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ABSTRACT

DILATIONS OF DOUBLY INVARIANT KERNELS
VALUED IN TOPOLOGICALLY ORDERED *-SPACES

Serdar Ay
Ph.D. in Mathematics
Advisor: Aurelian B. N. Gheondea E.
June 2018

An ordered *-space Z is a complex vector space with a conjugate linear involution
%, and a strict cone Z+ consisting of self adjoint elements. A topologically ordered
x-space is an ordered x-space with a locally convex topology compatible with its
natural ordering. A VE (Vector Euclidean) space, in the sense of Loynes, is a
complex vector space equipped with an inner product taking values in an ordered
x-space, and a VH (Vector Hilbert) space, in the sense of Loynes, is a VE-space
with its inner product valued in a complete topologically ordered *-space and
such that its induced locally convex topology is complete.

On the other hand, dilation type theorems are important results that often
realize a map valued in a certain space as a part of some simpler elements on a
bigger space. Dilation results today are of an extraordinary large diversity and it
is a natural question whether most of them can be unified under general theorems.

We study dilations of weakly positive semidefinite kernels valued in (topolog-
ically) ordered *-spaces, which are invariant under left actions of x-semigroups
and right actions of semigroups, called doubly invariant. We obtain VE and VH-
spaces linearisations of such kernels, and on equal foot, their reproducing kernel
spaces, and operator representations of the acting semigroups.

The main results are used to unify many of the known dilation theorems for
invariant positive semidefinite kernels with operator values, also for kernels valued
in certain algebras, as well as to obtain some new dilation type results, in the
context of Hilbert C*-modules, locally Hilbert C*-modules and VH-spaces.

Keywords: topologically ordered x-space, VE-space, VH-space, Hermitian ker-
nel, weakly positive semidefinite kernel, doubly invariant kernel, linearisation,

reproducing kernel, x-representation, completely positive map.
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OZET

SIRALI #-UZAYT DEGERLI CIFT DEGISMEZ
(QEKIRDEKLERIN GENLESMES]

Serdar Ay
Matematik, Doktora
Tez Danigmani: Aurelian B. N. Gheondea E.
Haziran 2018

Eslenik dogrusal bir involiisyon ve 6zeslenik elemanlardan olusan kesin bir pozitif
elemanlar konisi olan kompleks bir vektor uzayina sirali x-uzayi denir. Dogal
siralamasi ile uyumlu bir yerel konveks topolojisi olan sirali x-uzayina ise topolojik
sirall -uzay1 denir. Loynes anlammda bir VE-uzay1 (Vektér Oklid) bir sirali -
uzayinda deger alan bir i¢ carpima sahip bir karmagik vektor uzayidir. Loynes
anlaminda bir VH-uzay1 (Vektor Hilbert) ise i¢ ¢arpimi bir tam topolojik siral
x-uzayinda deger alan ve i¢ carpiminin olugturdugu yerel konveks topolojisi tam
olan bir VE-uzayidir.

Diger yandan, genlesme tiirii teoremler genellikle belli bir uzayda deger alan
bir gonderimin daha biiyiik bir uzayin daha basit elemanlarinin bir parcasi olarak
ifade edilebilmesini saglayan énemli teoremlerdir. Giintimiizde genlesme teorem-
leri gok fazla cesitliliktedir ve bu teoremlerin bir¢ogunun genel teoremler altinda
birlegtirilmesinin miimkiin olup olmadigi dogal bir sorudur.

Bu tezde (topolojik) swrali *-uzay1r degerli zayif pozitif yaritanimli, -
yarigruplarinin sol etkileri altinda ve yarigruplarin sag etkileri altinda degismez,
dolayisiyla ¢ift degismez cekirdeklerin genlesmeleri iizerine calisacagiz. Bu
gekirdeklerin VE ve VH-uzay1 dogrusallagtirmalarini ve doguran cekirdek uza-
ylarini, ayrica etki eden yarigruplarin operator temsillerini elde edecegiz.

Ana sonuglari, Hilbert C*-modiilii, yerel Hilbert C*-modili ve VH-uzayi
gercevesindeki operatér veya belli cebir degerli pozitif yaritanmimli degismez
¢ekirdeklerin bilinen bircok genlesme teoremlerinin birlegtirilmesinde ve baz1 yeni
genlesme tiirti sonuglarin elde edilmesinde kullanacagiz.

Anahtar sozciikler:  topolojik sirali  *-uzayi, VE-uzayi, VH-uzayi, Her-
mitsel c¢ekirdek, zayif pozitif yaritanmimli cekirdek, cift degismez cekirdek,

dogrusallagtirma, doguran ¢ekirdek, *-temsili, tamamen pozitif génderim.
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Chapter 1

Introduction

Starting with the celebrated Naimark’s dilation theorems in [1] and [2], a powerful
dilation theory for operator valued maps was obtained through results of B. Sz.-
Nagy [3], W.F. Stinespring [4], and their generalisations to VH-spaces (Vector
Hilbert spaces) by R.M. Loynes [5], or to Hilbert C*-modules by G.G. Kasparov
[6]. The dilation theory consists today of an extraordinary large diversity of
results that may look, at the first glance, as having next to nothing in common,
e.g. see N. Aronszajn [7], W.B. Arveson [8], S.D. Barreto et al. [9], D. Gagpar
and P. Gagpar [10], [11], A. Gheondea and B.E. Ugurcan [12], J. Gérniak and
A. Weron [13], [14], J. Heo [15], G.G. Kasparov [6], R.M. Loynes [5], G.J. Murphy
[16], M. Skeide [17], W.F. Stinespring [4], F.H. Szafraniec [18], [19], B. Sz.-Nagy
[3], to cite a few only. Taking into account the importance and the diversity of
dilation theorems e.g. see [8], there is a natural question, whether one can unify
all, or the most, of these dilation theorems, under one theorem. Such ideas are
provided in e.g. [20], [21], [16], [15], and [19], to cite just a few. Attempts to
approach this question are made in [22] by using the notions of VE-space over
an ordered -space and in [23], [24], [25] by using the notion of VH-space over
an admissible space, introduced by R.M. Loynes [5], [26] in 1965. Also see [27].
Following [23], [22], [24], [25] in this thesis it is a primary goal to show that
this unifying framework becomes significantly more successful when kernels with

values linear operators on VE-spaces and VH-spaces, see [22] and [24] and more
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generally, kernels with values in (topologically) ordered x-spaces are employed.

VE-space (Vector Euclidean space) and VH-space (Vector Hilbert space) are
generalisations of the notions of inner product space and of Hilbert space. These
are vector spaces on which there are “inner products” with values in certain
ordered x-spaces, hence “vector valued inner products”, see subsections 2.1-2.3

for precise definitions.

On the other hand, special cases of VH-spaces have been later considered in-
dependently of the Loynes’ articles. Thus, the concept of Hilbert module over
a C*-algebra was introduced in 1973 by W.L. Paschke in [28], following I. Ka-
plansky [29], and independently by M.A. Rieffel one year later in [30], and these
two articles triggered a whole domain of research, see e.g. [31] and [32] and the
rich bibliography cited there. Hilbert modules over C*-algebras are special cases
of VH-spaces. Dilation theory plays a very important role in this theory and
there are many dilation results of an impressive diversity, but the domain of
Hilbert modules over C*-algebras remained unrelated to that of VH-spaces. An-
other special case of a VH-space is that of Hilbert modules over H*-algebras of
P.P. Saworotnow [33]. Also, in 1985 A. Mallios [34] and later in 1988 N.C. Phillips
[35] introduced and studied the concept of Hilbert module over locally C*-algebra,
which is yet another particular case of VH-space over an admissible space. The
theory of Hilbert spaces over locally C*-algebras is an active domain of research

as well, e.g. see [36] and the rich bibliography cited there.

The aim of this thesis is to present a general approach to dilation theory based
on weakly positive semidefinite kernels, cf. section 3.1 that are left invariant under
actions of *-semigroups and right invariant under actions of semigroups and with
values (topologically) ordered #-spaces. In addition, we show that almost each
dilation theorem for such kernels is equivalent to a realisation as a reproducing
kernel space with additional properties. Our approach is based on ideas already
present under different dilation theorems in [21], [20], [5] [37], [27], [16], [38], [11],
[10], [19], [15], [23] and, probably, many others. In this thesis, to a large extent,
we make use of the results in our published articles [22], [24], [25] during the Phd

studies.



We briefly describe the contents of this thesis. In Chapter 2 we fix some termi-
nology and facts on ordered x-spaces, ordered *x-algebras, VE-spaces over ordered
x-spaces, and VE-modules over ordered x-algebras. On these basic objects, one
can build the ordered x-algebras of adjointable operators on VE-spaces or VE-
modules. We provide many examples that illustrate the richness of this theory,
even at the non topological level. Then we study ordered *-spaces with a natural
topology and VE-spaces with a topology inherited from such ordered *-spaces,
then VH-spaces and their linear operators. One of the main mathematical ob-
jects used in this research is that of Loynes’ admissible space, that is, a complete
topologically ordered *-space. In Lemma 2.3.2 we obtain a first surrogate of the

Schwarz inequality, which turns out to be very useful.

Then, in Chapter 3, we consider the main object of investigation which refers to
weakly positive semidefinite kernels with values (topologically) ordered *-spaces.
Here, we draw attention to Lemma 2.3.1 that clarifies the locally convex topology
on VH-spaces and to some generic examples that illustrate the unifying poten-
tial of the concept of VH-space. Then we briefly show the connection between

linearisations and reproducing kernel spaces at this level of generality.

The main results are contained in theorems 3.2.7, 3.2.9, 3.2.10, 3.2.11 and
3.2.13 from which we then show how special cases concerning different kinds of
"stronger” positive semidefiniteness can be derived. We consider weakly positive
semidefinite kernels not only left invariant under an action of a *-semigroup,
but also invariant under an action of a semigroup acting on the right. As a
result of this, we obtain VE and VH-space linearisations, as well as reproducing
kernel VE and VH-spaces, which are left invariant, and are equipped with a right
module action which respects their gramian. This right module action is given
by a canonical representation of the right acting semigroup in the space of linear
operators of the linearisation, and also the linear operators of the reproducing

kernel space.

Finally, in Chapters 4 and 5 we show that the main theorems contain the
dilation results obtained in many different contexts, including [23], [22], and [24],

and hence most of the dilation theory, by explicitly showing how to put the stage



in each case.

In Chapter 5 we apply the main theorems to obtain and unify dilation the-
orems, some known already, in the context of locally C*-algebras and locally

Hilbert modules over them and around different themes of positivity.



Chapter 2

Setting the Stage: Ordered
x-Spaces, VE-Spaces, VH-Spaces

and Their Examples

In this chapter we briefly review most of the definitions and some basic facts on
ordered *-spaces, VE-spaces over ordered x-spaces, and their linear operators,
then review and get some facts on VH-spaces over admissible spaces and their

linear operators.

2.1 VE-Spaces and Their Linear Operators.

A complex vector space Z is called ordered *-space, see [39], if:

(al) Z has an involution *, that is, a map Z > z — 2* € Z that is conjugate
linear ((sx+ty)* =sz*+ty* for all s,¢t € C and all z,y € Z) and involutive
((z*)* =z for all z € 7).

