
3772 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

Efficient Online Learning Algorithms
Based on LSTM Neural Networks

Tolga Ergen and Suleyman Serdar Kozat, Senior Member, IEEE

Abstract— We investigate online nonlinear regression and
introduce novel regression structures based on the long short
term memory (LSTM) networks. For the introduced structures,
we also provide highly efficient and effective online training
methods. To train these novel LSTM-based structures, we put
the underlying architecture in a state space form and introduce
highly efficient and effective particle filtering (PF)-based updates.
We also provide stochastic gradient descent and extended Kalman
filter-based updates. Our PF-based training method guarantees
convergence to the optimal parameter estimation in the mean
square error sense provided that we have a sufficient num-
ber of particles and satisfy certain technical conditions. More
importantly, we achieve this performance with a computational
complexity in the order of the first-order gradient-based methods
by controlling the number of particles. Since our approach is
generic, we also introduce a gated recurrent unit (GRU)-based
approach by directly replacing the LSTM architecture with the
GRU architecture, where we demonstrate the superiority of
our LSTM-based approach in the sequential prediction task via
different real life data sets. In addition, the experimental results
illustrate significant performance improvements achieved by the
introduced algorithms with respect to the conventional methods
over several different benchmark real life data sets.

Index Terms— Gated recurrent unit (GRU), Kalman filtering,
long short term memory (LSTM), online learning, particle
filtering (PF), regression, stochastic gradient descent (SGD).

I. INTRODUCTION

A. Preliminaries

THE problem of estimating an unknown desired signal
is one of the main subjects of interest in contemporary

online learning literature, where we sequentially receive a data
sequence related to a desired signal to predict the signal’s next
value [1]. This problem is known as online regression and
it is extensively studied in the neural network [2], machine
learning [1], and signal processing literatures [3], especially
for prediction tasks [4]. In these studies, nonlinear approaches
are generally employed because for certain applications, linear
modeling is inadequate due to the constraints on linearity [3].
Here, in particular, we study the nonlinear regression in an
online setting, where we sequentially observe a data sequence

Manuscript received October 30, 2016; revised May 5, 2017 and
August 15, 2017; accepted August 15, 2017. Date of publication Septem-
ber 13, 2017; date of current version July 18, 2018. This work was supported
by TUBITAK under Contract 115E917. (Corresponding author: Tolga Ergen.)

The authors are with the Department of Electrical and Electron-
ics Engineering, Bilkent University, 06800 Ankara, Turkey (e-mail:
ergen@ee.bilkent.edu.tr; kozat@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2741598

and its label to find a nonlinear relation between them to
predict the future labels.

There exists a wide range of nonlinear modeling approaches
in the machine learning and signal processing literatures for
regression [1], [3]. However, most of these approaches usually
suffer from high computational complexity and they may
provide inadequate performance due to stability and overfitting
issues [3]. Neural network-based regression algorithms are
also introduced for nonlinear modeling since neural networks
are capable of modeling highly nonlinear and complex struc-
tures [2], [4], [5]. However, they are also shown to be prone
to overfitting problems and demonstrate less than adequate
performance in certain applications [6], [7]. To remedy these
issues and further enhance their performance, neural networks
composed of multiple layers, i.e., known as deep neural net-
works (DNNs), are recently introduced [8]. In DNNs, a layered
structure is employed so that each layer performs a feature
extraction based on the previous layers [8]. With this mecha-
nism, DNNs are able to model highly nonlinear and complex
structures [9]. However, this layered structure poorly performs
in capturing time dependencies in the data so that DNNs can
provide only limited performance in modeling time series and
processing temporal data [10]. As a remedy, basic recurrent
neural networks (RNNs) are introduced since these networks
have inherent memory that can store the past information [5].
However, basic RNNs lack control structures so that the long-
term components cause either an exponential growth or decay
in the norm of gradients during training, which are the
well-known exploding and vanishing gradient problems,
respectively [6], [11]. Hence, they are insufficient to cap-
ture long-term dependencies on the data, which significantly
restricts their performance in real life tasks [12]. In order
to resolve this issue, a novel RNN architecture with several
control structures, i.e., long short term memory (LSTM)
network [12], [13], is introduced. However, in the classi-
cal LSTM structures, we do not have the direct contribu-
tion of the regression vector to the output, i.e., the desired
signal is regressed only using the state vector [4]. Hence,
in this paper, we introduce LSTM-based online regression
architectures, where we also incorporate the direct contribu-
tion of the regression vectors inspired from the well-known
ARMA models [14].

After the neural network structure is fixed, there exists a
wide range of different methods to train the corresponding
parameters in an online manner. Especially the first-order
gradient-based approaches are widely used due to their effi-
ciency in training because of the well-known backpropagation

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ERGEN AND KOZAT: EFFICIENT ONLINE LEARNING ALGORITHMS BASED ON LSTM NEURAL NETWORKS 3773

recursion [4], [15]. However, these techniques provide poorer
performance compared with the second-order gradient-based
techniques [5], [16]. As an example, the real-time recurrent
learning (RTRL) algorithm is highly efficient in calculating
gradients [15], [16]. However, since the RTRL algorithm
exploits only the first-order gradient information, it performs
poorly on ill-conditioned problems [17]. On the other side,
although the second-order gradient-based techniques provide
much better performance, they are highly complex compared
with the first-order methods [5], [16], [18]. As an example,
the well-known extended Kalman filter (EKF) method also
uses the second-order information to boost its performance,
which requires to update the error covariance matrix of
the parameter estimate and brings an additional complexity
accordingly [19]. Furthermore, the second-order gradient-
based methods provide limited training performance due
to an abundance of saddle points in neural network-based
applications [20]. To alleviate the training issues, we intro-
duce particle filtering (PF) [21]-based online updates for the
LSTM architecture. In particular, we first put the LSTM
architecture in a nonlinear state space form and formulate
the parameter learning problem in this setup. Based on
this form, we introduce a PF-based estimation algorithm to
effectively learn the parameters. Here, our training method
guarantees convergence to the optimal parameter estimation
performance in an online manner provided that we have
sufficiently many particles and satisfy certain technical con-
ditions. Furthermore, by controlling the amount of particles
in our experiments, we demonstrate that we can significantly
reduce the computational complexity while providing a supe-
rior performance compared with the conventional second-order
methods. Here, our training approach is generic such that we
also put the recently introduced gated recurrent unit (GRU)
architecture [22] in a nonlinear state space form and then
apply our algorithms to learn its parameters. Through exten-
sive set of simulations, we illustrate significant performance
improvements achieved by our algorithms compared with the
conventional methods [18], [23].

