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Abstract—In this paper, we study a unit commitment (UC) prob-
lem where the goal is to minimize the operating costs of a micro-
grid that involves renewable energy sources. Since traditional UC
algorithms use a priori information about uncertainties such as
the load demand and the renewable power outputs, their perfor-
mances highly depend on the accuracy of the a priori information,
especially in microgrids due to their limited scale and size. This
makes the algorithms impractical in settings where the past data
are not sufficient to construct an accurate prior of the uncertainties.
To resolve this issue, we develop an adaptively partitioned contex-
tual learning algorithm for UC (AP-CLUC) that learns the best UC
schedule and minimizes the total cost over time in an online manner
without requiring any a priori information. AP-CLUC effectively
learns the effects of the uncertainties on the cost by adaptively
considering context information strongly correlated with the un-
certainties, such as the past load demand and weather conditions.
For AP-CLUC, we first prove an analytical bound on the perfor-
mance, which shows that its average total cost converges to that
of the optimal policy with perfect a priori information. Then, we
show via simulations that AP-CLUC achieves competitive perfor-
mance with respect to the traditional UC algorithms with perfect
a priori information, and it achieves better performance than them
even with small errors on the information. These results demon-
strate the effectiveness of utilizing the context information and the
adaptive management of the past data for the UC problem.

Index Terms—Contextual learning, unit commitment, micro-
grids, renewable energy, system uncertainty.

I. INTRODUCTION

U SING renewable energy sources such as wind and solar
has many advantages, e.g., low economic costs and carbon
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footprint reduction from fossil fuels. In general, to efficiently
use renewable energy sources in power systems, uncertainties
in power systems from load demands and renewable power out-
puts should be effectively addressed. Especially, in microgrids,
properly addressing the uncertainties becomes more important
due to their limited scale and size.

Recently, such uncertainties are considered in the unit com-
mitment (UC) problems to determine the on/off states of the
thermal generation units and their power outputs, i.e., the UC
schedule, to minimize operating costs. In many existing works
[2]–[10], UC schedules that take into account the system un-
certainties are determined by using stochastic optimization for
UC (SOUC). In SOUC, the UC schedule is determined to min-
imize the expected operating cost over possible scenarios of
the uncertainties. However, in practice, the number of scenarios
considered in SOUC should be reduced due to its high compu-
tational complexity [11], which causes reliability issues since
the reduced scenarios do not capture all possibilities.

To resolve the reliability issues, two different approaches
named robust optimization for UC (ROUC) and interval op-
timization for UC (IOUC) are proposed. In ROUC [12]–[17],
the UC schedule is determined to minimize the worst-case cost
using a deterministic uncertainty set defined by the worst-case
realization. In IOUC [18]–[20], the UC schedule is determined
considering reliability constraints defined by using intervals rep-
resenting the probable realizations of the uncertainties. How-
ever, the above approaches have a difficulty in appropriately
choosing the scenarios in SOUC, the uncertainty set in ROUC,
and the intervals in IOUC to tradeoff the reliability and the costs.
To overcome this difficulty, in [21], a Markovian approach for
UC is proposed where the UC schedule is determined with-
out scenario analysis by representing the uncertainties using a
discrete Markov process. Moreover, numerous works have con-
sidered hybrid approaches that combine the base approaches
discussed above [22]–[25].

Although many prior works determine UC schedules by con-
sidering uncertainties in different ways, they all require statis-
tical information about the realization of the uncertainties as
follows: a probability distribution over the scenarios in SOUC,
the forecasted worst-case realizations of uncertainties in ROUC,
the uncertainty intervals in IOUC, and the stochastic model
of the uncertainties in Markovian UC. We call such statistical
information about the uncertainties a priori information. Due
to this dependency, the prior works can be used only if a pri-
ori information is available. One way to tackle this issue is to
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TABLE I
COMPARISONS WITH RELATED WORKS

form the a priori information by acquiring more data, which
costs both money and time. Then, this data can be processed by
appropriate methods [26], [27] to form estimates of the uncer-
tainties. In addition to the money and time costs, this method
also has the following drawback: the performance of methods
that are based on a priori information highly deteriorate when
the a priori information is inaccurate.

The above approaches for UC are also widely adopted in
microgrids [7]–[10], [16]–[18]. However, when adopting the
approaches in microgrids, acquiring such an accurate a priori
information may cost too much considering their small-scale
power generation. Moreover, due to the limited scale and size
of microgrids, the performance deterioration from the inaccu-
rate a priori information may become severe [9], [28]. Thus, to
overcome these problems, a UC algorithm which does not need
any a priori information of uncertainties is necessary, especially
in microgrids. The problems related to the a priori information
also arise in smart grids [29]–[32], and are addressed by using
learning methods that do not require a priori information [31],
[32].

To effectively determine UC schedules even without the a
priori information, it is necessary to exploit side information
strongly correlated with the uncertainties, such as the past load
demands and the weather [33], [34]. In the literature, such side
information is also referred to as the context information, and the
learning methods that utilize the context information are called
contextual learning methods [35]. While contextual learning
methods are successfully applied in domains like recommender
systems [36] and wireless communications [37], to the best of
our knowledge, this paper is the first to attempt to use contextual
learning for developing a UC algorithm that does not require any
a priori information on the uncertainties.

In our preliminary work [1], we developed a uniformly parti-
tioned contextual learning algorithm for UC (UP-CLUC), where
the expected costs of the UC schedules are learned by fusing the
past data through uniform partitioning of the context space. The
partition of the context space of UP-CLUC is optimized under
the condition that the contexts are uniformly distributed over
the context space. This might pose a significant performance
degradation in real-world scenarios where the context arrivals
are non-uniform or do not follow any well defined stochastic
process. To address this challenge, in this paper we propose
a contextual learning algorithm for the UC problem called an

adaptive partitioned contextual learning algorithm for UC (AP-
CLUC). The algorithm addresses the challenge by learning the
uncertainties in a completely adaptive way by forming the con-
text space partition on-the-fly based on the context arrivals ob-
served so far. By this, AP-CLUC optimizes its context space
to tradeoff estimation errors and approximation errors that oc-
cur during learning. A comparison of our work with the related
works is given in Table I.

The contributions of the paper are summarized as follows:
� We propose a new contextual learning UC approach with-

out requiring any a priori information by modeling the UC
problem as a sequential decision making problem and de-
veloping a contextual learning algorithm for the problem.

� The developed algorithm called AP-CLUC adaptively par-
titions the context space to effectively learn about the sys-
tem uncertainties based on past data. Moreover, we propose
methods to accelerate the learning speed of AP-CLUC.

� We prove that AP-CLUC achieves regret which is sublinear
in time, and hence, is optimal in terms of the long-term
average cost.

� We also show that AP-CLUC achieves competitive per-
formance compared to the existing UC algorithms having
perfect a priori information, and it achieves better perfor-
mance than them even when the a priori information has
only small errors.

The rest of this paper is organized as follows. Section II
provides the system model. In Section III, we formulate a unit
commitment problem. In Section IV, we develop an adaptively
partitioned contextual learning algorithm for UC, and provide
its regret bound. We provide numerical results in Section V.
Finally, we conclude in Section VI.

II. SYSTEM MODEL

We consider the UC problem in an isolated microgrid sys-
tem with J thermal power generation units, where each unit is
indexed by j ∈ J = {1, 2, ..., J}.1 The system schedules the
on/off status and power outputs of its thermal power generation
units, i.e., a UC schedule, over a discrete time horizon, where
each time period has a fixed duration, e.g., an hour. Let t be an
index of time periods of the time horizon. The set of time periods

1In the following, unit j implies thermal power generation unit j .
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is denoted by T = {0, 1, 2, ...}. At the beginning of time period
t, the system schedules its thermal power generation units for
a single time period t + Tsc , i.e., Tsc time periods-ahead UC
scheduling, where Tsc is the number of necessary time periods
to prepare the operation of the thermal power generation units
according to the UC schedule.

The on/off status of unit j during time period t is denoted
by uj (t) ∈ {0, 1}, where 1 represents the on state and 0 rep-
resents the off state. The vector of the on/off states of all ther-
mal power generation units during time period t is denoted by
u(t) = {uj (t)}j∈J . The up time of unit j at time period t, which
represents the number of consecutive time periods that unit j
has been in the on state at the end of time period t, is denoted
by Tj,on (t), and is given by

Tj,on (t) =
{

Tj,on (t− 1) + 1, if uj (t) = 1
0, if uj (t) = 0 .