(a2) In Z there is a cone Zt (sx + ty € Z* for all numbers s,t > 0 and all
x,y € ZT), that is strict (ZT N —Z* = {0}), and consisting of selfadjoint
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elements only (z* = z for all z € Z*). This cone is used to define a partial
order on the real vector space of all selfadjoint elements in Z: z; > 2z if

21— %29 € Z+.

Recall that a x-algebra A is a complex algebra onto which there is defined an
involution A > a — a* € A, that is, (Aa + ub)* = Xa* + b*, (ab)* = b*a*, and
(a*)* =a, for all a,b € A and all A\, u € C.

An ordered *-algebra A is a x-algebra such that it is an ordered *-space, more

precisely, it has the following property.
(osal) There exists a strict cone AT in A such that for any a € A* we have a = a*.

Clearly, any ordered x-algebra is an ordered x-space. In particular, given a € A,
we denote a > 0 if a € A" and, for a = a* € A and b = b* € A, we denote a > b
ifa—0b>0.

Given a complex linear space £ and an ordered *x-space space Z, a Z-gramian,
also called a Z-valued inner product, is, by definition, a mapping € x € 3 (x,y) —
[z,y] € Z subject to the following properties:

(vel) [z,x] > 0 for all x € &, and [z, 2] = 0 if and only if z = 0.
(ve2) [z,y] = [y, x]* for all z,y € &.

(ve3) [z, ayr + Bya] = afz,y1] + B[z, yo] for all o, 5 € C and all z1,z5 € E.

A complex linear space £ onto which a Z-gramian [-, -] is specified, for a certain

ordered *-space Z, is called a VE-space (Vector Euclidean space) over Z, cf. [5].

Given a pairing [-,:]: € x € — Z, where £ is some vector space and Z is an
ordered x-space, and assuming that [-, -] satisfies only the axioms (ve2) and (ve3),

then a polarisation formula holds

3
A,y =Y iz +ify, 2 +ify], 2,y€&. (2.1)
k=0



In particular, this formula holds on a VE-space and it shows that the Z-gramian

is perfectly defined by the Z-valued quadratic map € 3 z — [z, ] € Z.

A VE-spaces isomorphism is, by definition, a linear bijection U: £ — F, for
two VE-spaces over the same ordered x-space Z, which is isometric, that is,

Uz, Uylr = [z,y]e for all z,y € E.

A wuseful result for the constructions in the thesis is the following lemma.

Lemma 2.1.1 (Loynes [5]). Let Z be an ordered x-space, £ a complex vector
space and [-,-]: € x & = Z a positive semidefinite sesquilinear map, that is, [-, ]
is linear in the second variable, conjugate linear in the first variable, and [x,z] > 0
forallx € E. If f € & is such that [f, f] = 0, then [f, f'] = [f', f] = 0 for all
freé.

Given two VE-spaces £ and F, over the same ordered x-space Z, one can
consider the vector space L£(&,F) of all linear operators 7: € — F. A linear
operator T € L(&, F) is called adjointable if there exists T* € L(F, &) such that

[Te>f].7: = [eaT*f]c‘Ja €€ ga f € F. (22)

The operator T™, if it exists, is uniquely determined by T and called its adjoint.
Since an analog of the Riesz Representation Theorem for VE-spaces may not
exist, in general, there may be not so many adjointable operators. Denote by
L*(E,F) the vector space of all adjointable operators from L£(&, F). Note that
LX(E) = L*(E,E) is a x-algebra with respect to the involution * determined by
the operation of taking the adjoint.

An operator A € L(€) is called selfadjoint if [Ae, f] = [e, Af], for all e, f € &.
Any selfadjoint operator A is adjointable and A = A*. By the polarisation
formula (2.1), A is selfadjoint if and only if [Ae,e] = [e, Ae], for all e € £. An
operator A € L(€) is positive if [Ae,e] > 0, for all e € £. Since the cone Z7F
consists of selfadjoint elements only, any positive operator is selfadjoint and hence
adjointable. Note that any VE-space isomorphism U is adjointable, invertible,

and U* = U~!, hence, equivalently, we can call it unitary.
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An operator T' € L(E,F) is called bounded if there exists C' > 0 such that
[Te,Te]lr < C?[e,ele, e€E. (2.3)

Note that the inequality (2.3) is in the sense of the order of Z uniquely determined
by the cone Z,, see the axiom (a2). The infimum of these scalars is denoted by

|T|| and it is called the operator norm of T, more precisely,
|T|| = inf{C > 0| [Te, Te]r < C*[e,ele, for all e € £}. (2.4)

Let B(E,F) denote the collection of all bounded linear operators 7: & — F.
Then B(E, F) is a linear space and || - || is a norm on it, cf. Theorem 1 in [26]. In
addition, if T"and S are bounded linear operators acting between appropriate VE-
spaces over the same ordered x-space Z, then ||T'S|| < ||T]|||S], in particular T'S
is bounded. If £ = F then B(£) = B(&,€) is a normed algebra, more precisely,

the operator norm is submultiplicative.

A VE-module € over an ordered x-algebra A is a right .A-module on which there
exists an A-gramian [-,-|¢: € x € — A with respect to which it is a VE-space,
that is, (vel)-(ve3) hold, and, in addition,

(vem) [e, fa + gblse = le, flea + [e, gleb for all e, f,g € € and all a,b € A.

Given an ordered x-algebra A and two VE-modules £ and F over A, an oper-
ator T € L(E,F) is called a module map if

T(ea)=T(e)a, e€&, ac A

It is easy to see that any operator T' € L*(E, F) is a module map, e.g. see [22].

2.2 Admissible Spaces.

The complex vector space Z is called topologically ordered x-space if it is an

ordered *-space, that is, axioms (al) and (a2) hold and, in addition,

8



(a3) Z is a Hausdorff locally convez space.

(ad4) The topology of Z is compatible with the partial ordering in the sense
that there exists a base of the topology, linearly generated by a family of
neighbourhoods {C'}cee, of the origin that are absolutely convex and solid,

in the sense that, if x € C' and y € Z are such that 0 <y < z, then y € C.

Remark 2.2.1. Axiom (a4) is equivalent with the following one:

(ad’) There exists a collection of seminorms {p;};cs defining the topology of Z
that, for any j € J, p; is increasing, in the sense that, 0 < z <y implies

pi(z) < pj(y).

To see this, e.g. see Lemma 1.1.1 and Remark 1.1.2 of [40], letting Cy be a family
of open, absolutely convex and solid neighbourhoods of the origin defining the
topology of Z, for each C' € Cy, consider the Minkowski seminorm p¢ associated
to C,

po(z) =inf{\ | A >0, xze€lC}, xze€lZ. (2.5)

Clearly, {pc | C € Cy} define the topology of Z. Moreover, p¢ is increasing. To
see this, for any € > 0, there exists pc(z) < Ac < pe(z) + € such that x € A\.C.
Since C' is balanced, A\.C' C (pc(z) + €)C, so = € (pc(x) +€)C. As C is also
solid, if 0 < y < z, then we have y € (pc(x) + €)C, from which we obtain
po(y) < po(x) + €. Since € > 0 was arbitrary, we have that pc(y) < pe(x).

Conversely, given any increasing continuous seminorm p on Z, the set
Cp:={reZ|pl) <1}
is absolutely convex. Moreover, it is solid since, if z € C}, with 0 <y < x, then

p(y) <p(r) <1,s0y € C,.

Given a family Cy of absolutely convex and solid neighbourhoods of the origin
that generates the topology of Z, we denote by S¢,(Z) = {pc | C € Cp}, where

pe is the Minkowski seminorm associated to C' as in (2.5). The collection of all

9



continuous increasing seminorms on Z is denoted by S(Z). As a consequence of
Remark 2.2.1, S(Z) is in bijective correspondence with the family C of all open,
absolutely convex and solid neighbourhoods of the origin. Note that S(Z) is a
directed set: given p,q € S(Z), consider r := p + ¢. In fact, S(Z) is a cone, i.e.

it is closed under all finite linear combinations with positive coefficients.

Z is called an admissible space, cf. [5], if, in addition to the axioms (al)—(ad),

(ab) The cone Z is closed, with respect to the specified topology of Z.

(a6) The topology on Z is complete.

Finally, if, in addition to the axioms (al)—(a6), the space Z satisfies also the

following axiom:

(a7) With respect to the specified partial ordering, any bounded monotone se-

quence is convergent.

then Z is called a strongly admissible space [5], also see [41]. A modern treatment
of the subject can be found in [42].

Examples 2.2.2. (1) Any C*-algebra A is an admissible space, as well as any
closed x-subspace S of a C*-algebra A, with the positive cone ST = AT NS
and all other operations (addition, multiplication with scalars, and involution)
inherited from A.

(2) Any pre-C*-algebra is a topologically ordered #-space. Any #-subspace S
of a pre-C*-algebra A is a topologically ordered *-space, with the positive cone

ST = A" NS and all other operations inherited from A.

(3) Any locally C*-algebra, cf. [43], [35], (definition is recalled in Chapter 5)
is an admissible space. In particular, any closed x-subspace S of a locally C*-
algebra A, with the cone S, = A" NS and all other operations inherited from

A, is an admissible space.
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(4) Any locally pre-C*-algebra is a topologically ordered x-space. Any x-
subspace S of a locally pre-C*-algebra is a topologically ordered *-space, with
ST = A" NS and all other operations inherited from A.

(5) Let H be an infinite dimensional separable Hilbert space and let C; be the
trace-class ideal, that is, the collection of all linear bounded operators A on H
such that tr(|A]) < co. C is a *-ideal of B(H) and complete under the norm
|Alls = tr(|A]). Positive elements in C; are defined in the sense of positivity
in B(H). In addition, the norm || - ||; is increasing, since 0 < A < B implies
tr(A) < tr(B), hence C; is a normed admissible space.

(6) Let V' be a complex Banach space and let V' be its conjugate dual space.
On the vector space B(V, V') of all bounded linear operators T': V' — V'  anatural
notion of positive operator can be defined: T is positive if (T'v)(v) > 0 for all
v € V. Let B(V,V’)" be the collection of all positive operators and note that it
is a strict cone that is closed with respect to the weak operator topology. The
involution x in B(V,V’) is defined in the following way: for any 7' € B(V, V'),
T* = T'|V, that is, the restriction to V' of the dual operator 7": V" — V’. With
respect to the weak operator topology, the cone B(V, V')t and the involution =
just defined, B(V, V") becomes an admissible space. See A. Weron [44], as well as
D. Gagpar and P. Gagpar [38].

(7) Let X be a nonempty set and denote by K(X) the collection of all complex
valued kernels on X, that is, K(X) = {k | k: X x X — C}, considered as
a complex vector space with the operations of addition and multiplication of
scalars defined elementwise. An involution * can be defined on K(X) as follows:
k*(x,y) = k(y,z), forall 2,y € X and all k € K(X). The cone K(X)* consists of
all positive semidefinite kernels, that is, those kernels k € IC(X) with the property
that, for any n € N and any zy,...,7, € X, the complex matrix [k(z;, z;)]}';—

is positive semidefinite. Then K(X) is an ordered *-space.

