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Abstract— This paper describes a stochastic modeling ap-
proach for predicting driver responses in highway traffic. Dif-
ferent from existing approaches in the literature, the proposed
modeling framework allows simultaneous decision making for
multiple drivers (>100), in a computationally feasible manner,
instead of modeling the decisions of an ego driver and assuming
a predetermined driving pattern for other drivers in a given sce-
nario. This is achieved by a unique combination of hierarchical
game theory, which is used to model strategic decision making,
and stochastic reinforcement learning, which is employed to
model multi-move decision making. The proposed approach
can be utilized to create high fidelity traffic simulators, which
can be used to facilitate the validation of autonomous driving
control algorithms by providing a safe and relatively fast
environment for initial assessment and tuning. What makes
the proposed approach appealing especially for autonomous
driving research is that the driver models are strategic, meaning
that their responses are based on predicted actions of other
intelligent agents in the traffic scenario, where these agents can
be human drivers or autonomous vehicles. Therefore, these
models can be used to create traffic models with multiple
human-machine interactions. To evaluate the fidelity of the
framework, created stochastic driver models are compared with
real driving patterns, processed from the traffic data collected
by US Federal Highway Administration on US101 (Hollywood
Freeway) on June 15th, 2005.

I. INTRODUCTION

There are several legal, technical and monetary challenges
that the autonomous driving car manufacturers have to
overcome before we can see a wide-spread usage of these
vehicles on roads. Two of these challenges are developing
control algorithms in an environment where hard-to-predict
agents, namely humans, also drive; and being able to validate
the safety of these vehicles for this uncertain environment. In
this paper, a stochastic driver modeling approach is proposed,
which can be utilized to address these two issues: If high
fidelity human driver models are obtained, then these models
can be employed to create traffic simulators to be used for
initial evaluation of autonomous driving control algorithms.
These simulators can help speed up the validation process,
where it is estimated that millions of miles of driving
tests are required [1] for autonomous cars to obtain similar
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levels of safety guarantees as vehicles with human drivers.
Furthermore, driver models can be beneficial for developing
autonomous driving control algorithms that provide human-
like driving experience, which may be useful for operating
in traffic with other human drivers.

There are several successful approaches in the literature
in human driver modeling. In [2], a framework named “cog-
nitive architecture method”, specifying human cognition’s
behavioral models, is used. Hidden Markov Models (HMMs)
are used in [3] and [4], and Markov Dynamic Models
(MDMs) are employed in [5], to predict driver responses. In
[6] and [7], k-means clustering is used for predicting trajecto-
ries of vehicles with drivers. A method named SITRAS (Sim-
ulation of Intelligent Transport Systems) is used in [8] for
modeling lane changing actions of drivers. In [9], Dynamic
Bayesian Networks are used to model the drivers, and in [10]
and [11] Gaussian Process Regression is used to detect pat-
terns and predict driver behaviors. For predicting lane change
intent, Support Vector Machine (SVM) method is combined
with Bayesian filter in [12]. In [13], to predict driver behav-
iors on intersections, Partially Observable Markov Decision
Process (POMDP) is used along with Bayesian Network.
COSMODRIVE (combination of artificial intelligence and
cognitive psychology methods) is used in [14] to model
drivers. Moreover, the same method, COSMODRIVE, is
used to predict driver behaviors on intersections in [15].
In [16], Adaptive Predictive Control (APC) is utilized for
driver modeling. Inverse reinforcement learning is used in
[17] to obtain driving styles of human drivers from their
trajectories. In [18], an autonomous intelligent cruise control
system (AICC) is proposed to model car following behaviors
of human drivers.

A distinguishing feature of the proposed driver modeling
framework is the ability to model simultaneous decision
making of multiple intelligent agents (>100), in a com-
putationally feasible way. This is achieved thanks to a
unique combination of two modeling approaches: Cognitive
Hierarchy Theory (CHT) [19], [20], [21], and stochastic rein-
forcement learning for Partially Observable Markov Decision
Process (POMDP) [22], which is inspired from semi net-
form games [23]. CHT assumes various levels of reasoning
for each driver in a given traffic scenario and helps determine
the strategic decisions of drivers. Here, “strategic decision”
refers to a decision process where predicted actions of
other agents are taken into account. Stochastic reinforcement
learning, on the other hand, helps determine driver actions in
time-extended scenarios, where drivers consider best action
sequences, instead of a single best action.
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The authors have published similar highway driver models
in [24] and [25]. The contributions of this study compared to
these prior works are that 1) the proposed driver models are
compared with real driver responses obtained by processing
traffic data provided in [21], 2) unlike earlier results, where
a 3-lane traffic was considered, a 5-lane road is modeled,
which allows a larger variety of traffic test scenarios.