B. Prior Art and Comparisons

Neural network-based learning methods are powerful in
modeling highly nonlinear structures such that a single hidden
layer neural network can adequately model any nonlinear
structure [24]. In addition, these methods, especially complex
RNNs-based methods, are capable of effectively processing
temporal data and modeling time series [4], [12]. Complex
RNNs, e.g., LSTM networks, provide this performance thanks
to their memory to keep the past information and several
control gates to regulate the information flow inside the net-
work [12], [13]. However, for complex RNNs, adequate perfor-
mance requires high computational complexity, i.e., training of
a large number of parameters at every time instance [4]. Thus,
to mitigate complexity, the LSTM network-based methods
in [16] and [5] choose a low-complexity first-order gradient-
based technique, i.e., stochastic gradient descent (SGD) [23],
to train their parameters. Even though there exist certain appli-
cations of LSTM trained with the second-order techniques,
e.g., EKF in [18] and a Hessian free technique in [25], they

suffer from complexity issues and also poor performance due
to an abundance of saddle points [20]. On the contrary, for
basic RNNs, we have less parameters to train; however, these
neural networks do not have control structures [12], [13].
Hence, the exploding and vanishing gradient problems occur
due to long-term components [6], [11]. These problems pre-
vent the basic RNNs from learning correlation between distant
events [6]. To ameliorate performance, the basic RNN-based
learning methods in [5] and [16] choose a high-complexity
second-order gradient-based techniques to train their para-
meters. Hence, either low-complexity neural networks or
low-complexity training methods are chosen to avoid unman-
ageable computational complexity increase. However, basic
RNNs suffer from inadequately capturing long- and short-term
dependencies compared with complex networks [12], [13].
On the other hand, the first-order gradient-based methods
suffer from slower convergence and poorer performance com-
pared with the second-order gradient-based techniques [5].
To circumvent these issues, in this paper, we derive online
updates based on the PF algorithm [21] to train the
LSTM architecture. Thus, we not only provide the second-
order training without any ad hoc linearization but also accom-
plish this with a computational complexity in the order of the
first-order methods (by carefully controlling the number of
particles in modeling).

We emphasize that the conventional neural networks-
based learning methods [5], [16], [18], [23] suffer from the
well-known complexity–performance tradeoff. Due to this
tradeoff, they usually are not chosen to address the nonlinear
regression problem. There are certain neural network-based
methods [5], [16] that particularly investigate the nonlinear
regression; however, they only employ the basic RNN architec-
ture for this purpose. In addition, in their regression approach,
they provide the final estimate by setting the output of the
basic RNN architecture as a scalar value so that the final
estimate becomes linear combination of only the internal
states. Instead, in this paper, we employ the LSTM architecture
for the nonlinear regression and also introduce additional terms
to incorporate the direct contribution of the regression vector
to our final estimate. Therefore, we significantly improve the
regression performance as illustrated in our simulations.

C. Contributions

Our main contributions are as follows.
1) As the first time in the literature, we introduce online

learning algorithms based on the LSTM architecture
for data regression, where we efficiently train the
LSTM architecture in an online manner using our
PF-based approach.

2) We propose novel LSTM-based regression structures
to compute the final estimate, where we introduce an
additional gate to the classical LSTM architecture to
incorporate the direct contribution of the input regressor
inspired from the ARMA models.

3) We put the LSTM equations in a nonlinear state space
form and then derive online updates based on the state-
of-the-art state estimation techniques [21], [26] for each

3774 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

parameter. Here, our PF-based method achieves a sub-
stantial performance improvement in online parameter
training with respect to the conventional second- and
first-order methods [18], [23].

4) We achieve this substantial improvement with a com-
putational complexity in the order of the first-order
gradient-based methods [18], [23] by controlling the
number of particles in our method. In our simulations,
we also illustrate that by controlling the number of
particles, we can achieve the same complexity with the
first-order gradient-based methods while providing a far
superior performance compared with the both first- and
second-order methods.

5) Through extensive set of simulations involving real life
and financial data, we illustrate performance improve-
ments achieved by our algorithms with respect to the
conventional methods [18], [23]. Furthermore, since
our approach is generic, we also introduce GRU-based
algorithms by directly applying our approach to
the GRU architecture, i.e., also a complex RNN,
in Section IV.

D. Organization of This Paper

The organization of this paper is as follows. We intro-
duce the online regression problem and then describe our
LSTM-based model in Section II. We then introduce different
architectures to compute the final estimate for data regression
in Section III-A. In Section III-B, we review the conventional
training methods and extend these methods to the introduced
architectures. We then introduce our PF-based training algo-
rithm in Section III-C. In Section IV, we illustrate the merits
of the proposed algorithms and training methods via extensive
set of experiments involving real life and financial data, and
we also introduce a GRU-based approach for online learning
tasks. We then finalize our paper with concluding remarks
in Section V.

II. MODEL AND PROBLEM DESCRIPTION

All vectors are column vectors and denoted by boldface
lower case letters. Matrices are represented by boldface capital
letters. For a vector u (or a matrix U), uT (UT) is the ordinary
transpose. The time index is given as subscript, e.g., ut is
the vector at time t . The 1 is a vector of all ones, 0 is a
vector or matrix of all zeros, I is the identity matrix, where
the size is understood from the context. Given a vector u,
diag(u) is the diagonal matrix constructed from the entries
of u.

We sequentially receive {dt }t≥1, dt ∈ R, and regression vec-
tors, {xt }t≥1, xt ∈ R

p such that our goal is to estimate dt based
on our current and past observations {. . . , xt−1, xt }. Given our
estimate d̂t , which can only be a function of {. . . , xt−1, xt }
and {. . . , dt−2, dt−1}, we suffer the loss l(dt , d̂t). This frame-
work models a wide range of machine learning problems
including financial analysis [27], tracking [28], and state
estimation [19]. As an example, in one step ahead data
prediction under the square error loss, where we sequen-
tially receive data and predict the next sample, we receive

xt = [xt , xt−1 . . . , xt−p+1]T and then generate d̂t ; after
dt = xt+1 is observed, we suffer l(dt , d̂t) = (dt − d̂t)

2.
In this paper, to generate the sequential estimates d̂t , we

use RNNs. The basic RNN structure is described by the
following set of equations [16]:

ht = κ(W (h)xt + R(h)ht−1) (1)

yt = u(R(y)ht) (2)

where ht ∈ R
m is the state vector, xt ∈ R

p is the input,
and yt ∈ R

m is the output. The functions κ(·) and u(·) apply
to vectors pointwise and commonly set to tanh(·). For the
coefficient matrices, we have W (h) ∈ R

m×p , R(h) ∈ R
m×m ,

and R(y) ∈ R
m×m .

As a special case of RNNs, we use the LSTM neural
network [12] with only one hidden layer. Although there
exists a wide range of different implementations of the
LSTM network, we use the most widely used extension, where
the nonlinearities are set to the hyperbolic tangent function
and the peephole connections are eliminated. This LSTM
architecture is defined by the following set of equations [12]:

zt = h(W (z)xt + R(z) yt−1 + b(z)) (3)

i t = σ(W (i)xt + R(i) yt−1 + b(i)) (4)

f t = σ(W (f)xt + R(f) yt−1 + b(f)) (5)

ct = �
(i)
t zt +�

(f)
t ct−1 (6)

ot = σ(W (o)xt + R(o) yt−1 + b(o)) (7)

yt = �
(o)
t h(ct) (8)

where �(f)
t = diag(f t), �

(i)
t = diag(i t), and �(o)

t = diag(ot).
Furthermore, ct ∈ R

m is the state vector, xt ∈ R
p is the

input vector, and yt ∈ R
m is the output vector. Here, i t , f t ,

and ot are the input, forget, and output gates, respectively.
The functions g(·) and h(·) apply to vectors pointwise and
commonly set to tanh(·). Similarly, the sigmoid function σ(·)
applies pointwise to the vector elements. For the coefficient
matrices and the weight vectors, we have W (z) ∈ R

m×p ,
R(z) ∈ R

m×m , b(z) ∈ R
m , W (i) ∈ R

m×p , R(i) ∈ R
m×m ,

b(i) ∈ R
m , W (f) ∈ R

m×p , R(f) ∈ R
m×m , b(f) ∈ R

m ,
W (o) ∈ R

m×p , R(o) ∈ R
m×m , and b(o) ∈ R

m . Given the
output yt , we generate the final estimate as

d̂t = wT
t yt (9)

where the final regression coefficients wt will be trained in
an online manner in the following. Our goal is to design

the system parameters so that
∑n

t=1 l(dt , d̂t) or E[l(dt , d̂t)]
is minimized.