Further, consider the set Py(X) of all finite subsets of X. For each A € Py(X),
let A={x1,...,2,} and define the seminorm p,: K(X) — R by

pa(k) = [[k(zs, )]l k€ K(X),
11



the norm being the operator norm of the n x n matrix [k(z;, z;)] Since a

n

ij=1-
reordering of the elements xq,...,z, produces a unitary equivalent matrix, the
definition of p4 does not depend on which order of the elements of the set A is
considered. It is easy to see that each seminorm p,4 is increasing and that, with

the locally convex topology defined by {pa}acp,(x), K(X) is an admissible space.

(8) Let A and B be two C*-algebras. Recall that, in this case, the specified
strict cone A" linearly generates A. On L(A, B), the vector space of all linear
maps ¢: A — B, we define an involution: ¢*(a) = ¢(a*)*, for all a € A. A
linear map ¢ € L(A, B) is called positive if (A1) C BT. It is easy to see that
L(A,B)*", the collection of all positive maps from L(A, B), is a cone, and that
it is strict because AT linearly generates A. In addition, any ¢ € L(A,B)" is
selfadjoint, again due to the fact that A*" linearly generates A. Consequently,

L(A, B) has a natural structure of ordered x-space.

On L(A,B) we consider the collection of seminorms {p,}sca+ defined by
pa(p) = |l@(a)], for all ¢ € L(A,B). All these seminorms are increasing and
the topology generated by {p,}eea+ is Hausdorff and complete. Consequently,
L(A, B) is an admissible space.

With a slightly more involved topology, it can be shown that the same conclu-

sion holds for the case when A and B are locally C*-algebras.

(9) Let {Za}aca be a family of admissible spaces such that, for each o € A,
Z7 is the specified strict cone of positive elements in Z,, and the topology of Z,,
is generated by the family of increasing seminorms {p, ;}je7,. On the product
space Z = [[,cu Za let Z1 = [[,ca Z4 and observe that Z* is a strict cone.

Letting the involution * on Z be defined elementwise, it follows that ZT consists

on selfadjoint elements only. In this way, Z is an ordered *-space.

For each 8 € A and each j € J3, let

qJ('B)«Za)O‘GA) - PE'B)(ZB), (Za)aca € Z. (2.6)

It is easy to show that q](-'B ) is an increasing seminorm on Z and that, with the

12



topology generated by the family of increasing seminorms {q§6 )} geA, 4 becomes
VISV/]
an admissible space.

2.3 Vector Hilbert Spaces and Their Linear Op-

erators.

If Z is a topologically ordered x-space, any VE-space £ over Z can be made in a
natural way into a Hausdorff locally convex space by considering the topology 7¢,
the weakest topology on £ that makes the quadratic map Q : E > h — [h,h]| € Z
continuous. More precisely, letting Cy be a collection of open, absolutely convex
and solid neighbourhoods of the origin in Z, that generates the topology of Z as

in axiom (ab), the collection of sets
De={ze€&|x,z] € C}, CeCy, (2.7)

is a topological base of open and absolutely convex neighbourhoods of the origin
of £ that linearly generates 7¢, cf. [5]. We are interested in explicitly defining the

topology 7¢ in terms of seminorms.

Lemma 2.3.1. Let Z be a topologically ordered x-space and £ a VE-space over
Z.

(1) (&;7¢) is a Hausdorf locally convex space.
(2) For every continuous increasing seminorm p on Z
p(h) =p([h,h])'?, heE, (2.8)
is a continuous seminorm on (E;7g).

(3) Let {p;}jes be a family of increasing seminorms defining the topology of Z
as in aziom (a4’ ). Then, with the definition (2.8), the family of seminorms
{p;}jes generates 7¢.

(4) The gramian [-,-]: € x & — Z is jointly continuous.

13



Statements (1) and (4) are proven in Theorem 1 in [5]. Statement (2) is
claimed in Proposition 1.1.1 in [40] but, unfortunately, the proof provided there

is irremediably flawed, so we provide full details.

Proof of Lemma 2.3.1. We first prove that, if p is a continuous and increasing
seminorm on Z, p is a quasi seminorm on £. Indeed, for any A € C and any
het&

P(AR) = p([Ah, ARD)Y2 = [X[p([h, B])Y2 = [A[p(h),

hence p is positively homogeneous.

For arbitrary h, k € € we have
[h £k, h+ k] =[h,h] + [k, k] £ [h, k] £ [k, h] >0,
in particular,
[, k] + [k, h] < [h, h] + [k, k]. (2.9)
and
0<[htkhtk]<[h—kh—k+[h+kh+k=2(hhl+[k k). (2.10)
Since p is increasing, it follows that
Blh+ k) = (p([h+ k. b+ K))* < V2(p([h, B]) + p(k, K])2
< V2(p([h, )" + pl[k, k])?) = V2(5(h) + p(k)).

This concludes the proof that p is a quasi seminorm.

Also, since p is the composition of the square root function v/, a homeomor-
phism of R, onto itself, with p and the quadratic map € 3 x +— [z, x] € Z, clearly
P is continuous with respect to the topology 7¢. This observation shows that, if
{p;}jes is a family of increasing seminorms generating the topology of Z, then
{P;};es is a family of quasi seminorms generating 7¢. In particular, (€;7¢) is a

topological vector space.

We prove now that p satisfies the triangle inequality, hence it is a seminorm.

To see this, consider the unit quasi ball
Us={he&|ph) <1}

14



Since p is continuous, U is open, hence absorbing for each of its points. Since p
is positively homogeneous, Uj; is balanced. We prove that Uj is convex as well.
Let h,k € Us and 0 <t <1 arbitrary. Then,

0 < [th+ (1 —t)k,th+ (1 —t)k] = t*[h, h] + (1 — t)*[k, k] 4+ t(1 — t) ([, k] + [k, h])
and then using (2.9),

< [h,h) 4+ (1 —t)?[k, k] + t(1 — t)([h, h] + [k, k])
= t[h,h] + (1 —t)[k, k],

hence, since p is increasing, it follows

Flth+(1—t)k) = p([th+(1—t)k, th+(1—t)k]) > < (tp([h, B)+(1—t)p([k, K])) 7> < 1,

hence th + (1 — t)k € U.

It is a routine exercise to show that p is the gauge of U;
p(h) =1inf{t > 0| h € tU;},
hence, by Proposition IV.1.14 in [45], it follows that p is a seminorm.

Statement (4) is a consequence of the polarisation formula (2.1). ]

From now on, any time we have a VE-space £ over a topologically ordered
x-space Z, we consider on £ the topology 7¢ defined as in Lemma 2.3.1. With
respect to this topology, we call £ a topological VE-space over Z. Denote

S(&) == Se(€) ={pc | C € C}, (2.11)

where C is the collection of all open, absolutely convex and solid neighbourhoods
of the origin of Z as in (2.7). Note that S(€) is directed, more precisely, given
P, bp € S(E) consider S(Z) 3 q := pc+pp and define G(h) := q([h, hlg)'/%. Also

note that S(&€) is closed under positive scalar multiplication.

If Z is an admissible space and £ is a topological VE-space whose locally convex

topology is complete, then & is called a VH-space (Vector Hilbert space). Any
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topological VE-space £ on an admissible space Z can be embedded as a dense
subspace of a VH-space H over Z, uniquely determined up to an isomorphism,
cf. Theorem 2 in [5].

We now prove a surrogate of Schwarz Inequality.

Lemma 2.3.2. Let £ be a topological VE-space over the topologically ordered
x-space Z and p € S(Z). Then

ple. 1) < ap(le,e)p((f. /)2 = 4B(e)p(f), e feE. (2.12)

Proof. For arbitrary h, k € £ we have
[h+k,h+ k| =[h,h] + [k, k] + [h, k] £ [k, h] >0,

in particular,

[h, k] + [k, h] < [h, h] + [k, k],

and
0<[h+kh+kl<[h—Fkh—Fk]+[h+k h+Ek]=2(h h]+[kK]). (2.13)

Taking into account that p € S(Z) is increasing, from (2.13) it follows that

p(lh + k, b+ k) < 2(p([h, B]) + p([k, k])). (2.14)
Let now e, f € £ be arbitrary. By the polarisation formula (2.1) and (2.14), we
have
plle ) =p(; S et e+ ) < 3 plle +fe 1)
k=0 k=0
< 332 (lles) + w1, 471) = 2(p(le. ) + p(IF, 1)

e
Il

0

Letting A > 0 be arbitrary and changing e with v e and f with f / VA in the

previous inequality, we get

p(le, 1) < 2(Ap([e, e]) + A7 'p((f, 1),

hence, since the left hand side does not depend on A, it follows

plle, £1) < inf 200((e, e]) + Ap((f, 1)) = ap(le, ) ([, )2 O

16



Examples 2.3.3. (1) Any Hilbert module H over a C*-algebra A, e.g. see [31],
[32], can be viewed as a VH-space H over the admissible space A, see Exam-
ple 2.2.2.(1). In particular, any closed subspace S of H is a VH-space over the

admissible space A.

(2) Any Hilbert module H over a locally C*-algebra A, e.g. see [43], [35], can
be viewed as a VH-space H over the admissible space A, see Example 2.2.2.(2).

In particular, any closed subspace S of H is a VH-space over the admissible space

A.

(3) With notation as in Example 2.2.2.(5), consider Cy the ideal of Hilbert-
Schmidt operators on H. Then [A, B] = A*B, for all A, B € C, is a gramian with
values in the admissible space C; with respect to which Co becomes a VH-space.
Observe that, since C; is a normed admissible space, by Lemma 2.3.1 it follows
that Cy is a normed VH-space, with norm ||A|s = tr(]A|?)Y/2, for all A € Cs.
More abstract versions of this example have been considered by Saworotnow in
[33].

(4) Let {Ea}aca be a family of VH-spaces such that, for each oo € A, &, is
a VH-space over the admissible space Z,. As in Example 2.2.2, consider the
admissible space Z = [], .4 Zo and the vector space £ = [], .4 & on which we

define

a€cA

[(ea)a€A> (fa)aeA] = ([eon fa])aeA S Z> (ea)aeA, (fa)aeA €.

Then & is a VE-space over Z. On Z consider the topology generated by the

family of increasing seminorms {qj(»ﬁ )} gea defined at (2.6), with respect to which
JETs

Z becomes an admissible space. For each § € A and each j € J3, in view of

Lemma 2.3.1, consider the seminorm

~§ﬁ)((ea)a€A) = pg'ﬁ)([eaa ea])l/Qa (ea)OéGA S €.

The family of seminorms {ﬁ;ﬁ)} sea generates on £ the topology with respect to
Jj€ITs
which it is a VH-space over Z.

(5) Let Z be an admissible space and &, ...,&, VH-spaces over Z. On £ =
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[I-, & define

[(e5)5=1, (fi)iz1]e = Z[ej, file;s (€)1, (f5)j=1 € €, (2.15)

j=1
and observe that (£;[-,]¢) is a VE-space over Z. In addition, for any p € S(2)
letting p: &€ — R, be defined as in (2.8), p(e) = p([e,elg)/?, for all e € &,
it is easy to see that £ is a VH-space over Z. It is clear that we can denote
this VH-space by @?:1 &; and call it the direct sum VH-space of the VH-spaces
&, .. 6.