The organization of the paper is: in Section II, modelling
approach, which consists Cognitive Hierarchy Theory (CHT)
and Reinforcement Learning, is presented; in Section III,
traffic scenario elements consisting drivers’ action and ob-
servation spaces, vehicle motion model and level-0 policy
are defined; in section IV, training results are presented
along with training performances; in Section V, model and
data comparison results are provided and in Section VI, a
summary is given.

II. MODELING APPROACH

The approach exploited in this paper consists of two main
components: One of the components is called Cognitive
Hierarchy Theory (CHT) [19], [20], [21], allows for strategic
decision making, while allowing incorrect assumptions about
other drivers, and hence permitting less-than-optimal human
behavior. The other component, stochastic reinforcement
learning [23], enables these decisions to be taken in a time
extended manner, instead of a single-shot decision, which is
crucial for traffic scenarios.

A. Decision Tools: Cognitive Hierarchy Theory (CHT) and
Reinforcement Learning

In CHT, it is assumed that humans have various levels of
reasoning. The lowest level agent, level-0, acts without any
regard to other agents’ possible actions, and therefore called
as a non-strategic decision maker. All other levels, level-k
agents, assume that the rest of the players are level-(k-1)
and produce best responses based on this assumption.

Reinforcement learning is learning through trial-and-error
actions with a goal of maximizing a cumulative reward over
the period of learning [26]. At the end of the learning
process, we obtain a policy, a mapping from states to
actions, such that when the agent implements this policy,
the goal of maximizing the cumulative reward is achieved.
In this paper, a reinforcement learning method that produces
stochastic policies is used [23]. In this method, the action-
value function, which defines the value of choosing a certain
action a, given a state s, is determined as given below:

βt(m,a) =
(

1− Xt(m,a)
Kt(m,a)

)
γtβt−1(m,a)+

Xt(m,a)
Kt(m,a)

(1)

Qt(m,a) =
(

1− Xt(m,a)
Kt(m,a)

)
Qt−1(m,a)+βt(m,a)(Rt −R)

(2)
where m indicates message (observed state), a indicates
action and t indicates the time step. Moreover, Xt is the
indicator function (takes 1 if message (m)/message-action
pair (m,a) is visited and 0 otherwise), and Kt represents the
number of times a particular message (m)/message-action

pair (m,a) is visited. γt is the discount factor, Rt is the
reward obtained in time step t, and R is the average reward,
which is recursively estimated. Similarly, the value function
V (m), which defines the value of being in a certain state is
calculated as:

βt(m) =

(
1− Xt(m)

Kt(m)

)
γtβt−1(m)+

Xt(m)

Kt(m)
(3)

Vt(m) =

(
1− Xt(m)

Kt(m)

)
Vt−1(m)+βt(m)(Rt −R). (4)

Finally, the policy update rule is given as:

π(a|m)→ (1− ε)π(a|m)+ επ
1(a|m) (5)

where ε is the learning rate and takes values between 0 and
1, and π1(a|m) is defined as the policy which makes Jπ1

> 0,
where Jπ1

is defined as:

Jπ1
= max

a
[Qπ(m,a)−V π(m)]. (6)

where Qπ is the action-value function of the policy π and
V π is the value function of the policy π . This policy update
creates an incremental change in the average reward as:

∆Rπ = ε ∑
m

Pπ(m)Jπ1
(m)+O(ε2) (7)

where Pπ(m) is the occupancy probability of message m in
policy π .