Similarly, the down time of unit j at time period t, which rep-
resents the number of consecutive time periods that unit j has
been in the off state at the end of time period t, is denoted by
Tj,of f (t), and it is obtained by

Tj,of f (t) =
{

Tj,of f (t− 1) + 1, if uj (t) = 0
0, if uj (t) = 1 .

We denote the vectors of Tj,on (t)’s and Tj,of f (t)’s of all ther-
mal power generation units as Ton (t) = {Tj,on (t)}j∈J and
Tof f (t) = {Tj,of f (t)}j∈J , respectively. When a thermal power
generation unit is turned on, it cannot be turned off for a specific
number of time periods, i.e., for each unit j,

1 ≤ Tj,on (t− 1) < MUTj ⇒ uj (t) = 1, (1)

where MUTj is the minimum up time of unit j. Similarly, when
it is turned off, it cannot be turned on for the next specific number
of time periods, i.e., for each unit j,

1 ≤ Tj,of f (t− 1) < MDTj ⇒ uj (t) = 0, (2)

where MDTj is the minimum down time of unit j.
The power output of unit j during time period t is denoted

by pj (t), and it is bounded by pj (t) ∈ [pmin
j , pmax

j ], where pmin
j

and pmax
j are the minimum and maximum power outputs of

unit j, respectively. The vector of the power outputs of all ther-
mal power generation units during time period t is denoted as
pther (t) = {pj (t)}j∈J . Due to the ramp rate limit, the power
output of unit j at time period t should satisfy the following
constraint:

pj (t− 1)−RRj ≤ pj (t) ≤ pj (t− 1) + RRj , (3)

where RRj is the ramp rate limit of unit j. Moreover, we con-
sider a spinning reserve requirement in the system. We assume
that the spinning reserve is not used for the fluctuation of the
load demand, but for more critical situation such as the outage
of thermal units. Then, the spinning reserve requirement should
be guaranteed as∑

j∈J
uj (t)

(
pmax

j − pj (t)
)
≥ SR, (4)

where SR is the spinning reserve requirement.

In our system model, we use the current time, the past weather
condition, and the past load demands as the context informa-
tion which the system considers. It is worth noting that any
other related information can be used as the context informa-
tion. To model the current time, we introduce a set of time
indices for a circular time duration, e.g., a day, a month, and
a year, H = {0, 1, ...,H − 1}, where each index represents an
actual time in the time duration. Then, each time period t is
mapped to the corresponding current time index h(t) ∈ H as
h(t) = mod(t,H). Let w(t) be the weather condition which
is observed by the system at the beginning of time period t.
The set of weather conditions is denoted by W , which can
be defined by using weather information components such as
wind speed, wind direction, temperature, sky cover, and precip-
itation potential [26], [27]. When defining it, it is necessary
to consider the location of the system and the types of re-
newable sources of the power generation units, such as wind
and solar. For example, for a wind farm, it can be defined
as W =Wwindspd ×Wwindir , where Wwindspd and Wwindir

are the set of wind speeds and wind directions, respectively.
Note that both continuous and discrete sets can be used for the
weather conditions. The load demand during time period t is
denoted by M(t) and is assumed to lie in the bounded interval
M = [Mmin ,Mmax], where Mmin and Mmax are the minimum
and maximum load demands, respectively. The sum of power
outputs of all renewable power generation units during time pe-
riod t is denoted by pre(t) ≤ pmax

re , where pmax
re is the maximum

renewable power output. At the end of each time period, the re-
alizations of the random variables that represent the uncertain
quantities, i.e., the load demand and the power outputs of the
renewable power generation units, are observed by the system.
We assume that the distribution of the uncertain quantities at
each time period depends on the context information observed
at the beginning of that time period.

Due to the system uncertainties, the load demand could be
shed or the generated power could be curtailed in our system
model. Thus, to ensure the power balance on the system, we
define load shedding and power curtailment variables which are
determined according to the UC schedule and the realization
of the uncertainties. The amount of load shedding during time
period t, psh(t), is given by

psh(t) =

⎡
⎣M(t)−

∑
j∈J

pj (t)− pre(t)

⎤
⎦

+

,

where [·]+ = max[0, ·]. Similarly, the amount of power curtail-
ment during time period t, pcu (t), is given by

pcu (t) =

⎡
⎣∑

j∈J
pj (t) + pre(t)−M(t)

⎤
⎦

+

.

Then, the power balance equation during time period t is derived
by

∑
j∈J

pj (t) + pre(t)− pcu (t) = M(t)− psh(t).



LEE et al.: ADAPTIVE CONTEXTUAL LEARNING FOR UC IN MICROGRIDS WITH RENEWABLE ENERGY SOURCES 691

The total operating cost of the system during time period t,
Ctot(t), is obtained as

Ctot(t)=
∑
j∈J

(Cj,f u (t)+Cj,su (t)) + Csh(t) + Ccu (t), (5)

where Cj,f u (t) is the fuel cost of unit j that supplies power
pj (t) during time period t, Cj,su (t) is the start-up cost of unit
j at time period t, Csh(t) is the load shedding cost during time
period t, and Ccu (t) is the power curtailment cost during time
period t. The fuel cost can be modeled as a non-linear function
of the power output [38] as

Cj,f u (t) = C
(0)
j,f u · uj (t) + C

(1)
j,f u · pj (t) + C

(2)
j,f u · pj (t)2 ,

(6)
where C

(0)
j,f u , C

(1)
j,f u , and C

(2)
j,f u are the cost coefficients of unit

j. The start-up cost can be modeled as follows [38], [39]:

Cj,su (t) = CMj + CSCj

{
1− e

(
− T j , o f f ( t−1 )

C S T j

)}
, (7)

where CMj is the start-up cost and maintenance cost of unit
j, CSCj is the cold start-up cost of unit j, and CSTj is the
cold start-up time of unit j. The load shedding cost during time
period t, Csh(t), is given by

Csh(t) = LSP · psh(t), (8)

where LSP is the load shedding price. The power curtailment
cost during time period t, Ccu (t), is given by

Ccu (t) = PCP · pcu (t), (9)

where PCP is the power curtailment price.

III. UNIT COMMITMENT PROBLEM

The context that is observed at the beginning of time period
t is defined by x(t) := {h(t),M(t, TM ),w(t, TW ))}, where
M(t, TM )={M(t− 1), ...,M(t− TM )} is the vector of load
demands of the past TM time periods and w(t, TW ) = {w(t−
1), ..., w(t− TW )} is the vector of weather conditions of the
past TW time periods. The context space is defined by X =H×
MTM ×WTW . We denote the dimension of the context space as
DX .

Remark 1: We introduce a projection function φ which
projects the context x into a low dimensional space. For exam-
ple, weighted averaging, principal component analysis (PCA),
or mutual information-based dimensionality reduction [40] can
be used. Note that the projection function helps our algorithm
learn faster if necessary.

In addition to the context x, the down time of units, Tof f ,
should be considered when choosing the action since the start-
up cost in (7) depends on it. For the sake of analysis, we define
the bounded down time of unit j at time period t, T̃j,of f (t),
bounded by PDTj , i.e., T̃j,of f ∈ T̃j,of f = {0, 1, ..., PDTj},
where PDTj is the maximum bounded down time of unit j.
Note that since the start-up cost becomes almost a constant for
large down times, it is enough to consider down times in a
bounded region. Then, the bounded down time space is defined
by T̃of f =

∏
j∈J T̃j,of f . We denote the vector of T̃j,of f (t)’s

of all units as T̃of f (t) = {T̃j,of f (t)}j∈J . Then, we define an

extended context at time period t by z(t) := {x(t), T̃of f (t +
Tsc−1)}, and define the extended context space by Z = X ×
T̃of f .

We now define the state for units at the beginning of time pe-
riod t as s(t) := {u(t + Tsc−1),pther (t + Tsc − 1),Ton (t +
Tsc − 1),Tof f (t + Tsc − 1)} and let S denote the state space.

At the beginning of each time period t, an action which
is denoted by a(t) = {u(t + Tsc),pther (t + Tsc)}, is cho-
sen from a subset of the action space, which is defined as
A = {0, 1}J ×

∏
j∈J [pmin

j , pmax
j ]. The set of available actions

at time period t is constrained by the state (unit status) s(t) at
time period t. Thus, the set of feasible actions at time period t
with the unit status s(t), A(s(t)), is given as

A(s(t)) = {{u(t + Tsc),pther (t + Tsc)} ∈ A|
(1), (2), (3) and (4) holds}.

