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ABSTRACT

LINEAR STABILITY ANALYSIS OF EVAPORATING
FALLING LIQUID FILMS

Hammam Mohamed

M.S. in Mechanical Engineering

Advisor: Luca Biancofiore

August 2019

In order to improve our understanding of the wavy dynamics of evaporating falling

liquid films, we perform a linear stability analysis using the Orr Sommerfeld (OS)

eigenvalue problem. In the present work, the OS problem is extended to include

two effects due to evaporation, namely, vapor recoil and mass loss. We present a

numerical scheme based on a Chebyshev spectral method to solve the eigenvalue

problem. Moreover, we validate our model by comparing the results against the

long wave theory in the region of small wavenumber and weak inertia. We also

demonstrate how the long wave theory completely fails in predicting the correct

behavior when the inertia is strong or the wavenumber is large. By performing

a perturbation energy analysis, we confirm that the instability induced by vapor

recoil (E-mode) behaves in a similar fashion to the instability due ot Marangoni

effect (S-mode). Through the same analysis, we demonstrate that both the S-

mode and the E-mode can enhance each other.

Keywords: Temporal instability, falling liquid films, phase change, Orr-

Sommerfeld eigenvalue problem.
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ÖZET

BUHARLAŞAN-DÜŞEN SIVI FİLMLERİN DOĞRUSAL
KARARLILIK ANALİZİ

Hammam Mohamed

Makine Mühendisliği, Yüksek Lisans

Tez Danışmanı: Luca Biancofiore

Ağustos 2019

Buharlaşan-düşen sıvı filmlerin dalgalı dinamiklerini Orr Sommerfeld (OS)

özdeğer problemini kullanarak doğrusal bir stabilite (kararlılık) analiziyle in-

celedik. Bu çalışmada, OS sorunu, buharlaşmanın buhar geri tepmesi ve kütle

kaybı etkilerini de kapsayacak şekilde genişletildi. Özdeğer problemini çözmek için

Chebyshev spektral yöntemine dayanan sayısal bir şema sunduk. Sonuçları uzun

dalga teorisinin küçük dalga sayımı ve zayıf atalet koşullarında karşılaştırarak

doğruladık. Ayrıca, uzun dalga teorisinin, atalet güçlü olduğunda veya dalga

boyu büyük olduğunda doğru davranışı tahmin etmekte tamamen başarısız

olduğunu gösterdik. Bir sapma enerji analizi yaparak, buhar geri tepmesi (E-

modu) tarafından indüklenen kararsızlığın, Marangoni etkisinden (S-modu) kay-

naklanan kararsızlığa benzer şekilde davrandığını onayladık. Aynı analizle, S ve

E modlarının birbirini geliştirebileceğini gösterdik.

Anahtar sözcükler : geçici kararsızlık, düşen sıvı filmler, faz değişimi, Orr Som-

merfeld (OS) özdeğer problemi.
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Chapter 1

INTRODUCTION

1.1 Motivation

Falling liquid films hold a vital position in pure and applied sciences. They are

classified under the class of free-boundary problems, where highly non-linear and

complex problems are encountered. Therefore, the wavy dynamics of falling liquid

films have been the main focus of many researches since several decades until now.

It is not only the pure science that motivates researchers to work on this topic

more, but also the wide range of applications of this kind of flows, particularly in

chemical processing industry. Typical examples are evaporators, heat exchangers

and cooling towers in power generation. Falling films evaporators represent the

state-of-art technique in the sugar industry. Moreover, they are also the basic

components in water desalination plants. Aside from large scale applications,

such kind of films are also used in fuel preparation systems in internal combustion

engines, and also as means of thermal protection in rocket engine nozzles. Finally,

they are also used in cooling of microelectronics.

With regards to heat/mass transfer applications, falling liquid films offer two

main advantages (i) large contact area and small thermal resistance, and (ii)they

drastically enhance heat/mass transport [3]. Some studies have found that the
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heat transfer through a wavy interface can be 10 − 100% higher than that of a

flat film [4,5].

1.2 Mechanisms of instability in falling liquid

films

There are many phenomenons present in falling liquid films, such as, surface

waves, dry spots formation, Marangoni and evaporation effects. In order to un-

derstand how these phenomenons effect the evolution of falling films and their

instability, we present the mechanisms of three different instabilities due to long

surface waves, Marangoni effect, and vapor recoil.

1.2.1 Surface wave instability (H-mode)

Isothermal thin films falling down an inclined surface experience ”long” wave

deformations at the interface as shown in figure 1.1. Saying ”long” means that

the deformations wavelength is much longer than the film thickness. These long

wave deformations are a result of the instability of an initially fully-developed

flow. This instability is called the long-wave hydrodynamic instability [4], and

will be referred to as the H-mode in this monograph. Three mechanisms [6]

governing this instability are discussed below:

• Streamwise component of gravity:

Consider a liquid film is disturbed by adding a perturbation with a wavelength

l much longer than the depth of the film h̄N . The viscous parabolic profile U

shown in figure 1.1 is assumed to remain constant at every streamwise location

as long as the height of the top surface varies slowly in the streamwise direction.

Figure 1.1 shows that the net streamwise flow is positive, and increases as the

depth of the film increases. Therefore, the streamwise flow is at maximum at the

crest of the perturbation and, decreases to reach a minimum value at the trough.
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Figure 1.1: Schematic diagram of a falling film. U is the fully developed viscous
velocity, while Vc is the control volume with Qin the net inflow and Qout the net
outflow, inspired by [1].

Consequently, gravity will re-balance the flow rate causing the front of the crest

to go upward and the rear of the crest go downward. This can be demonstrated

by considering a control volume Vc (dotted box) to the right of the perturbation

crest, see figure 1.1. At the inlet there is a net flow Qin, however there is no net

flow at the outlet Qout = 0. In order to satisfy mass conservation, the interface

must go downward on the left side of the control volume, while it must go upward

on the right side. These motions cause the advection of the perturbation in the

streamwise direction without growth, at a phase speed higher than the velocity

of any fluid particle.

• Inertia:

Figure 1.2 shows the crest of the perturbation at a particular instance of time.

The surface height is increasing because of the streamwise advection of the per-

turbation. The fully developed velocity profile is increasing at the front face of

the crest because of an increase in the interface height, while, it decreases at the

rear face of the crest due to the interface height decrease. However, inertia effects

prevent the flow from accelerating or decelerating fast enough to follow the fully

developed velocity profile. Therefore the volume fluxes at the front and rear faces

of the crest are not as the same size as the fluxes due to the fully developed film
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flow. This yields to accumulation of the flow beneath the perturbation crest and

an increase in the perturbation amplitude, figure 1.2.

Figure 1.2: Falling film with interfacial motion induced by the effect of inertia.

The dashed line corresponds to the undisturbed original interface, inspired by [1].

Figure 1.3: Interfacial motion due to an increase in the hydrostatic pressure under

the crest. The dashed line corresponds to the undisturbed original interface,

inspired by [1].
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• Hydrostatic pressure:

The perturbation modifies the hydrostatic pressure in the film due to the gravity

cross-stream component, see figure 1.3. The hydrostatic pressure increases under

the crest as the film depth increases, while it decreases under the trough where

the film is thinner. In order to balance the hydrostatic pressure, the fluid is

drained from under the crest and a decrease in the film height occurs, hence

stabilizing the film. This effect competes against the inertia, if inertia is stronger,

the film is unstable and the perturbation grows, otherwise, the film is stable and

the perturbation is damped. Based on that, films falling down a vertical wall

are always unstable since the hydrostatic pressure destabilizing force is canceled

out [7].

Benjamin [8] studied the hydrodynamic instability of films falling down an

inclined plane, and showed there exists a critical flow rate under which the uniform

laminar flow could be observed, while it is not possible when the plane is vertical.

He also showed that surface tension does not play an important role in deciding

the critical flow rate. In conclusion, the key point in long wave hydrodynamic

instability H-mode is that the perturbation travels with a phase speed much

faster than any fluid particle in the flow, and that inertia plays a major role in

the growth of the instability.

1.2.2 Marangoni effect (S-mode)

Surface tension at the interface between two fluids depends on temperature and

concentration. Nonuniformity in one of these two quantities along the interface

could cause the generation of a flow or changing an existing one. This behavior is

called the Marangoni effect. More specifically, the effect is referred to as thermo-

capillary effect when there is a surface tension gradient along the interface, while

it is called solutocapillary effect if the gradients are in the concentration. Only

the former one will be considered in this monograph.

When surface tension is nonuniform along an interface, a flow motion is gener-

ated as a result of tangential shear stresses at the interface due to surface tension
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gradient. This gradient is a result of either two mechanisms, one is due to the

modulation of the interface height, while the second is due to modifications of the

temperature in the film bulk by the velocity advection. These two mechanisms

yield to temperature gradient at the interface. Goussis & Kelly [9] classified the

two mechanisms as the S-mode and P-mode respectively. With regards to the

later one, the P-mode results in convection patterns (rolls or hexagonal cells),

where their size is of the same order as the film thickness, thus they are referred

to as short-wave instabilities. One the other hand, the S-mode produces signif-

icant large-scale deformations at the interface, which is much longer than the

film thickness. This instability was clearly discussed by K.A. Smith and was re-

ferred to as long-wave Marangoni instability [10]. Since we focus in this thesis on

long-wave instabilities, the P-mode will not be discussed and the aftermentioned

”Thermocapillary instability” or ”Marangoni effect” refers to the S-mode.

Figure 1.4: Mechanism of long wave instability induced by Marangoni effect (S-

mode). Tw is the temperature of the wall, while Tinf is the temperature of the

ambient gas, inspired by [1].

Now, we elaborate more on the mechanism of the long-wave Marangoni insta-

bility (S-mode), while keeping in mind that it is caused by surface temperature

gradient due to interface amplitude modification, and also by assuming that sur-

face tension decreases as temperature increases. Figure 1.4 shows a thin film

on a horizontal wall heated at Tw. If an infinitesimal perturbation occurs at

the interface (stage t1), the temperature at the trough will be hotter than the

temperature at the crest, and surface tension will be higher at the crest than

that at the trough. Consequently, a flow is induced from the trough to the crest
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due to tangential stresses along the interface. This flow amplifies the infinitesi-

mal perturbation and destabilizes the flat film (stage t1 to stage t2). The main

opposing force to the long-wave Marangoni instability is the hydrostatic pres-

sure force trying to maintain the interface flat. Moreover, for perturbations with

short wave-length surface tension becomes strong and it also opposes the growth

of the perturbation. For this reason instability due to S-mode takes the from of

long-wave disturbances.

1.2.3 Evaporation effect (E-mode)

When the liquid is volatile, there is a mass flux across the interface due to phase

change, where in this case we consider evaporation only. First let’s assume that

the evaporation rate is steady and uniform along the interface and the density of

the gas is much smaller than the liquid density. When evaporation occurs at the

interface, a discontinuity in the fluid velocity and the linear momentum occurs

across it due to the rapid change in the fluid density. Since the vapor density

is much smaller than the liquid density, the vaporized particles at the interface

accelerate dramatically, causing a back reaction called vapor recoil. Vapor recoil

is proportional to the evaporation rate, and also to the liquid/vapor density

ratio. Figure 1.5 shows a volatile film with evaporation. When the interface is

disturbed with an infinitesimal perturbation, the evaporation rate at the trough

becomes higher than that at the crest, because the former has higher temperature.

Consequently, the vapor recoil forces is higher at the trough than at the crest,

which results in amplifying the disturbance. We named the instability due to

vapor recoil as E-mode in this work.

7



Figure 1.5: Mechanism of instability induced by vapor recoil effect (E-mode). Tw
is the temperature of the wall, Tinf is the temperature of the ambient gas, and J
is the mass flux across the interface.

1.3 Methodology and literature review

There exists several models used to study the stability falling liquid films. The

governing equations and boundary conditions can be simplified to an extent de-

pending on the flow regime under interest. As mentioned beforehand, the per-

turbations at the interface are much longer than the film thickness, therefore, the

streamwise scale can be well separated from the cross-stream scale. The com-

bination of the scales discrepancy and low Reynolds numbers yields to the long

wave theory, where the velocity and the temperature change slowly in time. In

this scenario, the flow is controlled by one single equation describing the interface

evolution. This equation is named as the Benny equation (BE) referring to Benny

who derived it first for isothermal films [11]. This approach was adopted by many

researches afterwards to study the nonlinear dynamics of falling liquid films with

different physical effects [12–15]. However, for moderate to large Reynolds num-

bers, the Benny equation fails, leading to a finite-time blow-up behavior [16,17].