(6) Let H be a Hilbert space and £ a VH-space over the admissible space Z.
On the algebraic tensor product H @ £ define a gramian by

[h®el® fluge = (h,Dnle, fle € Z, h,leH, e feE,

and then extend it to H® & by linearity. It can be proven that, in this way, H® &
is a VE-space over Z. Since Z is an admissible space, H ® £ can be topologised

as in Lemma 2.3.1 and then completed to a VH-space HRQE over Z.

If H = C" for some n € N then, with notation as in item (5), it is clear that

C" ® & is isomorphic with P]_, &, with & =€ forall j =1,...,n.

Remark 2.3.4. If £ and F are two VH-spaces over the same admissible space
Z, by L.(E,F) we denote the space of all continuous operators from &€ to F.
Let Cy be a system of open and absolutely convex neighbourhoods of the origin
defining the topology of Z. Since S(&) is directed and it is closed under positive
scalar multiplication, the continuity of a linear operator 7' € L(&, F) is equivalent
with: for any p € Se,(F), there exists ¢ € S(€) and a constant ¢ > 0 such that
p(Th) < cq(h) for all h € £. We will use this fact frequently in this article.

For £ and F two VH-spaces over the same admissible space Z, we denote by
L:(E,F) the subspace of L*(E, F) consisting of all continuous and continuously
adjointable operators. Note that £3(£) = L(€, &) is an ordered x-subalgebra of
L(E).

A subspace M of a VH-space H is orthocomplemented, or accessible [5], if

every element h € ‘H can be written as h = g + k where ¢ is in M and k is such
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that [I, k] = 0 for all | € M, that is, k is in the orthogonal companion M= of M.
Observe that if such a decomposition exists it is unique and hence the orthogonal
projection Py onto M can be defined by Py h = g. Any orthogonal projection
P is selfadjoint and idempotent, in particular we have [Ph, k| = [Ph, Pk] for all
J,k € H, hence P is positive and contractive, in the sense [Ph, Ph| < [h, h] for all
h € H, hence P is continuous. Conversely, any selfadjoint idempotent operator
is an orthogonal projection onto its range subspace. Any orthocomplemented

subspace is closed.
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Chapter 3

The Main Theorems: Dilations of
Doubly Invariant Kernels Valued

in Ordered x-Spaces

In this chapter we are going to state and prove the main theorems of this thesis,
see Theorems 3.2.7, 3.2.9, 3.2.11, 3.2.13 as well as 3.2.15. Theorems 3.2.7 and
3.2.9 appear in our article [25].

3.1 Hermitian Kernels.

Let X be a nonempty set and Z an ordered x-space. A map k: X x X — 7 is
called a Z-valued kernel on X. If no confusion may arise we also say simply that
k is a kernel. The adjoint kernel k*: X x X — Z is defined by k*(z,y) = k(y, z)*,
for x,y € X. The kernel k is called Hermitian if k* = k.

Consider CX the complex vector space of all functions f: X — C, as well as

its subspace Cg* consisting of those functions f € C* with finite support. Given
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a Z-valued kernel k on X, a pairing [, -]x: C§ x C§ — Z can be defined

fghe= > f@)gwk(x,y), fgeC). (3.1)

z,yeX

The pairing [-, -] is linear in the second variable and conjugate linear in the first

variable. If, in addition, k = k*, then the pairing |-, -]x is Hermitian, that is,

[f?g]k: [g7f]l*<7 f,gE(Cé( (32)

Conversely, if the pairing [-, -]k is Hermitian then k = k*.

A convolution operator K: Ci¥ — Z* where Z%X is the complex vector space

of all functions g: X — Z, can be associated to the Z-kernel k by
(Kg)(@) =) _9wk(z.y), feCq. (3.3)
yeX

Clearly, K is a linear operator. A natural relation exists between the paring [-, -|x

and the convolution operator K, more precisely,

[fghe =D f@)(Kg)(x), [.g€CF. (34)

zeX
Therefore, it is easy to see from here that the kernel k is Hermitian if and only if

the pairing [-, -]x is Hermitian.

Given a natural number n, a Z-valued kernel k is called weakly n-positive if

for all z1,...,x, € X and all t1,...,t, € C we have

Z Etjk(l‘k, l‘j) Z 0. (35)

J,k=1

The kernel k is called weakly positive semidefinite if it is n-positive for all n € N.

Lemma 3.1.1. Let the Z-kernel k on X be weakly 2-positive. Then:
(1) k is Hermitian.
(2) If, for some x € X, k(z,z) =0, then k(x,y) =0 for ally € X.

(8) There exists a unique decomposition X = XoU Xy, XoNX; =0, such that
k(z,y) =0 for all x,y € Xy and k(xz,x) # 0 for all z € X;.
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Proof. (1) Clearly, weak 2-positivity implies weak 1-positivity, hence k(z,x) > 0
for all z € X. Let x,y € X be arbitrary. Since k is weakly 2-positive, for any
s,t € C we have

|s|?k(z, x) + |t|*k(y, y) + 5tk(z,y) + stk(y,x) > 0. (3.6)

Since the sum of the first two terms in (3.6) is in Z, and taking into account
that Z, consists of selfadjoint elements only, it follows that the sum of the last

two terms in (3.6) is selfadjoint, that is,
stk(z,y) + stk(y, ) = tsk(z,y)* + stk(y, z)".
Letting s =t = 1 and then s = 1 and ¢t =i, it follows that k(y, z) = k(x, y)*.

(2) Assume that k(z,z) = 0 and let y € X be arbitrary. From (3.6) it follows
that for all s,¢ € C we have

stk(z,y) + stk(y, z) > —[t’k(y, ). (3.7)
We claim that for all s,¢ € C we have
stk(x,y) + stk(y,x) = 0. (3.8)

To prove this, note that for ¢ = 0 the equality (3.8) it trivially true. If ¢ € C\ {0},
note that we can distinguish two cases: first, if k(y,y) = 0, then from (3.7) it
follows stk(x,y)+stk(y, ) > 0 and then, changing ¢ to —t the opposite inequality
holds, hence (3.8). The second case is k(y, y) # 0 when we observe that the right
hand side in (3.7) does not depend on s hence, replacing s by ns, n € Z, a routine

reasoning shows that (3.8) must hold as well.

Finally, in (3.8) we first let s = 1 = ¢ and then s = 1 and ¢ = i and solve for
k(z,y) which should be 0.

(3) Denote Xg = {z € X | k(z,z) =0} and let X; = X \ X. Then use (2) in
order to obtain k(z,y) =0 for all z,y € Xj. ]
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3.1.1 Weak Linearisations

Given an ordered x-space Z and a Z-valued kernel k on a nonempty set X, a weak
VE-space linearisation, or weak Kolmogorov decomposition of k is, by definition,

a pair (€; V), subject to the following conditions:

(vell) & is a VE-space over the ordered *-space Z.

(vel2) V: X — & satisfies k(z,y) = [V (x),V(y)|e for all z,y € X.

If, in addition, the following condition holds

(vel3) LinV(X) =€,

then the weak VE-space linearisation (£;V) is called minimal.

Two weak VE-space linearisations (V; &) and (V'; £’) of the same kernel k are
called unitarily equivalent if there exists a unitary operator U: & — &£’ such that
UV(x)=V'(x) for all x € X.

Remarks 3.1.2. (1) Note that any two minimal weak VE-space linearisations
(&;V) and (&'; V') of the same Z-kernel k are unitarily equivalent. The proof fol-
lows in the usual way: if (£’; V') is another minimal weak VE-space linearisation of

k, for arbitrary =1, ..., Zm, y1,...,y, € X and arbitrary t1,...,%,,,S1,...,8, € C,

we have
[Z t;V (), Z skV (ye)le = Z Z seti[V Z sptik(z;, yr)
j=1 J=1 k=1 k=1 j=1

S S SEV) Vile = 36V (), S sV e
=1 k=1 =1 k=1

hence U: Lin V(X)) — Lin V'(X) defined by
S Vi) =Y V@), w1, am €X, t,. oty €C, mEN,  (3.9)
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is a correctly defined linear operator, isometric, everywhere defined, and onto.
Thus, U is a VE-space isomorphism U: & — & and UV (x) = V/(z) for all

r € X, by construction.

(2) From any weak VE-space linearisation (£; V') of k one can make a minimal
one in a canonical way, more precisely, letting & = LinV(X) and Vj: X — &
defined by Vy(z) = V(z), = € X, it follows that (&;Vp) is a minimal weak

VE-space linearisation of k.

Let us assume now that Z is an admissible space and k is a Z-kernel on a set
X. A weak VH-space linearisation of k is a linearisation (#; V') of k such that
H is a VH-space. The weak VH-space linearisation (#; V) is called topologically

minimal if
(vhl3) Lin V(X)) is dense in H.

Two weak VH-space linearisations (H; V') and (H'; V') of the same Z-kernel k are
called unitary equivalent if there exists a unitary operator U € B*(H,H') such
that UV (z) = V'(z) for all x € X.

Remarks 3.1.3. (a) Any two topologically minimal weak VH-space linearisations
of the same Z-kernel are unitarily equivalent. Indeed, letting (#; V) and (H'; V')
be two minimal weak VH-space linearisations of the Z-kernel k, we proceed as
in Remark 3.1.2.(a) and define U: Lin V(X) — Lin V'(X) as in (3.9). Since U is
isometric, it is bounded in the sense of (2.3), hence continuous, and then U can be
uniquely extended to an isometric operator U: ‘H — H'. Since Lin V’(X) is dense
in H' and U has closed range, it follows that U is surjective, hence U € B*(H,H’)
is unitary and, by its definition, see (3.9), we have UV (x) = V'(z) for all z € X.

(b) From any weak VH-space linearisation (#;V') of k one can make, in a
canonical way, a topologically minimal weak VH-space linearisation (Ho; Vp) by
letting Ho = Lin V(X) and Vy(z) = V(z) for all z € X.

Theorem 3.1.4. (a) Given an ordered x-space Z and a Z-valued kernel k on a

nonempty set X, the following assertions are equivalent:
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(1) k is positive semidefinite.

(2) k admits a weak VE-space linearisation (E;V).

Moreover, if exists, a weak VE-space linearisation (E;V) can always be chosen

such that & C ZX, that is, consisting of functions f: X — Z only, and minimal.

(b) If, in addition, Z is an admissible space and k: X x X — Z is a kernel,

then any of the assertions (1) and (2) is equivalent with:

(3) k admits a weak VH-space linearisation (H;V).

Moreover, if exists, a weak VH-space linearisation (H;V) can always be chosen

such that H C ZX and topologically minimal.