Remark 1: The basic LSTM network can be extended by
including last s outputs in the recursion, e.g., { yt−s, . . . , yt−1};
however, this case corresponds to an extended output defini-
tion, i.e., an extended super output vector consisting of all
{ yt−s, . . . , yt−1}. We use only yt−1 for notational simplicity.

In the following section, we first introduce novel LSTM
network-based regression architectures inspired from the
ARMA models. Then, we review and extend the conventional
methods [18], [23] to learn the parameters of LSTM in an
online manner. Finally, we provide our novel PF-based training
method.

ERGEN AND KOZAT: EFFICIENT ONLINE LEARNING ALGORITHMS BASED ON LSTM NEURAL NETWORKS 3775

Fig. 1. Detailed schematic of the proposed architecture in (11) for
the regression tasks. Note that for the summations before the gate and
h(·) functions, we multiply xt and yt−1 by W (.) and R(.), respectively,
and also we add the weight vector b(.) to these summations. We omit these
operations for presentation simplicity.

III. NOVEL LEARNING ALGORITHMS BASED

ON LSTM NEURAL NETWORKS

In this section, we first introduce our novel contributions for
data regression. For these contributions, we also derive online
updates based on the SGD, EKF, and PF algorithms.

A. Different Regression Architectures

We first consider the direct linear combination of the
output yt with the weight vector wt . In this case, given (8),
we generate the final estimate as

d̂(1)
t = wT

t yt

= wT
t �

(o)
t h(ct) (10)

where wt ∈ R
m . In (10), the final estimate of the system

does not directly depend on xt . However, in generic non-
linear regression tasks, the final estimate usually depends
on the current regression vector also [29]. For this purpose,
we introduce a linear term to incorporate the effects of the
input vector, i.e., the regression vector, to the final estimate as
shown in Fig. 1. Hence, we introduce the second regression
architecture as

d̂(2)
t = wT

t �
(o)
t h(ct) + vT

t �
(α)
t h(xt) (11)

vt ∈ R
p , in accordance with (10), where �(α)

t = diag(αt) and

αt = σ
(
W (α)xt + R(α)�

(o)
t−1h(ct−1) + b(α)

)
.

Here, the final estimate directly depends on xt and also the
dependence is controlled by the control gate, i.e., αt .

In (10) and (11), the effects of the input and state vectors are
controlled by the control and output gates, respectively. Thus,

TABLE I

COMPARISON OF THE COMPUTATIONAL COMPLEXITIES OF THE PROPOSED
ONLINE TRAINING METHODS. p REPRESENTS THE DIMENSIONALITY

OF THE REGRESSOR SPACE, m REPRESENTS THE DIMENSIONALITY

OF THE NETWORK’S OUTPUT SPACE, AND N REPRESENTS

THE NUMBER OF PARTICLES FOR THE PF ALGORITHM

these gates may restrict the exposure of the state and input
contents in nonlinear regression problems. To expose the full
content of the state and input vectors, we remove the control
and output gates in (11) and introduce the third regression
architecture as follows:

d̂(3)
t = wT

t h(ct) + vT
t h(xt). (12)

Note that d̂(2)
t is our most general architecture to compute

the final estimate since the updates for d̂(1)
t are a special case

when�(α)
t = 0 and the updates for d̂(3)

t are a special case when
�

(o)
t = I and �(α)

t = I . In the following sections, we provide
the full derivations for d̂(1)

t for notational and presentation
simplicity, and also provide the required updates to extend
these basic derivations to d̂(2)

t and d̂(3)
t .

B. Conventional Online Training Algorithms

In this section, we introduce methods to learn the cor-
responding parameters of the introduced architectures in an
online manner. We first derive the online updates based
on the SGD algorithm [17], i.e., also known as the
RTRL algorithm [23] in the neural network literature, where
we derive the recursive gradient formulations to obtain the
online updates for the LSTM architecture.

The SGD algorithm exploits only the first-order gradient
information so that it usually converges slower compared
with the second-order gradient-based techniques and performs
poorly on ill-conditioned problems [17]. To mitigate these
problems, we next consider the second-order gradient-based
techniques, which have faster convergence rate and are more
robust against ill-conditioned problems [5]. We first put the
LSTM equations in a nonlinear state space form so that we
can consider the EKF algorithm [19] to train the parameters in
an online manner. However, the EKF algorithm requires the
first-order Taylor series expansion to linearize the nonlinear
network equations and this degrades its performance [5], [19].
In addition, Table I shows that the EKF algorithm has high
computational complexity compared with the SGD algorithm.

In the following sections, we derive both the SGD- and
EKF-based training methods and extend these derivations to
the regression architectures in (10)–(12).

1) Online Learning With the SGD Algorithm: For each
parameter set, we next derive the stochastic gradient updates,
i.e., also known as the RTRL algorithm [23], to minimize the
instantaneous loss, i.e., l(dt , d̂t) = (dt − d̂t)

2, and extend these

3776 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

calculations to the introduced architectures. For the weight
vector, we use

wt+1 = wt − μt∇wt l(dt , d̂t)

= wt + 2μt (dt − d̂t)�
(o)
t h(ct) (13)

where for the learning rate μt , we have μt → 0 as t → ∞
and

∑t
k=1 μk → ∞ as t → ∞, e.g., μt = 1/t . For the

parameter W (z), we have the following update:
W (z) = W (z) − μt∇W (z)l(dt , d̂t).

For notational simplicity, we derive the updates for each entry
of W (z) separately. We denote the entry in the i th row and
j th column of W (z) by w

(z)
i j . We have the following update

for each entry of W (z):

w
(z)
i j = w

(z)
i j + 2μt (dt − d̂t)w

T
t

∂
(
�

(o)
t h(ct)

)

∂w
(z)
i j

. (14)

We write the partial derivative in (14) as

∂
(
�

(o)
t h(ct)

)

∂w
(z)
i j

= �

(

∂o

∂w
(z)
i j

)

t h(ct) +�
(o)
t �

(h′(c))
t

∂ct

∂w
(z)
i j

(15)

where h′(·) denotes the differential of h(·) with respect to its
argument, �(h′(c))

t = diag(h′(ct)), and

�

(

∂o

∂w
(z)
i j

)

t = diag

(
∂ot

∂w
(z)
i j

)

.

Now, we compute the partial derivatives of ot and ct with
respect to w

(z)
i j . Taking derivative of (7) gives

∂ot

∂w
(z)
i j

= �
(σ ′(ζ (o)))
t

⎡

⎢
⎢
⎣R(o)�

(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R(o)�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥
⎥
⎦ (16)

where

ζ
(o)
t = W (o)xt + R(o)�

(o)
t−1h(ct−1) + b(o) (17)

and

ψ
(z)
i j,t−1 = ∂ct−1

∂w
(z)
i j

. (18)

To get (15), we also compute the partial derivative of ct with
respect to w

(z)
i j . Using (18), we write the following recursive

equation:

ψ
(z)
i j,t = �

(z)
t

∂ i t

∂w
(z)
i j

+�
(i)
t

∂ zt

∂w
(z)
i j

+�(c)
t−1

∂ f t

∂w
(z)
i j

+�(f)
t ψ

(z)
i j,t−1.