Moreover, linear stability comparison between the Benny equation and linearized

Naiver-Stokes models such as the Orr-Sommerfeld equation shows poor agree-

ment, which degrades also as Reynolds number increases [18]. There are several

models derived to overcome the setbacks of the BE, for example, the integral

boundary layer approximation [19,20], the weighted residuals model [21,22]. See

references [1, 12, 23] for more details.
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Thermocapillary effects were considered for non-volatile heated films by Lin

[24], Sreenivasan & Lin [25], and Kelly, Davis & Goussis [26]. They considered a

falling liquid film over a uniformly heated wall and extended the BE to include

the Marangoni effect. Kelly et al. showed that films under thermocapillary

effect can be unstable for inclination angles well below 90◦. Later they classified

the instability into the S-mode and P-mode, and also examined the interaction

between the H-mode and S-mode showing that those instability modes enhance

each other [9].

When the liquid is volatile, phase change effects were taken into consideration

by Bankoff [27]. He showed that a critical Reynolds number exists for a vertical

falling film under condensation effect. Furthermore, Splinder [28] concluded that

the phase change term in the interfacial mass balance is only important in the case

of limited wall heat flux, while for large heat fluxes, extra terms should be added

to the interfacial momentum balance. Moreover, Bulerbach et al. [29] considered

a horizontal volatile film, and used the long wave theory to derive a similar equa-

tion to BE, but with additional terms corresponding to thermocapillary effects,

evaporation and intermolecular forces. Joo, Davis & Bankoff [30] extended the

model to include gravity effect, where they examined the nonlinear evolution of

the different modes of instability. Oron [31] studied three dimensional evaporating

films by solving the 3D interface evolution equation using Newton-Kantorovich

method [32].

1.4 Objective and structure of thesis

Despite the fact that phase change process is present in many falling liquid films

applications, there has not been much work related to the instabilities induced by

evaporation in the literature. The main contributions are limited to approxima-

tion models, such as the long wave theory mentioned earlier. Our main objective

in this work is to extend the Orr-Sommerfeld eigenvalue problem to include evap-

oration effects, in particular, vapor recoil and mass loss. Moreover, to examine
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the interaction between the different modes of instabilities by analyzing the per-

turbation energy, where this is not possible using the currently available models.

This work is structured as follows:

• In Chapter 2, the governing equations and wall boundary conditions are

introduced, while the interface boundary conditions are derived using the

one-sided model [29]. Then we present suitable length and time scales

alongside the non-dimensional parameters that enter the evaporating falling

liquid film problem, then a base state solution is obtained. Finally, we re-

derive the long wave theory for the scaling introduced in this work alongside

the film base state.

• Chapter 3 is devoted to linear stability analysis. First, the long wave theory

derived in the previous chapter is utilized to obtain analytical expressions of

the growth rate and phase speed of the perturbation, the critical conditions

at which the flow is unstable for different instability modes are summa-

rized in one single expression. Moreover, the general Orr-Sommerfeld (OS)

eigenvalue problem is extended to include vapor recoil and mass loss effects,

which is reduced after in the limit of streamwise perturbations. Next, we

extend the energy kinetic balance to include evaporation effects, where an

extra term proportional to vapor recoil shows up we call it ”VRE”. Fur-

thermore, we present the numerical scheme used to solve the OS eigenvalue

problem. Finally we validate the extended OS model and the numerical

scheme by comparing the results to different benchmarks in the literature.

• Chapter 4 presents the results of linear stability analysis performed by the

Orr-Sommerfeld eigenvalue problem. We examine the different instability

modes alone, and also their interactions with one another. We also analyze

the perturbations energy and find the main contributing terms for every

instability mode.

• Finally, chapter 5 summarizes what has been presented in this work, as

well as the future plans. It also introduces a brief summary of a multiphase

direct numerical simulation (DNS) solver, which was adapted to simulate

10



falling liquid films. We also outline the future plan to incorporate thermal

and evaporation effects into the DNS solver.
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Chapter 2

Mathematical modeling

The first objective of this chapter is to set the theoretical and mathematical

ground on which this work will be built. The major assumptions necessary to

formulate the problem are highlighted first. Next, the governing equations and

boundary conditions are derived based on these assumptions. Moreover a suitable

non-dimensionalization is made and several scaling parameters are introduced.

The second objective of this chapter is to re-derive already existing models, which

are necessary to perform linear stability analysis of evaporating falling liquid films.

Figure 2.1 illustrates an evaporating thin film falling down an inclined wall.

The wall forms an angle β with respect to the horizontal direction. A 3D Carte-

sian coordinate (x, y, z) is considered, where x is in the streamwise direction

(direction of the flow), y is the coordinate normal to the wall, and z is the co-

ordinate parallel to the cross-stream direction. The wall is fixed at y = 0, while

the interface is a function of space and time located at y = h(x, z, t). The wall is

uniformly heated to a fixed temperature Tw. The liquid is volatile and therefore

mass flux across the interface is present (J). The vapor is fixed at a constant

temperature and pressure T∞ and P∞ respectively.

The local film thickness is a function of space and time h(x, z, t), and h̄N is the

mean film thickness (h̄N < 1mm), which is way shorter than a typical stream-wise

12



Figure 2.1: Schematic diagram of an evaporating thin film flowing down an in-
clined surface.

wavelength (l� h̄N).

The main assumptions used in this monograph are:

• The viscosity of the liquid is constant. Additionally, all the physical pa-

rameters of the liquid are constant with respect to thermal gradients.

• The intermolecular interactions are not taken into consideration, therefore

the thickness of films under focus are not in the range of nm.

• No-penetration and no-slip boundary conditions are assumed at the wall.

• The density, viscosity and thermal conductivity of liquid are assumed to

be much greater than those of the vapor, simply this says that the vapor

is mechanically and thermally passive. This assumption allows decoupling

the dynamics of the liquid from the dynamics of the vapor, forming what

is called the ”one sided model”, which will be discussed in more details in

the following section.

• The vapor is fixed at a constant temperature T∞, and thus has infinite heat

capacity. It is also fixed at a constant pressure p∞.

13



• In order to be able to model Marangoni effect, a constitutive equation that

governs the relation between surface tension σ(Ts) and interface tempera-

ture Ts is needed. This can be done by expanding the surface tension using

Taylor series with the reference temperature taken to be T∞:

σ = σ∞ − γ(Ts − T∞), (2.1)

where σ∞ is the surface temperature at the gas temperature. The rate

of surface tension change alongside temperature is γ = −(dσ/dTs), γ is

assumed to be positive indicating that the surface tension decreases when

the temperature of the interface increases.

• The viscous dissipation in the energy equation is neglected, this assumption

is valid for the thin films and the considered thermal gradients [3].

• The evaporation rate is assumed to be steady, and proportional to the local

surface temperature (Ts) [33].

• The frozen interface assumption is utilized, which means that the viscous

time scale is shorter than the evaporative scale.

2.1 Governing equations and boundary condi-

tions

The governing equations, namely continuity, 3-D Navier-Stokes and energy for

the film illustrated by figure 2.2 are:

∂yu+ ∂xv + ∂zw = 0, (2.2a)

ρ(∂tu+ u∂xu+ v∂yu+ w∂zu) = −∂xp+ µ(∂xxu+ ∂yyu+ ∂zzu) + gsinβ, (2.2b)

ρ(∂tv + u∂xv + v∂yv + w∂zv) = −∂yp+ µ(∂xxv + ∂yyv + ∂zzv)− gcosβ, (2.2c)

ρ(∂tw + u∂xw + v∂yw + w∂zw) = −∂zp+ µ(∂xxw + ∂yyw + ∂zzw), (2.2d)

∂tT + u∂xT + v∂yT + w∂zT =
κ

ρ cp
(∂xxT + ∂yyT + ∂zzT ), (2.2e)
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where, u,v and w are the fluid velocities in the directions x, y, and z. p is pressure,

g is the gravitational body force, T is temperature, κ is thermal conductivity, and

cp is constant pressure heat capacity. The wall and interface boundary conditions

governing the equations (2.2) are presented below:

Wall Boundary Conditions y = 0

• No slip boundary condition,

u = v = w = 0. (2.3)

• The wall is heated to a constant wall temperature

T = Tw. (2.4)

Interface boundary conditions y = h(x, z, t):

The integral forms of the mass, momentum, energy balance laws were utilized

to derive the jump conditions at the free surface of an evaporating falling film

[34]. Later many authors used these jump conditions to derive the ”one sided

model” [29,30], which states that the vapor is mechanically and thermally passive

(assumption 4). The one sided model is presented directly here, while the reader

is referred to appendix A for derivation.

• Mass balance jump condition

J = ρ(v − v(s)) · n, (2.5)

with ρ is the density of the liquid, v(s) is the velocity of the interface, and

n is the unit vector normal to the interface defined as below:

n =
1

n
(−∂xh, 1,−∂zh), (2.6)

with n = (1 + (∂xh)2 + (∂zh)2)1/2.

• Normal stress jump condition

− J2

ρ(v)
− (P · n) · n = 2Hσ(T ), (2.7)
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where, ρ(v) is the vapor density, P is the deviatoric stress tensor, and H is

the mean curvature of the interface defined as follows:

H(h) =
1

2

∂xxh[1 + (∂zh)2] + ∂zzh[1 + (∂xh)2]− 2∂xh∂zh∂xzh

[1 + (∂xh)2 + (∂zh)2]3/2
. (2.8)

Physically, the first term represent the vapor recoil, the second term is a

force per unit area, and the right hand side term is the surface tension force

normal to the interface. This condition states that all the normal forces

must be balanced across the interface.

• Tangential stress jump condition

(P · n) · τi = ∇sσ · τi, i = 1, 2 (2.9)

where ∇sσ is the tangential surface tension force, and τi is the tangential

unit vector, defined as

τ1 =
1

τ1

(1, ∂xh, 0) and τ2 =
1

τ2

(0, ∂zh, 1) (2.10)

with τ1 = (1 + (∂xh)2)1/2 and τ2 = (1 + (∂zh)2)1/2 .

Figure 2.2: Normal n and tangential τ1,2 unit vectors on the liquid film interface.

• Energy jump condition

J

[
L+

1

2

[
J

ρ(v)

]2
]

= −k∇T · n, (2.11)
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where, and L is the latent heat of vaporization. The energy jump condition

states that total heat conducted across the liquid film is used either to

vaporize the liquid particles at the interface (first term) or to impart kinetic

energy to the vapor particles (second term).

• The linearized constitutive equation which relates the mass flux across the

interface to the local interface temperature [33]

J =

(
αρ(v)L

T
3
2
v

)(
Mw

2πRg

) 1
2

(T (I) − T∞), (2.12)

where, α is the accommodation coefficient, L is the latent heat, Mw is the

molecular weight, and Rg is the universal gas constant.

2.2 Non-dimensional and scaled parameters

For falling liquid films, the streamwise acceleration causes the flow, while the

viscosity of the liquid resists this flow, the balance between these two forces leads

to a semi-parabolic velocity profile referred to as the Nusselt film solution [35].

The Nusselt film solution is utilized to introduce length and time scales based on

the viscous-gravity balance:

lν =

(
ν2

g sin β

)1/3

and tν =

(
ν

(g sin β)2

)1/3

.

Additionally, an evaporative time scale is introduced:

tE =
ρh̄2

NL

κ∆T
.

It is assumed that the evaporative time scale is much longer than the viscous

time scale. This leads to the frozen interface assumption which means that the

evaporation is independent of the viscous forces of the flow.

These balances are utilized to scale the different parameters in the governing

equations and boundary conditions (2.3 - 2.12) as follows:

(x, y, z)∗ → h̄N(x, y, z), h∗ → h̄Nh, t∗ → tvlv
h̄N

t
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v∗ → h̄2
N

tvlv
v, p∗ → p∞ + ρ

lvh̄N
t2v

p, T ∗ → T∞ + T∆T,

J∗ → J
κ∆T

h̄NL
,

where ∆T = Tw−T∞. Note that the starred quantities are the dimensional ones.