We denote a UC policy which depends on the extended context
z(t) and the state s(t) as π : Z × S → A. For given extended
context z(t) and unit status s(t), the UC policy π chooses the
action denoted by πs(t)(t, z(t)) from the set of feasible actions,
A(s(t)). For convenience, we denote the action for time period t,
πs(t)(t, z(t)), as π(t). Then, the UC problem is formally defined
by the following equation

argmin
π :Z×S→A

E

[
lim

T→∞

1
T

T∑
t=0

Ctot(π(t), t)

]
, (10)

where Ctot(π(t), t) is the total operating cost during time period
t given action π(t). Note that unlike the existing UC models, the
UC problem in (10) optimizes the UC over the infinite horizon.

IV. ADAPTIVELY PARTITIONED CONTEXTUAL LEARNING

In this section, we introduce an online learning algorithm
called adaptively partitioned contextual learning algorithm for
UC (AP-CLUC), which solves the UC problem in (10) without
requiring any a priori information. We describe AP-CLUC and
provide a performance bound for it.

A. How AP-CLUC Learns Effectively?

Basically, contextual learning algorithms learn the effects of
the system uncertainties on the costs related to the context and
the actions, which are much easier to learn than the entire prob-
ability distribution of the system uncertainties. Specifically, to
learn the effects, the algorithms estimate the cost of each action
with a given context arrival, i.e., an observed context, using the
past observed costs of the chosen action with the given context.
Then, they learn the best action with the given context arrival
by using the estimates of the costs, instead of using a priori
information. Hence, they do not require any a priori informa-
tion. However, when the context space is an uncountable set,
the algorithms cannot learn the best action for all possible con-
text arrivals and should approximate context arrivals by merging
context arrivals. Thus, in the algorithms, an approximation error
from merging context arrivals occurs as well as an estimation
error on a cost from limited observations [41].

UP-CLUC in our preliminary work [1] and AP-CLUC parti-
tion the context space into multiple sets. Then, they approximate
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Fig. 1. Illustration of a tradeoff between the estimation error and the approx-
imation error according to a size of sets in the partition of the context space. In
the partition, each dot represents each context arrival and each square represents
each set.

Fig. 2. Illustration of uniform partitioning and adaptive partitioning. In the
adaptive partitioning, the filled dots denote the past arrived contexts, and the
unfilled dots denote new context arrivals. As the contexts arrive, the context
space is adaptively partitioned more precisely.

context arrivals by merging the context arrivals in each set. For
such algorithms with a partition-based approximation, the ap-
proximation error of each set mainly depends on the size of
the set, since the larger size of the set implies that the context
arrivals in the larger region are merged. On the other hand, the
estimation error of each set depends on the number of context
arrivals in the set, since the larger number of context arrivals
implies the more accurate estimation. Thus, as shown in Fig. 1,
as the size of each set becomes small, the approximation error
of each set decreases, but at the same time, the estimation error
of each set increases since the number of context arrivals in the
set decreases in general. On the other hand, as the size of each
set becomes large, the approximation error increases while the
estimation error decreases. This results in a tradeoff between the
estimation error and the approximation error. Thus, for effective
learning, it is important to address the tradeoff considering the
context arrivals.

In UP-CLUC, the context space is uniformly partitioned be-
fore running, and the size of sets in the context space is deter-
mined by a system parameter. This results in the approximation
error of the algorithm fixed, and thus, UP-CLUC cannot control
the tradeoff adaptively according to the context arrivals. On the
other hand, when AP-CLUC learns, it optimizes its partition
to address the tradeoff in an online manner by partitioning the
context space on-the-fly according to the context arrivals. In
AP-CLUC, for the sets in regions of the context space with a
large number of context arrivals, partitioning the sets smaller is
favorable for reducing the total error, since the approximation
error is reduced due to the smaller sets and the estimation er-
ror will become small soon due to the large number of context
arrivals. Thus, as shown in Fig. 2, AP-CLUC partitions such re-
gions into smaller sets. This results in a partition where smaller
sets are concentrated around the regions of the context space
with a large number of context arrivals and larger sets are scat-
tered over the remaining parts of the context space with a small
number of context arrivals. In the literature, this phenomenon is

called contextual zooming [41]. Owing to such an optimization,
AP-CLUC outperforms UP-CLUC regardless of the system pa-
rameter of UP-CLUC as will be shown in the numerical results
section.

For more effective learning, we can generate virtual experi-
ences assumed that the unselected actions were selected owing
to the nature of the UC problem. By using such virtual expe-
riences, we can accelerate the learning speed of AP-CLUC. In
addition, when AP-CLUC partitions a region into smaller sets,
the costs due to learning the uncertainties in the smaller sets
newly can be reduced by reusing the past experiences learned
in the region. The details of such methods for effective learning
will be described in the following subsection, and their effects
will be shown in the numerical results section.

B. Algorithm Description of AP-CLUC

The pseudocode of AP-CLUC is given in Algorithm 1. For
simplicity of the description, we assume that Tsc = 0 and nor-
malize the extended context2 space to be Z = [0, 1]D , where D
is the dimension of the context space, i.e., DX + J . It is worth
noting that normalizing the context is used only for the perfor-
mance analyses, and the performance bound of AP-CLUC can
always be achieved by a proper scaling of the context. Also,
the assumption does not affect the performance bound. How the
partitioning of the context space in AP-CLUC is different from
that in UP-CLUC is illustrated in Fig. 2 for D = 2. Unlike UP-
CLUC, i.e., Algorithm 1 in [1], which uniformly partitions the
context space at the beginning of the algorithm, in AP-CLUC the
context space is partitioned into smaller sets on-the-fly accord-
ing to the context arrivals. This adaptive partitioning enables
AP-CLUC to learn more precisely on the frequent context in-
formation. In AP-CLUC, every partition of the context space is
composed of hypercubes with side lengths belonging to the set
{20 , 2−1 , 2−2 , ...}, and a D-dimensional hypercube which has
sides of length 2−l is called a level l hypercube. The partition at
a time period is composed of a set of disjoint hypercubes that
cover the context space. This set of hypercubes are also referred
to as the active hypercubes at that time period. The set of active
hypercubes, i.e., the context partition, is denoted by PZ .

The adaptive partitioning mechanism of AP-CLUC performs
as follows. The initial context partition for AP-CLUC is given by
PZ = {[0, 1]D} as given in line 1 of Algorithm 1, which is the
entire context space (i.e., l = 0). Then, according to the context
arrivals, this partition is updated by the mechanism described
below. Let l(pz ) be the level of hypercube pz and N(pz ) be
the number of context arrivals to hypercube pz after pz was
activated. An active hypercube pz is deactivated if N(pz ) ≥
2ρl(pz ) as in line 13 of Algorithm 1, where ρ > 0 is a parameter
of AP-CLUC. When pz is deactivated, 2D level l(pz ) + 1 child
hypercubes formed by partitioning hypercube pz become active,
and the context partition is updated as PZ ∪G

l(pz )+1
pz \ {pz} as

in line 16 of Algorithm 1, where G
l(pz )+1
pz is the set of 2D level

l(pz ) + 1 child hypercubes created from the hypercube pz . This
adaptive partitioning is illustrated in Fig. 2 for D = 2 and ρ = 1.

2In algorithm description, we omit “extended” from the extended context for
convenience.
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In adaptive partitioning, the deactivation process of a hy-
percube depends on its level. In addition, the action space is
also adaptively discretized according to the level of the hy-
percube that the context belongs to. To this end, the slicing
parameter for the power output which is used to discretize the
power output is determined by the level of the hypercube l,
and hence, is denoted by mA (l). Then, the power output of
unit j is uniformly discretized using mA (l). The set of the dis-
cretized power outputs of unit j for a level l hypercube is denoted
by P̄j (l) = {pmin

j + p
mA (l)
j , pmin

j + 2p
mA (l)
j , ..., pmax

j }, where

p
mA (l)
j = (pmax

j − pmin
j )/mA (l). The power output of unit j

during time period t is denoted by p̄j (t) ∈ P̄j (l(pz (z(t)))),
where l(pz (z)) represents the level of hypercube p where context
z belongs to. The vector of the discretized power outputs of all
units during time period t is denoted by pther (t) = {p̄j (t)}∀j∈J
and the discretized action space for a level l hypercube is given
by Ā(l) = {0, 1}J ×

∏
j∈J P̄j (l). Using these, the set of dis-

cretized available actions for unit status s and a level l hypercube
is given as

Ā(s, l) := {{u(t), p̄ther (t)}| (1), (2), (3) and (4) holds} .