B. Combining CHT and Stochastic Reinforcement Learning
To obtain the driver models for a traffic scenario where

each driver makes simultaneous decisions in a time-extended
manner, CHT and stochastic reinforcement learning ex-
plained earlier are employed in parallel: First, a level-0 policy
is defined, which is discussed later in the following sections.
Then, the level-0 policy is assigned to all of the drivers in the
traffic scenario but the ego driver. The policy of the ego driver
is obtained using the reinforcement learning method. Since
all of the other drivers are level-0 thinkers, the ego driver
learns to respond best to the level-0 policy and therefore
becomes a level-1 driver. The process continues by assigning
all the drivers the level-1 policy and training a policy in this
environment, which is then called a level-2 policy. The same
procedure is implemented for higher levels. It is important
to note that during the training of policies, all the drivers
except the trainee (the ego driver) are assigned a policy
that is obtained in the previous step, and thus these drivers
become part of the environment, which permits using only
one instance of the reinforcement learning process to obtain a
certain level-k driver. This is the key that makes this approach
computationally feasible.

III. ELEMENTS OF THE TRAFFIC SCENARIO

Traffic scenarios modeled in this paper consist of several
vehicles (> 100) in a 5-lane highway (see Fig. 1). Each
lane is 3.7 meters wide, and the vehicles are assumed to
drive constantly without any specified end point. Vehicle
dynamics are continuous. Vehicles sizes are selected as
5m×2m. Below, the elements necessary to create the traffic
scenario are explained.
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Fig. 1: The ego vehicle (red) and the vehicles observed by
the ego driver (grey).

A. Driver Observation Space

It is assumed that a driver can observe his/her distance
to the cars that are 1) in front of him/her driving in the
same lane, 2) the car in the front left lane, 3) the car in
the front right lane, 4) the car in the rear left lane, and 5)
the car in the rear right lane. However, these distances are
not measured exactly but instead perceived as discretized
amounts of close, nominal and far. The ranges of these
distance amounts are determined by processing the traffic
data of US101, Hollywood Freeway provided in [21] and
obtaining the distance distribution in the traffic, as shown
in Fig. 2. It is estimated that around 50% of the time the
distances are in the range 11m - 27m and therefore we
defined the distance as nominal if it’s between 11m and 27m,
close if it’s smaller than 11m and far if it’s larger than 27m.
Furthermore, the driver can observe the changes in distances
in three groups: approaching, stable and moving away. As
a result, observation space, which defines what a driver can
perceive during driving, consists of the following items:
• Distances to the cars in front, front left, front right, rear

left and rear right lanes: close, nominal or far,
• Distance changes of the cars in front, front left, front

right, rear left and rear right lanes: approaching, stable
or moving away

B. Driver Action Space

There are two types of actions: “changing lane” or “chang-
ing acceleration”. In this paper, it is assumed that drivers
could not change their accelerations while changing lanes.
There are two actions for lane change: moving to the left
lane and moving to the right lane.

To determine the driver actions, the acceleration distribu-
tion data is obtained from the traffic data given in [21], which
is presented in Fig. 3. This distribution is investigated in five
separate parts (see Fig. 4), where continuous distributions
are used (red curves) to approximate each of these five sub-
distributions. Based on these approximated distributions, we
determine the following action space for drivers:

1) Maintain, where the acceleration is sampled from
normal distribution with zero mean and a standard

Fig. 2: Distribution of Distances to Car in Front

Fig. 3: Acceleration Distribution

deviation of 0.075.
2) Accelerate, where the acceleration is sampled from a

uniform distribution between 0.5 m/s2 and 2.5 m/s2.
3) Decelerate, where the acceleration is sampled from a

uniform distribution between -0.5 m/s2 and -2.5 m/s2.
4) Hard Accelerate, where the acceleration is sampled

from a half-normal distribution with a mean of 3.5
m/s2 and a standard deviation of 0.3 m/s2.

5) Hard Decelerate, where the acceleration is sampled
from a half-normal distribution with a mean of -3.5
m/s2 and a standard deviation of 0.3 m/s2.

6) Move Left.
7) Move Right.