Proof. (1)=-(2). Assuming that k is positive semidefinite, by Lemma 3.1.1.(1)
it follows that k is Hermitian, that is, k(x,y)* = k(y,x) for all z,y € X. With
notation as in Subsection 3.1, we consider the convolution operator K : Cif — Z*

and let Zx be its range, more precisely,

Zyx ={fe€Z¥| f=Kgfor some g € Ci'} (3.10)
={feF| flx) :Zg(y)k(x,y) for some g € Cif and all y € X}.
yeX

A pairing [-,-]¢: Z X Z3 — Z can be defined by

e, fle = [9: e = D g(@)h(y)k(z,y), (3.11)

z,yeX

where f = Kh and e = Kg for some g, h € Ci. We observe that

e, fle =Y g(@)f(@) = Y gla)k(w, y)h(y)

= Y nyg@kly.x) =3 h(yely)*,

which shows that the definition in (3.11) is correct, that is, independent of g and
h such that e = Kg and f = Kh.
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We claim that [-,-]¢ is a Z-valued inner product, that is, it satisfies all the
requirements (vel)—(ve3). The only fact that needs a proof is [f, f]le = 0 implies
f = 0. To see this, we use Lemma 2.1.1 and first get that [f, f']¢ = 0 for all
f' € Z3¥. For each x € X, let §, € Ci denote the d-function with support {z},

1, ify=u,
d:(y) = (3.12)

0, ify+#ux.

Letting f' = K0, we have

0= [f,fl]é‘:zéxf(y) :f(x)7

yeX

hence, since x € X are arbitrary, it follows that f = 0.

Thus, (Z3;[-,-]¢) is a VE-space. For each x € X we define V(z) € Z3 C € by
V(z) = Ko,. (3.13)
Actually, there is an even more explicit way of expressing V' (x), namely,

(V(@)(y) = (K6:)(y) = Y 6:(2)k(y, z) = k(y,z), =€ X. (3.14)

zeX

On the other hand, for any =,y € X, by (3.13) and (3.14), we have

V(2),V(y)le = (V(y)(x) = k(z,y),

hence (€;V) is a linearisation of k. We prove that it is minimal as well. To see

this, note that for any g € Cg°, with notation as in (3.12), we have

z€supp(g)

hence, by (3.13), the linear span of V(X) equals Z3.

(2)=-(1). This is proven exactly as in the classical case:

> titik(reas) = S0 4TIV (). Via)le = [ 5V (@) 34V (a)e 20,

jk=1 jk=1
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foralln e N, zq,...,x, € X, and tq,...,t, € H.
(3)=(2). Clear.

(1)=(3). Assuming that Z is an admissible space, let k be positive semidef-
inite, let (£;V) be the weak VE-space linearisation of k. Then, £ is naturally
equipped with a Hausdorff locally convex topology, see Subsection 2.3, and then
completed to a VH- space H. Thus, (H;V) is a weak VH-space linearisation of k
and it is easy to see that it is topologically minimal. The fact that this completion

can be made within Z% will follow from Proposition 3.1.8. O

3.1.2 Reproducing Kernel Spaces

Let Z be an ordered *-space and let X be a nonempty set. As in Subsection 3.1,
we consider the complex vector space Z¥ of all functions f: X — Z. A VE-space
‘R over the ordered x-space Z is called a weak Z-reproducing kernel VE-space on
X if there exists a Hermitian kernel k: X x X — Z such that the following

axioms are satisfied:

(rk1) R is a subspace of Z¥X, with all algebraic operations.
(rk2) For all z € X, the Z-valued map k, = k(-,z): X — Z belongs to R.

(rk3) For all f € R we have f(z) = [k, f]r, for all z € X.

The axiom (rk3) is called the reproducing property and note that, as a conse-

quence, we have
k(z,y) =k,(z) = ks, kylr, z,y€X. (3.15)

A weak Z-reproducing kernel VE-space k on X is called minimal if

(rk4) Lin{k, |z € X} =TR.
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If Z is an admissible space, a weak Z-reproducing kernel VE-space R that is
a VH-space is called a weak Z-reproducing kernel VH-space. Such an R is called
topologically minimal if
(rk4)" Lin{k, | z € X} is dense in R.

Remark 3.1.5. Let R be a weak Z-reproducing kernel VH-space with respect to

some admissible space Z. In general, the closed subspace Lin{k, |z € X} C R
may or may not be orthocomplemented in R, see Subsection 2.3. This anomaly
makes some differences when compared with the classical theory of reproducing

kernel spaces, as is the case in closely related situations as in [22] and [24] as well.

Proposition 3.1.6. A weak Z-reproducing kernel VH-space R with respect to

some admissible space Z is topologically minimal if and only if the closed subspace

Lin{k, | x € X} is orthocomplemented in R.

Proof. It M := Lin{k, | z € X} is orthocomplemented then, as a consequence
of (rk3), R is topologically minimal, in the sense of (rk4)’. Indeed, let f € R be
arbitrary. Since M is orthocomplemented, there exists f; € M and f, € Mt
with f = fi1 + fo. By (rk3) we obtain that 0 = [k,, fo] = fo(z) for all z € R, and
that fo = 0. It follows that f € M and M =R, i.e. Lin{k, | z € X} is dense in

R. The converse implication is trivial. O]

We first consider the relation between weak Z-reproducing kernel VE/VH-

spaces and their reproducing kernels.

Proposition 3.1.7. (a) Let R be a weak Z-reproducing kernel VE-space on X,

with respect to some ordered x-space Z and with kernel k. Then:

(i) k is positive semidefinite and uniquely determined by R.

(i1)) Ro = Lin{k, | * € X} C R is a minimal weak Z-reproducing kernel VE-
space on X and uniquely determined by k with this property.

(i1i) The gramian [-,-|r is uniquely determined by k on Ry.
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(b) Assume that Z is admissible and R is a weak Z-reproducing kernel VH-space.
Then:

(i) Ry is a topologically minimal Z-reproducing kernel VH-space in R.
(ii) The gramian [-,-|r is uniquely determined by k on Ry C R.

(iii) If R is topologically minimal then it is unique with this property.

Proof. (a) Let t1,...,t, € C and z1,...,z, € X be arbitrary. Using (3.15) it

follows

> ftik(zg, o) = > ke, ke Jr =D tike, Y tiker >0
j=1 k=1

jk=1 jk=1
hence k is positive semidefinite. On the other hand, by (rk3) it follows that
for all z € X the functions k, are uniquely determined by (R;[-,-]z), hence
k(y,z) = k,(y), z,y € X, are uniquely determined. Hence assertion (i) is proven.

Assertion (ii) is clear by inspecting the definitions. Assertion (iii) is now clear by
(rk3), see (3.15).

(b) The subspace Ry of R is a topologically minimal Z-reproducing kernel
VH-space, by definition. Using the assertion at item (a).(ii) and the continuity

of the gramian [-,-]g, it follows that it is uniquely determined by k on Rj.

Assume that R is topologically minimal and let R’ be another topologically
minimal weak Z-reproducing kernel VH-space on X with the same kernel k. By
axiom (rk2) and the property (rk4), Ry = Lin{k, | + € X} is a linear space
that lies and is dense in both of R and R'. By axiom (rk3), the Z-valued inner
products [, -]z and [, ]r/ coincide on Ry and then, due to the special way in
which the topologies on VH-spaces are defined, see (2.7) and (2.8), it follows that
R and R’ induce the same topology on R hence, taking into account the density
of Ry in both R and R’, we actually have R = R’ as VH-spaces. O

Consequently, given R a weak Z-reproducing kernel VE-space on X, without

any ambiguity we can talk about the Z-reproducing kernel k corresponding to
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R.

As a consequence of Proposition 3.1.7, weakly positive semidefiniteness is an
intrinsic property of the reproducing kernel of any weak reproducing kernel VE-
space. In the following we clarify in an explicit fashion the relation between weak
VE/VH-linearisations and weak reproducing kernel VE/VH-spaces associated to

positive semidefinite kernels.

Proposition 3.1.8. Let k be a weakly positive semidefinite kernel on X and with

values in the ordered *-space Z.

(a) Any weak reproducing kernel VE-space R associated to k gives rise to a
weak VE-space linearisation (€;V) of k, where £ =R and

Viz) =k, z€X. (3.16)
If R is minimal, then (£;V) is minimal.

(b) Any minimal weak VE-space linearisation (£;V) of k gives rise to the

manimal weak reproducing kernel VE-space R, where

that is, R consists of all functions X > x — [V(z),e]lx € Z, for all e € &, in
particular, R C Z* and R is endowed with the algebraic operations inherited

from the complex vector space ZX.

Proof. (a) Assume that (R;[-,:]z) is a weak Z-reproducing kernel VE-space on
X, with reproducing kernel k. We let £ = R and define V' as in (3.16). Note
that V(z) € & for all x € X. Also, by (3.15) we have

V(z),V(y)le =k(z,y), z,yeX.
Thus, (£;V) is a weak VE-space linearisation of k.

(b) Let (&;V) be a minimal weak VE-space linearisation of k. Let R be
defined by (3.17), that is, R consists of all functions X > x — [V (z),hls € Z,
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in particular R C Z%X with all algebraic operations inherited from the complex

vector space ZX.

The correspondence
ESh—Uh=[V(:),hle e R (3.18)

is clearly surjective. In order to verify that it is injective as well, let h,g € & be
such that [V'(-), hle = [V (-), gle. Then, for all x € X we have

[V(z),hle = [V(2), e,
equivalently,
[V(z),h—gle =0, z€X. (3.19)

By the minimality of the linearisation (£;V) it follows that ¢ = h. Thus, U is a

bijection.

Clearly, the bijective map U defined at (3.18) is linear, hence a linear isomor-

phism of complex vector spaces £ — R. On R we introduce a Z-valued pairing

Uf,Uglr = [f,gle, f.g€E. (3.20)

Since (&; [, -|¢) is a VE-space over Z, it follows that (R;[-,]z) is a VE-space over
Z. Indeed, this follows from the observation that, by (3.20), we transported the
Z-gramian from & to R or, in other words, we have defined on R the Z-gramian
that makes the linear isomorphism U a unitary operator between the VE-spaces

€ and R.

We show that (R; [, |r) is a weak Z-reproducing kernel VE-space with cor-
responding reproducing kernel k. By definition, R C Z%. On the other hand,

since

k. (y) = k(y,z) = [V(y),V(z)]e, for all z,y € X,

taking into account that V' (z) € £, by (3.17) it follows that k, € R for all z € X.
Further, for all f € R and all x € X we have

[kmy f]R = [kza [V<)7g]5]R - [v(x)vg]&
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where g € £ is the unique vector such that [V'(-),gle = f, which shows that
R satisfies the reproducing axiom as well. Finally, taking into account the
minimality of the linearisation (€;V) and the definition (3.17), it follows that
Lin{k, | z € X} = R. Thus, (R;[-,-]r) is a minimal weak Z-reproducing kernel
VE-space with reproducing kernel k. O

Proposition 3.1.9. Let k be a weakly positive semidefinite kernel on X and

valued in the admissible space Z .

(a) Any weak reproducing kernel VH-space R associated to k gives rise to a
weak VH-space linearisation (H; V') of k, where H =R and

V(z)=k,, z€X. (3.21)
If R is topologically minimal then (H; V') is topologically minimal.

(b) Any topologically minimal weak VH-space linearisation (H; V') of k gives

rise to the topologically minimal weak reproducing kernel VH-space R, where
R = {[V(), W | h € M}, (3.22)

that is, R consists of all functions X > x — [V (z),e]x € Z, for all e € H, in
particular, R C Z* and R is endowed with the algebraic operations inherited

from the complex vector space ZX.

Proof. (a) The argument is similar to that used to prove assertion (a) of Propo-
sition 3.1.8.

