increase run time but do not affect asymptotic analysis. Because

N is an upper boundary for F, O(DF) is O(DN) and O(F) is O(N). So,

the overall time complexity of this algorithm is O(D(N+E)+DN+N) =

O(2DN+DE+N) = O(N(2D+1)+DE) = O(ND+DE) = O(D(N+E)).

55

• Algorithm 4 (Finding Mavens): First, it calls Algorithm 3 to find rarely

reached files of developers, which takes O(D(N+E)) time. Then, it finds

the number of all rarely reached files, which is a simple summation of the

number of rarely reached files of developers and takes Θ(D) time. After-

ward, it loops over the developer and rarely reached files pairs to calculate

the mavenness score, which takes Θ(D) time. So, the overall time complex-

ity of this algorithm is O(D(N+E)+D+D) = O(D(N+E+2) = O(D(N+E)).

• Algorithm 5 (Calculating RSRD): The first outer for loop runs a DFS for

each developer with a depth limit of 4. A single DFS may search all of the

graph and take O(N+E). If DFS dominates, it takes O(D(N+E)). Another

possibility is that the inner for loop can dominate. In that case, we can

look at the number of total possible simple paths between two develop-

ers. Because of the graph structure defined in Section 3.1, developers are

only connected to change sets and change sets can be connected to issues

and files. A path with a length of 4 between two developers has to go

through two change sets and a file node or issue node. Thus, there might

be O(DC(F +I)(C−1)(D−1)) = O(D2C2(F +I)) different paths. So, the

first nested two for loops take O(max(D(N +E), D2C2(F + I))) time. The

second two nested for loops also do O(D2C2(F + I)) summations because

they iterate over all possible paths. So, they take O(D2C2(F + I)) time.

The overall complexity of the algorithm O(max(D(N +E), D2C2(F + I))).

Since C, F and I cannot be more than N, a looser boundary is also

O(max(D(N + E), D2N3)) (Because D is very small in general, we do not

replace it with N).

• Algorithm 6 (Finding Connectors): First, it calls Algorithm 5 to find RSRD

values, which takes O(max(D(N+E), D2C2(F +I))) time. Then, it creates

a developer graph with nodes for developer nodes and edges for RSRD

values between developers. The number of nodes will be Θ(D) and the

number of edges will be O(D2). So, this step takes O(D2) times. Afterward,

it computes the betweenness centralities of all nodes in the developer graph.

Betweenness centrality calculations are limited by the number of nodes

plus the number of edges [40], which corresponds to O(D + D2) = O(D2)

56

in the developer graph. So, the overall complexity of this algorithm is

O(max(D(N+E), D2C2(F+I))+D2) = O(max(D(N+E), D2C2(F+I))).

• Algorithm 7 (Finding Replacements): First, it calls Algorithm 1 to find

reachable files for each developer, which takes O(D(N+E)) time. Then,

it finds other developers, which takes Θ(D) time. Afterward, it loops over

the other developers to find overlapping knowledge of the leaving developer

and others. Time complexity of intersection operation of s and t lists takes

O(max(len(s), len(t))).2 s and t are the list of reachable files in our case.

They cannot be more than F, and F cannot be more than N. So, the overall

complexity of this algorithm is O(D(N + E) + D + N) = O(DN + DE +

D + N) = O(N(D + 1) + D(E + 1)) = O(ND + DE) = O(D(N + E)).

• Algorithm 8 (Finding Knowledge Distribution): First, it calls Algorithm 2

to find jacks, which takes O(D(N+E)) time. Then, it performs the Shapiro-

Wilk test over file coverage scores of developers. We use scipy package3 in

our implementation (See Appendix B). It sorts the inputs (Θ(D logD)) and

calls the algorithm of Royston [46] (Θ(D)). Because N is an upper boundary

for D, Θ(D logD) is less than Θ(DN). So, the overall complexity of this

algorithm is O(D(N + E) + D logD) = O(D(N + E)).