The non-dimensional governing equations and boundary conditions are presented

below:

∂xu+ ∂yv + ∂zw = 0, (2.13a)

3Re(∂tu+ u∂xu+ v∂yu+ w∂zu) = −∂xp+ ∂xxu+ ∂yyu+ ∂zzu+ 1, (2.13b)

3Re(∂tv + u∂xv + v∂yv + w∂zv) = −∂yp+ ∂xxv + ∂yyv + ∂zzv − Ct, (2.13c)

3Re(∂tw + u∂xw + v∂yw + w∂zw) = −∂zp+ ∂xxw + ∂yyw + ∂zzw, (2.13d)

3RePr(∂tT + u∂xT + v∂yT ) = ∂xxT + ∂yyT + ∂zzT (2.13e)

subject to the boundary conditions, at the plate (y = 0):

u = v = w = 0, (2.14a)

T = 1, (2.14b)

at the free surface y = h(x, z, t):

v = ∂th+ u∂xh+ JE, (2.15a)

p = (P · n) · n− 1

n3
(We−MT )∂xxh+

VrJ
2

2
, (2.15b)

0 = (P · n) +M(∂xT + ∂xh∂yT ), (2.15c)

J +
ReVr
DL

J3 = −∇T.n, (2.15d)

JK = T. (2.15e)

(2.15f)

The parameters which govern the physical effects are presented below:

• The Kapitza number

Ka =
σ∞

ρ (g sinβ)1/3 ν4/3
,
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the Kapitza number compares the surface tension force to the inertia. Its

a function of the liquid properties and inclination angle, while independent

of the flow rate.

• The Marangoni number

Ma =
γ∆T

ρ (g sinβ)1/3 ν4/3
,

Ma represents the ratio between the force resulted from the surface tension

gradient across the interface and inertia.

• The Prandtl number

Pr =
νρcp
κ

,

compares the momentum diffusivity to thermal diffusivity.

• The evaporation number

E =
κ∆T

ρνL
,

measures the rate of evaporation, and compares the viscous time scale to

the evaporative time scale.

• The vapor recoil number.

Vr =
E2

D
,

it is a measure of the vapor recoil, where (D = 3ρ(v)/ρ) is the ratio between

liquid and vapor densities, where D is usually very small [11]

• the latent heat number

L =
8h̄2

NL

9ν2
,

which is a measure of the latent heat.

Next, the non-dimensional numbers in the equations (2.13 - 2.15) are presented

in terms of the physical parameters and the flow rate:

• The Reynolds number

Re =
g sinβ h̄3

N

3 ν2
,
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the Reynolds number relates the inertia to viscous forces. It also relates the

dimensionless film thickness (hN) to the length scale:

hN =
h̄N
lv

= (3Re)1/3.

• The inclination number

Ct = cot β,

relates the cross stream and the stream-wise components of the gravitational

force. It is a measure of the hydrostatic pressure.

• The parameter K from the scaled constitutive equation

K =

(
λT

3
5
s

αhNρ(v)L2

)(
2πRg

Mw

)0.5

.

The parameter K measures the degree of non-equilibrium at the evaporating

interface. K = 0 corresponds to the quasi-equilibrium limit, where the interfa-

cial temperature is constant and equal to the saturation value, while K−1 = 0

corresponds to the non-volatile case in which the evaporative mass flux (J) is

zero.

Furthermore, When the liquid is non-volatile and the mass flux is zero (J =

0), the energy boundary condition (2.15.f) and constitutive relation (2.15.e) are

combined to form a Robin/mixed boundary condition:

K∂yT + T = 0, (2.16)

this means that all the heat conducted through the liquid is dissipated into the

gas at the interface, the parameter K is no longer a measure of evaporation

equilibrium and instead we consider K−1 as the Biot number B, and we recover

the base state solution of a non-volatile heated film obtained by Kalliadasis [1].

As a result of the viscous-gravity scaling, the physical parameters presented be-

fore (Ka, Ma, E and Vr) show up scaled with the flow rate in the non-dimensional

equations (2.13 - 2.15), the new set of parameters are listed below:
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Non-Dimensional Number Symbol Expression

Weber number We Ka/(3Re)2/3

Marangoni number M Ma/(3Re)2/3

Evaporation number E E/(3Re)
Vapor Recoil number Vr Vr/(Re)

Table 2.1: Physical parameters in terms of flow rate.

To elaborate more, this scaling was chosen among many others available in

the literature because it relates all the physical parameters to the flow rate, and

hence provide more realistic presentation of the problem. One extra advantage

it that it makes comparison to experimental work accessible, since we have only

Re depending on the film thickness, while all the other parameters will scale by

default when Re changes.

2.3 Base state solution

The system of governing equations and boundary conditions (2.13 - 2.15) have

two different solutions [29]. First solution is steady and space-dependent. The

other solution is time dependent and spacially uniform representing a volatile film

falling down a heated plate, while thinning at the same time due to evaporation.

The later mentioned solution will be the main focus since the scope of this mono-

graph is the temporal stability analysis. The base state quantities are specified

by overbar, the equations are simplified by setting (v = 0, ∂x = 0):

3Re(∂tū) = ∂yyū+ 1, (2.17a)

∂yp̄ = −Ct, (2.17b)

3RePr∂tT̄ = ∂yyT̄ , (2.17c)

with boundary conditions at the wall (y = 0):

ū = 0, (2.18a)

T̄ = 1, (2.18b)
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and at the free surface y = h̄(x, t):

∂th̄ = −J̄E, (2.19a)

p̄ =
VrJ̄

2

2
, (2.19b)

∂yū = 0, (2.19c)

J̄ +
ReVr
D−1L−1

J̄3 = −∂yT̄ , (2.19d)

KJ̄ = T̄ . (2.19e)

In order to obtain the base state solution of equations (2.17 - 2.19), it is assumed

that evaporation is slow (E << 1) and the system is expanded in terms of the

film evaporation number (E) [29]. The velocity ū(y, t), mass flux J̄(t), liquid

temperature T̄ (y, t), and pressure p̄(y, t) are assumed to be of order unity, while

the film thickness h̄(t) is considered an unspecified order-one function.

ū = uo + Eu1 + E2u2 +O(E3), (2.20a)

J̄ = Jo + EJ1 + E2J2 +O(E3), (2.20b)

Θ̄ = Θo + EΘ1 + E2Θ2 +O(E3), (2.20c)

p̄ = po + Ep1 + E2p2 +O(E3). (2.20d)

Several approximations are used in order to find the base state solution [29]:

• Sine evaporation is slow, the effect of mass loss in the kinematic boundary

condition (2.19a) is recovered by rescaling the time on the evaporation scale:

t = Et̃ and z̃ = z.

• The parameter (L) is quite large [29], and therefore the kinetic energy of

the vapor particles in the energy boundary condition is assumed negligible

L−1 = o(1).

• The vapor recoil term in the normal stress boundary condition (2.19.b) is

conserved by assuming a relationship between the small parameters (D)

and (E)

D = E2D̄.
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After applying the approximations and substituting the expansions in equations

(2.17-2.19) the leading order system is:

∂yyuo = −1,

∂ypo = −Ct,

∂yyTo = 0,

y = 0 : uo = 0, To = 0,

y = h(t̃) : ht̃ = −Jo,

po =
VrJ

2
o

2
,

∂yuo = 0,

− Ty = Jo,

KJo = To.

with he initial condition:

t̃ = 0 : h̄ = 1.

Finally, the leading order base state solution is:

h̄(t) = −K +
(
K2 + 2K + 1− 2Et

) 1
2
, (2.21a)

J̄(t) =
(
K2 + 2K + 1− 2Et

)− 1
2
, (2.21b)

Ū(y, t) = y
(
h(t)− y

2

)
, (2.21c)

P̄ (y, t) = Ct
(
h(t)− y

)
+
Vr
2
J2, (2.21d)

Θ̄(y, t) = 1− Jy. (2.21e)

Figure 2.3 shows the behavior of the base state for different K values. Starting

with the isothermal case (K−1 = 0), the temperature gradient across the film

is zero, and therefore there is no evaporation, and the film thickness remains

constant as in figure 2.3(a). The velocity keeps a parabolic profile as in figure

2.3(d). Note that the Nusselt film solution for isothermal falling films [35] can be

retained by setting (E = 0, K = 0).
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As for the non-equilibrium case (K 6= 0), the film thickness decreases with time

until it reaches zero at the dry out-time

tD =
1 + 2K

2E
. (2.22)

Moreover, the interface temperature (Ts) approaches the wall temperature (Tw)

as the film thins, and the mass flux increases with time and its maximum is at

the dry out time. For the quasi-equilibrium case (K = 0), dry out occurs within

a shorter time than in non-equilibrium case.

tD =
1

2E
. (2.23)

The temperature difference between the interface and the wall is constant, con-

sequently the heat flux across the film increases as the film thins at higher rates

than of the previous scenario (K 6= 0), this explains why the mass flux is higher

in this case. The velocity maintains its parabolic profile in all the three scenarios.

The base state in equation (2.21) is based on assuming that the evaporation

is slow, and that the evolution of the base state in time is much slower than the

perturbation growth or decaying in time. Therefore, this base state is utilized

in the next chapter to study the primary instability of evaporating falling liquid

films.
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Figure 2.3: (a) Film height, (b) Mass flux across interface, (c) Temperature

gradient across the film and (d) horizontal velocity profile, for base state through

time. Note that Ts is the interface temperature, Tw is wall temperature and tD

is dry out time.
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2.4 Long wave theory

2.4.1 The Benney equation BE

Falling liquid films with low flow rates (small Re) belong to the drag-gravity

regime. In this regime, the inertia is weak and the surface tension is strong.

Therefore the base state does not change significantly and the slope of interface

remains smooth. It is valid then to propose a long wave expansion in terms of

the film parameter (ε = h̄N/l), which is the ratio between the film thickness and

the wavelength. This expansion states that the dependent variables (u, v, T, p)

change very slowly in space and time as long as the inertia is weak and surface

tension is strong. This was done first for isothermal films by Benny [11], where

he performed a long-wave expansion of the governing equations and boundary

conditions in terms of the film parameter (ε). He also obtained one single equation

which describes the evolution of the interface, usually called the Benny equation.

In this monograph, the same procedure done by [30] is followed to obtain the

Benny type equation for evaporating falling liquid films. First the time and space

are scaled:

ξ = εx, ζ = y, τ = εt. (2.24)

In order to retain the terms causing hydrodynamic and thermal instabilities, it is

assumed that the parameters (Re, Pr,M,Ct) are of O (1) [1,36]. with regards to

the evaporative instability terms, we assume that E is of O(ε) and D is of O(ε2),

in order to retain the effects of mass loss and vapor recoil in the normal stress

boundary condition

(E,D) = (εĒ, ε2D̄),

where the barred quantities are O (1). Finally surface tension is assumed of order

O(ε−2) corresponding to strong surface tension effects. The dependent variables

are expanded ass follows:
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u = uo + εu1 +O(ε2), (2.25a)

v = ε(vo + εv1) +O(ε3), (2.25b)

T = To + εT1 +O(ε2), (2.25c)

p = po + εp1 +O(ε2), (2.25d)

J = Jo + εJ1 +O(ε2), (2.25e)

where, (u, v, p, T, J) are assumed ofO(1) and v is of orderO(ε) in order to preserve

continuity, while h(x, t) is an unknown function of O(1). The expansions are

substituted in the non-dimensional governing equations and boundary conditions

(2.13 - 2.15), the velocity, temperature and mass flux solutions are obtained up

to O(1) in terms of the unknown function h(x, t). The velocity in the streamwise

direction (u) is obtained as:

u(ξ, ζ, τ) = (hζ − 1

2
ζ2) + ε

{
(Cthξ − Ω)(

1

2
ζ2 − hζ)

+
3

2
Rehτ (

1

3
ζ3 − h2ζ) +

1

2
Rehξh(

1

4
ζ4 − h3ζ) +M

(
h

h+K

)
ξ

ζ

}
+O(ε2), (2.26)

where,

Ω = Vr
hξ

(k + h)3
+Wehξξξ. (2.27)

Moreover, the velocity component in y-direction at the free surface ζ = h :

v(ξ, h, τ) = ε

{
− 1

2
h2hξ

}
+ ε2

{
Cth2(

1

3
hhξξ +

1

2
h2
ξ)− h2(

1

3
hΘξ +

1

2
hξΘ)

+3Reh3(
5

24
hhτξ+

1

2
hξhτ )+

1

40
Reh5(39h2

ξ+9hhξξ)−
M

2

(
h

h+ k

)
ξξ

h2

}
+O(ε3).