(19)

To obtain (19), we compute the partial derivatives of (3)–(5)
with respect to w

(z)
i j as follows:

∂ i t

∂w
(z)
i j

= �
(σ ′(ζ (i)))
t

⎡

⎢
⎢
⎣R(i)�

(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R(i)�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥
⎥
⎦ (20)

∂ f t

∂w
(z)
i j

= �
(σ ′(ζ (f)))
t

⎡

⎢
⎢
⎣R(f)�

(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R(f)�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥
⎥
⎦ (21)

∂ zt

∂w
(z)
i j

= �
(h′(ζ (z)))
t

⎡

⎢
⎢
⎣δi j xt + R(z)�

(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R(z)�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥
⎥
⎦ (22)

where δi j is an m × p matrix with all entries zeros, except a 1
in the i j th position. With these equations, we can compute (19)
and then obtain (15) using (19) and (16). By this, we have all
the required equations for the SGD update in (14).

Remark 2: Here, we derive the updates just for the entries
of W (z). When we take the partial derivative of d̂t with
respect to the entries of the other parameters, (14), (15), (18),
and (19) still hold with a change of the derivative variable.
For (16) and (20)–(22), we also have a change in the form
and location of the δi j xt term. In particular, as in (22), when
we take the derivative of W (.), R(.), and b(.) with respect to
their entries, respectively, additional δi j xt , δi j yt−1, and δi j

terms appear in the derivative equation of the corresponding
structure, i.e., one of (16) and (20)–(22). Here, the size of δi j

changes accordingly.
Remark 3: In case of d̂(2)

t , instead of (14), we have the
following update:

w
(z)
i j = w

(z)
i j + 2μt (dt − d̂t)

⎡

⎢
⎢
⎣w

T
t

∂
(
�

(o)
t h(ct)

)

∂w
(z)
i j

+ vT
t �

(

∂α

∂w
(z)
i j

)

t h(x t)

⎤

⎥
⎥
⎦ (23)

where the introduced partial derivative term ∂αt/∂w
(z)
i j is

computed in the same manner with (16). Furthermore, we

ERGEN AND KOZAT: EFFICIENT ONLINE LEARNING ALGORITHMS BASED ON LSTM NEURAL NETWORKS 3777

have an additional update for vt as follows:

vt+1 = vt + 2μt (dt − d̂t)�
(α)
t h(x t). (24)

Then, we follow the derivations in (13), (15), (16), and
(19)–(22). For d̂(3)

t , we just set �(o)
t = I and �(α)

t = I and
then all the derivations in (13), (15), (16), (19), and (20)–(24)
follow as in d̂(2)

t .
According to the update equations in (15), (16), and (19),

update of an entry of a parameter has a computational com-
plexity O(m2 + mp) due to the matrix vector multiplications
in (17). Since we have mp, m2, and m entries for W (.), R(.),
and b(.), respectively, this results in O(m4 + m2 p2) compu-
tational complexity to update the entries of all parameters as
given in Table I.

2) Online Learning With the EKF Algorithm: We next pro-
vide the updates based on the EKF algorithm in order to train
the parameters of the system described in (3)–(8) and (10).
In the literature, there are certain EKF-based methods to train
LSTM (see [18], [30]); however, these methods estimate only
the parameters, i.e., θ t . However, in our case, we also estimate
the state and the output vector of LSTM, i.e., ct and yt ,
respectively. In the following, we derive the updates for our
approach and extend these to the introduced architectures.

The EKF algorithm assumes that the posterior density
function of the states given the observations is Gaussian [19].
This assumption can be satisfied by introducing perturbations
to the system equations via Gaussian noise [31]. Hence,
we first write the LSTM system in a nonlinear state space
form and then introduce Gaussian noise terms to be able to use
the EKF updates. For convenience, we group the parameters
{w, W (z), R(z), b(z), W (i), R(i), b(i), W (f), R(f), b(f), W (o),
R(o), b(o)} together into a vector θ , θ ∈ R

nθ , where
nθ = 4m(m + p) + 5m. By this, we write the LSTM system
as

yt = τ (ct , x t , yt−1) + εt (25)

ct = 	(ct−1, xt , yt−1) + vt (26)

θ t = θ t−1 + et (27)

dt = wT
t yt + εt (28)

where τ (·) and 	(·) are the nonlinear functions
in (8) and (6), respectively, and εt , et , vt , and εt are zero-mean
Gaussian random variables. In addition, [εT

t , vT
t , eT

t]T , and εt

are with variances Qt and Rt , respectively. Here, we assume
that Qt and Rt are known or can be estimated from the
data as detailed later in this paper. We write (25)–(27) in a
compact form as

⎡

⎣
yt
ct

θ t

⎤

⎦ =
⎡

⎣
τ (ct , xt , yt−1)

	(ct−1, xt , yt−1)
θ t−1

⎤

⎦ +
⎡

⎣
εt

vt

et

⎤

⎦ (29)

dt = wT
t yt + εt . (30)

In the system described in (29) and (30), we are able to
observe only dt and we can estimate yt , ct , and θ t based
on the observed dt values. Thus, we directly apply the

EKF algorithm [19] to estimate yt , ct , and θ t as follows:
⎡

⎣
yt |t
ct |t
θ t |t

⎤

⎦ =
⎡

⎣
yt |t−1
ct |t−1
θ t |t−1

⎤

⎦ + Lt
(
dt − wT

t |t−1 yt |t−1
)

(31)

yt |t−1 = τ (ct |t−1, xt , yt−1|t−1) (32)

ct |t−1 = 	(ct−1|t−1, xt , yt−1|t−1) (33)

θ t |t−1 = θ t−1|t−1 (34)

Lt = 	t |t−1 H t
(

HT
t 	t |t−1 H t + Rt

)−1 (35)

	t |t = 	t |t−1 − L t HT
t 	t |t−1 (36)

	t |t−1 = Ft−1	t−1|t−1 FT
t−1 + Qt−1 (37)

where 	 ∈ R
(2m+nθ)×(2m+nθ) is the error covariance matrix,

Lt ∈ R
(2m+nθ) is the Kalman gain, Qt ∈ R

(2m+nθ)× (2m+nθ) is
the process noise covariance, and Rt ∈ R is the measurement
noise variance. We compute H t and Ft as follows:

HT
t =

[
∂ d̂t

∂ y
∂ d̂t

∂c
∂ d̂t

∂θ

]∣
∣
∣
∣y= yt|t−1
c=ct|t−1

θ=θ t|t−1

(38)

and

Ft =

⎡

⎢
⎢
⎢
⎣

∂τ(c, x t , y)
∂ y

∂τ(c, xt , y)
∂c

∂τ(c, xt , y)
∂θ

∂	(c, xt , y)
∂ y

∂	(c, xt , y)
∂c

∂	(c, xt , y)
∂θ

0 0 I

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

y= yt|t
c=ct|t
θ=θ t|t

where Ft ∈ R
(2m+nθ)× (2m+nθ) and H t ∈ R

(2m+nθ). For
(35) and (37), we use Qt and Rt ; however, these may not
be known in advance. To estimate Rt , we can use exponential
smoothing as follows:

Rt = (1 − α)Rt−1 + αλ2
t

where 0 < α < 1 is the smoothing constant and

λt = (
dt − wT

t |t−1 yt |t−1
)
. (39)

For the estimation of Qt , we cannot use the exponential
smoothing technique due to our inability to observe the states
at each time instance. Although there exists a wide variety
of techniques to estimate Qt , we use the algorithm in [32],
which provides a highly effective estimate of Qt .