All algorithms depend on DFS because they use Algorithm 1 or Algorithm 5.

In Algorithm 1, distance limit (threshold) reduces run time but it is not explicitly

given in our complexity analysis. DFS depth changes for each search because the

distance of the traversed edges depends on their recency. Distance of an edge can

be at least 1 when the recency is maximum, which is 1 (See Equation 3.1 and

Equation 3.2). Therefore, the depth of DFS cannot be more than 12 (in the worst

case, the first and the last edges can have 0 distance if they connect developers

and change sets) in Algorithm 1. Also, the depth can be a minimum of 2 when

recency values of all edges of the change sets of the developer are less than 0.1,

which correspond to distance values more than 10. In that case, it traverses one

edge with 0 distance for going to a change set node from a developer node and

2https://wiki.python.org/moin/TimeComplexity
3https://www.scipy.org/

57

one edge with 10+ distance for exceeding the threshold. So, actually, it does not

traverse the whole graph because depths change between 2 and 12. Similarly, in

Algorithm 5, we used a constant depth limit of 4 while finding paths between

two developers. Again, it does not traverse the whole graph. Since we have

such limits, the DFS parts of our algorithms are faster than we discussed above.

However, the analysis above is still accurate because we defined upper limits with

Big-O notation.

Table 7.1 presents the average number of artifacts (N, E and D) mentioned

above and the average time taken to find jacks, mavens, connectors and knowl-

edge distribution in the experiments. For example, the Hive project has 3003

iterations (its window slides 3002 times), and the average number of nodes in

the whole artifact graph is 3237 per iteration. Each iteration corresponds to a

day in their history. Table 7.2 presents the average number of artifacts (N , E

and D) mentioned above and the average time taken to find replacements. Since

we measured the performance of this category only when a developer left the

project, the numbers of iterations are smaller. Even for a large-scale project like

Hadoop, calculating each category takes less than 1 second a day on average with

our Python implementation (See Appendix B) working on an ordinary laptop.

Table 7.1: Average number of artifacts and average time taken in jack, maven,
connector and knowledge distribution experiments.

Project
Average number of artifacts Average time taken (seconds) Number of

iterationsDeveloper
nodes (D)

All nodes
(N)

Edges (E) Jacks Mavens Connectors
Balanced
or Hero

Hadoop 50 5956 11822 0.6803 0.7325 0.9974 0.6862 2742
Hive 35 3237 6138 0.4574 0.5163 0.6323 0.4640 3003
Pig 9 1046 1705 0.0519 0.0618 0.0727 0.529 2774

HBase 32 2984 6221 0.4222 0.4651 0.6050 0.4223 3521
Derby 11 1542 2874 0.0901 0.1086 0.1456 0.0931 4465

Zookeeper 8 374 607 0.0185 0.0213 0.0310 0.0193 3302

58

Table 7.2: Average number of artifacts and average time taken in the replacement
experiments.

Project
Average number of artifacts Average time

taken (seconds)
Number of
iterationsDeveloper

nodes (D)
Nodes (N) Edges (E)

Hadoop 48 5922 11858 0.6227 89
Hive 63 4611 8857 0.6747 106
Pig 11 1205 2012 0.0555 25

HBase 49 3718 7595 0.6080 105
Derby 13 2130 4227 0.1509 37

Zookeeper 7 318 485 0.0115 17

7.3 Practical Implications

We proposed algorithms to identify key developers in three types, an algorithm to

find replacements for a leaving developer and an approach to evaluate if knowl-

edge distribution in a project is balanced or not. Knowing the indispensable

developers in the project can help the manager for future decisions. For example,

if a developer is the only connector of the team, the manager would not want

her/him to leave the project because (s)he may be the only one who has connec-

tions with other teams, and collaboration with other teams would be at risk if

(s)he leaves. Also, knowing the possible replacements can make the manager’s

job easier to decide who will take over the jobs when one leaves. Instead of taking

over the jobs, recommended replacements can mentor other developers who take

the jobs. Moreover, the manager can take precautions to distribute knowledge

amongst developers when it is not balanced.