C. Driver Objective Function

The preferences of drivers, such as spending a minimum
amount of effort while keeping a large headway and avoiding
crashes are expressed in mathematical form using a reward
function, which is given below:

R = w1 ∗ c+w2 ∗ v+w3 ∗d +w4 ∗ e (8)

where, w1,w2,w3 and w4 are weights determining the relative
emphasis on different terms, c equals to -1 if a crash occurs
and 0 otherwise, v equals to the difference between the speed
of the vehicle and the mean speed divided by the maximum
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(a) Normal Distribution Fit
near Center

(b) Half-Normal Distribution
Fit near Right End

(c) Half-Normal Distribution
Fit near Left End

(d) Uniform Distribution Fit
near 0.5-2.5

(e) Uniform Distribution Fit
near -0.5–2.5

Fig. 4: Continuous approximations, given in red, of five sub-
distributions.

(division is made to normalize the variable and fit its value

between -0.5 and 0.5) v = v(t)− vmax+vmin
2

vmax
, d equals to -1 if the

distance to the car in front is close, 0 if it is nominal and
1, otherwise. e takes the values of 0, -0.25 and -0.5, if the
selected action is maintain, -accelerate or decelerate-, and
-hard accelerate or hard decelerate-, respectively. e becomes
equal to -1 if the action is move left or move right.

The weight values should be selected such that w1, de-
termining the importance of not having an accident, gets a
high enough value to prevent accidents at all costs. Similarly,
w3, penalizing unsafe distances between cars, should have
a high enough value for safety. The values of w2 and w4,
emphasizing the importance of reaching one’s destination as
quickly as possible and keeping a minimum effort in the
traffic, respectively, can be decided based on the driver type
to be modeled. In this study, we use weight values such that
w1 > w4 > w3 > w2. It is noted the selection of these values
can be done using numerical analysis and trade-off studies.

D. Vehicle Placements and Physical Models

During both the training and simulation studies, vehicles
are placed randomly within a 600m length of road segment
with initial velocities ranging between 5 m/s and 7.5 m/s.
The initial distances between the vehicles are always greater
than 11m, which is a little larger than the minimum distance

required to prevent an accident if the relative velocity be-
tween two cars are at its highest allowable value. Vehicle
accelerations and directions are modified according to the
actions of drivers. As explained in earlier sections, drivers
can make acceleration decisions of: maintain, accelerate,
decelerate, hard accelerate and hard decelerate, together
with lane changing actions. In this work, it is assumed that
cars change lanes with constant velocity. In other words, it is
assumed that the acceleration is zero during a lane change.

Cars change their velocities and positions based on the
equations given below.

x(t +1) = x(t)+ vx(t)∗∆t +
1
2

a(t)∆t2 (9)

y(t +1) = y(t)+ vy(t)∗∆t (10)

vx(t +1) = vx(t)+a(t)∗∆t (11)

As seen in Fig. 1, in (9)-(11), x and y are the longitudinal
and lateral positions, respectively, vx is the longitudinal
velocity and vy is the lateral velocity. Moreover, a is the
acceleration and ∆t is the step time.

E. Level-0 Model
As explained in previous sections, in Cognitive Hierarchy

Theory, policies are developed in a hierarchical manner,
and the process begins with defining a non-strategic level-
0 policy. In this study, we define level-0 policy as: hard
decelerate if the car in front is close and approaching;
decelerate if the car in front is close and stable or nominal
and approaching; accelerate if the car in front is nominal
and moving away or far; maintain otherwise.

IV. POLICY TRAINING RESULTS

To train each level-k driver policy, first, 75 vehicles are
placed on the road. After each 25 epochs, where each epoch
corresponds to 100 episodes, 25 more vehicles are added to
increase the number of different states visited by the drivers
if the number of cars on the road is less than 125. At its
maximum, there are 125 drivers interacting with each-other,
for a given training instance.