Remark 2: Note that in the early stages of running AP-
CLUC, there might exist no available action satisfying the ramp
rate limit constraint in (3) when the discretization of power out-
puts is too coarse, i.e., there are only a few discretized power
outputs. This problem can be resolved by appropriately setting
mA (l) of low levels to be large enough to satisfy the ramp rate
limit constraint.

We denote the number of times that action a is chosen when
the context is in active hypercube pz as N(a, pz ). We also
define the estimated cost of action a on set pz , ĉ(a, pz ), which
represents the sample mean of the total operating cost observed
from action a on active hypercube pz . At the beginning of each
time period t, the system observes the context z(t) and unit status
s(t). Then, it finds the corresponding active hypercube pz (z(t))
that the current context belongs to and calculates the set of
available actions Ā(s(t), l(pz (z(t))) given the unit status. Then,
it chooses the action with the lowest estimated total operating
cost given as

π̂(t) ∈ argmin
a ′∈Ā(s(t),l(pz (z(t)))

ĉ(a′, pz (z(t))).

During the time period t, the system operates its thermal power
generation units according to the chosen action π̂(t). At the
end of the time period, the system observes the realization of
the uncertainties with which the total operating cost during the
time period, Ctot(t), is obtained as in (5). Then, the system
updates the estimated cost ĉ(π̂(t), pz ) by using Ctot(t) in line 8
of Algorithm 1.

The selected action does not affect the distribution of the un-
certain events that happen in the current time period. This nature
of the UC problem allows us to calculate the total operating cost
for the actions that are not selected, i.e., a∈Ā(l(pz ))\{π̂(t)},
from the observed cost. Note that for each unselected action,
the fuel cost in (6) and the start-up cost in (7) can be simply
calculated. The load shedding cost in (8) and power curtailment
cost in (9) can be also calculated by using the realized load

Algorithm 1: AP-CLUC.

1: P = {[0, 1]D},
2: ĉ(a, [0, 1]D )←∞ and N(a, [0, 1]D )← 0, ∀a ∈ Ā(0)
3: N([0, 1]D )← 0
4: while TRUE do
5: Observe context z and unit status s
6: p← pz (z), a← argmina ′∈Ā(s,l(p)) ĉ(a′, p)
7: Operate units with a and observe Ctot

8: ĉ(a, p)← ĉ(a,p)N (a,p)+Ct o t

N (a,p)+1

9: Virtually observe C ′tot(a
′), ∀a′ ∈Ā(l(p))\{a}

10: ĉ(a′, p)← ĉ(a ′,p)N (a,p)+C ′t o t (a ′)
N (a,p)+1 , ∀a′ ∈Ā(l(p))\{a}

11: N(a, p)← N(a, p) + 1, ∀a ∈ Ā(l(p))
12: N(p)← N(p) + 1
13: if N(p) ≥ 2ρl(p) then
14: Create 2D level l(p) + 1 child hypercubes,

G
l(p)+1
p

15: Run INIT
(
G

l(p)+1
p , p

)
16: P ← P ∪G

l(p)+1
p \ {p}

17: end if
18: end while
19: procedure INIT(B, p)
20: for p′ ∈ B do
21: ĉ(a, p′)←∞ and N(a, p′)← 0, ∀a ∈ Ā(l(p′))
22: N(p′)← 0
23: end for
24: end procedure

demand and renewable power outputs due to the nature of the
UC problem. Thus, by using the calculated costs for the unse-
lected actions, i.e., virtually observed costs, AP-CLUC performs
virtual updates of the estimated costs of unselected actions in
order to accelerate the learning as given in lines 10–11 of Algo-
rithm 1. Therefore, the number of times that action a is (virtu-
ally) chosen when the context is in the set pz , i.e., N(a, pz ), is
updated for all a∈Ā(l(pz )).

Remark 3: Note that the virtual update allows AP-CLUC to
accelerate the learning speed, but it also causes an increase in
the computational complexity of AP-CLUC due to the calcu-
lation of the costs for the unselected actions. We can control
the tradeoff between the learning speed and the computational
complexity by performing the virtual updates for a part of the
unselected actions, not for all unselected actions. We investigate
the computational complexity according to the number of the
virtually updated unselected actions in Section IV-D, and show
the learning speed in the numerical results.

Moreover, to help AP-CLUC learn faster, when child hy-
percubes become active, we can reuse the a priori information
provided from their parent hypercube. To this end, we initiate
the parameters of activated hypercubes using Algorithm 2 in-
stead of using the initiating procedure in AP-CLUC as given in
lines 21–22 of Algorithm 1. We call this an experience reuse,
and it helps AP-CLUC learn faster by providing a guidance in
the early stages of learning in the activated hypercubes. This
improvement is shown in the numerical results section.
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Algorithm 2: Experience Reuse.

1: procedure ExpReuse(B, p)
2: for p′ ∈ B do
3: N(a, p′)← �N(a, p)/2, ∀a ∈ Ā(l(p′))
4: N(p′)← �N(p)/2
5: ĉ(a, p′)← ĉ(ã, p), ∀a ∈ Ā(l(p′)), where ã is the

action in Ā(l(p)) which is nearest from a.
6: end for
7: end procedure

C. Regret Bound for AP-CLUC

In this subsection, to evaluate the performance of AP-CLUC
in Algorithm 1, we first define the learning regret, and then
provide the regret bound for AP-CLUC. For simplicity of the
presentation, we normalize the total operating cost such that it
lies in [0, 1]. Let the expected operating cost of action a ∈ A
during a time period with a given context z ∈ Z be

c(a, z) := EM̂ (x),p̂r e (x) [Ctot(a, t)] ,

where M̂(x) and p̂re(x) are the random variables for the load
demand and the renewable power output, respectively, during the
time period where the context x is given. The joint distribution
of M̂(x) and p̂re(x) is given by Fx . Next, we show that the
expected total operating costs are similar for similar contexts,
which is widely used as a similarity information [42], [43]. We
formalize this as a Lipschitz condition, and we prove that the
expected cost of each action also satisfies the Lipschitz condition
in the following lemma.

Lemma 1: There exists L > 0 such that for all z, z′ ∈ Z and
a ∈ A,

|c(a, z)− c(a, z′)| ≤ L‖z− z′‖,

and for all a, a′ ∈ A and z ∈ Z , where the on/off status are
same but the power outputs might be different,

|c(a, z)− c(a′, z)| ≤ L‖a− a′‖.

Proof: See Appendix A. �
We define the regret with respect to a complete information

benchmark, which myopically selects the best available action
for the current time period given perfect knowledge of the distri-
bution Fx , i.e., the impact on the future costs is not considered
when selecting the action. It is worth noting that in a viewpoint
of the existing UC approaches, Fx can be interpreted as a tar-
get distribution which their a priori information is intended to
provide. Given context z and unit status s, this benchmark is
defined as

π∗s (z) := argmina∈A(s) c(a, z), ∀z ∈ Z. (11)

It is worth emphasizing that the complete information bench-
mark is defined on the continuous action space A. Let π̂ be the
UC policy obtained by AP-CLUC. Then, the expected learn-
ing regret with respect to the benchmark π∗s (z) in (11) by time

period T is given by

R(T ) := E

[
T∑

t=0

Ctot(π̂(t), t)−
T∑

t=0

c(π∗s(t)(z(t)), z(t))

]

(12)

where s(t) and z(t) denote the unit status and context of AP-
CLUC at time period t.

The following theorem bounds the regret of AP-CLUC (with-
out experience reuse) given in (12).

Theorem 1: When the parameters of AP-CLUC are set as
ρ = 2(J + 1) and mA (l) = 2l , we have for AP-CLUC

R(T ) ≤
� l o g 2 T

2 (J + 1 ) +1∑
l=1

Kl(T )
[
2l(2J +1)(2L

√
D + 2J + 1

2

+ Lp̄ther

√
J) + 1

]
,

where Kl(T ) is the number of level l hypercubes that are acti-
vated by time T and p̄ther = maxj∈J [pmax

j − pmin
j ].

Proof: See Appendix B. �
Note that the regret bound for AP-CLUC depends the number

of activated level l hypercubes given by Kl(T ), which depends
on the pattern of context arrivals. Using the general form of the
regret bound given in Theorem 1, next we show that the regret
of AP-CLUC for the worst possible pattern of context arrivals
which maximizes the number of activated hypercubes (in which
the contexts arrive uniformly over the context space) is sublinear
in T .