Remark 4: For the EKF derivations of d̂(2)
t , we change the

observation model in (30), the update in (31), the Jacobian
computation in (38), and the definition in (39) according to
the definition of the architecture in (11). In addition, we also
extend the parameter vector θ t by adding vt , W (α), R(α),
and b(α). Hence, we have θ t ∈ R

nθ , where nθ = (4m + p)

(m+ p)+5m+2 p. For the EKF derivations of d̂(3)
t , we change

the observation model in (30), the update in (31), the Jacobian
computation in (38), and the definition in (39) according
to (12). Moreover, we modify θ t by removing W (α), R(α),
b(α), W (o), R(o), and b(o) from its definition for d̂(2)

t . Hence,
we obtain θ t ∈ R

nθ , where nθ = 3m(m + p) + 4m + p.
According to the update equations in (31)–(33) and

(35)–(37), the computational complexity of the updates based
on the EKF algorithm results in O(m8 + m4 p4) due to the
matrix multiplications in (35)–(37).

3778 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

C. Online Training Based on the PF Algorithm

Since the conventional training methods [18], [23] provide
restricted performance as explained in the previous section,
we introduce a novel PF-based method that provides supe-
rior performance compared with the second-order training
methods. Furthermore, we achieve this performance with
a computational complexity in the order of the first-order
methods depending on the choice of N as shown in Table I.
In the following, we derive the updates for our PF-based
training method and extend these calculations to the introduced
architectures.

The PF algorithm [21] requires no assumptions other than
the independence of noise samples in (29) and (30). Hence,
we modify the system in (29) and (30) as follows:

at = ϕ(at−1, xt) + ηt (40)

dt = wT
t yt + ξt (41)

where ηt and ξt are independent noise samples, ϕ(·, ·) is the
nonlinear mapping in (29), and

at =
⎡

⎣
yt
ct

θ t

⎤

⎦ .

For (40) and (41), we seek to obtain E[at |d1:t], i.e., the optimal
state estimate in the mean square error (MSE) sense. For this
purpose, we first find the posterior probability density function
p(at |d1:t). We then calculate the conditional mean of the state
vector based on the posterior density function. To obtain the
density function, we employ the PF algorithm [21] as follows.

Let {ai
t , ω

i
t }N

i=1 denote the samples and the associated
weights of the desired distribution, i.e., p(at |d1:t). Then,
we obtain the desired distribution from its samples as follows:

p(at |d1:t) ≈
N∑

i=1

ωi
t δ(at − ai

t) (42)

where δ(·) represents the Dirac delta function. Since obtaining
the samples from the desired distribution is intractable in
most cases [21], an intermediate function is introduced to
obtain the samples {ai

t }N
i=1, which is called as importance

function [21]. Hence, we first obtain the samples from the
importance function and then estimate the desired density
function based on these samples as follows. As an example,
in order to calculate Ep[at |d1:t], we use the following trick:

Ep[at |d1:t] = Eq

[

at
p(at |d1:t)
q(at |d1:t)

∣
∣
∣
∣d1:t

]

where E f represents an expectation operation with respect to
a certain density function f (·). Hence, we observe that we
can use q(·), i.e., called as importance function, when direct
sampling from the desired distribution p(·) is intractable.
Here, we use q(at |d1:t) as our importance function to obtain
the samples and the corresponding weights are calculated as
follows:

ωi
t ∝ p(ai

t |d1:t)
q(ai

t |d1:t)
(43)

where the weights are normalized such that

N∑

i=1

ωi
t = 1.

To simplify the weight calculation, we can factorize (43) to
obtain a recursive formulation for the update of the weights
as follows [26]:

ωi
t ∝ p

(
dt |ai

t

)
p
(
ai

t |ai
t−1

)

q
(
ai

t |ai
t−1, dt

) ωi
t−1. (44)

In (44), we aim to choose the importance function such
that the variance of the weights is minimized. Thus, we can
guarantee that all the particles have nonnegligible weights and
contribute considerably to (42) [33]. In this sense, the optimal
choice of the importance function is p(at |ai

t−1, dt); however,
this requires an integration that does not have an analytic
form in most cases [34]. Thus, we choose p(at |ai

t−1) as
the importance function, which provides a small variance for
the weights but not zero as the optimal importance function
does [21], [34]. This simplifies (44) as follows:

ωi
t ∝ p

(
dt |ai

t

)
ωi

t−1. (45)

We can now get the desired distribution to compute the
conditional mean of the augmented state vector at using
(42) and (45). By this, we obtain the conditional mean
for at as follows:

E[at |d1:t] =
∫

at p(at |d1:t)dat

≈
∫

at

N∑

i=1

ωi
t δ

(
at − ai

t

)
dat =

N∑

i=1

ωi
t ai

t . (46)

While applying the PF algorithm, the variance of the
weights inevitably increases over time so that after a few
time steps, all but one of the weights get values that are very
close to zero [33]. Due to this reason, although particles with
very small weights have almost no contribution to our estimate
in (46), we have to update them using (40) and (45). Hence,
most of our computational effort is used for the particles
with negligible weights, which is known as the degeneracy
problem [21]. To measure degeneracy, we use the effective
sample size introduced in [35], which is calculated as follows:

Ne f f = 1
∑N

i=1

(
ωi

t

)2 . (47)

Note that a small Ne f f value indicates that the variance of the
weights is high, i.e., the degeneracy problem. If Ne f f is smaller
than a certain threshold [33], then we apply the resampling
algorithm introduced in [26], which eliminates the particles
with negligible weights and focuses on the particles with large
weights to avoid degeneracy. By this, we obtain an online
training method (see Algorithm 1 for the pseudocode) that
converges to E[at |d1:t], where the convergence is guaranteed
under certain conditions as follows.

Remark 5: For the PF derivations of d̂(2)
t , we change the

observation model in (41) according to the definition in (11).
We also modify at by adding vt , W (α), R(α), and b(α) to θ t .

ERGEN AND KOZAT: EFFICIENT ONLINE LEARNING ALGORITHMS BASED ON LSTM NEURAL NETWORKS 3779

For the PF derivations of d̂(3)
t , we modify (41) according to

the definition in (12). Furthermore, we modify θ t by removing
W (α), R(α), b(α), W (o), R(o), and b(o) from its definition
for d̂(2)

t .
Theorem 1: Let at be the state vector such that

sup
at

|at |4 p(dt |at) < Kt (48)

where Kt is a finite constant independent of N . Then we have
the following convergence result:

N∑

i=1

ωi
t ai

t → E[at |d1:t] as N → ∞.

Proof of Theorem 1. From [36], we have

E

[
∣
∣E[π(at)|d1:t] −

N∑

i=1

ωi
t π

(
ai

t

)∣
∣4

]

≤ Ct
||π ||4t,4

N2 (49)

where

||π ||t,4 � max {1, (E[|π(at ′)|4|d1:t ′]) 1
4 , t ′ = 1, 2, . . . , t}

π ∈ B4
t , i.e., a class of functions with certain properties

described in [36], and Ct represents a finite constant inde-
pendent of N . With (48), π(at) = at satisfies the conditions
of B4

t . Therefore, applying π(at) = at to (49) and then
evaluating (49) as N goes to infinity conclude our proof. �

This theorem provides a convergence result under (48).
The inequality in (48) implies that the conditional distrib-
ution of the observations, i.e., p(dt |at), decays faster than
at increases [36]. Since generic distributions usually decrease
exponentially, e.g., Gaussian distribution, or they are nonzero
only for bounded intervals, (48) is not a strict assumption
for at . Hence, we can conclude that Theorem 1 can be
employed for most cases.