All three scenarios that we worked on in this study are to help the team and

the managers to reduce the risk for the software development process. However,

our approaches have an explicit shortcoming. They are not suitable for relatively

inactive projects with a small number of developers. The accuracy and MRR

results for replacement recommendation in Section 5.2.2 explicitly illustrate the

cases that the random selection works as accurately as our replacement algo-

rithm. Especially for Derby and Zookeeper cases, the random selection results

and the results of our approach are very close to each other. In a few cases, the

random selection is even better. For identifying key developers and evaluating

59

the knowledge distribution in the project, this shortcoming is not that explicitly

shows itself in our results, but it is kind of obvious that identifying key develop-

ers, recommending replacements or evaluating knowledge distribution in a small

team does not mean much since everybody knows everybody in a small team,

even random selection would do the work.

The algorithms that we proposed are implemented in Python for our exper-

iments. The implementation is shared online in a GitHub repository (See Ap-

pendix B). Thus, future researchers can replicate the results of our experiments.

Also, this implementation proves that our algorithms are scalable as we men-

tioned above. Even though Hadoop, Hive and HBase are very active and large-

scale projects, any algorithm proposed in this study takes less than 1 second a day

even using an ordinary laptop. Therefore, the algorithms are practically usable

at the present by the managers of these projects.

We provided a prototype tool to traverse through the results of the experi-

ments. It is a proof of concept tool for a manager dashboard in the software

development projects. So, with a little configuration on the tool, the metrics pro-

duced by our algorithms can be used by managers of projects to monitor the state

of developers. Especially for a team of globally distributed software engineers,

having a such system would ease the management.

Lastly, comparing developers to each other may cause unexpected results. For

example, developers would be inclined to change the files that have not been

changed for a long time if they know the maven definition. Many companies and

organizations have some metrics to evaluate the benefits that developers provide

to the project. An OSS example that uses such metrics is Eclipse Sirius project4.

Also, OpenHub provides a webpage5 for the statistics of the same project. They

generally share explicit outcomes such as commit count and frequency. Therefore,

developers already know that they are evaluated somehow. The difference in our

study is that our metrics are not that obvious to calculate. They implicitly

4https://projects.eclipse.org/projects/modeling.sirius/who (Accessed on 24 Sep 2020)
5https://www.openhub.net/p/eclipse sirius/contributors/summary (Accessed on 24 Sep

2020)

60

evaluate developers from different perspectives. For example, co-changed of files

and change recency affects our metrics.

61

Chapter 8

Threats to Validity

Construct validity is about how the operational measures in the study represent

what is investigated according to the RQs [47]. We used datasets from another

study [1], and their mining process can potentially affect our results. To reduce

the threat caused by the data mining process, we eliminated the possible problems

(e.g., we corrected author names manually by looking at their names and email

addresses.) in preprocessing (See Section 4.2). However, there might still be

problems related to data integrity.

Internal validity concerns if the causal relations are examined or not [47].

While building the graphs and defining algorithms, we made many decisions

related to thresholds including, but not limited to:

• Choosing 50 as the limit for the number of files added or modified in a

change set

• Choosing 10 as the distance threshold in file reachability

• Using six-month and one-year sliding windows in the experiments

• Using 180 days (six months) and 365 days (one year) as absence limit while

detecting leaving developers

62

We tried various options and made the final decisions after evaluating their re-

sults. In the corresponding sections of this study, we shared the justifications

behind these decisions. For example, we chose 10 as the distance threshold since

it corresponds to 90% of the covered time in the graph due to the nature of the

distance formula and it is a great trade-off point.

We measured project knowledge depending on source codes and assumed that

the knowledge of a developer decreases in time (recency). But there is a significant

point against that: documentation. Software projects generally have documenta-

tion, and it preserves the knowledge at some level if it is maintained well. Even

if the documentation is not sufficient in a project, still it means that some parts

of the know-how of the project are preserved. However, having documentation

would not decrease the values of the key developers in a project. After a while,

developers forget some parts of the source code if they do not work on it. Thus,

we believe, using code changes with their recency is still a good way to measure

knowledge.