(b) Let (#;V) be a topologically minimal weak VH-space linearisation of k
and let R be defined as in (3.22). The correspondence

Ho3h—Uh=I[V(),hly €R (3.23)

is a linear bijection U: H — R. The argument to support this claim is similar
with that used during the proof of item (b) in Proposition 3.1.8, with the differ-
ence that from (3.19) we the topological minimality of the linearisation (#; V') in

order to conclude that g = h. Thus, U is a bijection.
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On R we introduce a Z-valued pairing as in (3.20) Since (H;[-,]») is a VH-
space over Z, it follows that (R;[-, |r) is a VH-space over Z. This follows from
the observation that, by (3.20), we transported the Z-gramian from H to R
or, in other words, we have defined on R the Z-gramian that makes the linear

isomorphism U a unitary operator between the VH-spaces H and R.

Finally, (R;[-, -]z) is the topologically minimal weak Z-reproducing kernel VH-
space with corresponding reproducing kernel k. The argument is again similar
with that used in the proof of item (b) in Proposition 3.1.8, with the difference

that here we use the topological minimality. O]

The following theorem adds one more characterisation of positive semidefinite
kernels, when compared to Theorem 3.1.4, in terms of reproducing kernel spaces.
It’s proof is a direct consequence of Proposition 3.1.8, Proposition 3.1.9, and
Theorem 3.1.4.

Theorem 3.1.10. (a) Let Z be an ordered x-space, X a nonempty set, and

k: X x X — Z a Hermitian kernel. The following assertions are equivalent:

(1) k is weakly positive semidefinite.

(2) k is the Z-valued reproducing kernel of a VE-space R in ZX.

(b) If, in addition, Z is an admissible space then assertions (1) and (2) are

equivalent with

(3) k is the Z-valued reproducing kernel of a VH-space R in Z*X.

In particular, any weakly positive semidefinite Z-valued kernel k has a topolog-

tcally minimal weak Z-reproducing kernel VH-space R, uniquely determined by

k.

As a consequence of the last assertion of Theorem 3.1.10, givenk: X xX — Z a

positive semidefinite kernel for an admissible space Z, we can denote, without any
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ambiguity, by Ry the unique topologically minimal weak Z-reproducing kernel

VH-space on X associated to k.

3.2 Invariant Weakly Positive Semidefinite Ker-

nels

Let X be a nonempty set equipped with the action of a (multiplicative) semigroup
I" denoted by & - z, for all £ € I and all x € X. By definition, we have

a-(f-z)=(af) -z foral o, €' and all z € X. (3.24)

In case the semigroup I' has a unit ¢, the action is called unital if € -z = x for all

x € X, equivalently, e- = Idx.

We assume further that I' is a *-semigroup, that is, there is an involution * on
['; this means that ({n)* = n*¢* and (£*)* = £ for all £,n € I'. Note that, in case

I'" has a unit € then " = e.

3.2.1 Doubly Invariant Kernels

Let X be a nonempty set and A be a (multiplicative) semigroup acting on X
on the right, where the action is denoted by x - a for all z € X and a € A. By

definition, we have
x-(ab) = (x-a)-bfor all a,b € A and for all z € X.

Let k: X x X — Z be a kernel. Let A be a (multiplicative) semigroup acting on
the right on the nonempty set X and on the ordered *-space Z, subject to the

following conditions:

(rikl) For every z,y € X and v € A the equality

k(z,y-v) =k(z,y) v
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holds.

(rik2) For any n € N, o, {y;}.; € X, v € A and {s;}}; € C the equality
i=1 i=1

holds.

Remark 3.2.1. Clearly, (rik2) is automatically satisfied if the action of A on the

ordered x-space Z is linear, i.e. the following hold:
s(z-a)=(sz)-a
forall s € C, z € Z and a € A, and,
(z14+2)-a=z-a+2-a

for all 21,29 € Z and a € A.

A kernel k : X x X — Z satisfying (rikl) and (rik2) is called a right invariant

kernel.

Now let a *-semigroup I' act on the nonempty set X from the left and a
semigroup A act on X from the right. Assume further that A acts on the ordered
x-space Z from the right. If a kernel k: X x X — Z is left invariant, that is,

k(y,&-z) =k(& -y, x) for all z,y € X and all { € T (3.25)

holds, and it is also right invariant, then it is called a doubly invariant kernel

under the actions of I' and A.

Remark 3.2.2. Note that a right invariant kernel k: X x X — Z can always
be considered doubly invariant by taking I' to be the trivial *-semigroup with
its trivial left action on the set X. Similarly, a left invariant kernel is always a

doubly invariant kernel.

Remark 3.2.3. Notice that we do not assume that the actions of I' and A on

the set X are compatible. The following shows that, the left and right invariance,
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or the double invariance of the kernel implies a weaker compatibility of the two

actions:

k(y,(a-z)-a) =k(a"y,x) - a=k(y,a- (x-a)), forall z € X, « € 'anda € A.

This compatibility is natural and strong enough for the applications, see The-
orems 3.2.11 and 3.2.13 below.

Let £ be a VE-space over an ordered *-space Z and recall that £(€) denotes
the algebra of all linear operators T': £ — &, and L*(€) denotes the *-algebra of

all adjointable linear operators 17': £ — &, see subsection 2.2.

A triple (&;m; V) is called a left invariant weak VE-space linearisation of the
Z-valued kernel k and the action of I on X, see [25], if:

(ivell) (&;V) is a weak VE-space linearisation of the kernel k.
(ivel2) m: ' — L*(€) is a *representation, that is, a multiplicative *-morphism.

(ivel3) V' and 7 are related by the formula: V(¢ - z) = n(&)V(x), for all x € X,
el

A quadruple (&;V;m;7) is called a doubly invariant VE-space linearisation of
the Z-valued kernel k: X x X — Z and actions of I' on X and A on X and Z if

we have

(divell) The triple (€;V;7) is a left invariant VE-space linearisation.

(divel2) 7: A — L(€) is a representation of the semigroup A on L£(£), £ is a right
module under the action of Lin 7(A), and the right module action respects

the gramian of £ in the following sense:

[k, i ()]e = [k, U -
for all k,l € £ and v € A.
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(divel3) V and 7 are related by the formula V' (z - v) = V(x)7(y).

If, in addition, (&; V') is minimal, that is,

(divel4) LinV(X) =€,

holds, then we call (&;V;m;7) a doubly invariant minimal VE-space linearisation
of the kernel k and the actions of I' and A.

Remark 3.2.4. Take I' to be the trivial *-semigroup with the trivial left action on
X (Which we can always do when a left action is not given). Then in the above we
obtain a triple (&€;V;7) which is called a right invariant VE-space linearisation
of the kernel k and the action of A, and in the case the underlying VE-space

linearisation is minimal, a right tnvariant minimal VE-space linearisation.

Let (£;m; V') be an invariant weak VE-space linearisation of the kernel k. Since
(€;V) is a weak linearisation and taking into account the axiom (ivel3), for all

x,y € X and all £ € I', we have

k(y,&-x) = [V(y), V(- x)le = [V(y), m(EV (2)]e (3.26)
= [V (), V(@)le = [V(E -y), V(z)le = k(& -y, z),

hence k is invariant under the action of I' on X. The same statement holds for a

doubly invariant weak VE-space linearisation (£;V';m;7) of a kernel k.

Now we make the definitions for topological invariant linearisations. Let Z
be an admissible space and X be a nonempty set. A triple (IC;m; V) is called a
left invariant weak VH-space linearisation of the kernel k: X x X — Z and the
action of I on X, see [25], if:

(ivell) (K;V) is a weak VH-space linearisation of the kernel k.

(ivel2) m: I' = L(K) is a *-representation, that is, a multiplicative *-morphism.
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(ivel3) V and 7 are related by the formula: V(£ - x) = n(§)V(x), for all z € X,
el

Now a quadruple (IC;V;m; 1) is called a doubly invariant VH-space linearisa-
tion of the Z-valued kernel k and actions of I' on X and A on X and Z if we

have

(divhll) The triple (KC; V) is a left invariant VH-space linearisation.

(divhl2) 7: A — L.(K) is a representation of the semigroup A on L.(K), K is a
right module under the action of the algebra Lin 7(A), and the right module

action respects the gramian of K in the following sense:

[k7 lT(V)]K = [k7 Z]IC -
for all k,1 € K and v € A.

(divhl3) V and 7 are related by the formula V(z - v) = V(2)7(7).

If, in addition, (KC; V') is minimal, that is,

(divhl4) Lin V(X)) is dense in K,

then we call (IC; V; 7; 7) a doubly invariant minimal VH-space linearisation of the
kernel k and the actions of I' and A.

As in Remark 3.2.4, we have the corresponding notions of a right invariant

VH-space linearisation and a right invariant minimal VH-space linearisation.

As usually [3], minimal left invariant VE-space linearisations preserve linearity.

Proposition 3.2.5. Assume that, given an ordered x-space Z valued kernel k,
wmvariant under the action of the x-semigroup I' on X, for some fized o, 3,y € T’

we have k(y, a-x)+k(y, 8-2) = k(y,v-x) for all z,y € X. Then for any minimal
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weak invariant VE-space linearisation (E;m; V) of k, the representation satisfies

m(a) +7(8) = 7(7).

The same conclusion holds when Z is an admissible space and (KC;V;7) is a

topologically minimal right invariant VH-space linearisation of k

Proof. For any z,y € X we have

[(m() + 7w (B)V (2),V(y)le = [7()V (z)

hence, since V' (X) linearly spans &, it follows that 7(«) + 7(5) = 7 (y).

When Z is an admissible space and (K; V'; 7) is a topologically minimal right
invariant VH-space linearisation of k, the same argument applies with the small

difference that we use the topological minimality. O

For minimal right invariant linearisations a similar result holds, see the Propo-

sition below. Hence minimal invariant linearisations also preserve linearity.

Proposition 3.2.6. Assume that, given a kernelk: X x X — Z for an ordered *-
space Z and a nonempty set X, right invariant under the action of the semigroup
A on X and Z, for some fized a,b,c € A we have k(y, z-a)+k(y,z-b) = k(y, z-c)
for all x,y € X. Then for any minimal right invariant VE-space linearisation

(&;V;7) of k, the representation T satisfies T(a) + 7(b) = 7(c).

The same conclusion holds when Z is an admissible space and (KC;V;7) is a

topologically minimal right invariant VH-space linearisation of k.

Proof. This follows by the same arguments as in the proof of Proposition 3.2.5

with obvious modifications. O]

Let us now define doubly invariant reproducing kernel VE-spaces. A triple

(R; p;0) is called a doubly invariant reproducing kernel VE-space of the kernel
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k: X x X — Z and the actions of a *-semigroup I' and semigroup A if

(dirkvel) R is a reproducing kernel VE-space of the kernel k, see 3.1.2.

(dirkve2) p: I' — L*(R) is a x-representation of the s-semigroup I', such that
p(§ )k, =ke, forall e I' and z € X.

(dirkve3) o: A — L(R) is a representation of the semigroup A, R is a right module
under the action of Lino(A) such that

[q,r0(a)lr = [g,7]r - a holds for all ¢, € Randa € A.