(2.28)

The pressure equation:

p = Ct(h− ζ) +
Vr
2

1

(h+K)2
−Wehξξ +O(ε), (2.29)

where the first term is the hydrostatic pressure, the second and the third are

vapor recoil and surface tension forces, respectively. The temperature and mass
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flux are obtained as well:

T = 1− ζ

h+K
+O(ε), and (2.30)

J =
1

h+K
− ε

{
PrReh3

(K + h)3

(
hτ +

1

8
(39h+ 3K)hξh

)}
+O(ε2). (2.31)

Substituting the solutions in the kinematic boundary condition (2.15.a) yields to

the interface evolution equation:

(2.32)

hτ + h2hξ +
Ē

h+K
+ ε

[
2

5
Rehξh

6 +
1

3
Weh3hξξξ −

1

3
Cth3hξ

+
KM

2

hξh
2

(h+K)2
+Vr

h3hξ
(h+K)3

]
ξ

+ ε
5

2
ReĒ

[
h3 h3hξ

(h+K)
− 1

4
Ē

h4hξ
(h+K)2

]

+ εĒPrRe

[
7

40

h5hξ
(h+K)3

+ Ē
h3

(h+K)4
− 3

8

h4hξhK

(h+K)3

]
= 0.

The first term represents the film evolution in time, while the second term

governs the spacial development of the wave due to mean flow. Inertia, surface

tension, and hydrostatic pressure forces are represented by the fourth, fifth, and

sixth terms, respectively. The seventh and eighth terms are a result of adding the

Marangoni and vapor recoil effects to the Benny equation. Finally, all the terms

proportional to Ē represents the mass loss effect, which is responsible for thinning

the film until it reaches dry out. The fourth term explains the reason why Benny

type equations are only valid when Re is small: it shows that inertia is O(ε) and

therefore it is assumed to be small, however for larger Reynolds numbers, inertia

is not negligible, which causing the long wave theory to predict a wrong behavior

of the interface evolution.

The interface evolution equation obtained earlier can represent several sce-

narios. For an isothermal film (M = 0, Vr = 0, E = 0), equation (2.32) is re-

duced to the evolution equations obtained by many authors in the literature, e.g.

see [11,37]. When the Marangoni effect is added (M 6= 0, Vr = 0, E = 0), the mass

flux J = 0, and the parameter K−1 is no longer a measure of evaporation equi-

librium and instead it is considered as the Biot number B as mentioned earlier.
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When evaporation effects are included, we recover the equation obtained by [29]

but with different scaling parameters. Moreover, if the sign of the hydrostatic

pressure term is switched, we recover the evolution equation of an evaporating

film falling beneath an inclined surface derived by [38].

The interface evolution equation is a highly non-linear differential equation

which can numerically be solved to study the linear and non-linear dynamics of

an evaporating falling liquid film. However, in the scope of this monograph, this

equation will be linearized with respect to infinitesimal disturbances to study the

linear stability of these films in the limit of weak inertia (Reynolds O(1)) and

longwaves (k � 1).

2.4.2 Film base state

An exact base state solution is available for the interface evolution equation (2.32),

It can be obtained as previously mentioned by setting the spacial derivatives to

zero and then obtain the solution as a function of time. (∂ξ = 0 ∂τ 6= 0)

hτ +
E

(h+K)
+ ε

{
E2Peh3

(h+K)4

}
= 0, (2.33)

ho = Ω−K+ε
EPe

Ω

{
K(2K2 + 6K + 3)

1 +K
+

3K2

2
ln

Ω

1 +K
+
K3

Ω
−3KΩ−Eτ

}
+O(ε2),

(2.34)

where, Ω = ((1 + K)2 − 2Ēτ)1/2. Since the inertia is not taken in consideration

in this analysis, the base state (2.34) does not depend on Reynolds number (Re)

and mainly depends on the evaporation number (E). For a non-volatile film we

recover the film base state found by [7] for isothermal films, and [26] for films

with Marangoni effect.
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Chapter 3

Linear stability analysis:

methodologies

Linear stability analysis is performed by studying the stability of falling films

with respect to infinitesimal perturbation (primary instability). Linear stability

analysis is a fundamental step in understanding the evolution of these falling

liquid films, from a stable state to a chaotic one [1]. In this chapter, the temporal

stability of the flow/interface base state is considered, simply, the development

of the infinitesimal disturbances is studied in time only. The first part focuses on

utilizing the interface evolution equation (2.32) in linear stability analysis. In the

next section, 3.2, the well known Orr-Sommerfled eigenvalue problem is extended

to include evaporation effects. In Section 3.3, energy balance analysis is carried

out for the perturbation in order to to understand the mechanisms of different

instabilities, and the way they interact with one another. Finally, a spectral

collocation numerical scheme to solve the Orr-Sommerfeld eigenvalue problem is

presented along with it is validation, in sections 3.4 and 3.5 respectively.
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3.1 Long wave theory

We perform linear stability analysis by adding an infinitesimal perturbation

h̃(τ, ξ) to the interface

h = ho(τ) + h̃(τ, ξ). (3.1)

Then the perturbation is assumed in the form of normal mode:

h̃(τ, ξ) = Hei(kξ−ωτ), (3.2)

where ω is th complex angular frequency, while k and H(τ) are real and represent

the wavenumber of the perturbation and amplitude, respectively. By substituting

the expansion (eq. 3.2) into the evolution equation (eq. 2.32) and linearizing for

h̃ << 1 the following relation is obtained:

Ḣ

H
= ω(τ)− ikc(τ) + ωeff (τ), (3.3)

where, ω(τ) is the temporal growth rate, c(τ) is the phase speed, and ωeff is the

effective growth rate. These terms are defined as follows:

ω(τ) = εk2

[
2

5
Reh6

o −
1

3
Cth3

o −
1

3
Weh3

ok
2 +

MKh2
o

2(ho +K)2
+

1

3

Vrh
3
o

(ho +K)3

]
(3.4)

c(τ) = h2
o + ε

[
5ReĒh3

o

2(ho +K)
− 15Reh4

oĒ

24(ho +K)2
+

7ĒPeh5
o

40(ho +K)3
− 3ĒPeh4

oK

8(ho +K)3

]
(3.5)

ωeff (τ) =
Ē

(ho +K)2
+ εĒ2Pe

h2
o(3K − ho)
(ho +K)5

(3.6)

If the temporal growth rate is positive ω(τ) > 0 ,the disturbance grows exponen-

tially in time and the base state is unstable. On the other hand, if ω(τ) < 0 the

base state is stable and the disturbance is damped. Furthermore, if ω(τ) = 0,

the disturbance is neither amplified or damped, but instead the film base state

solution is shifted and travels with a constant phase speed c(τ). The sign of the

different terms in equation (3.4) indicates the role every term plays, the first term

shows the destabilizing effect of the mean flow (positive), while the second and

third terms shows the stabilizing effects of the hydrostatic pressure and surface

tension respectively (negative). Marangoni and vapor recoil effects are destabi-

lizing by their nature, and therefore they appear with a positive sign in the last
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two terms. Finally, the term (ωeff ) seems to contribute positively to the growth

rate in equation (3.3), however it does not affect the exponential growth of the

disturbance, and it only indicates that initial disturbance amplitude grows as the

film thins [29,30].

Moreover, by setting ω(τ) = 0 and rearranging equation 3.4, the critical con-

dition is easily obtained:

0 =
2

5
Reh6

o −
1

3
Cth3

o +
MKh2

o

2(ho +K)2
+

1

3

Vrh
3
o

(ho +K)3
. (3.7)

When M = 0, Vr = 0, E = 0, the above relation reduces to the critical condition

of surface wave instability (H-mode) obtained in [8]. When vapor recoil effect

is included, equation (3.7) has two solutions for Re, one corresponds the vapor

recoil instability (E-mode), while the other one corresponds to the surface wave

instability (H-mode) modified by evaporation. The same applies when Marangoni

effect is included.

In summary, the primary instability of evaporating falling liquid films is re-

solved under two strict assumptions, first the inertia is weak (low Re), and second,

the disturbance wavenumber is small.

3.2 Orr-Sommerfeld eigenvalue problem

The Orr-Sommerfeld (OS) eigenvalue problem is the classical tool used to study

the linear stability of film flows. It has no restrictions on inertia nor disturbance

wavenumber, and therefore it gives a wider insight into the linear stability analy-

sis. The OS problem was first derived and solved by Goussis and Kelly for heated

falling films [39]. Afterwards, it was extensively used in the literature to study

linear stability of isothermal and heated falling films with different effects, for

example see [40]. However, for evaporating films, the OS has not been derived to

our extent of knowledge. The main originality of this work is to derive the OS

problem for evaporating falling liquid films.
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The linear stability of the base state with respect to infinitesimal perturba-

tions is considered by substituting the following in the governing equations and

boundary conditions (2.13 - 2.15),

v = (Ū + ũ, ṽ, w̃), T = Θ̄ + T̃ , p = P̄ + p̃, h = h̄+ h̃, J = J̄ + J̃ ,

in which the “tilde” quantities are the perturbations. The linearized perturbation

equations are obtained by setting (ũ, ṽ, T̃ , p̃, h̃, J̃ � 1):

∂xũ+ ∂yṽ + ∂zw̃ = 0, (3.8a)

3Re(∂tũ+ Ū∂xũ+DŪṽ) + ∂xp̃−∇2ũ = 0, (3.8b)

3Re(∂tṽ + Ū∂xṽ) + ∂yp̃−∇2ṽ = 0, (3.8c)

3Re(∂tw̃ + Ū∂xw̃) + ∂yp̃−∇2w̃ = 0, (3.8d)

3RePr(∂tT̃ + Ū∂xT̃ +DΘ̄ṽ)−∇2T̃ = 0, (3.8e)

along with the boundary conditions, at the plate y = 0,

ũ = ṽ = w̃ = 0, (3.9a)

T̃ = 0, (3.9b)

and at the free surface y = h(x, z, t)

ṽ = ∂th̃+ Ū∂xh̃+ EJ̃, (3.10a)

p̃ = 2
∂ṽ

∂y
+ Cth̃− (We−MΘ̄(h))∇2

xzh̃+
Vr
2
J̄ J̃ , (3.10b)

h̃ = ∂yũ+ ∂xṽ +M(∂xT̃ + ∂xh̃DΘ̄), (3.10c)

∂yT̃ = −J̃ +
3ReVrJ̄

DL
J̃ , (3.10d)

J̃ =
T̃

K
+
DΘ̄

K
h̃. (3.10e)

With regards to the interface boundary conditions, the introduction of evapora-

tion effects causes changes to the kinematic (3.10a), normal stress (3.10b), and

energy (3.10e) boundary conditions. The kinematic boundary condition gains an

additional term proportional to E which accounts for mass loss, as explained in

the previous section this term does not contribute to the exponential instability

and therefore will be disregarded. Furthermore, the normal stress boundary con-

dition also gains an additional term proportional to Vr which represents the vapor

33



recoil effect. The first term in the energy boundary condition represent the per-

turbation in the mass flux across the interface, while the second term represent

the perturbation in the kinetic energy imparted to the vapor particles. The later

is small compared to the former and therefore will be disregarded [29]. Taylor se-

ries expansion have been utilized to obtained the interface boundary conditions at

y = h = h̄+ h̃, for example the velocity is expanded as u|h= U(h̄)+ ũ|h̄+DU(h̄)h̃,

where D is the derivative in y-direction.

The following steps are performed to let appear only the perturbations of the

normal velocity (ṽ), the temperature (T̃ ) and the film thickness (h̃) [1]. First

the divergence of the linearized Navier-Stokes equations is taken in vector form

[∂x(3.8.b) + ∂y(3.8.c) + ∂z(3.8.d)], and with the aid of the continuity equation

(3.8a), it is obtained

∇2p̃ = −6ReDŪ∂xṽ. (3.11)

Then the two-dimensional Laplacian operator is applied on the linearized y-

momentum equation (3.8c), while using (3.11) to eliminate the pressure:

∇2(3Re∂tṽ −∇2ṽ) + 3Re(1 + Ū∇2)∂xṽ = −6ReDŪ∂xṽ, (3.12)

differentiating the y-momentum equation (2.13c) with respect to y,

∂yyp̃ = −3Re(∂ytṽ +DŪ∂xṽ + Ū∂xyṽ) + ∂yṽ
2. (3.13)

Next, (3.13) is evaluated at the undeformed interface ho and using the property

∇2p̃|h= ∇2
xzp̃|h+∂yyp̃|h= 0

∇2
xzp̃ = −3Re(∂ytṽ + U∂xyṽ) + ∂yṽ

2, (3.14)

from ∇2
xz in (3.10b), we get:

Ct∇2
xzh̃− (We−MΘ̄)∇2

xz∇2
xzh̃+ 3∇2

xz∂yṽ + ∂yyyṽ− 3Re(∂ytṽ + Ū∂xyṽ) + VrJ̄ J̃ .