The potential errors in the implementation of our approach threaten the va-

lidity of our results. We benefited from a stable graph package NetworkX [39] in

our operations and used its methods whenever possible, for example, betweenness

centrality calculations and DFS for finding paths between developers. To prevent

potential bugs, we performed multiple code review sessions with three researchers

besides the authors of the study. Also, we shared the implementation online (See

Appendix B) for replicability of the results.

We used developer comments in issue tracking systems to validate our ap-

proach, however, we do not claim that the number of comments shows the key

developers in a project. We just claim that there should be a correlation between

the top commenters and the key developers in the same time period. Then, we

used this idea to show that our approach produced more logical results than the

random case with a Monte Carlo simulation.

Also, we evaluated our replacement validation algorithm using a very similar

way to the way of Rigby et al. [11]. It is a heuristic evaluation, thus our accuracy

63

could be different with real-life labels for the successors (replacements) of the

leaving developers. And again, we showed that our algorithms perform better

than the random case, especially for large-scale projects. Moreover, we used the

algorithm of Agrawal et al.[31] to show that our knowledge distribution algorithm

is mostly consistent with their approach. So, the real-life labels for balanced and

hero teams could give different results. Using existing approaches in the literature

helped us to reduce these threats to our validity and compare our results.

External validity concerns about generalization of the findings in studies

[47]. In our case studies, we used six different OSS projects. Even though we

did not conduct a case study in an industrial company, we selected projects from

Apache1, a 20-year established foundation. Also, the sizes of the projects are

different as seen in Table 4.1. Although we believe that we have enough data for

an initial assessment, in the future, we need to run our algorithms in more OSS

and industrial datasets.

1https://www.apache.org/

64

Chapter 9

Conclusion and Future Work

In this study, we constructed artifact traceability graphs by using software arti-

facts and their relations. Then, we proposed different categories for key develop-

ers in software development projects: jacks, mavens and connectors. To identify

the developers in these subcategories of key developers, we proposed separate

algorithms using artifact traceability graphs. Also, we proposed an algorithm to

find replacements (successors) for leaving developers, and another algorithm to

evaluate the knowledge distribution amongst developers in a team.

To evaluate our proposed algorithms, we conducted case studies on six OSS

projects (Hadoop, Hive, Pig, HBase, Derby and Zookeeper). Since there was no

labeled data for the key developer categories, we used developers’ comments in

issue tracking systems to validate our results. The key developers found by our

model were compatible with the top commenters up to 98%. Also, we validated

our replacement recommendation algorithm similar to the approach of Rigby

et al.[11]. For different projects and parameters, its accuracy changes up to

91%. Moreover, we validated our knowledge distribution evaluation algorithm by

comparing the approach of Agrawal et al. [31]. Our recommended labels were

compatible up to 94% with the labels produced by the algorithm of Agrawal et

al. [31] .

65

The results indicated that our approaches have promising results to identify key

developers in software projects, to recommend replacements for leaving developers

and to evaluate knowledge distribution amongst developers. We can summarize

the contributions of our study as follows:

• We offered a novel categorization for the key developers inspired by the

kinds of humans who turn ideas into epidemics in The Tipping Point by

Gladwell [7].

• For each of the three key developer categories (jacks, mavens and con-

nectors), we proposed an algorithm using traceability graphs (network) of

software artifacts.

• The findings of this study might shed light on the truck-factor problem.

Key developers might help to find the truck factor of the projects.

• Identifying key developers in a software project might help the software

practitioners in making managerial decisions.

• We provided a proof of concept tool to traverse through project histories

and observe key developers with their corresponding scores.

• Evaluating knowledge distribution amongst developers might help managers

to take early precautions.