According to update equations in (40), (41), (45), and (46),
each particle costs O(m2 + mp) due to the matrix
vector multiplications in (40) and (41), and this results in
O(N(m2 + mp)) computational complexity to update all
particles.

IV. SIMULATIONS

In this section, we illustrate the performances of our algo-
rithms on different benchmark real data sets under various
scenarios. We first consider the regression performance for
real life data sets such as kinematic [37], elevators [38],
bank [39], and pumadyn [38]. We then consider the regression
performance for financial data sets, e.g., Alcoa stock price [40]
and Hong Kong exchange rate data [41]. We then compare the
performances of the algorithms based on two different neural
networks, i.e., the LSTM and GRU networks [22]. Finally,
we comparatively illustrate the merits of our LSTM-based
regression architectures described in (10)–(12).

Throughout this section, “Architecture 1” represents the
LSTM network with (10) as the final estimate equation,
similarly “Architecture 2” represents the LSTM network
with (11), and “Architecture 3” represents the LSTM network
with (12).

Algorithm 1 Online Training Based on the PF Algorithm
1: for i = 1 : N do
2: Draw ai

t ∼ p(at |ai
t−1)

3: Assign wi
t according to (45)

4: end for
5: Calculate total weight: S = ∑N

j=1 w
j
t

6: for i = 1 : N do
7: Normalize: wi

t = wi
t /S

8: end for
9: Calculate Ne f f according to (47)

10: if Ne f f < NT then %NT is a threshold for Ne f f

11: Apply the resampling algorithm in [26]
12: Obtain new pairs {āi

t , ω̄
i
t }N

i=1, where w̄i
t = 1/N,∀i

13: end if
14: Using {āi

t , ω̄
i
t }N

i=1, compute the estimate according to (46)

A. Real Life Data Sets

In this section, we evaluate the performances of the algo-
rithms for the real life data sets. We first evaluate the
performances of the algorithms for the kinematic data set
[37]. We then examine the effect of the number of particles
on the convergence rate of the PF-based algorithm using
the same data set. Furthermore, in order to illustrate the
effects of model size while keeping the computation time
same, we perform another experiment on the same data
set for the PF-based algorithm. Finally, we consider three
benchmark real data sets, i.e., elevators [38], bank [39], and
pumadyn [38], to evaluate the regression performances of our
algorithms.

We first consider the kinematic data set [37], i.e., a sim-
ulation of eight-link all-revolute robotic arm. Our aim is to
predict the distance of the effector from a target. We first
select a fixed architecture. For this purpose, we can choose
any one of three architectures since the algorithm with the
best performance is the same for all three architectures as
detailed later in this section. Here, we choose Architecture 1.
Furthermore, we choose the parameters such that all the
introduced algorithms reach their maximum performance for
fair comparison. To provide this fair setup, we have the
following parameters. For this data set, the input vector is
xt ∈ R

8 and we set the output dimension of the neural network
as m = 8. For the PF-based algorithm, the crucial parameter
is the number of particles; we set this parameter as N = 1500.
In addition, we choose ηt and ξt as zero-mean Gaussian
random variables with the covariance Cov[ηt] = 0.01I
and the variance Var[ξt] = 0.25, respectively. For the
EKF-based algorithm, we choose the initial error covariance as
	0|0 = 0.01I . Moreover, we choose Qt = 0.01I and
Rt = 0.25. For the SGD-based algorithm, we set
the learning rate as μ = 0.03. As seen in Fig. 2,
the PF-based algorithm converges to a much smaller final
MSE level, and hence significantly outperforms the other
algorithms.

In order to illustrate the effect of the number of particles
on the convergence rate, we perform a new experiment on the
kinematic data set, where we use the same setup except the

3780 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

Fig. 2. Sequential prediction performances of the algorithms for the kinematic
data set.

Fig. 3. Comparison of the PF-based algorithm with different number of
particles for the kinematic data set.

number of particles. In Fig. 3, we observe that as the number of
particles increases, the PF-based algorithm achieves a lower
MSE value with a faster convergence rate. Furthermore, as
N increases, the marginal performance improvement achieved
becomes smaller compared with the previous N values. As an
example, we observed that even though there is a significant
improvement between N = 50 and N = 100 cases, there is a
slight improvement between N = 500 and N = 1500 cases.
Hence, if we further increase N , the marginal performance
improvement may not worth the increase in the computational
complexity for our case. Thus, we illustrate that N = 1500 is
a reasonable choice for our simulations.

In addition to the simulation for the convergence rate,
we perform another experiment on the same data set in
order to observe the effects of model size while keeping the
computation time the same. To provide this setup, we choose
four different output dimensions, i.e., m, and the number
of particles, i.e., N , combinations so that each combination

Fig. 4. Comparison of the PF-based algorithm with different N -m combina-
tions for the kinematic data set. Note that all the combinations have the same
computation time.

consumes the same amount of the computation time. In Fig. 4,
we observed that as the model size increases, the performance
of the PF-based algorithm decreases. Since the PF-based algo-
rithm approximates a density function based on the particles,
as the number of particles decreases, we expect to obtain worse
approximations for the density function. Hence, Fig. 4 matches
with our interpretation for the PF-based algorithm.

Other than the kinematic data set, we also consider the
elevators [38], bank [39], and pumadyn [38] data sets. For
all of these data sets, we again select a fixed architecture,
i.e., Architecture 1. In addition, we choose the performance
maximizing parameters while forcing the PF-based algorithm
to consume less training time than the other algorithms by
controlling N . With this setup, we have the following para-
meter selection for each data set. The elevators data set is
obtained from the procedure that is related to controlling
an F16 aircraft and our aim is to predict the variable that
expresses the actions of the aircraft. For this data set, we have
xt ∈ R

18 and we set the output dimension of the neural
network as m = 18. For the other parameters, we use the
same settings with the kinematic data set case except that we
choose N = 100, Qt = 0.0016I , Cov[ηt] = 0.0016I, and
μ = 0.7. Moreover, the pumadyn data set is obtained from
the simulation of Unimation Puma 560 robotic arm and our
goal is to predict the angular acceleration of the arm. We have
xt ∈ R

32 and we set the output dimension of the neural
network as m = 32. In addition, we set the learning rate as
μ = 0.4 and the number of particles as N = 170. For the other
parameters, we use the same settings with the elevators data set
case. Finally, the bank data set is generated from a simulator
that simulates the queues in banks and our aim is to predict
the fraction of the customers that leave the bank due to full
queues. In this case, we have xt ∈ R

32 and we set the output
dimension of the neural network as m = 32. Moreover, we set
the learning rate as μ = 0.07 and the number of particles as
N = 150. For the other parameters, we use the same settings
with the elevators data set case. As shown in Table II, the
PF-based algorithm achieves a smaller time accumulated error

ERGEN AND KOZAT: EFFICIENT ONLINE LEARNING ALGORITHMS BASED ON LSTM NEURAL NETWORKS 3781

TABLE II

TIME ACCUMULATED ERRORS AND THE CORRESPONDING TRAINING
TIMES (IN SECONDS) OF THE LSTM-BASED ALGORITHMS FOR THE

ELEVATORS, PUMADYN, AND BANK DATA SETS. NOTE THAT HERE

WE USE A COMPUTER WITH i5-6400 PROCESSOR,
2.7-GHz CPU, AND 16-GB RAM

value while consuming less training time compared with its
competitors; therefore, it has superior performance compared
with the other algorithms in these real life tasks.