If in addition the underlying VE-space is minimal; i.e. we have

(dirkve4) R = Lin{k, | z € X'}

then we call (R; p; o) the minimal doubly invariant reproducing kernel VE-space

of the kernel k: X x X — Z and the actions of a *-semigroup I' and semigroup
A.

As in Remark 3.2.4, if we consider the trivial *-semigroup with the trivial left
action on the set X, we get (R; o) which we call right invariant reproducing kernel

VE-spaces.

Similar to the case of linearisations, we now define doubly invariant reproduc-
ing kernel VH-spaces. A triple (R; p; o) is called a doubly invariant reproducing
kernel VH-space of the kernel k: X x X — Z and the actions of I' and A if

(dirkvh1) R is a reproducing kernel VH-space of the kernel k, see subsection 3.1.2.

(dirkvh2) p: I' — Li(R) is a #-representation of the s-semigroup I', such that
p(&)k, =ke, forall { €I and z € X.

(dirkvh3) o: A — L.(R) is a representation of the semigroup A, R is a right module
under the action of Lin o(A) such that

[q,r0(a)lr = [g,7]r - a holds for all ¢,r € Randa € A.
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If in addition we have

(dirkvh4) The set Lin{k, | x € X} is dense in R

then we call (R; p; o) the minimal doubly invariant reproducing kernel VH-space
of the kernel k: X x X — Z and the actions of a *-semigroup I'" and semigroup
A.

Two doubly invariant weak VE-space linearisations (&;m;V;7) and
(&', V', 7"), of the same Hermitian kernel k, are called wnitarily equivalent
if there exists a unitary operator U: & — &’ such that Ut(a) = 7'(a)U for all
aerT, Un(€) =a'(EU for all £ € T, and UV (z) = V'(x) for all z € X. Let
us note that, in case both of these invariant weak VE-space linearisations are
minimal, then this is equivalent with the requirement that the weak VE-space

linearisations (€; V') and (€'; V') are unitary equivalent.

The following theorem is the first main theorem of this thesis in which invariant
weakly positive semidefinite kernels are characterised by invariant weak VE-space
linearisations and by certain x-representations on weak Z-reproducing kernel VE-

spaces.

Theorem 3.2.7. Let I' be a *-semigroup that acts on the nonempty set X, and
letk: Xx X — Z be a Z-valued kernel for some ordered x-space Z. The following

assertions are equivalent:

(1) k satisfies the following conditions:

(a) k is weakly positive semidefinite.

(b) k is invariant under the action of T' on X, that is, (3.25) holds.
(2) k has an invariant weak VE-space linearisation (€;m; V).

(8) k admits a weak Z-reproducing kernel VE-space R and there exists a *-
representation p: I' = L*(R) such that p(§)ky = ke, for all§ €T, z € X.
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Moreover, in case any of the assertions (1), (2), or (3) holds, then a minimal
mwvariant weak VE-space linearisation of k can be constructed and a minimal weak

Z-reproducing kernel R as in (3) can constructed as well.

Proof. (1)=-(2). We consider the notation and the minimal weak VE-space lin-
earisation (&€;V) constructed as in the proof of the implication (1)=-(2) of The-
orem 3.1.4. For each ¢ € T we let w(£): ZX — ZX be defined by

() =f(E&-y), fezZ¥ yeX, (el. (3.27)

We claim that 7(€) leaves Zi invariant, where K is the convolution operator
defined at (3.3) and Zx C Z¥ denotes its range. To see this, let f € Zz, that
is, f = Kg for some g € C or, even more explicitly, by (3.10),

fly) =Y g@k(z,y), yeX, (3.28)

zeX

Then,

FEy) = g@k(z, ¢ y) = gk 2y) =D ge(2)k(zy), (3.29)
where,

0, if £ - 2 = 2z has no solution x € X,
9¢(2) = .
> g(xz), otherwise.
Ex=z
Since clearly g¢ € C{, that is, g¢ has finite support, it follows that (&) leaves
Z¥% invariant. In the following we denote by the same symbol 7(£) the map

m(&): Zy — Zy.

In the following we prove that 7 is a representation of the semigroup I' on the

complex vector space Z3 , that is,

m(ap)f =m(a)w(B)f, o,BET, fe . (3.30)
To see this, let f € Zx be fixed and denote h = w(3)f, that is, h(y) = f(8* - y)
for all y € X. Then 7(a)m(8)f = m(a)h, that is, (7(a)h)(y) = h(a* - y) =
f(B*a* - y) = f((aB)* - y) = (m(aB))(y), for all y € X, which proves (3.30).
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Next we show that 7 is actually a *-representation, that is,

() f, fle = [f, () e, [ f € Zx. (3.31)

To see this, let f = Kg and f' = K¢’ for some g,¢' € C. Then, by (3.11) and
(3.29),

T F e =D dWIE -y =Y dWe@k(E -y,x)

= 3" JWek(y,6-x) = 3 g@) f( ) = [£.7(E) e,

and hence the formula (3.31) is proven.

In order to show that the axiom (vel3) holds as well, we use (3.14) and (3.27).
Thus, for all £ € ', z,y € X and taking into account that k is invariant under

the action of I' on X, we have

(V(€-2)(y) =k(§-2,y) = k(z, & - y) (3.32)
= V(@) -y) = (7 (OV(2))(y),

which proves (vel3). Thus, (£;7; V), here constructed, is an invariant weak VE-
space linearisation of the Hermitian kernel k. Note that (£;7; V') is minimal, that
is, the axiom (vel4) holds, since the linearisation (&£; V') is minimal, by the proof
of Theorem 3.1.4.

In order to prove the uniqueness of the minimal weak invariant linearisation,
let (K';7'; V') be another minimal invariant weak VE-space linearisation of k.
We consider the unitary operator U: K — K’ defined as in (3.9) and we already
know that UV (x) = V'(x) for all x € X. Since, for any £ € I', z € X we have

Urn()V(x)=UV(E-z)=V'({ -2)=7()V'(x) =7 () UV (2),

and taking into account the minimality, it follows that Un(§) = «'(§)U for all
el

(2)=(1). Let (&;m; V) be an invariant weak VE-space linearisation of the
kernel k. We already know from the proof of Theorem 3.1.4 that k is positive
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semidefinite and it was shown in (3.26) that k is invariant under the action of I'
on X.

(2)=(3). Let (&;m; V) be an invariant weak VE-space linearisation of the
kernel k and the action of I' on X. Without loss of generality, we can assume that
it is minimal. Indeed, since we have already proven the implication (2)=-(1), we
observe that during the proof of the implication (1)=(2), we obtained a minimal

invariant weak VE-space linearisation of k.

We use the notation and the facts established during the proof of the implica-
tion (2)=-(3) in Theorem 3.1.10. Then, for all z,y € X we have

kex(y) = k(y,& - x) = [V(y), V(§ - 2)]x = [V(y), 7V (2)]k,

hence, letting p(¢) = Um(€)U~!, where U: K — R is the unitary operator defined
as in (3.18), we obtain a k-representation of I' on the VE-space R such that
ke, = p(€)k, for all ¢ €I and z € X.

(3)=(2). Let (R;p), where R is a weak Z-reproducing kernel VE-space of k
and p: I' = L*(R) is a *-representation such that ke, = p({)k, for all £ € T’
and x € X. As in the proof of the implication (3)=(2) in Theorem 3.1.10, we
show that (R; V'), where V is defined as in (3.16), is a minimal linearisation of k.
Letting m = p, it is then easy to see that (R;m; V') is an invariant weak VE-space

linearisation of the kernel k and the action of I on X. OJ

3.2.2 Boundedly Adjointable Invariant Weak VH-Space

Linearisations.

Let us assume now that Z is an admissible space and k: X x X — Z is a
kernel. A triple (K;m; V) is called a boundedly adjointable invariant weak VH-

space linearisation of the Z-valued kernel k and the action of I on X, if:

(ivhll) (KC;V) is a weak VH-space linearisation of the kernel k.
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(ivhl2) 7: ' — B*(K) is a *-representation, that is, a multiplicative *-morphism.

(ivhl3) V and 7 are related by the formula: V(¢ - z) = 7(§)V (z), for all z € X,
el

Let (IC;m; V') be a boundedly adjointable invariant weak VH-space linearisation
of the kernel k. As in (3.26), it follows that k is invariant under the action of I
on X.

If, in addition to the axioms (ivhll), (ivhl2), and (ivhl3), the triple (IC;m; V)
has also the property

(ivhl4) Lin V(X) is dense in K,

that is, the weak VH-space linearisation (H;V) is topologically minimal, then
(IC;m; V) is called topologically minimal. An observation can be made: in case T’
has a unit then (ivhl4) is equivalent with saying Lin 7(I")V(X) is dense in K but,
in general the apparently more candidate Lin 7(I")V'(X) is too small to provide

a suitable topological minimality condition.

Two boundedly adjointable invariant weak VH-space linearisations (KC;7; V)
and (K'; 7'; V') of the same kernel k are unitarily invariant if there exists a unitary
U € B*(K,K') such that Un(§) = 7' (&)U for all £ € T" and UV (z) = V'(x) for all
x € X. Let us note that, in case both of these boundedly adjointable invariant
weak VH-space linearisations are topologically minimal then they are unitarily

equivalent.

The analog of Proposition 3.2.5 for topologically minimal invariant weak VH-

space linearisations holds as well.

Proposition 3.2.8. Assume that, given an admissible space Z and a Z-valued
kernel k, invariant under the action of the x-semigroup I' on X, for some fized
a,B,v € T' we have k(y,a - x) + k(y, B - x) = k(y,v - ) for all x,y € X. Then,
for any topologically minimal boundedly adjointable invariant weak VH-space lin-

earisation (IC;m; V') of k, the representation satisfies m(«a) + w(8) = m(7).
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Proof. The same argument as in the proof of Proposition 3.2.5 applies with the
small difference that we use the topological minimality and get the same conclu-

sion. O

Here we have the second main theorem of this thesis in which invariant weakly
positive semidefinite kernels are characterised by boundedly adjointable invariant
weak VE-space linearisations and by certain x-representations with boundedly
adjointable operators on weak Z-reproducing kernel VE-spaces. This is the first

topological analogue of Theorem 3.2.7.

Theorem 3.2.9. Let I" be a x-semigroup that acts on the nonempty set X, and let
k: X x X — Z be a Z-valued kernel for some admissible space Z. The following

assertions are equivalent:

(1) k satisfies the following conditions:

(a) k is weakly positive semidefinite.
(b) k is invariant under the action of I' on X, that is, (3.25) holds.
(c) For any o € T' there exists c(a) > 0 such that
Z titek(a - g, o ;) < (o Z titek(zy, ), (3.33)
Ji,k=1 j.k=1
formeN, all xy,...,2, € X, and all t,...,t, € C.

(2) k has a boundedly adjointable invariant weak VH-space linearisation

(K;m V).

(3) k admits a weak Z-reproducing kernel VH-space R and there exists a *-
representation p: I' = B*(R) such that p(§)k, = ke, forall €T, z € X.