• Finding a replacement in a large team might help for managerial decisions

in case of unexpected and sudden leaves of developers.

The followings are the possible future directions of this study:

• Enriching the Artifact Traceability Graph: Our algorithms heavily

depend on the structure and the content of the artifact traceability graph.

There are different ways to change or improve the graph:

– We used change sets, source files and issues in the traceability graph.

The graph can be enriched by adding extra nodes for other artifacts

66

such as design documents and hardware related documents depending

on the project.

– The edges in the graph can be enriched by adding new relations among

the artifacts. For instance, the dependencies between source files can

be represented as edges among file nodes. The recency of such edges

can be the highest value since they are directly connected in the source

code.

– In multidisciplinary projects, there might be artifacts from different

domains. In that case, the artifact traceability graphs represent the

structures from these different disciplines (i.e., domains). When having

a problem with a part of the project, identifying responsible discipline

or the group of people might be possible using the traceability graph.

Another future direction involving all the items above would be inspecting

how such additions affect our algorithms and the results.

• Experiments on Industrial Datasets: In our study, we performed ex-

periments on OSS datasets. An evaluation of our algorithms on industrial

datasets is required. Besides running our algorithms on industrial datasets,

validating the results by interviewing project stakeholders and creating a

labeled dataset for the introduced key developer types might be possible

directions.

• Tool Extension: We developed a proof of concept tool to show how man-

agers would see the results of our RQs throughout the project history. The

current capability of the tool is visualizing the generated results. The tool

can be potentially extended as a plugin tool to GitHub. In that case, the

proposed algorithms will be available to GitHub users to evaluate their

projects from our perspectives.

• Developing Predictive Models: Our work is an observational study.

We observe the current situation of the project by looking at its history.

Developing predictive models for the RQs in this is a possible direction.

For example, potential future key developers can be predicted by mining

project history.

67

Bibliography

[1] M. Rath and P. Mäder, “The seoss 33 dataset—requirements, bug reports,

code history, and trace links for entire projects,” Data in brief, vol. 25,

p. 104005, 2019.

[2] M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,

pp. 28–31, 1968.

[3] J. D. Herbsleb and R. E. Grinter, “Splitting the organization and integrating

the code: Conway’s law revisited,” in Proceedings of the 21st international

conference on Software engineering, pp. 85–95, 1999.

[4] A. Mockus, “Organizational volatility and its effects on software defects,” in

Proceedings of the eighteenth ACM SIGSOFT international symposium on

Foundations of software engineering, pp. 117–126, 2010.

[5] H. A. Cetin, “Identifying the most valuable developers using artifact trace-

ability graphs,” in Proceedings of the 2019 27th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering, pp. 1196–1198, 2019.

[6] H. A. Çetin and E. Tüzün, “Identifying key developers using artifact trace-

ability graphs,” in Proceedings of the 16th ACM International Conference on

Predictive Models and Data Analytics in Software Engineering, pp. 51–60,

2020.

[7] M. Gladwell, The tipping point: How little things can make a big difference.

Little, Brown, 2006.

68

[8] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel approach for

estimating truck factors,” in 2016 IEEE 24th International Conference on

Program Comprehension (ICPC), pp. 1–10, IEEE, 2016.

[9] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-of-

knowledge: Modeling a developer’s knowledge of code,” ACM Transactions

on Software Engineering and Methodology (TOSEM), vol. 23, no. 2, pp. 1–42,

2014.

[10] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Assessing the bus factor of

git repositories,” in 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), pp. 499–503, IEEE, 2015.

[11] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus, “Quantifying and

mitigating turnover-induced knowledge loss: case studies of chrome and a

project at avaya,” in 2016 IEEE/ACM 38th International Conference on

Software Engineering (ICSE), pp. 1006–1016, IEEE, 2016.

[12] G. Avelino, E. Constantinou, M. T. Valente, and A. Serebrenik, “On the

abandonment and survival of open source projects: An empirical investiga-

tion,” in 2019 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), pp. 1–12, IEEE, 2019.