B. Financial Data Sets

In this section, we evaluate the performances of the algo-
rithms under two different financial scenarios. We first con-
sider the Alcoa stock price data set [40], which contains the
daily stock price values. Our goal is to predict the future
prices by examining the past prices. As in the previous section,
we first choose a fixed architecture. Since for all architectures,
we obtain the best performance from the same algorithm as
detailed later in this section, we can choose any architecture.
Hence, we again choose Architecture 1. Moreover, we set the
parameters such that all the introduced algorithms converge to
the same steady-state error level. To provide this fair setup,
we choose the parameters as follows. For the Alcoa stock
price data set, we choose to examine the price of the previous
five days, so that we have the input xt ∈ R

5 and we set the
output dimension of the neural network as m = 5. For the
PF-based algorithm, we set the number of particles as
N = 2000. In addition, we choose ηt and ξt as zero mean
Gaussian random variables with Cov[ηt] = 0.0036I and
Var[ξt] = 0.01. For the EKF-based algorithm, we choose
	0|0 = 0.0036I , Qt = 0.0036I, and Rt = 0.01. For the
SGD-based algorithm, we set the learning rate as μ = 0.1.
With these fair settings, Fig. 5 illustrates that the PF-based
algorithm converges much faster.

Aside from the Alcoa stock price data set, we also consider
the Hong Kong exchange rate data set [41], for which we
have the amount of Hong Kong dollars that one is able to buy
for US$1 on a daily basis. Our aim is to predict the future
exchange rates by exploiting the data of the previous five
days. We again choose Architecture 1 and then we select the
parameter such that the convergence rates of the algorithms
are the same. We use the same parameters with the Alcoa
stock price data set case except Qt = 0.0004I and Cov[ηt] =
0.0004I. In this case, Fig. 6 shows that the PF-based algorithm
converges to a much smaller steady-state error value.

C. LSTM and GRU Networks

In this section, we consider the regression performances
of the algorithms based on two different RNNs, i.e., the
LSTM and GRU networks. In the previous sections, we use
the LSTM architecture. Since our approach is generic,
we also apply our approach to the recently introduced
GRU architecture, which is described by the following set of

Fig. 5. Future price prediction performances of the algorithms for the Alcoa
stock price data set.

Fig. 6. Exchange rate prediction performances of the algorithms for the
Hong Kong exchange rate data set.

equations [22]:
z̃t = σ(W (z̃)xt + R(z̃) yt−1) (50)

r t = σ(W (r)xt + R(r) yt−1) (51)

ỹt = g(W (y)xt + r t (R(y) yt−1)) (52)

yt = ỹt z̃t + yt−1 (1 − z̃t) (53)

where xt ∈ R
p is the input vector and yt ∈ R

m is the output
vector. The functions g(.) and σ(.) are set to the hyperbolic
tangent and sigmoid functions, respectively. For the coefficient
matrices, we have W (z̃) ∈ R

m×p , R(z̃) ∈ R
m×m , W (r) ∈

R
m×p , R(r) ∈ R

m×m , W (y) ∈ R
m×p , and R(y) ∈ R

m×m . Here,
z̃t and r t are the update and reset gates, respectively. To obtain
GRU-based algorithms, we directly replace the LSTM equa-
tions with the GRU equations and then apply our regression
and training approaches. However, the GRU network lacks
the output gate, which controls the amount of the incoming
memory content. Furthermore, these networks differ in the
location of the forget gates or the corresponding reset gates.

3782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

Fig. 7. Comparison of the LSTM and GRU architectures in terms of regression error performance for (a) PF-based algorithm, (b) EKF-based algorithm,
and (c) SGD-based algorithm.

TABLE III

TIME ACCUMULATED ERRORS OF THE LSTM-BASED REGRESSION
ALGORITHMS DESCRIBED IN (10)–(12) FOR EACH ALGORITHM

Hence, they have significant differences. To compare them,
we use the Hong Kong exchange rate data set as in the
previous section. For a fair comparison, we again select a
fixed architecture. Here, since we compare the performances of
the networks rather than the algorithms, we arbitrarily choose
one of the architectures. We select Architecture 1. Moreover,
we choose the same parameters with the previous subsection
so that convergence rates of the algorithms are the same. With
this fair setup, Fig. 7(a)–(c) shows that the LSTM network-
based approach achieves a smaller steady-state error; therefore,
it is superior to the GRU architecture-based approach in the
sequential prediction task in our experiments.

D. Different Regression Architectures

In this section, we compare the performances of different
LSTM-based regression architectures. For this purpose, we use
the Hong Kong exchange rate data set as in the previous
section. For a fair comparison, we select the parameters such
that the convergence rates of the algorithms are the same.
We choose the same parameter with the previous subsection
except 	0|0 = 0.01I . Under this fair setup, Table III shows
that for the PF- and EKF-based algorithms, Architecture 2
achieves a smaller time accumulated error thanks to the
contribution of the regression vector with the control gate αt .
Due to the lack of the control and output gates, although
Architecture 3 also has the direct contribution of the regression
vector, it has a greater error value compared with its competi-
tors. For the SGD-based algorithm, the direct contribution of
the regression vector does not provide improvement on the
error performance. Hence, Architecture 1 achieves a smaller
time accumulated error. However, overall Architecture 2
trained with the PF-based algorithm achieves the smallest time

accumulated error among our alternatives; hence, it signifi-
cantly outperforms its competitors in these simulations.

V. CONCLUSION

We studied the nonlinear regression problem in an online
setting and introduced novel LSTM-based online algorithms
for data regression. We then introduced low-complexity
and effective online training methods for these algorithms.
We achieved these by first proposing novel regression algo-
rithms to compute the final estimate, where we introduced an
additional gate to the classical LSTM architecture. We then
put the LSTM system in a state space form, and then based
on this form, we derived online updates based on the SGD,
EKF, and PF algorithms [17], [19], [26] to train the LSTM
architecture. By this way, we obtain an effective online training
method, which guarantees convergence to the optimal para-
meter estimation provided that we have a sufficient number of
particles and satisfy certain technical conditions. We achieve
this performance with a computational complexity in the
order of the first-order gradient-based methods [5], [16] by
controlling the number of particles. In Section IV, thanks to
the generic structure of our approach, we also introduced a
GRU architecture-based approach by directly replacing the
LSTM equations with the GRU architecture and observed
that our LSTM-based approach is superior to the GRU-based
approach in the sequential prediction tasks studied in this
paper. Furthermore, we demonstrate significant performance
improvements achieved by the introduced algorithms with
respect to the conventional methods [18], [23] over several
different data sets (used in this paper).

REFERENCES

[1] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[2] D. F. Specht, “A general regression neural network,” IEEE Trans. Neural
Netw., vol. 2, no. 6, pp. 568–576, Nov. 1991.

[3] A. C. Singer, G. W. Wornell, and A. V. Oppenheim, “Nonlinear
autoregressive modeling and estimation in the presence of noise,” Digit.
Signal Process., vol. 4, no. 4, pp. 207–221, Oct. 1994.

[4] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space Odyssey,” IEEE Trans. Neural
Netw. Learn. Syst., to be published, doi: 10.1109/TNNLS.2016.2582924.

ERGEN AND KOZAT: EFFICIENT ONLINE LEARNING ALGORITHMS BASED ON LSTM NEURAL NETWORKS 3783

[5] A. C. Tsoi, “Gradient based learning methods,” in Adaptive Processing
of Sequences and Data Structures, C. L. Giles and M. Gori, Eds.
Berlin, Germany: Springer, Sep. 1998, pp. 27–62. [Online]. Available:
https://doi.org/10.1007/BFb0053994, doi: 10.1007/BFb0053994.