(3.15)

Finally, by taking the divergence of the tangential stress boundary conditions

[∂x(3.10.c) + ∂y(3.10.d)] and using the continuity equation (3.8a),

∂xh̃−M(DΘ̄∇2
xzh̃+∇2

xzT̃ )− (∇2
xz − ∂yy)ṽ = 0 (3.16)
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The solution is then assumed in the form of normal modes:
ṽ

T̃

h̃

J̃

 =


ikϕ(y)

τ(y)

η

J

 ei(k·x−ωt),

where,the left hand side shows the perturbation quantities. x = (x, z), and

k = (kx, kz) is the complex wavenumber, while ω is the complex angular fre-

quency. The normal modes solution is then substituted in the linearized govern-

ing equations (3.12), (3.8e), and the boundary conditions (3.9), (3.10a), (3.10e),

(3.15) and (3.16) leading to the generalized Orr-Sommerfeld eigenvalue problem

for evaporating falling films:

(D2 − k2)2φ+ 3iRe[(ω − kŪ)(D2 − k2) +D2Ūk]φ = 0, (3.17a)

(D2 − k2)τ + 3Pe[DΘφ− i(ω − kŪ)τ ] = 0, (3.17b)

along with the wall boundary conditions (y = 0),

φ(0) = Dφ(0) = 0, (3.18a)

τ(0) = 0, (3.18b)

and interface boundary conditions y = h(t),

φ(h) + i
1

2
η(2ω − 2Ūk) = 0, (3.19a)

[(D2 − 3k2) + 3iRe(ω − Ūk)]Dφ(h)

= ηk2[Ct+ (We−MΘ̄)k2] + k2VrJ̄J ,
(3.19b)

(D2 + k2)φ(h) +M [ηDΘ̄ + τ(h)]k2 + ikη = 0, (3.19c)

Dτ(h) + J = 0, (3.19d)

J =
τ(h)

K
+
DΘ̄

K
η, (3.19e)

where the base state quantities (with a bar) in the interface boundary conditions

are evaluated at the unreformed interface.
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The way k and ω are chosen depends on the type of analysis required.

• For temporal stability analysis, where the evolution of disturbance in time

is concerned. The disturbance wavenumber k is set to be real, then the problem

is solved for the complex eigenvalue ω. The imaginary part of ω is called the

temporal growth rate ωi (subscript i is used to denote imaginary, while subscript

r denotes real), while cr = k/ωr is the phase velocity, and k =
√
k2
x + k2

z is the

modulus of the wavenumber vector.

• One the other hand, when the evolution of a disturbance in space is the main

focus (spatial stability analysis), ω is assumed to be real and the solution is found

for the complex eigenvalue k. The imaginary part of k is called in this case the

spatial growth rate ki. For both cases, if the growth rate is positive (ωi/ki > 0) the

disturbance grows in time/space, while if (ωi/ki < 0) the disturbance is damped.

• Another scenario exists when the evolution of the disturbance in time and

space at the same time is targeted (spatial/temporal stability analysis), both k

and ω are assumed to be complex in this case.

• Moreover, the general Orr-Sommerfeld eigenvalue problem (3.17− 3.19) has

two limiting cases, streamwise perturbations (kx 6= 0, kz = 0), and transverse

perturbations (kx = 0, kz 6= 0).

In this monograph our focus only goes to temporal stability analysis in the

streamwise direction.

3.2.1 Streamwise perturbations (kx = k, kz = 0)

Isothermal falling liquid films are the most unstable for two dimensional pertur-

bations, and more specifically, for streamwise perturbations [41], this also applies

when Marangoni effect is taken into account [39]. The same assumption is used for

studying the linear stability of evaporating falling liquid films in this monograph.
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Therefore, the streamfunction is utilized to rewrite the perturbation velocity am-

plitude as follows:

φ(y) = −ikxϕ(y)

by applying the previous transformation and setting (kx = k, ω = kc) in (3.17−
3.19), the streamwise OS eigenvalue problem is obtained as follows:

(D2 − k2)2ϕ+ 3Reik[(c− Ū)(D2 − k2) +D2Ū ]ϕ = 0, (3.20a)

(D2 − k2)τ + 3RePrik[DΘϕ+ (c− Ū)τ ] = 0, (3.20b)

with boundary conditions at the wall

ϕ(0) = Dϕ(0) = 0, (3.21a)

τ(0) = 0, (3.21b)

and at the free surface

η =
ϕ(h)

(c− Ū)
, (3.22a)

[(D2 − 3k2) + 3Reik(c− Ū)]Dϕ(h)

− iηk[Ct+ (We−MΘ̄)k2]− ikVrJ̄J = 0,
(3.22b)

(D2 + k2)ϕ(h) + ikM [ηDΘ̄ + τ(h)]− η = 0, (3.22c)

Dτ(h) +
τ(h)

K
− J̄

K
η = 0, (3.22d)

J =
τ(h)

K
+
DΘ̄

K
η. (3.22e)

The OS eigenvalue problem in (3.20 − 3.22) outperforms the long wave theory

presented earlier when linear stability analysis is performed. Not only the fact

that OS eigenvalue problem is valid for wider range of Re and k parameters, but

it also provides a solution of the perturbation quantities (ũ, ṽ, T̃ , J̃ , η). These

quantities are necessary to determine the energy balance of the perturbation,

which gives better insight on how physical effects can cause or demolish different

instability modes. We elaborate more on this in the next section.
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3.3 Perturbation energy analysis

There are several forces presented in evaporating falling liquid films, for example,

surface tension, hydrostatic pressure, and vapor recoil. In order to understand

how these forces could enhance/oppose the perturbation growth rate for different

parameters such as (k,Re, β), it is necessary to analyze the rate of change of

the perturbation kinetic energy . This can be achieved by deriving the ”kinetic

energy balance”. This was done first for isothermal films, where it was found that

the work done by the perturbation shear stress at the interface is the main con-

tributor to the energy of the perturbation [9]. The ”kinetic energy balance” was

then extended to include Marangoni effect for heated falling films. The contri-

bution of thermocapillary forces to the perturbation kinetic energy was analyzed

for different values of Reynolds number (Re) and wavenumber (k) [39]. Here,

the same procedure is followed in order to derive the ”kinetic energy balance”

including vapor recoil effect (Vr).

The kinetic energy balance of the perturbation can be obtained by multiplying

the perturbation x-momentum equation (3.8.b) by ũ and the perturbation y-

momentum equation (3.8.c) by ṽ and summing them up together,

1

2
(∂t + U∂x)(ũ

2 + ṽ2) = −DU ũ ṽ − 1

Re
(ũ∂x + ṽ∂y) p̃

+
1

3Re

[
ũ2(∂xx + ∂yy) + ṽ2(∂xx + ∂yy)

]
.

(3.23)

Since the perturbation can be decomposed into a sum of periodic functions

through Fourier transform, and based on the Parseval theorem, it is valid to

assume that the kinetic energy of the perturbation is the sum of all the kinetic

energies of the periodic functions . Therefore the kinetic energy balance is derived

for one periodic function with wavelength (λ = 2π/k). By integrating (3.23) over

the domain, and dividing by λ for averaging:

1

2λ

∫ h

0

∫ λ

0

(∂t + U∂x)(ũ
2 + ṽ2) dx dy

= −1

λ

∫ h

0

∫ λ

0

DU ũ ṽ dx dy − 1

Reλ

∫ h

0

∫ λ

0

(ũ∂x + ṽ∂y) p̃ dx dy

+
1

3Reλ

∫ h

0

∫ λ

0

[
ũ2(∂xx + ∂yy) + ṽ2(∂xx + ∂yy)

]
dx dy.

(3.24)
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• The first term is simplified as follows:∫ h

0

∫ λ

0

1

2
(∂t + U∂x)(ũ

2 + ṽ2) dx dy

=
1

2

d

dt

∫ h

0

∫ λ

0

(ũ2 + ṽ2) dx dy +
1

2

∫ h

0

U(y)

∫ λ

0

∂x(ũ
2 + ṽ2) dx dy

=
1

2

d

dt

∫ h

0

∫ λ

0

(ũ2 + ṽ2) dx dy +
1

2

∫ h

0

U(y)
[
(ũ2 + ṽ2)

]λ
0
dy

=
1

2

d

dt

∫ h

0

∫ λ

0

(ũ2 + ṽ2) dx dy.

(3.25)

• The third term is first simplified by integrating by parts, and then using the

continuity equation (3.8.a):∫ h

0

∫ λ

0

(ũ∂x + ṽ∂y) p̃ dx dy = −
∫ h

0

[
ũp̃
]λ

0
dy −

∫ λ

0

[
ṽp̃
]h

0
dx = −

∫ λ

0

ṽ|hp̃|h dx.

(3.26)

Then by substituting for p̃|h using the normal stress boundary condition (3.10.b),

−
∫ λ

0

ṽ|hp̃|h dx =

−
∫ λ

0

ṽ|h(Cth̃−We∂xxh̃+MΘ̄(h)∂xxh̃+ 2∂yṽ + VrJ̄ J̃) dx.

(3.27)

By using the continuity equation (3.8.a) again and integration by parts we also

can write: ∫ λ

0

ṽ|h ∂yṽ|h dx = −
∫ λ

0

ṽ|h ∂xũ|h dx

= −
[
ũ|h ṽ|h

]λ
0

+

∫ λ

0

ṽ|h ũ|h dx

=

∫ λ

0

ṽ|h ũ|h dx,

(3.28)

after using the previous relation, the third term is written as:∫ h

0

∫ λ

0

(ũ∂x + ṽ∂y)p̃ dx dy =

∫ λ

0

ṽ|h(We∂xxh̃−MΘ̄(h)∂xxh̃− VrJ̄ J̃ − Cth̃) dx

+

∫ λ

0

ũ|h(∂yũ|h−∂xṽ|h) dx.

(3.29)
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• The fourth term in equation (3.24) is expanded as follows:∫ h

0

∫ λ

0

[
ũ2(∂xx + ∂yy) + ṽ2(∂xx + ∂yy)

]
dx dy

=

∫ h

0

[
ũ∂xũ+ ṽ∂xṽ

]λ
0
dy +

∫ λ

0

[
ũ∂yũ+ ṽ∂yṽ

]h
0
dy

−
∫ h

0

∫ λ

0

[
(∂xũ)2 + (∂yũ)2 + (∂xṽ)2 + (∂yṽ)2

]
=

∫ λ

0

[
ũ∂yũ+ ṽ∂yṽ

]h
0
dy −

∫ h

0

∫ λ

0

[
(∂xũ)2 + (∂yũ)2 + (∂xṽ)2 + (∂yṽ)2

]
dx dy.

(3.30)

Then equation (3.24) is rewritten again with the simplified terms:

1

2λ

d

dt

∫ h

0

∫ λ

0

(ũ2 + ṽ2) dx dy

= −1

λ

∫ h

0

∫ λ

0

DU ũ ṽ dx dy +
1

3Reλ

∫ λ

0

ũ|h(∂yũ|h−∂xṽ|h) dx

+
1

3Reλ

∫ λ

0

ṽ|h(We∂xxh̃−MΘ(h)∂xxh̃− VrJ̄ J̃ − Cth̃) dx

− 1

3Reλ

∫ h

0

∫ λ

0

[2(∂xũ)2 + (∂yũ)2 + (∂xṽ)2] dx dy.

(3.31)

Finally by using the continuity equation and integration by parts:

0 =

∫ h

0

∫ λ

0

(∂xũ+ ∂yṽ)2 dx dy

=

∫ h

0

∫ λ

0

[
(∂xũ)2 + (∂yṽ)2

]
+ 2

∫ h

0

∫ λ

0

(∂xũ ∂yṽ) dx dy

=

∫ h

0

∫ λ

0

[
(∂xũ)2 + (∂yṽ)2

]
+ 2

∫ h

0

[
ũ ∂yṽ

]λ
0
dy

− 2

∫ λ

0

[
ũ ∂xṽ

]h
0
dx+ 2

∫ h

0

∫ λ

0

∂yũ∂xṽ dx dy

=

∫ h

0

∫ λ

0

[
(∂xũ)2 + (∂yṽ)2 + ∂yũ∂xṽ

]
dx dy − 2

∫ λ

0

ũ|h∂xỹ|h dx.