[13] M. Ferreira, T. Mombach, M. T. Valente, and K. Ferreira, “Algorithms for

estimating truck factors: a comparative study,” Software Quality Journal,

vol. 27, no. 4, pp. 1583–1617, 2019.

[14] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommendation

for bug resolution,” in 2013 20th Working Conference on Reverse Engineer-

ing (WCRE), pp. 72–81, IEEE, 2013.

[15] V. Balachandran, “Reducing human effort and improving quality in peer

code reviews using automatic static analysis and reviewer recommendation,”

in 2013 35th International Conference on Software Engineering (ICSE),

pp. 931–940, IEEE, 2013.

69

[16] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is going to

mentor newcomers in open source projects?,” in Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, pp. 1–11, 2012.

[17] M. Nassif and M. P. Robillard, “Revisiting turnover-induced knowledge loss

in software projects,” in 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pp. 261–272, IEEE, 2017.

[18] A. Amirfallah, F. Trautsch, J. Grabowski, and S. Herbold, “A system-

atic mapping study of developer social network research,” arXiv preprint

arXiv:1902.07499, 2019.

[19] J. Wu and K. Y. Goh, “Evaluating longitudinal success of open source soft-

ware projects: A social network perspective,” in 2009 42nd Hawaii Interna-

tional Conference on System Sciences, pp. 1–10, IEEE, 2009.

[20] T. Kakimoto, Y. Kamei, M. Ohira, and K. Matsumoto, “Social network anal-

ysis on communications for knowledge collaboration in oss communities,” in

Proceedings of the International Workshop on Supporting Knowledge Collab-

oration in Software Development (KCSD’06), pp. 35–41, Citeseer, 2006.

[21] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying developers into

core and peripheral: An empirical study on count and network metrics,” in

2017 IEEE/ACM 39th International Conference on Software Engineering

(ICSE), pp. 164–174, IEEE, 2017.

[22] M. Y. Allaho and W.-C. Lee, “Analyzing the social ties and structure of

contributors in open source software community,” in Proceedings of the 2013

IEEE/ACM International Conference on Advances in Social Networks Anal-

ysis and Mining, pp. 56–60, 2013.

[23] M. V. Kosti, R. Feldt, and L. Angelis, “Archetypal personalities of software

engineers and their work preferences: a new perspective for empirical stud-

ies,” Empirical Software Engineering, vol. 21, no. 4, pp. 1509–1532, 2016.

70

[24] J. Cheng and J. L. Guo, “Activity-based analysis of open source soft-

ware contributors: roles and dynamics,” in 2019 IEEE/ACM 12th Interna-

tional Workshop on Cooperative and Human Aspects of Software Engineering

(CHASE), pp. 11–18, IEEE, 2019.

[25] R. Milewicz, G. Pinto, and P. Rodeghero, “Characterizing the roles of con-

tributors in open-source scientific software projects,” in 2019 IEEE/ACM

16th International Conference on Mining Software Repositories (MSR),

pp. 421–432, IEEE, 2019.

[26] M. Ortu, T. Hall, M. Marchesi, R. Tonelli, D. Bowes, and G. Destefanis,

“Mining communication patterns in software development: A github analy-

sis,” in Proceedings of the 14th International Conference on Predictive Models

and Data Analytics in Software Engineering, pp. 70–79, 2018.

[27] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery in

free/libre and open source software team communications,” in Proceedings

of the 39th Annual Hawaii International Conference on System Sciences

(HICSS’06), vol. 6, pp. 118a–118a, IEEE, 2006.

[28] E. Di Bella, A. Sillitti, and G. Succi, “A multivariate classification of open

source developers,” Information Sciences, vol. 221, pp. 72–83, 2013.

[29] R. Padhye, S. Mani, and V. S. Sinha, “A study of external community contri-

bution to open-source projects on github,” in Proceedings of the 11th Work-

ing Conference on Mining Software Repositories, pp. 332–335, 2014.