Corollary 1: When the parameters of AP-CLUC are set as
ρ = 2(J + 1) and mA (l) = 2l , if the context arrivals by time
T are uniformly distributed over the context space, we have for
AP-CLUC,

R(T ) = O
(
T

D + 2 J + 1
D + 2 J + 2

)
.

Proof: See Appendix C. �
The regret bound in Collorary 1 is sublinear in T . Thus, in

theory, with the indefinite time periods, it is guaranteed that the
average cost of AP-CLUC converges to the average cost of the
benchmark, i.e., limT→∞R(T )/T = 0, for all possible context
arrivals.

D. Computational Complexity of AP-CLUC

In each time period, AP-CLUC needs to perform compari-
son operations to identify the active hypercube that the current
context belongs to. The computational complexity of such iden-
tification is given by O(|P|), where |P| is the cardinality of
the active hypercubes in the partition P . Since the uniform
context arrivals over the context space maximizes the num-
ber of active hypercubes, |P| at time period T is bounded by
|P| < 2Dlm a x (T ) , where lmax(T ) = �1 + log2 T

D+ρ � is the maxi-
mum hypercube level at time period T with the uniform context
arrivals derived in Appendix C. Then, the worst-case computa-
tional complexity of the identification at time period T is given
by O(2Dlm a x (T )).

After identifying the active hypercube, AP-CLUC needs to
perform one comparison operation for choosing the action with
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the lowest estimated total operating cost and update operations
on the estimated total operating costs of the actions including
the unselected actions, i.e., virtual updates. To virtually update
the estimated total operating costs of the unselected actions, the
operating costs of the unselected actions have to be computed
from the observed cost of the selected action and realization
of the uncertainties. Thus, the computational complexity of the
virtual updates highly depends on the number of the unselected
actions whose estimated total operating costs will be virtually
updated in each time period. The computational complexity of
the update operations has the order O((2mA (l))J ) if the esti-
mated costs for all unselected actions are virtually updated. On
the other hand, if AP-CLUC does not virtually update any unse-
lected actions, then the computational complexity has the order
O(1). Hence, we can control the computational complexity of
AP-CLUC by limiting the number of the unselected actions
whose estimated total operating costs will be virtually updated.

V. NUMERICAL RESULTS

In this section, we provide simulation results to evaluate the
performance of AP-CLUC.

A. Simulation Setup

The length of a time period is taken to be an hour and the
circular time duration for the context is set to be a day, i.e.,
H = {0, 1, ..., 23}. It is worth emphasizing that AP-CLUC starts
without any a priori information of the uncertainties and learns
them during the simulation. We consider a microgrid with wind
turbines and four identical thermal power generation units. The
parameters of the thermal power generation units are provided
in Table II. We set the load shedding price, LSP , and the power
curtailment price, PCP , to be 200 $/kWh [9]. The spinning
reserve requirement is set to be 10% of the total power output
of the thermal power generation units.

In our simulation, we consider a context consisting of current
time, load demand context, weather context, and down time of
units, where the dimensions of both load demand and weather
context spaces are 1.3 The power output profile for each hour
and parameters of wind turbines are adopted from [9], and their
power output capacity is set to be 650 kW. For a load demand
profile for each hour, we use the hourly average load shapes
of residential electricity services in California [44] with 500
customers. Then, the uncertainties are generated by using their
profiles and the context. In each time period t, the load demand
context, xM (t), is non-uniformly generated between [−1, 1] by a
truncated normal distribution whose mean is zero and variance is
0.2. Then, the load demand is generated by a Gaussian distribu-
tion of which mean is set to be Pprof ile

M (h(t)) + xM (t)Puncert
M ,

where Pprof ile
M (h) is the value of the load demand profile in time

index h and Puncert
M is an amount of load demand uncertainty.

Note that the Gaussian distribution is widely used to model
the forecasting error [45]. By this, the load demand is generated

3To simply construct the simulation system with stochastic uncertainties, we
assume that the dimension of each of the load demand and weather contexts
is one. In real world, the projected context can be obtained as discussed in
Remark 1.

TABLE II
PARAMETERS OF THERMAL UNITS [9]

based on both its profiles and its correlated context. The standard
deviation of the distribution is set to be 2.5% of its mean, which
is widely used to model the scenarios in day-ahead UC prob-
lems [9], [46]. Similarly, the weather context, xW (t), is non-
uniformly generated between [−1, 1] by the same distribution
for the load demand context. Then, the renewable power output
is also generated by a Gaussian distribution of which mean is
set to be Pprof ile

W (h(t)) + xW (t)Puncert
W , where Pprof ile

W (h) is
the value of the renewable power output profile in time index h
and Puncert

W is an amount of renewable power uncertainty. We
set both Puncert

M and Puncert
W to be 150 kW.

To evaluate the performance of AP-CLUC, we compare it
with its complete information benchmark and also with the
stochastic optimization for UC (SOUC) that is one of the most
representative UC approaches [2]–[9], [28]. For SOUC, we as-
sume that perfect a priori information (PI) is given. We also
compare it with several learning algorithms: AP-CLUC without
experience reuse (ER), UP-CLUC, Q-learning-like algorithm
for UC (QLUC), UCB1, and EXP3. The descriptions of the al-
gorithms and their parameter settings are provided as follows.
The number of power outputs, mA , is set to be 8 for all algo-
rithms unless mentioned explicitly.

� SOUC with PI chooses the best UC schedule considering
all possible stochastic scenarios on the uncertainties using
the perfect information. In other words, it chooses the op-
timal UC schedule in the continuous action space A as in
(11). It is worth noting that it is an ideal SOUC since such
perfect a priori information cannot be obtained in reality.

� AP-CLUC is given in Algorithm 1 with ρ which is set
to be 2. In AP-CLUC, we also run the complete infor-
mation benchmark. The benchmark chooses the optimal
UC schedule as in (11). This is similar to SOUC with PI,
but when the benchmark chooses the UC schedule, it uses
the unit status and context of AP-CLUC as in (12), while
SOUC with PI uses its own. We also implement AP-CLUC
without ER to show the improvement due to ER. In AP-
CLUC without ER, for initiating of each hypercube, its
initial estimated cost is set to be infinite and its counters
are set to be zero.

� UP-CLUC is given in [1], and we implement two UP-
CLUCs with mz set to be 5 and 10, respectively, where
mZ is the slicing parameter for the context space.

� QLUC is a learning algorithm which consider only the
current time information which is basic state information
while not considering both load demand and weather con-
texts. We simply implement it by neglecting both contexts

4Note that the ramp rates of the units are assumed to be equal to pm ax
j since

their sizes are small enough to reach their maximum power outputs within a
time period [9].
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TABLE III
ON/OFF STATUS OF UNITS BY AP-CLUC

TABLE IV
COMPARISON OF AVERAGE COSTS ($)

in UP-CLUC. In QLUC, we also adopt the virtual updates
for fair comparison.

The following learning algorithms, i.e., UCB1, and EXP3, do
not consider the context information. The parameters of each
algorithm are chosen as the set of parameters for which the
algorithm performs the best.

� UCB1 [47] computes an index for each action, which is
a lower confidence bound of the expected cost. Then, the
algorithm chooses the action with has the lowest index.

� EXP3 [48] computes and updates a weight parameter for
each action by using its realized operating costs. Then, it
uses the weight parameters to randomly decide the action
to be taken. For EXP3, mA is set to be 4 instead of 8 for
better performance.

To clearly show that AP-CLUC addresses the UC problem,
we list the on/off status of units by AP-CLUC for certain 24 time
periods during the simulation in Table III. According to the ob-
served context that is strongly correlated with the uncertainties,
AP-CLUC decides the on/off status of units to minimize the
average total operating costs. From the table, we can see that
AP-CLUC satisfies the minimum up/down time constraints.

B. Average Costs and Learning Speeds

We first compare the achieved average costs, which are pro-
vided in Table IV. CLUCs, i.e., AP-CLUC and UP-CLUCs,
achieve better performance than other learning algorithms which
do not utilize the context information. Especially, AP-CLUC
achieves 27.4%, 40.1%, and 48.6% cost reduction against
QLUC, UCB1, and EXP3, respectively. This result shows that
using the context information is effective to achieve better per-
formance when the system uncertainties are correlated to the
context information. It is worth noting that many existing re-
searches show that the context information, i.e., current time,
weather condition, and past load demand, is highly correlated
to the system uncertainties, i.e., renewable power outputs and
load demand, in real world [33], [34]. In addition, QLUC which
uses only the current time context achieves better performance

Fig. 3. Average total operating costs of the algorithms.

than other learning algorithms which do not use any context
information. This result also shows the effectiveness of using
the context information. We can see that in general the load
shedding costs of the algorithms which do not use the context
information are larger than those of CLUCs, while their fuel
costs are smaller. This result shows that in general they generate
too small amount of power to support the load demand com-
pared with CLUCs since they fail to predict the uncertainties
due to the lack of the context information.