(3.32)

The final form of the kinetic energy balance is:

KIN + STE +HYD = REY + SHE +DIS +MAR + V RE (3.33)
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where the different energy terms are defined as follows:

KIN =
1

2λ

d

dt

∫ λ

0

∫ h

0

(ũ2 + ṽ2) dy dx, (3.34a)

STE = − We

3Reλ

∫ λ

0

[ṽ|h (∂xxh̃)] dx, (3.34b)

HYD =
Ct

3Reλ

∫ λ

0

ṽ|h (h̃) dx, (3.34c)

SHE = − 1

3Reλ
D2U

∫ λ

0

ũ|h h̃ dx, (3.34d)

REY = −1

λ

∫ λ

0

∫ h

0

ũ ṽ DU dy dx, (3.34e)

DIS = − 1

3Reλ

∫ λ

0

∫ h

0

[2(∂xũ)2 + (∂yũ+ ∂xṽ)2 + 2(∂yṽ)2] dy dy, (3.34f)

MAR = − M

3Reλ

∫ λ

0

[
Θ(h) ṽ|h ∂xxh̃+ ũ|h(DΘ(h) h̃+ ∂xT̃ )

]
dx, (3.34g)

V RE = − JVr
3Reλ

∫ λ

0

ṽ|h J̃ dx. (3.34h)

The Vapor recoil energy (VRE) can be rewritten using the linearized constitutive

equation (3.10) as:

V RE = − J̄Vr
3ReλK

∫ λ

0

ṽ|h
[
T̃ |h+DΘ̄|hh̃

]
dx. (3.35a)

The real part of the perturbation quantities (ũ, ṽ, T̃ , η) in equation (3.33) is de-

fined as follows: (See Appendix B for derivation details )

ũ = [Dϕr cos(θ)−Dϕi sin(θ)] ekcit (3.36)

ṽ = [ϕi cos(θ) + ϕi sin(θ)] k ekcit (3.37)

T̃ = [τr cos(θ) + τi sin(θ)] ekcit (3.38)

h̃ = [ηr cos(θ) + ηi sin(θ)] ekcit (3.39)

where, θ = k(x− crt), while, ηr and ηi are:

ηr =
ϕr(h)(cr − Ū(h)) + ϕi(h)ci

(cr − Ū(h))2 + c2
i

, ηi =
ϕi(h)(cr − Ū(h))− ϕr(h)ci

(cr − Ū(h))2 + c2
i

41



The three terms on the right hand side represent the way the total energy is

distributed to the perturbation.

• KIN represents the rate of change of the perturbation kinetic energy and

it is proportional to the growth rate (ωi). If the flow is unstable (ωi > 0), the

kinetic energy of the perturbation is increasing and KIN is positive. Moreover,

KIN is negative if the flow is stable (ωi < 0), and zero if the flow is neutrally

stable (ωi = 0).

• HYD represents the rate of work done against the hydrostatic pressure. It

is also proportional to the growth rate, it indicates that the energy is released

from the perturbation if the growth rate is negative (ωi < 0), , however for an

unstable flow (ωi > 0), HYD is positive, which means that energy is given to the

perturbation in order to overcome the stabilizing effect of hydrostatic pressure.

• STE represents the work done against the stabilizing effect of surface tension.

It is proportional to the growth rate and behaves the same way as HYD. It

indicates that the energy it released or given to the perturbation in order to

overcome the stabilizing forces of surface tension depending on whether the flow

is stable or unstable, respectively. For disturbances with large wavenumber (k),

surface tension is the main restoring force and hydrostatic pressure is negligible

in comparison. For disturbances with small wavenumber, the opposite applies.

With regards to the terms on the right hand side, they represent the rate of

change of available energy. SHE represents the work done by perturbation shear

stress and always positive. MAN and VRE have destabilizing nature, they show

the rate of energy transfer to the perturbation by Marangoni and vapor recoil

forces, respectively. REY is the work done by Reynolds stress and is negligible

in the range of Reynolds numbers used in this monograph. Finally DIS is the

rate of energy dissipation by viscosity and it is always negative. Consequently,

the total energy available for the perturbation is the net sum of DIS, SHE, MAN,

and VRE,. If the sum is positive, the flow is unstable and the disturbance grows,

otherwise the flow is stable and the disturbance is damped.
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The evaluation of the energy terms in (3.33) requires the solution of the OS

eigenvalue problem consisting of the eigenvalue ω and the eigenfunctions ϕ(y)

and τ(y), the next section suggests a numerical scheme that provides accurate

results of these quantities.

3.4 Chebyshev spectral method

Solving the Orr-Sommerfeld problem is not a simple task. Several numerical

methods have been developed to obtain an accurate solution of the eigenvalue

problem for different hydrodynamic instability problems. It was first solved by

Anshus [42] in 1966 for an isothermal falling liquid film. Other methods were

developed after, for example, the shooting method [43], and finite difference

method [44]. The mentioned methods accurately solved the OS problem, however

large storage and computational effort were required. One alternative method is

the spectral collocation method, where the domain is discretized using Chebyshev

polynomials, it was first developed by [45], and subsequently was used extensively

in the literature for its accuracy and simplicity.

First, the Chebyshev spectral method is briefly introduced. The fist kind Cheby-

shev polynomials can be written in many ways, one is using the trigonometric

functions,

Tn(z) = cos(n cos−1(z)),

where −1 < z < 1, and n is the order of the polynomial, another form of presen-

tation is the direct formula,

Tn(z) =
1

2

[
(z +

√
z2 − 1)n + (z −

√
z2 − 1)n

]
.

The dependent variable is approximated by the Chebyshev expansion

f(z) =
N∑
n=0

anTn(z),

where the Chebyshev polynomials are evaluated at the chebyshev points

zj = cos(
jπ

N
), with j = 0, 1, ...., N.
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The derivatives of the dependent variables are obtained by differentiating the

expansion above, the first derivative for example,

f
′
(z) =

N∑
n=0

anT
′

n(z),

the Chebyshev polynomials derivatives can be found using the following relation:

T (d)
n (zj) = 2n, T

(d−1)
n−1 (zj) +

n

n− 2
T

(d)
n−2, with n = 3, 4, ...

where, the subscript d denotes the order of derivatives. For more details about

the method the reader is advised to refer to [46].

Next, the Orr-Sommerfeld eigenvalue problem (3.20 - 3.22) is solved using the

scheme described earlier. First, the eigenfunctions ϕ(y), τ(y), and their deriva-

tives are mapped from the physical domain (0 ≤ y ≤ h) to the Chebyshev conical

domain (−1 ≤ z ≤ 1) by using the transformation z = 2y/h− 1:

ϕ(z) = ϕ(y), Dmϕ(z) =
(2

h

)m
Dmϕ(y),

τ(z) = τ(y), Dmτ(z) =
(2

h

)m
Dmτ(y),

where m denotes the order of differentiation. After this mapping is done, the

Orr-Sommerfeld eigenvalue problem is rearranged in the following form:( 4

h2
D2 − k2

)2
ϕ+ 3ikReU

(
k2ϕ− 4

h2
D2ϕ

)
+ 3ikReD2Uϕ = c

[
3ikRe(k2ϕ− 4

h2
D2ϕ)

]
,

(3.40a)( 4

h2
D2 − k2

)
τ + 3RePrik

(
DΘϕ− Uτ

)
= −c

[
3ikRePrτ

]
, (3.40b)

with boundary conditions at the wall

ϕ(0) = Dϕ(0) = 0, (3.41a)

τ(0) = 0, (3.41b)

and at the free surface

ϕ(h) +
1

2
η = cη, (3.42a)

( 4

h2
D2 − 3k2 − 3ikReŪ

)2

h
Dϕ(h)− iηk

(
Ct+ (We−MΘ̄)k2

)
+ ikVr

(τ(h)

K
+
DΘ̄

K
η
)

= c
[
− 3

2h
ikReDϕ(h)

]
,

(3.42b)
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( 4

h2
D2 + k2

)
ϕ(h) + ikM

(
η

2

h
DΘ̄ + τ(h)

)
− η = 0, (3.42c)

2

h
Dτ(1) +

τ

K
− J

K
η = 0. (3.42d)

The system of equations (3.42) can be simplified by finding η from the tangen-

tial boundary condition (3.42.c), and then substitute it in the kinematic (3.42.a),

normal (3.42.b) and energy (3.42.d) boundary conditions [39]. Next the eigen-

functions ϕ(z) and τ(z) are expanded as truncated series of the Chebyshev poly-

nomials:

ϕ(z) =
N∑
n=0

anTn(z), τ(z) =
N∑
n=0

bnTn(z).

The OS eigenvalue problem is written in the generalized matrix eigenvalue prob-

lem:

Aw = cBw,

where A and B are square matrices of size 2N + 2, while w is 2N + 2 long, where

N is the number of collocation points. The following diagram shows how A and

B matrices are set:

(3.42.a)

(3.42.b)

A1 A2

(3.41.a)

(3.42.d)

A3 A4

(3.41.b)


·



ao

.

.

aN+1

bo

.

.

bN+1


= c



(3.42.a)

(3.42.b)

B1 B2

(3.41.a)

(3.42.d)

B3 B4

(3.41.b)


·



ao

.

.

aN+1

bo

.

.

bN+1


The governing equations are governed by the matrices:

A1 = (D2 − k2)2ϕ+ 3ikReU(k2ϕ− 4D2ϕ) + 3ikReD2Uϕ,

A2 = 0,

A3 = 3RePrikDΘϕ,

A4 = (D2 − k2)τ − 3RePrikUτ,

B1 = 3ikRe(k2ϕ− 4D2ϕ),

B2 = 0,
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B3 = 0,

B4 = 3ikRePrτ.

where D denotes the Chebyshev differentiation matrices. The interface boundary

conditions for the ϕ(z) are applied on the first two rows as shown, while their

order does not not affect the accuracy of the results. Same goes for the energy

boundary condition where it is applied on the first rows of (A3, B3, and B4).

With regards to the wall boundary conditions, they are applied on the last row

of the governing equations matrices, the associated spurious eigenvalues can be

removed by multiplying the same rows in matrix A by a complex multiple of

the corresponding rows in B [47]. Another method to apply the wall boundary

conditions is to multiply the Chebyshev polynomials by another polynomial such

that the two conditions are satisfied at same point [48], both of the methods were

applied and the obtained results had an excellent agreement. The eigenvalue

problem was solved using the QZ algorithm [49] implemented in MATLAB. The

number of collocation points sufficient to obtain accurate results is 15− 30.

3.5 Model validation

The derived Orr-Sommerfeld eigenvalue problem including evaporation effects is

validated by comparing it against the long wave theory for small Re and k, this

will also validate the numerical scheme presented earlier. Excellent agreement

was found by comparing the results to several references in the literature.

3.5.1 Non-volatile falling films

The Orr-Sommerfeld model is first validated for a non-volatile liquid. For small

wavenumbers k and weak inertia (small Re), the results are compared against

those of the long wave model derived in section 3.1. Figure 3.1(a) shows the

perturbation growth rate ωi as a function of the Reynolds number Re, when the

wavenumber is small k = 0.001. Excellent match is found between the two models
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Figure 3.1: (a) Growth rate comparison between the current OS solver (solid
line) and LW approximation (circles) (b) Neutral curve comparison between the
current OS solver (solid line) and OS eigenvalue problem solved by Kalliadasis et
al [1] (circles).

for isothermal case (blue line), and also when the Marangoni effect is added.

The model was also validated for larger wavenumbers k and Reynolds numbers

Re by comparing the results to the neutral curves (the line where the flow goes

from unustable to stable or the other way around) obtained by Kalliadasis et

al. [1], see figure 3.1b. Both results are for the following parameters: β = 15◦,

Ka = 250, Pr = 7, and Bi = 1.

3.5.2 Volatile falling films

Since the Orr-Sommerfeld eigenvalue problem has not been derived for a falling

film with evaporation present, the only benchmark available to validate our model

is by comparing it against the long wave theory. Figure 3.2.a considers the vapor

recoil effect with the absence of mass loss, again the two models agrees very well

in the small (k−Re) region for different values of the parameter Vr. The results

also agree with the long wave theory in terms of mass loss effect with the absence

of vapor recoil, as it can be seen from figure 3.2.(b). The growth rate decreases

as the film thins. The dry out time td also increases with Reynolds number (Re).
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Figure 3.2: Growth rate comparison between the current OS solver for k =

0.001 (solid line) and LW approximation (circles) (a) for different values of E vs

Reynolds number and (b) for different values of Re in function of time.
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Chapter 4

Linear stability analysis: results

and discussions

The different instability modes discussed in this monograph are analyzed through

growth rate, and energy perturbations. Section 4.1 is devoted to the hydrody-

namic instability (H-mode), while section 4.2 discusses the stability of non-volatile

heated films where Marangoni effect is present (S-mode). The main contribution

of this work is presented in section 4.3, where we discuss the instability caused by

evaporation effects (E-mode), and how it affects other instability modes. Finally,

we present a detailed perturbation energy analysis in section 4.4.