[30] G. A. Oliva, J. T. da Silva, M. A. Gerosa, F. W. S. Santana, C. M. L. Werner,

C. R. B. de Souza, and K. C. M. de Oliveira, “Evolving the system’s core:

a case study on the identification and characterization of key developers in

apache ant,” Computing and Informatics, vol. 34, no. 3, pp. 678–724, 2015.

[31] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies, “We don’t

need another hero?: the impact of heroes on software development,” in Pro-

ceedings of the 40th International Conference on Software Engineering: Soft-

ware Engineering in Practice, pp. 245–253, ACM, 2018.

71

[32] Z. Wang, Y. Feng, Y. Wang, J. A. Jones, and D. Redmiles, “Unveiling

elite developers’ activities in open source projects,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 29, no. 3, pp. 1–35,

2020.

[33] M. Zhou and A. Mockus, “What make long term contributors: Willingness

and opportunity in oss community,” in 2012 34th International Conference

on Software Engineering (ICSE), pp. 518–528, IEEE, 2012.

[34] M. Goeminne and T. Mens, “Evidence for the pareto principle in open source

software activity,” in the Joint Porceedings of the 1st International workshop

on Model Driven Software Maintenance and 5th International Workshop on

Software Quality and Maintainability, pp. 74–82, Citeseer, 2011.

[35] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi, “Re-

visiting the applicability of the pareto principle to core development teams

in open source software projects,” in Proceedings of the 14th International

Workshop on Principles of Software Evolution, pp. 46–55, 2015.

[36] K. Yamashita, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi,

“Magnet or sticky? measuring project characteristics from the perspective

of developer attraction and retention,” Journal of Information Processing,

vol. 24, no. 2, pp. 339–348, 2016.

[37] L. C. Freeman, “Centrality in social networks conceptual clarification,” So-

cial networks, vol. 1, no. 3, pp. 215–239, 1978.

[38] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining

email social networks,” in Proceedings of the 2006 international workshop on

Mining software repositories, pp. 137–143, 2006.

[39] “Networkx.” https://networkx.org/. (Accessed on 28 Dec 2020).

[40] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of

mathematical sociology, vol. 25, no. 2, pp. 163–177, 2001.

72

[41] E. Sülün, E. Tüzün, and U. Doğrusöz, “Reviewer recommendation using

software artifact traceability graphs,” in Proceedings of the Fifteenth Inter-

national Conference on Predictive Models and Data Analytics in Software

Engineering, pp. 66–75, 2019.

[42] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality

(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[43] N. M. Razali, Y. B. Wah, et al., “Power comparisons of shapiro-wilk,

kolmogorov-smirnov, lilliefors and anderson-darling tests,” Journal of sta-

tistical modeling and analytics, vol. 2, no. 1, pp. 21–33, 2011.

[44] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Mod-

ern code review: a case study at google,” in Proceedings of the 40th In-

ternational Conference on Software Engineering: Software Engineering in

Practice, pp. 181–190, 2018.

[45] P. C. Rigby and C. Bird, “Convergent contemporary software peer review

practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, pp. 202–212, 2013.

[46] P. Royston, “Remark as r94: A remark on algorithm as 181: The w-test

for normality,” Journal of the Royal Statistical Society. Series C (Applied

Statistics), vol. 44, no. 4, pp. 547–551, 1995.

[47] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical software engineering,

vol. 14, no. 2, p. 131, 2009.

73

Appendix A

Data

In the experiments, we used the data shared by Rath and Mader [1]. The data

is available on Harvard Dataverse.1,2

1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PDDZ4Q
(Accessed on 24 Sep 2020)

2https://bit.ly/2wukCHc (The link shared by the original study [1]) (Accessed on 24 Sep
2020)

74

Appendix B

Source Code

The source code used in this study is shared on GitHub.1

1https://github.com/hacetin/msc-thesis (Accessed on 27 Dec 2020)

75