In addition, from Table IV, we see that AP-CLUC achieves
a performance close to the benchmark by effectively using the
context information. It is worth noting that the benchmark is
based on the assumption that it has perfectly accurate a priori
information. The benchmark and SOUC with PI achieve a sim-
ilar performance owing to the perfect information. AP-CLUC
and UP-CLUC which has a fine partition of the context space,
i.e., UP-CLUC with mz = 10, achieve performance close to
SOUC with PI by effectively using the context information.
On the other hand, UP-CLUC which has a rough partition of
the context space, i.e., UP-CLUC with mz = 5, only achieves
worse performance than them due to the approximation errors
from merging context arrivals.

In Fig. 3, we compare the learning speeds of the learning algo-
rithms. The faster learning speed of a learning algorithm implies
that when the statistical characteristics of the system uncertain-
ties vary, the algorithm can adapt to it more quickly. Hence, the
learning speed of the learning algorithm is important to use it
in practice, since in real-world, such statistical characteristics
might vary over time due to many environmental reasons such
as seasonal change and economy. Note that SOUC and bench-
mark are not learning algorithms. We can see that AP-CLUC,
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Fig. 4. Average total operating costs of the algorithms varying the amount of
uncertainties.

AP-CLUC without ER, UP-CLUC with mz = 5, QLUC, and
UCB1 have relatively fast learning speeds, and UP-CLUC with
mz = 10 and EXP3 have relatively slow learning speeds. By
comparing UP-CLUCs, we can see that UP-CLUC which has a
finer partition of the context space learns slower while achieving
smaller average cost. In addition, by reusing the past experience,
AP-CLUC learns faster than AP-CLUC without ER as shown
in the figure.

C. Impact of Degree of Uncertainties

We see the impact of uncertainties by varying the degree of un-
certainties in our simulation system, i.e., Puncert

M and Puncert
W .

Note that the degree of uncertainty represents the maximum
deviation from the profile value according to the context in-
formation. Thus, as the amount of uncertainties increases, both
load demand and renewable power output more fluctuate. In
general, more fluctuation of the uncertainties causes higher op-
erating costs since the system needs more effort to address the
uncertainties. From Fig. 4, we can see that the average total op-
erating costs of all learning algorithms increase as the degree of
uncertainties increases. It is worth noting that the average cost
of SOUC with PI also increases even it has perfect a priori infor-
mation since more inevitable costs occur from the constraints
of the thermal units such as the minimum power outputs of the
units and the minimum up/down times. In the figure, we can
also see that the increased amounts of the average total costs
of CLUCs are similar with that of SOUC with PI. This shows
that CLUCs can address the uncertainties only incurring a sim-
ilar amount of cost when using SOUC with PI since they can
learn the uncertainties by using the context information. On the
other hand, the increased amount of the average total costs of
the learning algorithms which do not use the load demand and
weather contexts is larger than that of other algorithms which
use the context information. This also implies that using the
context information is effective to address the uncertainties.

D. Impact of Inaccuracy of a Priori Information

Next, we evaluate the performance of SOUC when the a priori
information is inaccurate. Specifically, we investigate the inac-
curacy of a priori information on the performance of SOUC.

Fig. 5. Average total operating costs of CLUCs, QLUC and SOUC with
inaccurate a priori information.

It is worth noting that perfectly accurate a priori information
cannot be obtained in reality, and thus, any a priori information
used in the existing UC models is inaccurate to some degree. To
adjust the degree of inaccuracy in a priori information, we con-
sider the case when the mean of the load demand is overesti-
mated and the mean of the renewable power output is underesti-
mated compared to their expected values. The degree of overes-
timation and underestimation is stated in percentages. In Fig. 5,
we show the average total operating costs of CLUCs, QLUC,
and SOUC varying the degree of inaccuracy in a priori informa-
tion. For simple presentation, among the comparative learning
algorithms, i.e., QLUC, UCB1 and EXP3, only the performance
of QLUC is provided in the figure since QLUC has the best per-
formance among them. We can see that the average total cost of
SOUC increases as the degree of inaccuracy increases. On the
other hand, the average total cost of other algorithms does not
change since they do not use a priori information. AP-CLUC
and UP-CLUC with mz = 10 achieve better performance than
SOUC if the degree of inaccuracy in a priori information of
SOUC becomes more than 4%. Moreover, the difference be-
tween the performances of CLUCs and SOUC rapidly increases
as the degree of inaccuracy increases, and if the degree of inac-
curacy becomes more than 11%, SOUC has worse performance
than even QLUC which uses only the current time context. This
result shows that CLUCs are more effective than SOUC when
given a priori information is not highly accurate.

E. Effectiveness of Adaptive Partitioning

In this subsection, we compare AP-CLUC and UP-CLUC to
show the effectiveness of adaptive partitioning in AP-CLUC.
From the previous results, we can infer that in UP-CLUC, there
is a tradeoff between the average costs and the learning speed
and the tradeoff can be controlled by the slicing parameter for the
context space mz . To compare the performance of AP-CLUC
and UP-CLUC more clearly, in Fig. 6, we provide the average
total operating costs of AP-CLUC and UP-CLUC varying mz

as 2, 4, 6, and 10. From the figure, we can see that in UP-CLUC,
as mz increases, the learning speed becomes slower, but the
average total cost decreases with enough time periods. Thus,
due to such slow learning speeds, UP-CLUC with large mz



698 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 4, AUGUST 2018

Fig. 6. Average total operating costs of AP-CLUC and UP-CLUC varying
mz as 2, 4, 6, and 10.

Fig. 7. Average total operating costs of AP-CLUCs varying the ratio of virtu-
ally updated unselected actions from all unselected actions.

has a worse average total cost than UP-CLUC with smaller mz

before the uncertainties are learned enough. On the other hand,
AP-CLUC does not have such a tradeoff since it adaptively
partitions the context space according to the context arrivals.
In the figure, AP-CLUC achieves the lowest average total cost
while having a relatively fast learning speed compared with UP-
CLUCs. Besides, it achieves the lower average total cost than
UP-CLUC in all time periods. regardless of mz . This implies
that AP-CLUC outperforms UP-CLUC regardless of mz owing
to its adaptive partitioning.

F. Impact of Virtually Updated Actions

In Fig. 7, the impact of the number of virtually updated uns-
elected actions in AP-CLUC is shown. The unselected actions
which will be virtually updated are randomly chosen, and their
numbers are determined as 20%, 40%, 60%, 80%, and 100%
of all unselected actions. We can see that as more number of
unselected actions are virtually updated, the learning speed of
AP-CLUC increases. However, as investigated in Section IV-D,
the computational complexity also increases. Thus, the number
of virtually updated unselected actions should be carefully cho-
sen considering the tradeoff between the learning speed and the
computational complexity.

Fig. 8. Average total operating costs of the algorithms in the larger microgrid.

G. Average Total Operating Costs and Learning Speeds in
Larger Microgrids

In Fig. 8, we provide the average total operating costs of the
algorithms in a microgrid having a larger number of customers,
wind turbines, and thermal power generation units compared
with the microgrid considered in the previous results. In the mi-
crogrid, we consider six units, 750 customers, and wind turbines
whose power output capacity is given by 1000 kW. Similar to the
previous results, AP-CLUC achieves better performance than
other learning algorithms and a performance close to the bench-
mark. Moreover, the learning speed of AP-CLUC is similar to
that in the previous results. This clearly shows that AP-CLUC
is applicable to larger microgrids.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed AP-CLUC which minimizes the
average total operating cost of the microgrid with renewable en-
ergy sources by learning the system uncertainties using the con-
text information. Then, we proved the optimality of AP-CLUC
in terms of the long-term average cost. Moreover, we showed
through simulations that AP-CLUC achieves performance close
to the complete information benchmark which has perfect a pri-
ori information about the system uncertainties, and outperforms
other learning algorithms which do not use the context informa-
tion. Our results show that two key properties of AP-CLUC, use
of and adaptive management of the context information, makes
it perform better than its competitors including UP-CLUC.