4.1 Hydrodynamic instability (H-mode)

In the absence of any thermal effects, only one unstable mode exists, the well

known H-mode [1] shown in figure 4.1. This mode is due to gravity effects in-

duced by surface inclination. For small Reynolds number Re, the inertia is weak

and hydrostatic pressure is stabilizing the flow. The inertia becomes stronger as

the Reynolds number increases, and at some point it overcomes the hydrostatic

pressure and destabilizes the flow at (Re > 5/6Ct), see figure 4.1(a).
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Figure 4.1: Contours of the growth rate in the Re - k plane showing the H-mode

for different Kapitza number Ka and inclination angle β.

Figure 4.1(b) shows the effect of decreasing the surface tension force by decreas-

ing the Kapitza number Ka. The unstable region expands along the wavenumber

axis, since short wavelength perturbations are destabilized due decrease in surface

tension, while long wavelength perturbations in the limit (k → 0) are unaffected

showing that the critical number remains the same (Re > 5/6Ct).

The consequence of changing the inclination angle β on the H-mode is easily

observed by comparing figures 4.1(a) and 4.1(c). As β increases, the destabiliz-

ing streamwise film inertia increases, while the stabilizing hydrostatic pressure
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decreases, this yields to expanding the H-mode region, and also to higher growth

rates. Additionally, the critical Reynolds number decreases too. We also re-

covered the classical result by Benjamin [8], where the film is unstable for all

Reynolds numbers at β = 90◦ in the limit (k → 0) as shown in 4.1(d).

4.2 Thermocapillary instability (S-mode)

Next, thermal effects are taken into consideration, while the liquid is still non-

volatile. As it is possible to see in figure 4.2, for small values of Ma, a second

unstable mode associated with the Marangoni effect appears for small values of

Re, this mode is called S-mode, which is a result of surface tension changes due

to the temperature gradient along the free surface. Additionally, the H-mode

is further destabilized, where the critical Reynolds number at which isothermal

flows are unstable has decreased, see difference between figures 4.2(a) and 4.2(b).

Moreover, the S-mode disappears as Re increases. More interestingly as Ma

increases, the two modes combine into one unstable region, thus showing that

they can support each other figure 4.2b.

Figure 4.2: Contours of the growth rate in the (Re - k)-plane with Ka = 250,

K = 1, Pr = 7, β = 15◦, and (a) Ma = 0 (b) Ma = 10 (c) Ma = 20.
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4.3 Vapor recoil instability (E-mode)

The results presented here are associated with the evaporation effect on the tem-

poral instability of falling liquid films. First, we compare the effect of vapor recoil

between the extended Orr-Sommerfeld eigenvalue problem and the long wave the-

ory for larger wavenumbers k. Figure 4.3 shows the temporal growth rate ωi as

a function of k for different values of Re . The two models agree when the k is

small and inertia is weak (Re = 1), however, as Re increases the long wave theory

shows huge error in predicting ωi, see Re = 5 and Re = 15 for instance. More-

over, the error in predicting the cut-off kc also increases as Re increases. This

shows the main contribution of this monograph to the literature, the extended

Orr-Sommerfeld model eliminates the restrictions made on the long wave theory

and provides wider view of the vapor recoil instability in falling liquid films.

Figure 4.3: Temporal growth rate ωi in versus the wavenumber k. Comparison is

made between extended OS model (solid line) and LW expansion (dashed line) for

different values of Reynolds number, when Vr = 10, K = 1, β = 15◦, Ka = 250,

Pr = 7.

52



Figure 4.4: Contours of the growth rate in the Re-k plane with Ka = 250, Pr = 7,
β = 15◦, K = 1, and (a) Vr = 15 (b) Vr = 40

Figure 4.4(a) shows the effect of vapor recoil in the (Re− k) plane. For small

Vr, a new instability window opens at small Re, while the H-mode region is

expanded. We named this new instability mode as E-mode. Moreover, as Re

increases the E-mode disappears. For larger values of Vr, the two modes combine

into one unstable mode. Consequently, we conclude that the vapor recoil effect

(E-mode) have similar behavior as the Marangoni effect (S-mode).

The combined effect of Marangoni (S-mode) and vapor recoil (E-mode) is

studied for two different values of Re. Figure 4.5(a) shows the growth rate along

the wavenumber for a small Re, the H-mode does not exist, while the green

line shows growth rate due to the introduction of Marangoni effect only. Then

vapor recoil effect only is introduced to further increase the growth rate (red

line). Combining the effects of vapor recoil and Marangoni results in a significant

increase in the growth rate, which indicates that Marangoni and evaporation

effects enhance each other. For larger Re, Figure 4.5(b) shows how the combined

effects enhance each other and the H-mode at the same time, causing a significant

increase in the growth rate.
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Figure 4.5: Temporal growth rate ωi in terms of the wavenumber k for two

different Reynolds numbers, (a) Re = 0.1 and (b) Re = 4. Parameters are

different combinations of Vr and Ma, while K = 1, β = 15◦, Ka = 250, Pr = 7,

Bi = 1.

The effect of vapor recoil without any Marangoni effect is shown in figure

4.6. For (K = 0) which is a representative of the quasi-equilibrium case, the

temperature gradient across the film is constant (see figure 2.3c), therefore the

trough of a wave will experience higher mass fluxes, and hence will have higher

vapor recoil than a crest, this in return destabilizes the film. As the parameter

K increases, corresponding to the non-equilibrium cases, the film becomes less

volatile, and consequently the vapor recoil effect is weaker, thus stabilizing the

film.

Finally, the effect of mass loss (film thinning) is examined. If we compare the

growth contours for a thinning film in figures 4.7(b) and 4.7(c) against a constant

thickness film in figure 4.7(a), we see that the H-mode shrinks as the film thins,

while the E-mode is expanding. This is expected because as the film thins, the

viscous forces become more dominant and therefore more stabilizing. At the same

time, the evaporation rate becomes higher as the film thins, and thus the vapor

recoil effect is stronger which expands the E-mode further.
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Figure 4.6: Temporal growth rate ωi in terms of the wavenumber k for different

values of the parameter K, when Re = 1, Vr = 20, β = 15◦, Ka = 250, Pr = 7,

Bi = 1
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Figure 4.7: Contours of the growth rate in the Re-k plane with Ka = 250,

Pr = 7, β = 15◦, K = 1, and Vr = 10 for times: (a) t = 0td (b) t = 0.33td and

(c) t = 0.66td
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4.4 Perturbation energy

In order to understand how the instabilities are generated and by which compo-

nents of the flow, the different terms in the kinetic energy balance represented by

equation 3.33 are evaluated. The energy balance gives more insight on the results

presented in the previous section and how the different modes of instability en-

hance each other. First we revisit the energy balance equation for completeness:

KIN + STE +HYD = REY + SHE +DIS +MAR + V RE

The right hand side terms represent the rate of change of available energy, while

the left hand side terms represent the way this energy is distributed to the per-

turbation. In the following, we distinguish the terms associated with the differ-

ent instability modes, and also show how instability modes support each other

through energy analysis. In all the results presented in this section, asterisks (∗)

indicate that the energy terms are normalized with the dissipation energy DIS. In

this way, the contribution of every term in the energy balance to the instability

modes is more easily examined.

4.4.1 Energy analysis of the H-mode

Figure 4.8: Normalized energy terms along Re for k = 0.1, Ka = 250, β = 15◦
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Figure 4.8(a) shows the left hand side terms in the kinetic energy balance for

k = 0.1. Generally, they are proportional to the growth rate as mentioned earlier.

Moreover, when Re is small the flow rate is low, and HYD is comparable to STE,

however as Re increases HYD becomes dominant and STE becomes negligible

for such small wavenumber. For an isothermal film, the net available energy

comes only from the work done by the perturbation shear stress SHE, the flow is

unstable when SHE < DIS, and unstable otherwise. see figure 4.8(b).

4.4.2 Energy analysis of the S-mode

Figure 4.9: Normalized energy terms along Re for k = 0.1, Ka = 250, K = 1,

Pr = 7, β = 15◦.

Similarly, KIN∗, HYD∗, and STE∗ are positive when the flow is unstable (ωi > 0),

they are positive in the S-mode and H-mode as seen in figure 4.9(a). However the

results shown in 4.9(b) are more significant, as it compares SHE∗ and MAR∗ along

Re. ForRe << 1 , SHE∗ is negligible, and MAR∗ is ofO(1), asRe increases, SHE∗

increases and MAR∗ decreases. More interestingly, MAR∗ becomes negligible and

SHE∗ becomes O(1) even before the S-mode window closes, indicating that the

instability there is due to SHE∗. Nevertheless, the instability at small values of

Re occurs only when Ma 6= 0, it is evident that the slight contribution of the

S-mode is essential.
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4.4.3 Energy analysis of the E-mode

With regarding the vapor recoil effect, we found that the interaction the E-mode

interacts with the H-mode the same way as the S-mode. Figure 4.10 shows similar

results to those of figure 4.9. Specially, the fact that VRE∗ becomes negligible

even before the E-mode window closes.

Figure 4.10: Normalized energy terms along Re for k = 0.1, Ka = 250, Pr = 7,

β = 15◦, Ma = 0, Vr = 10, and K = 1.

4.4.4 Energy analysis of combined S-mode and E-mode

Figure 4.11(a) emphasis on the fact that the E-mode and S-mode enhance each

other. In order to examine this effect clearly, we plot the terms MAR∗ and

VRE∗ as a function of the wavenumber at Re = 0.01. When Ma = 10 and

Vr = 0, the sum of SHE∗ and MAR∗ creates the unstable S-mode (red line).

On the other hand, when Ma = 0 and Vr = 2.5 the S-mode disappears and

the E-mode exists only as a result of the work done by shear stress and vapor

recoil (SHE∗+VRE∗) shown in the blue line. When both Marangoni effect and

vapor recoil are present, the total energy, i.e. a combination of work done by the

shear stress, thermocapillary and vapor recoil (SHE∗+MAR∗+VRE∗) increases

significantly to a value much larger than for the S-mode or E-mode alone. This
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shows that the two modes enhance each other. An alternative way to show the

interaction between the S-mode and E-mode is plotting the terms SHE∗, MAR∗

and VRE∗ for each of the two modes separated and also when the two modes

are combined as shown in figure 4.11. SHE∗ is plotted for four different cases

as shown in figure 4.11(b), since Re is small no significant changes occur. With

regards to MAR∗, figure 4.11(c) shows a drastic increase when S-mode is combined

with E-mode. Finally, VRE∗ show a significant increase as well when E-mode is

combined with S-mode, as shown in figure 4.11(d). This indicates that E-mode

and S-mode enhance each other.

Figure 4.11: Normalized energy terms versus k, for Re = 0.1, β = 15◦, Ka = 250,

Pr = 7, K = 1, (a) total energy when Ma = 10 and Vr = 0 (red line), Ma = 0

and Vr = 5 (blue line), Ma = 10 and Vr = 5 (yellow line). (b) SHE∗, (c) MAR∗,

and (d)VRE∗
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Chapter 5

Conclusions and perspectives

In summary, we extended the Orr-Sommerfeld eigenvalue problem to include

evaporation effects in falling liquid films. We also demonstrated how the long

wave theory, which is the only available model in the literature, is only valid for

small Reynolds numbers and wavenumbers. We also reassured that the E-mode

induced by vapor recoil effect behaves the same way as the S-mode induced by

Marangoni effect, we also showed that the flow is most unstable due to these

modes when Reynolds number is small. The degree of equilibrium of evaporation

was considered as well, where it was found to be highly effective. We also studied

the interaction between the well known hydrodynamic instability mode (H-mode)

and the E-mode induced by vapor recoil. It was found that the H-mode is en-

hanced by the E-mode the same way as it is enhanced by the S-mode induced by

Maranogni effect. Moreover, we showed that the S-mode and E-mode enhance

each other, specially when Reynolds number is small.