[6] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,”
Ph.D. dissertation, Inst. Inform., Tech. Univ. Munich, München,
Germany, 1991.

[7] N. D. Vanli, M. O. Sayin, I. Delibalta, and S. S. Kozat, “Sequential
nonlinear learning for distributed multiagent systems via extreme learn-
ing machines,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3,
pp. 546–558, Mar. 2017.

[8] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608014002135

[9] U. Shaham, A. Cloninger, and R. R. Coifman, “Prov-
able approximation properties for deep neural networks,”
Appl. Comput. Harmon. Anal., 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1063520316300033,
doi: https://doi.org/10.1016/j.acha.2016.04.003

[10] M. Hermans and B. Schrauwen, “Training and analysing deep recur-
rent neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 190–198.

[11] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[13] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to for-
get: Continual prediction with LSTM,” Neural Comput., vol. 12,
no. 10, pp. 2451–2471, Oct. 2000. [Online]. Available: http://dx.doi.org/
10.1162/089976600300015015

[14] J. Fan and Q. Yao, ARMA Modeling and Forecasting. New York,
NY, USA: Springer, 2003, pp. 89–123. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-69395-8_3

[15] J. Mazumdar and R. G. Harley, “Recurrent neural networks trained
with backpropagation through time algorithm to estimate nonlinear
load harmonic currents,” IEEE Trans. Ind. Electron., vol. 55, no. 9,
pp. 3484–3491, Sep. 2008.

[16] H. Jaeger, Tutorial on Training Recurrent Neural Networks, Cov-
ering BPPT, RTRL, EKF and the Echo State Network Approach.
Sankt Augustin, Germany: GMD-Forschungszentrum Informationstech-
nik, 2002.

[17] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ, USA:
Wiley, 2003.

[18] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber, “Kalman
filters improve LSTM network performance in problems unsolvable by
traditional recurrent nets,” Neural Netw., vol. 16, no. 2, pp. 241–250,
Mar. 2003.

[19] B. D. O. Anderson and J. B. Moore, Optimal Filtering.
North Chelmsford, MA, USA: Courier Corporation, 2012.

[20] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” in Proc. 27th Int. Conf. Neural
Inf. Process. Syst. (NIPS), Cambridge, MA, USA, 2014, pp. 2933–2941.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2969033.2969154

[21] P. M. Djuric et al., “Particle filtering,” IEEE Signal Process. Mag.,
vol. 20, no. 5, pp. 19–38, Sep. 2003.

[22] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. (2014). “Empirical
evaluation of gated recurrent neural networks on sequence modeling.”
[Online]. Available: https://arxiv.org/abs/1412.3555

[23] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Comput., vol. 1, no. 2,
pp. 270–280, 1989.

[24] B. C. Csáji, “Approximation with artificial neural networks,” Faculty
Sci., Eötvös Loránd Univ., Budapest, Hungary, Tech. Rep., 2001, vol. 24,
p. 48.

[25] J. Martens and I. Sutskever, “Learning recurrent neural net-
works with hessian-free optimization,” in Proc. 28th Int. Conf.
Mach. Learn. (ICML), 2011, pp. 1033–1040.

[26] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[27] Z. Li, Y. Li, F. Yu, and D. Ge, “Adaptively weighted support vector
regression for financial time series prediction,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2014, pp. 3062–3065.

[28] I. Patras and E. Hancock, “Regression-based template tracking in pres-
ence of occlusions,” in Proc. 8th Int. Workshop Image Anal. Multimedia
Interact. Services (WIAMIS), Jun. 2007, p. 15.

[29] D. M. Bates, D. G. Watts, Nonlinear Regression Analysis and Its
Applications. New York, NY, USA: Wiley, 1988.

[30] F. A. Gers, J. A. Péerez-Ortiz, D. Eck, and J. Schmidhuber,
“DEKF-LSTM,” in Proc. ESANN, 2002, pp. 369–376.

[31] Y. C. Ho and R. Lee, “A Bayesian approach to problems in stochastic
estimation and control,” IEEE Trans. Autom. Control, vol. 9, no. 4,
pp. 333–339, Oct. 1964.

[32] M. Enescu, M. Sirbu, and V. Koivunen, “Recursive estimation of
noise statistics in Kalman filter based MIMO equalization,” in Proc.
27th General Assembly Int. Union Radio Sci. (URSI), Maastricht,
The Netherlands, 2002, pp. 17–24.

[33] A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and
Bayesian missing data problems,” J. Amer. Statist. Assoc., vol. 89,
no. 425, pp. 278–288, 1994.

[34] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statist. Comput., vol. 10, no. 3,
pp. 197–208, Jul. 2000.

[35] N. Bergman, “Recursive bayesian estimation,” Doctoral dissertation,
Dept. Elect. Eng., Linköping Univ., Linköping, Sweden, 1999, vol. 579.

[36] X.-L. Hu, T. B. Schon, and L. Ljung, “A basic convergence result
for particle filtering,” IEEE Trans. Signal Process., vol. 56, no. 4,
pp. 1337–1348, Apr. 2008.

[37] C. E. Rasmussen et al., Delve Data Sets. Accessed: Oct. 1, 2016.
[Online]. Available: http://www.cs.toronto.edu/~delve/data/datasets.html

[38] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. García,
“KEEL data-mining software tool: Data set repository, integration of
algorithms and experimental analysis framework,” J. Multiple-Valued
Logic Soft Comput., vol. 17, nos. 2–3, pp. 255–287, 2011.

[39] L. Torgo. Regression Data Sets. Accessed: Oct. 1, 2016. [Online].
Available: http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

[40] Alcoa Inc. Common Stock. Accessed: Oct. 1, 2016.[Online]. Available:
http://finance.yahoo.com/quote/AA?ltr=1

[41] E. W. Frees. Regression Modelling With Actuarial and Financial
Applications. Accessed: Oct. 1, 2016. [Online]. Available: http://
instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/
BookWebDec2010/data.html

Tolga Ergen received the B.S. degree in electrical
and electronics engineering from Bilkent University,
Ankara, Turkey, in 2016. He is currently pursuing
the M.S. degree with the Department of Electrical
and Electronics Engineering, Bilkent University.

His current research interests include online learn-
ing, adaptive filtering, machine learning, optimiza-
tion, and statistical signal processing.

Suleyman Serdar Kozat (A’10–M’11–SM’11)
received the B.S. (Hons.) degree from Bilkent Uni-
versity, Ankara, Turkey, and the M.S. and Ph.D.
degrees in electrical and computer engineering from
the University of Illinois at Urbana–Champaign,
Urbana, IL, USA.

He joined the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA, as a Research
Staff Member and later became a Project Leader
with the Pervasive Speech Technologies Group,
where he focused on problems related to statistical

signal processing and machine learning. He was a Research Associate with
the Cryptography and Anti-Piracy Group, Microsoft Research, Redmond,
WA, USA. He is currently an Associate Professor with the Electrical and
Electronics Engineering Department, Bilkent University. He has co-authored
over 100 papers in refereed high impact journals and conference proceedings.
He holds several patent inventions (used in several different Microsoft
and IBM products) due to his research accomplishments with the IBM
Thomas J. Watson Research Center and Microsoft Research. His current
research interests include cyber security, anomaly detection, big data, data
intelligence, adaptive filtering, and machine learning algorithms for signal
processing.

Dr. Kozat received many international and national awards. He is the Elected
President of the IEEE Signal Processing Society, Turkey Chapter.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