Figures 5, 6 and 7 show the time evolution of the av-
erage epoch rewards, together with average epoch entropy
of the overall action distributions, during the training of
level-1, level-2 and level-3 driver policies, respectively. For
an N element discrete probability distribution, entropy is
calculated as −∑

N
1 pi(log2 pi) which, in the context of driver

modeling, can be interpreted as the degree of randomness in
action selection. As seen from the figures, while the average
rewards converge relatively faster, the entropies continue to
drop, at a much slower rate. The main reason for this result
is that there are states in the observation space that are
either not visited or visited only a few times. This fact can
also be observed from the entropy evolution graphs of the
two frequently visited states, given in Fig. 8, where it is
seen that the entropies are converging at a much faster rate.
For simulation studies, one way to overcome this issue is
to assign the level-0 policy for states that are not visited
frequently during training.
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(a) Average Reward per
Epoch in Level-1 Training

(b) Average Entropy per
Epoch in Level-1 Training

Fig. 5: Level-1 Training

(a) Average Reward per
Epoch in Level-2 Training

(b) Average Entropy per
Epoch in Level-2 Training

Fig. 6: Level-2 Training

V. MODEL AND DATA COMPARISON

In this section, the method of comparison, which is
Kolmogorov-Smirnov Test for Discontinious Distributions
[27], and the comparison procedure are explained.

A. Kolmogorov-Smirnov Test for Discontinious Distributions

In this paper, the null hypothesis H0 is that the probability
distribution of actions obtained with the game theoretical
method, is equal to that of the real data. The distributions
F(x) and H(x) used in the Kolmogorov-Smirnov Test are
defined as the unknown cumulative action probability distri-
bution functions of a real human driver and the game theo-
retical driver model, respectively. Then, the null hypothesis
can be defined as

H0 : F(x) = H(x) f or all x (12)

For this test, test statistics presented below need to be
calculated.

D = supx|H(x)−Sn(x)| (13)

D− = supx(H(x)−Sn(x)) (14)

D+ = supx(Sn(x)−H(x)) (15)

where Sn(x) is the cumulative probability distribution func-
tion which is obtained through data samples.

After calculating these test statistics, the “critical level” or
P(D≥ d) is calculated with the equation given below.

P(D≥ d) = P(D+ ≥ d)+P(D− ≥ d) (16)

In this equation, d is the observed value of D and calculation
procedures of P(D+ ≥ d) and P(D− ≥ d) can be found
in [27], which are omitted here due to space limitations.
The critical level can be defined as the percentage of data
samples with test statistics larger than or equal to the d when

(a) Average Reward per
Epoch in Level-3 Training

(b) Average Entropy per
Epoch in Level-3 Training

Fig. 7: Level-3 Training

(a) Entropy per Epoch of a
State

(b) Entropy per Epoch of a
State

Fig. 8: Entropy per Epoch plots of two randomly selected
frequently visited states.

H0 is true. As this value increases, the probability of the
null hypothesis being true increases. The null hypothesis is
rejected if this critical level is smaller than a predetermined
threshold. This threshold is selected as 0.05 in this work.

B. Comparison Procedure

In this work, for each state, both the model and the data
provide a discrete probability distribution of actions. In order
to understand whether or not our policies successfully model
a human driver for each state visited by the driver, action
distribution obtained from data and from the policies are
compared.

To obtain meaningful comparison results, any action prob-
ability that is less than 0.01 is set to 0.01 and the distribution
is renormalized. Furthermore, any state that is visited less
than 3 times, either during the training or in the human
driving data, is ignored in the comparisons.

C. Results

Fig. 9 shows the percentage of states visited whose action
distributions can be modeled by level-k policies for each
human driver. We have also created a “dumb policy” which
simply provides a uniform probability distribution over all
actions, meaning that the driver has no preference for any
actions in any state. We then compared the percentages of
successfully modeled states for each driver by the game
theoretical (GT) policies and the dumb model and the results
are provided in Fig. 10. It is seen that although the GT
models perform much better than the dumb model, the latter
can still model a reasonable percentage of the states. The
main reason for this is that although the states that are visited
less than 3 times are omitted in the analysis, average number
of visits for states is still relatively low, which makes it hard
for the Kolmogorov-Smirnov test to fail the dumb policy.
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Fig. 9: Percentages of states that are modeled by level-k
policies, for each driver.

Fig. 10: Differences in modelled percentages between level-k
models and the dumb model.

VI. SUMMARY

In this study, a stochastic driver model is presented
together with real traffic data comparisons. Hierarchical
decision making, and a stochastic reinforcement learning
algorithm are utilized in order to predict driver interactions
in multiple scenarios. Via Kolmogorov-Smirnov Test for Dis-
continious Distributions, developed game theoretical models
are compared with real human driving data.
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