In order to understand which mechanisms contribute the most to the evapo-

ration instability E-mode, we extended the perturbation kinetic energy balance

to include evaporation effects, an extra term corresponding to the work done by

vapor recoil was added. We found that, the work done by vapor recoil is nec-

essary to have the E-mode, however, when Reynolds number increases, it does

not contribute to the instability as much as the work done by perturbation shear
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stress. We also found that the work done by Marangoni effect is significantly

enhanced when vapor recoil is present, while the opposite holds as well, which

indicates that the two modes highly enhance one another.

Moreover, studying the temporal instability of falling liquid films using direct

numerical simulations (DNS) was part of this work. A front tracking/finite vol-

ume solver for multiphase flows was adapted to simulate isothermal falling liquid

films. The solver is based on the one-fluid approach, where the governing equa-

tions are solved for the whole computational domain. We validated the DNS

solver by comparing the root mean square velocity (Urms) against the temporal

growth rate obtained from the OS solution, and excellent agreement was found,

see appendix C for more details. Furthermore, the energy equation was incorpo-

rated in the DNS solver to account for the heat transfer between the liquid and

the gas. Adding the Marangoni effect is a part of our future plans, which can be

done easily by calculating the temperature at the interface, and accounting for

the gradient in temperature when calculating the surface tension. Nevertheless,

evaporation effects will also be accounted for in the DNS solver by implementing

the model derived by Muradoglu [54] for evaporating process in multiphase flows.

Having Marangoni and evaporation effects implemented in the DNS solver allow

us to accurately study the linear and nonlinear instability of evaporating falling

liquid films without the aid of approximated models, which could be of a great

addition to the literature.

Finally, there are several possible ways to extend the theoretical work pre-

sented in this thesis. An analytical solution of the different terms in the kinetic

energy balance can be obtained by assuming a long wave instability. This will

provide simple expressions to examine the perturbation energy without the need

for numerical solvers. In addition, the Orr Sommerfeld eigenvalue problem can be

used to study the evaporation instability in the transverse direction. It can also

be utilized to study the impact of evaporation effects on the short-wave instability

modes such as thermocapillary P-mode. Moreover, a simple sign adjustment to

the OS model can transform it to study the condensation effect of the instability

of falling liquid films.
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Appendix A

Interface boundary conditions of

the one sided model

First we present the liquid-vapor jump conditions derived by ref. [34] as follows:

• Mass balance jump condition

J = ρ(v − v(s)) · n = ρ(v)(v(v) − v(I)) · n, (A.1)

where, ρ(v) is the vapor density, the subscripts (v) and (s) correspond to

vapor and interface quantities, respectively and n is the unit vector normal

to the interface.

• Normal stress jump condition

J (v − v(s)) · n− (P−P(s)) · n · n = 2Hσ(T ), (A.2)

where J is the mass flux across the interface, P is the deviatoric stress

tensor, and H is the mean curvature of the interface.

• Tangential stress jump condition

J (v − v(s)) · τ− (P−P(s)) · n · τ = −∇σ · τ, (A.3)

where ∇sσ is the tangential surface tension force, and τ is the tangential

unit vector.
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• Energy jump condition

J

[
L+

1

2

[
(v(v) − v(s)) · n

]2

− 1

2

[
(v − v(s)) · n

]2
]

+ k∇T · n− k∇T (v) · n

+2µ(τ · n) · (v − v(s))− 2µ(v)(τ (v) · n) · (v(v) − v(s)) = 0,

(A.4)

with L the latent heat of vaporization, τ and τ (v) are the rate of deformation

stress tensors in the liquid and vapor, respectively.

• No slip at the interface between liquid and vapor

(v − v(s)) · τ = 0. (A.5)

We now derive the one sided model based on the assumption that the density,

viscosity and thermal conductivity of the liquid are much larger than those of the

vapor, we take the following limits:

ρ(v)

ρ
→ 0,

µ(v)

µ
→ 0,

k(v)

k
→ 0.

Then, we substitute the mass jump balance equation (A.1) in the normal stress

jump balance in order to express the velocities in terms of density and mass flux,

then by applying the limits we get:

− J2

ρ(v)
− (P · n) · n = 2Hσ(T ). (A.6)

With regards to the tangential stress jump condition, the first term on the left

hand side is removed by substituting the no-slip condition equation (A.5). Then

we apply the limits and get:

(P · n) · τ = ∇sσ · τ. (A.7)

Finally, the energy jump condition is simplified by applying the limits:

J

[
L+

1

2

[
J

ρ(v)

]2
]

= −k∇T · n. (A.8)
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Appendix B

About the Perturbations

The perturbation quantities, namely ũ, ṽ, T̃ , η, J are needed for perturbation

energy analysis. First we derive the perturbation velocities ũ and ṽ, the pertur-

bation stream function is written as follow:

ψ(x, y, t) = ϕ(y)ei(k·x−ωt),

while the perturbation velocities are:

ṽ = −∂xψ(x, y, t) = −ikϕ(y)ei(k·x−ωt),

ũ = ∂yψ(x, y, t) = Dϕ(y)ei(k·x−ωt).

However, we are only interested in the real part of the velocities, thus we find the

real part of the streamfunction as:

Real(ψ) =
1

2
(ψ + ψ∗),

where ψ∗ is the complex conjugate. In order to split the real part from the

imaginary part, we expand the streamfunction and it’s conjugate as follows:

ψ = (ϕr + iϕi)e
ik(x−(crt+icit)),

ψ∗ = (ϕr − iϕi)eik(x−(crt−icit)).
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Next, we write the complex exponential function in term of trigonometric func-

tions using Euler’s formula, then we rearrange:

ψ =
(
ϕr cos(θ) + iϕr sin(θ) + iϕi cos(θ)− ϕi sin(θ)

)
Q,

ψ∗ =
(
ϕr cos(θ)− iϕr sin(θ)− iϕi cos(θ)− ϕi sin(θ)

)
Q,

where Q = ekcit and θ = k(x − crt). Next, we get the real part of the stream

function as follows:

Real(ψ) =
1

2
(ψ + ψ∗),

Real(ψ) =
(
ϕr cos(θ)− ϕi sin(θ)

)
.

Finally, the real part of the perturbation velocities is:

ṽ = −∂xψ(x, y, t) = k
(
ϕi cos(θ) + ϕr sin(θ)

)
Q,

ũ = ∂yψ(x, y, t) =
(
Dϕr cos(θ)−Dϕi sin(θ)

)
Q.

In a similar manner to how we derived ũ and ṽ, the real part of the perturbation

amplitude h̃ is derived as follows:

h̃(x, t) = ηei(k·x−ωt),

Real(h̃) =
1

2
(h̃+ h̃∗),

where h̃ and h̃∗ are defined as follows:

h̃ =
(
ηr cos(θ) + iηr sin(θ) + iηi cos(θ)− ηi sin(θ)

)
Q,

h̃∗ =
(
ηr cos(θ)− iηr sin(θ)− iηi cos(θ)− ηi sin(θ)

)
Q.

The real part of the perturbation amplitude is:

h̃ =
(
ηr cos(θ)− ηi cos(θ)

)
Q,

where the constant ηr and ηi are obtained from the kinematic boundary condition

(3.22.a):

η =
ϕr + iϕi

cr + ici − Ū
,
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By multiplying by the conjugate of the denominator and rearrange, we get:

η =
ϕr(cr − Ū) + ϕici)

(cr − Ū)2 + c2
i

+ i
ϕi(cr − Ū) + ϕrci)

(cr − Ū)2 + c2
i

,

with ηr as the real part, and ηi as the imaginary part.

The perturbation temperature T̃ is derived using the same approach, the final

expression for the real part of T̃ is shown below:

T̃ =
(
τr cos(θ)− τi cos(θ)

)
Q.
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Appendix C

Direct numerical simulations

(DNS) of isothermal films

This section briefly summarizes the work devoted to direct numerical simulations

(DNS) of isothermal falling liquid films. First we briefly present a front track-

ing/finite volume solver adapted to simulate falling liquid films. Next, the DNS

solver is validated for isothermal falling films against linear stability analysis.

C.1 Numerical Solver

A front tracking/finite volume solver for multiphase flows [50] was adapted to

simulate falling liquid films. The solver is based on a single fluid approach [51],

where the two phases are treated as one fluid but with different material proper-

ties. The governing equations are solved for the whole computational domain on

a uniform staggered grid, with the horizontal velocity u is defined at the middle

of the right and left edges of the control volume, while the vertical velocity v is

defined at the middle of the top bottom, the pressure is defined at the center of

the control volume, see figure C.1.
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Figure C.1: The standard staggered grid. The pressure nodes reside at the center
of control volume. The velocity is stored at the nodes residing in the control
volume edges. Picture taken from G. Tryggvason et al. [2].

A second order central difference scheme is used to discretize all the spatial

derivatives in the momentum equations, while the time integration is performed

using a first-order projection method [52], where a non-free divergence veloc-

ity (temporary velocity) field is obtained first without considering the pressure.

Afterwards, the pressure is obtained by solving the Poisson equation using a Red-

Black Gauss-Seidel method [51]. Finally, the temporary velocity and pressure are

used to obtain the corrected velocity at the next time step.

The interface between the two phases is tracked explicitly using a Lagrangian

grid. The interface is represented by elements which are connected by marker

points. As the interface moves, the liquid and gas domains change, in order to

track the two domains, an indicator function FI(x, t) is formed as follows:

FI(x, t) =

1, in liquid phase

0, in gas phase.
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FI(x, t) is updated every time step, then it is used to update the material prop-

erties in gas and liquid as follows:

ρ = ρlFI(x, t) + ρg(1− FI(x, t)), µ = µlFI(x, t) + µg(1− FI(x, t)),

Finally, the connection between the fixed grid and the moving interface is highly

important. Surface tension is found at the interface first, then smoothed onto

the grid in order to account for in the momentum equation, on the contrary,

the velocity is interpolated from the grid onto the interface marker points in

order to move the interface. A comprehensive description of this smoothing and

interpolating process is available in [53].

C.2 Isothermal falling liquid film simulation

The temporal stability of falling liquid films was studied using the DNS solver

illustrated earlier. In this section we conduct two-dimensional simulations. The

domain was represented by a rectangle, with length equal to Lx = 2π
k̄

in which k

is the chosen wavenumber. The bottom edge corresponds to the inclined surface

wit a no-slip boundary condition applied there, while an open boundary condition

was applied on the top, periodic boundary conditions were set for the sides. The

initial conditions are a combination of the base state solution obtained in equation

(2.21) plus an initial disturbance on the interface.

h(x) = 1 + A sin(kx). (C.1)

The amplitude of the disturbance A is approximated as 1% of initial film height.

The disturbance is added in order to trigger the instability of the film, for a

stable configuration, the disturbance will fade away with time and the flow will

converge to the base state solution. On the other hand, for an unstable flow, the

disturbance grows linearly at the beginning, followed by the non-linear region,

which finally leads to the rupture of the film.

The DNS tool was verified by comparing the root mean square velocity (Urms)

with the growth rate obtained from the linear stability analysis. Urms is calculated
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every time step for the liquid phase only as follows,

Urms =

[ ∫ Lx

0

∫ Ly

0

(u(x, y, t)− U(y))2dydx

] 1
2

(C.2)

where U is the initial velocity field.

Figure (C.2) shows that the growth rate predicted by our OS solver perfectly

agrees with the evolution of the instability found by DNS, while long wave theory

failed to predict the correct growth rate. We obtained a similar result also for

different parameters and then we conclude that our 2D isothermal DNS solver is

accurate.

Figure C.2: Logarithm of the root mean square velocity ln(Urms) versus time for

Re = 6.5, Ka = 10, β = 45◦ and k = 0.48. The linear growth found by our DNS

(cyan line) perfectly agrees with the value of the growth rate (ωi = 0.034) found

with our OS solver (dashed red line) while the LW theory (green line) fails to

predict it.

Figure (C.3) shows the contours of the horizontal velocity (a,c,e) and the ver-

tical velocity (b,d,f) taken from a direct numerical simulation of an unstable

isotheraml film falling down an inclined surface. Figures C.3a and C.3b show
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the initial conditions (base state solution with a perturbation of amplitude A =

0.01). Figures C.3c and C.3d show the linear growth of the disturbance, while

the figures C.3e and C.3f show the non-linear growth which is characterized by

the so-called Kapitza waves [1].
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Figure C.3: Contours of the horizontal (a,c,e) and vertical (b,d,f) velocity at
different time (a,b) t = 0, (c,d) t = 22.94 and (e,f) t = 77.35. We consider an
isothermal film falling down an inclined surface with Re = 6.5, Ka = 10, β = 45◦

and k = 0.48.
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