As a future work on this subject, power flow issues can be
incorporated into the UC problem for the secure power flow. To
this end, the transmission line capacity constraints can be con-
sidered in AP-CLUC. Moreover, AP-CLUC can be extended
by incorporating power flow decisions into the actions. In ad-
dition to the power flow issues, the operational reliability of
microgrids can be also considered in AP-CLUC. For exam-
ple, the existing concepts to adjust the conservativeness and
robustness, such as minimax regret [14] and CVaR [15], can be
applied to AP-CLUC. Moreover, the reliability for load shed-
ding or power curtailment can be addressed by incorporating
more strict reserve requirement constraints or introducing the
different weights for each type of cost. Lastly, our learning
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approach can be extended to UC scenarios on microgrids us-
ing game theory, which are widely studied recently [49]–[51].
For this, there are several promising learning methods such as
game-theoretical multi-armed bandits [52], which can be used
for such scenarios with game settings.

APPENDIX A
PROOF OF LEMMA 1

The proof is done by showing that all costs including the
operating cost in (5), the fuel cost in (6), the start-up cost in
(7), the load shedding cost in (8) and the power curtailment cost
in (9) obeys to the Lipschitz condition for context z and action
a. We assume that the statistical characteristics of load demand
and renewable power outputs are similar for similar contexts,
and formalize this as the Lipschitz condition. For the simple
presentation, we substitute M̂(x)− p̂re(x) as ωx and denote an
event {a < ωx ≤ b} by Ωb

a(x).
Assumption 1: There exists Lx > 0 such that for all x, x′ ∈

X , we have∣∣E[ωxI(Ωb
a(x))]− E[ωx ′I(Ωb

a(x′))]
∣∣ ≤ Lx‖x− x′‖

and

|P(Ωb
a(x))−P(Ωb

a(x′))| ≤ Lx‖x− x′‖

for any given a ≤ b, where I(Ω) is the indicator function for
event Ω and P(Ω) denotes the probability of event Ω.

The proof for z: The fuel cost always satisfies the condition
since it does not depend on the extended context z. To prove
that the start-up cost of unit j satisfies the condition, we show
that

CSCj

∣∣∣∣∣e
− T j , o f f

C S T j − e
−

T ′
j , o f f

C S T j

∣∣∣∣∣ ≤ L
∣∣Tj,of f − T ′j,of f

∣∣ , (13)

for some L > 0, where Tj,of f and T ′j,of f are the elements repre-
senting the down times of unit j in z and z′, respectively. Since
Tj,of f ≥ 0 and T ′j,of f ≥ 0, we have

∣∣∣∣∣e
− T j , o f f

C S T j − e
−

T ′
j , o f f

C S T j

∣∣∣∣∣ ≤ 1.

Using the fact that the down time is a non-negative integer, we

get
∥∥∥Tj,of f − T ′j,of f

∥∥∥ ≥ 1, for any Tj,of f and T ′j,of f such that

Tj,of f �= T ′j,of f . Thus, when we choose L = CSCj , the start-
up cost of unit j satisfies the condition in (13) for any Tj,of f

and T ′j,of f such that Tj,of f �= T ′j,of f . When Tj,of f = T ′j,of f ,
the condition is satisfied regardless of L since both sides in (13)
are zero. Hence, when we choose L = CSCj , the start-up cost
of unit j satisfies the condition for any Tj,of f and T ′j,of f . From
the load shedding cost in (8), we have∣∣LSP

(
E([ωx − Σj pj ]+ )− E([ωx ′ − Σj pj ]+)

)∣∣
= LSP

∣∣∣E[(ωx − Σj pj )I(Ω∞Σ j pj
(x))]

−E[(ωx ′ − Σj pj )I(Ω∞Σ j pj
(x′))]

∣∣∣

= LSP
∣∣∣E[ωxI(Ω∞Σ j pj

(x))]− E[ωx ′I(Ω∞Σ j pj
(x′))]

− Σj pj

(
P(Ω∞Σ j pj

(x))−P(Ω∞Σ j pj
(x′))

)∣∣∣
≤ LSP

∣∣∣E[ωxI(Ω∞Σ j pj
(x))]− E[ωx ′I(Ω∞Σ j pj

(x′))]
∣∣∣

+ LSPΣj pj

∣∣∣P(Ω∞Σ j pj
(x))−P(Ω∞Σ j pj

(x′))
∣∣∣

≤ LSP · Lx(1 + Σj pj )‖x− x′‖,

where the last inequality follows Assumption 1. Then, by choos-
ing L = LSP · Lx(1 + Σj p

max
j ), we can show that the load

shedding cost obeys to the Lipschitz condition. Similarly, we
can show the Lipschitz condition of the power curtailment cost
with L = PCP · Lx(1 + Σj p

max
j ). Then, the expected cost is

a Lipschitz continuous function of the extended context z with
Lz =

∑
j∈J CSCj + Lx(LSP + PCP )(1 + Σj p

max
j ).

The proof for a: To prove that the fuel cost of unit j satisfies
the condition, we show that the following inequality is satisfied

c
(1)
j,f u (pj − p′j ) + c

(2)
j,f u (pj

2 − p′j
2) ≤ L(pj − p′j ),

for some L > 0, where pj > p′j . By dividing both sides of the
above inequality by (pj − p′j ), we have

c
(1)
j,f u + c

(2)
j,f u (pj + p′j ) ≤ L.

Thus, when we choose L = c
(1)
j,f u + 2c

(2)
j,f upmax

j , the fuel cost of
unit j satisfies the condition for any pj and p′j . The start-up cost
satisfies the condition since it does not depend on the action.
For the load shedding cost, we have

∣∣LSP
(
E([ωx − Σj pj ]+)− E([ωx − Σj p

′
j ]

+)
)∣∣ .

To simplify the notations, we omit x in the following. With-
out loss of generality, we assume Σj pj > Σj p

′
j . Then, we can

arrange the load shedding cost as

LSP
∣∣∣E[(ω − Σj pj )I(Ω∞Σ j pj

)]− E[(ω − Σj p
′
j )I(Ω∞Σ j p ′j

)]
∣∣∣

= LSP

∣∣∣∣∣
∫

Ω∞Σ j p j

(ω − Σj pj )dF −
∫

Ω∞
Σ j p ′

j

(ω − Σj p
′
j )dF

∣∣∣∣∣
= LSP

∣∣∣∣∫Ω∞Σ j p j

(ω − Σj pj )dF −
∫

Ω∞Σ j p j

(ω − Σj p
′
j )dF

−
∫

Ω
Σ j p j

Σ j p ′
j

(ω − Σj p
′
j )dF

∣∣∣∣∣

= LSP

∣∣∣∣∣
∫

Ω∞Σ j p j

(Σj pj − Σj p
′
j )dF +

∫
Ω

Σ j p j

Σ j p ′
j

(ω − Σj p
′
j )dF

∣∣∣∣∣

≤ LSP

∣∣∣∣∣
∫

Ω∞Σ j p j

(Σj pj−Σj p
′
j )dF +

∫
Ω

Σ j p j

Σ j p ′
j

(Σj pj−Σj p
′
j )dF

∣∣∣∣∣
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= LSP

∣∣∣∣∣
∫

Ω∞
Σ j p ′

j

(Σj pj−Σj p
′
j )dF

∣∣∣∣∣
= LSP

∣∣∣P(Ω∞Σ j p ′j
)(Σj pj − Σj p

′
j )

∣∣∣ ≤ LSP |Σj pj − Σj p
′
j |

= LSP |Σj (pj − p′j )| ≤ LSP
√

J‖pther − p′ther‖,

where F is the joint distribution of M̂ and p̂re and the last
inequality follows from the Cauchy-Schwarz inequality, i.e.,
(Σj1 · xj )2 ≤ JΣj x

2
j . Then, by choosing L = LSP

√
J , the

load shedding cost satisfies the condition. Similarly, we can
show that the power curtailment cost satisfies the condition by
choosing L = PCP

√
J . Then, the expected cost is a Lipschitz

continuous function of the action a with La =
∑

j∈J c
(1)
j,f u +

2c
(2)
j,f upmax

j +
√

J(LSP + PCP ).
Finally, we conclude that the expected cost is a Lipschitz con-

tinuous function for the context z and the action a, respectively,
with L = max(Lz , La).

APPENDIX B
PROOF OF THEOREM 1

We first introduce some notations and definitions. For each
set (hypercube) p ∈ PZ , let c̄a,p := supz∈p c(a, z) and ca,p :=
infz∈p c(a, z). For notational brevity, we denote the expected
operating cost c(a(t), z(t)) by ca,z(t). We denote the estimated
cost of action a on set p at time period t by ĉa,p(t). Let â(t)
be the action selected by AP-CLUC at time period t, a∗(t) =
π∗s(t)(z(t)) be the best myopic action given unit status s(t) and

context z(t), and ā∗(t) be the best myopic action in Ā(s(t), l)
given unit status s(t) and context z(t).

The upper bound on the highest level hypercube that is active
at any time t is given by the following lemma.

Lemma 2: In AP-CLUC, all the active hypercubes p ∈ P(t)
at time t have at most a level of � log2 t

ρ + 1.
Proof: Let l′ + 1 be the level of the highest level active hy-

percube. We must have
∑l ′

l=0 2ρl < t, otherwise the highest
level active hypercube’s level will be less than l′ + 1. We have

for t > 1, 2ρ ( l ′+ 1 )−1
2ρ−1 < t→ 2ρl ′ < t→ l′ < log2 t

ρ . �
With the introduced notations, the one-step regret in time

period t is defined as

r(t) := câ,z(t)− ca∗,z(t).

Consider time period t in which a context z(t) arrives to level
l hypercube denoted by p. Suppose that mA (l) = �2lξ and the
number of previous context arrivals to this hypercube is τ . Note
that in AP-CLUC, the estimated costs of all actions in Ā(l) are
virtually updated for every context arrival. Thus, all actions in
Ā(l) are updated τ times. From the one-step regret, we have

r(t) = câ,z(t)− cā∗,z(t) + cā∗,z(t)− ca∗,z(t)

≤ câ,z(t)− cā∗,z(t) + Lp̄ther

√
J2−lξ , (14)

where p̄ther = maxj∈J [pmax
j − pmin

j ] and the inequality fol-
lows from Lemma 1. Note that there always exists a discretized

action ā∗ within the distance Lp̄ther

√
J
−lξ

from the optimal ac-

tion a∗, since the power outputs are uniformly discretized using
mA (l) and the set of feasible power outputs at each time period
is a convex set for any given on/off states. Also, we have

ĉâ ,p(t) ≤ ĉā∗,p(t) a.s.

by the action selection rule of AP-CLUC. Then, from (14), we
obtain

r(t) ≤ câ,z(t)− ĉâ ,p(t) + ĉā∗,p(t)− cā∗,z(t) + Lp̄ther

√
J2−lξ

≤ 2 max
a∈Ā(l)

|ca,z(t)− ĉa,p(t)|+ Lp̄ther

√
J2−lξ .

Let Δt := maxa∈Ā(l) |ca,z(t)− ĉa,p(t)|. Then, since the total
operating cost is bounded in [0, 1], we have

E[r(t)] ≤ 2E[Δt ] + Lp̄ther

√
J2−lξ

= 2
∫ 1

0
P(Δt ≥ y)dy + Lp̄ther

√
J2−lξ . (15)

We also have for all a ∈ Ā(l),

E[ĉa,p(t)]− L
√

D2−l ≤ ca,p ≤ E[ĉa,p(t)]

and

E[ĉa,p(t)] ≤ c̄a,p ≤ E[ĉa,p(t)] + L
√

D2−l

from Lemma 1. Thus, we have

{Δt ≥ y}

=
⋃

a∈Ā(l)

{|ca,z(t)− ĉa,p(t)| ≥ y}

=
⋃

a∈Ā(l)

{ca,z(t)− ĉa,p(t) ≤ −y}

∪
⋃

a∈Ā(l)

{ca,z(t)− ĉa,p(t) ≥ y}

⊂
⋃

a∈Ā(l)

{
ca,z − ĉa,p(t) ≤ −y

}
∪

⋃
a∈Ā(l)

{c̄a,z − ĉa,p(t) ≥ y}

⊂
⋃

a∈Ā(l)

{
E[ĉa,p(t)]− L

√
D2−l − ĉa,p(t) ≤ −y

}

∪
⋃

a∈Ā(l)

{
E[ĉa,p(t)] + L

√
D2−l − ĉa,p(t) ≥ y

}

⊂
⋃

a∈Ā(l)

{
ĉa,p(t)− E[ĉa,p(t)] ≥ y − L

√
D2−l

}

∪
⋃

a∈Ā(l)

{
ĉa,p(t)− E[ĉa,p(t)] ≤ L

√
D2−l − y

}
.

By using Hoeffding’s inequality, for y ≥ L
√

D2−l , we have

P
(
ĉa,p(t)− E[ĉa,p(t)] ≥ y − L

√
D2−l

)
≤ e−2(y−L

√
D2−l )2 τ

and

P
(
ĉa,p(t)− E[ĉa,p(t)] ≤ L

√
D2−l − y

)
≤ e−2(y−L

√
D2−l )2 τ ,
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since the estimated costs of all actions in Ā(l) are updated in
τ times due to the virtual updates. Note that the effects of the
experience reuse on the estimated costs are not considered.
∫ 1

0
P(Δt ≥ y)dy

≤
∫ L

√
D2−l

0
1dy +

∫ 1

L
√

D2−l

P(Δt ≥ y)dy

≤ L
√

D2−l + 2 · 2J + lξJ

∫ 1

L
√

D2−l

e−2(y−L
√

D2−l )2 τ dy

≤ L
√

D2−l + 2(lξ+1)J +1
∫ 1

L
√

D2−l

dy

1 + 2(y − L
√

D2−l)2τ

≤ L
√

D2−l + 2(lξ+1)J + 1
2 τ

−1
2

∫ √
2τ 1 / 2 (1−L

√
D2−l )

0

dx

1 + x2

≤ L
√

D2−l + 2(lξ+1)J + 1
2 τ

−1
2 arctan(

√
2τ 1/2(1− L

√
D2−l))

≤ L
√

D2−l + 2(lξ+1)J− 1
2 τ

−1
2 π,

where the second inequality comes from the fact that |Ā(l)| ≤
2J mA (l)J , the third inequality follows from the fact that e−x ≤
1/(1 + x) for x ≥ 0, and the last inequality follows from the
fact that arctan (x) ≤ π/2 for all x ∈ R. Plugging the above
result to (15), we obtain

E[r(t)] ≤ 2L
√

D2−l + 2(lξ+1)J + 1
2 τ

−1
2 π + Lp̄ther

√
J2−lξ .

If τ = 0, i.e., when hypercube p is selected for the first time, we
simply have E[r(t)] = 1. Since p remains active for at most 2ρl

arrivals, the total regret in hypercube p, E[Rp(T )], is bounded
by

E[Rp(T )]

≤ 1 +
2ρ l∑
τ =1

2L
√

D2−l + 2(lξ+1)J + 1
2 τ

−1
2 π + Lp̄ther

√
J2−lξ

≤ 1 + 2L
√

D2l(ρ−1) + 2(lξ+1)J + ρ l + 1
2 π + Lp̄ther

√
J2−l(ξ−ρ) ,

where the last inequality follows from the fact that
∑T

τ =1
τ−1/2 ≤ 2T 1/2 [53].

Since the highest time order of each term in the regret is
different, in order to minimize the regret bound, we need to
optimize the parameters, i.e., ρ and ξ. From the highest time
orders of regrets, i.e., O(2l(ρ−1)), O(2lξJ + ρ l

2 ), O(2l(ρ−ξ)), we
choose the parameters which minimize the regret bound as ρ =
2(J + 1), and, ξ = 1. Then, with the chosen parameters and
Lemma 2, the limiting behaviour of the regret bound in the
theorem is given.

APPENDIX C
PROOF OF COROLLARY 1

If the context arrives in the worst-case manner, i.e., uni-
form context arrival, no level l + 2 hypercubes become ac-
tive until all level l hypercubes are deactivated. The number
of active hypercubes by time T is maximized in this man-

ner. Then, we have
∑lm a x−1

l=1 2(D+2(J +1))l < T , which implies
lmax < 1 + log2 T/(D + 2(J + 1)). From Theorem 1, we have

R(T ) ≤
�1+ lo g 2 T

D + 2 (J + 1 ) �∑
l=1

2Dl
[
2l(2J +1)(2L

√
D + 2J + 1

2 + Lp̄ther

√
J) + 1

]

≤ T
D + 2 J + 1
D + 2 J + 2 2D+2J +1(2L

√
D + 2J + 1

2 + Lp̄ther

√
J)

+ T
D

D + 2 J + 2 2D .
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