Moreover, in case any of the assertions (1), (2), or (3) holds, then a topolog-
wcally minimal boundedly adjointable invariant weak VH-space linearisation can
be constructed and a topologically minimal weak Z-reproducing kernel VH-space

R as in assertion (3) can be constructed as well.
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Proof. (1)=-(2). We consider the notation and the minimal invariant weak VE-
space linearisation (&€;m; V') constructed as in the proof of the implication (1)=-(2)
of Theorem 3.2.7. Considering Zx as a VE-space with Z-gramian [-,-]¢, we
consider its natural topology as in Subsection 2.3 and we prove now that (&) is
bounded for all £ € T'. Indeed, let f = Kg for some g € C{. Using the definition

of m(§) and the boundedness condition (c), we have

(m(&) f, (&) flc = [7(E)m(E) S, flc = [7(§°E) f, flk
= > gWg@k(EE y,x) = Y g)g@)k(E v, & v)

z,yeX z,yeX

<€) > gWg(@)k(y, z) = c()*[f, fk,
z,yeX
and hence the boundedness of 7(&) is proven. This implies that 7(§) can be
uniquely extended by continuity to an operator 7(&) € B(K). In addition, since
7(£*) also extends by continuity to an operator m(£*) € B(K) and taking into
account (3.31), it follows that 7 (&) is adjointable and 7(£*) = w(£)*. We conclude
that 7 is a *-representation of I' in B*(KC), that is, the axiom (ivhl2) holds.

The uniqueness of the topologically minimal boundedly adjointable invariant

weak VH-space linearisation follows as usually.

(2)=-(1). Let (K;m; V) be a boundedly adjointable invariant weak VH-space
linearisation of the kernel k. We already know from the proof of Theorem 3.1.4
that k is positive semidefinite and it was shown in (3.26) that k is invariant under
the action of T" on X. In order to show that the boundedness condition (c¢) holds
aswell, let a €', n €N, x1,...,2, € X, and t,...,t, € C be arbitrary. Then

Z Et]’k(a T, O gjj) = Z Etj[w(a*)ﬂ(a)‘/(mk), V(.CE])]]C

J:k=1 j.k=1

=Y titlm(@)V (), (@) V(x;)]k

J,k=1
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n

= [r(a) YtV (i), m() >tV (2))]k

J=1

< m (@2 DtV (@), >tV ()

j=

= [lm(@)|* ) Ttjk(ay, z),

jk=1

and hence (c) holds with ¢(a) = ||7(«)|| > 0.

(2)=-(3). Let (K;m; V) be a boundedly adjointable invariant weak VH-space
linearisation of the kernel k with respect to the action of I' on X. Without loss
of generality we can assume that it is topologically minimal. Indeed, since we
have already proven the implication (2)=-(1), we observe that during the proof
of the implication (1)=-(2), we obtained a topologically minimal invariant weak

VH-space linearisation of k.

We use the notation and the facts established during the proof of the implica-
tion (2)=-(3) in Theorem 3.1.10. Then, for all z,y € X we have

kex(y) = k(y,& - x) = [V(y), V(§ - 2)]x = [V(y), 7V ()]x,

hence, letting p(¢) = Un(§)U ™!, where U: K — R is the unitary operator defined
as in (3.18), we obtain a *-representation of I' on the VH-space R such that
key = p(€)k, for all § €' and z € X.

(3)=(2). Let (R; p), where R = R (k) is the weak reproducing kernel VH-space
of kand p: I' = B*(R) is a *-representation such that ke, = p(§)k, for all{ € T’
and x € X. As in the proof of the implication (3)=(2) in Theorem 3.1.10, we
show that (R; V'), where V' is defined as in (3.16), is a minimal weak linearisation
of k. Letting m = p, it is then easy to see that (R; m; V) is a boundedly adjointable
invariant weak VH-space linearisation of the kernel k with respect to the action
of I"on X. O
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3.2.3 Continuously Adjointable Invariant Weak VH-

Space Linearisations.

Let Z be an admissible space. A triple (K;7; V) is called a continuously ad-
jointable invariant weak VH-space linearisation of the Z-valued kernel k and the
action of I on X, if the requirements (ivhll) and (ivhl2) holds and, instead of
(ihvl2), it satisfies

(ivhl2)" 7: I' — L£X(K) is a x-representation, that is, a multiplicative *-morphism.

(Clearly, for any continuously adjointable invariant weak VH-space linearisation
(K;m; V) of the kernel k, it follows that k is invariant under the action of I" on
X.

If, in addition to the axioms (ivhll), (ivhl2)’, and (ivhl3), the triple (IC;m; V)
has also the property (ivhl4), that is, the weak VH-space linearisation (H;V) is
topologically minimal, then (C;m; V') is called a topologically minimal continu-
ously adjointable invariant weak VH-space linearisation of the Z-kernel k with

respect to the action of I' on X.

The unitary equivalence of two continuously adjointable invariant weak VH-
space linearisations (KC;7; V') and (K';7’; V') of the same kernel k is defined as
in the case of boundedly adjointable invariant weak VH-space linearisations and

their topological minimality implies their unitary equivalence.

The analog of Proposition 3.2.5 for topologically minimal continuously ad-

jointable invariant weak VH-space linearisations holds as well.

The next theorem is the analogue of Theorem 3.2.9 for continuously adjointable
invariant weak VH-space linearisations in which the boundedness condition 1.(c)

of Theorem 3.2.9 is replaced with a weaker one.

Theorem 3.2.10. Let I be a *x-semigroup that acts on the nonempty set X,
and let k: X X X — Z be a Z-valued kernel for some admissible space Z. The
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following assertions are equivalent:

(1) k satisfies the following conditions:

(a) k is weakly positive semidefinite.
(b) k is invariant under the action of T' on X, that is, (3.25) holds.

(¢) For any o € I' and any seminorm p € S(Z), there exists a seminorm

q € S(Z) and a constant c(a)) > 0 such that

Zttkka T, z)) < (o Zttkk Tk, Tj)) (3.34)
Jik=1 7,k=1

forneN, all xq,...,2, € X, and all t,,...,t, € C.

(2) k has a continuously adjointable invariant weak VH-space linearisation

(K;m V).

(8) k admits a weak Z-reproducing kernel VH-space R and there exists a *-
representation p: I' = LX(R) such that p(§)k, = ke, forall €T, z € X.

Moreover, in case any of the assertions (1), (2), or (3) holds, then a topolog-
wcally minimal continuously adjointable invariant VH-space linearisation can be
constructed and a topologically minimal weak Z-reproducing kernel VH-space R

as in assertion (3) can be constructed as well.

Proof. (1)=-(2). We consider the notation and constructions as in the proof of
the implication (1)=-(2) of Theorem 3.2.7, and follow the same idea as in the
proof of the implication (1)=-(2) of Theorem 3.2.9, with the difference that the
weak boundedness condition 1.(c) is used. For any £ € I', f = Kg and p € S(Z)
there exist ¢ € S(Z) and ¢(§) > 0 such that

p([r()f, 7€) ) = p( D 9(y)g@k(E -y, & - x))

z,yeX

<e(€)’a( Y 9w)g@)k(y, ) = c()’q((f, fx),

ryeX
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hence the continuity of 7(§) is proven. This implies that () can be uniquely
extended by continuity to an operator m(§) € L.(K). In addition, since m(£*)
also extends by continuity to an operator m(£*) € L.(K) and taking into account
(3.31), it follows that 7 (&) is adjointable and 7(£*) = 7(§)*. We conclude that 7

is a s-representation of " in £}(K).

The uniqueness of the topologically minimal continuously adjointable invariant

VH-space linearisation follows as usually.

(2)=-(1). By the proof of the implication (2)=-(1) of Theorem 3.2.9, we only
have to show that the boundedness condition (c) holds. Let o € I', n € N,
r1,...,x, € X, and ty,...,t, € C be arbitrary. Then, due to the continuity
of m(a) and taking into account the S(Z) is directed, there exist ¢ € S(Z) and
c(a)) > 0 such that

Z titik(a - xp, o - x;)) Zth T), Z iV(x5)lk)
=1

k=1
ZQ([Z tkV (), Z £V (z;)lc)

a?q( Y Titik(an, ;)

J,k=1

(2)=(3). Let (IC;V;7) be a continuously adjointable weak VH-space lineari-
sation of the kernel k with respect to the action of I' on X. Using exactly the
same ideas in the proof of the implication (2)=-(1) of Theorem 3.2.9, we obtain a
continuous x-representation of I' on the VH-space R defined by p(§) = Un(£)U 1,
where U: K — R is the unitary operator defined as in (3.18).

(3)=(2). Let (R;p), where R = R(k) is the weak reproducing kernel VH-
space of k and p: I' = LX(R) is a *-representation such that ke., = p(§)k, for all
¢ €l and z € X. As in the proof of the implication (3)=-(2) in Theorem 3.2.9,
letting m = p, it is then easy to see that (R; m; V') is a weak VH-space linearisation

of the kernel k and 7 satisfies the required properties. O
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The following theorem is one of the main theorems of this thesis. It is a doubly
invariant kernel version of Theorem 3.2.7 and it gives characterizations of dou-
bly invariant weakly positive semidefinite kernels by doubly invariant VE-space
linearisations and reproducing kernel VE-spaces with certain representations of

semigroups.

Theorem 3.2.11. Let X be a nonempty set and Z be an ordered x-space. Let
I' be a x-semigroup that acts on X on the left, A be a semigroup that acts X on
the right and Z on the right and let k: X x X — Z be a kernel. The following

assertions are equivalent:

(1) k satisfies the following conditions:

(a) k is positive semidefinite.

(b) k is doubly invariant under the left action of I' on X, and the right
action of A on X and on Z.

(2) k has a doubly invariant VE-space linearisation (E;V;m; 7).

(3) k admits a doubly invariant reproducing kernel VE-space (R; p;0).

Moreover, in case any of the assertions (1), (2), or (3) holds, then a minimal
doubly invariant VE-space linearisation can be constructed, any minimal doubly
invariant linearisation is unique up to unitary equivalence, and the triple (R; p; o)

in assertion (3) is uniquely determined by k as well.

Proof. (1)=-(2). By Theorem 3.2.7, there exists a minimal left invariant lineari-
sation (&;V;m) of the kernel k.

Referring to the constructions as in the proof of Theorem 3.2.7, define 7: A —
C*X by
(fr(@)(@) ==Y gly)k(z,y - a) (3.35)

yeX
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where f = Kg as in (3.3) and a € A. We show that 7(a), for each a € A is well
defined on €. Let £ 5 f = Kg = Kh. Then we have

= 9Wk(,y-a) = gwk(z,y)) -a

yeX yeX
= (Y hyk(z ) a= 3 h@)k(,y - a)
yeX yeX

for all @ € A and x € X, where we used that the kernel k is doubly invariant.
Therefore 7(a) on £ is well defined, and it follows by the doubly invariance of the

kernel that it is linear.

We now show that this action leaves Z3 invariant. Let f = Kg. Then

= 9Wk(zy-a) = gu(2)k(z, 2

yeX zeX

where

0, if ¥ - @ = z has no solution y € X,
9a(7) = - (3.36)
> g(y), otherwise.
y-a=z

Since clearly g, € C, that is, g, has finite support, it follows that 7(a) leaves
Z7% invariant. Hence 7(a) € L(€) for all a € A.

To see that 7T is a representation of the semigroup A on £(£), let a,b € A and
€3> f=Kg. Then

(fr(ab)(@) =D glyk(z.y- ab) = (Y ga(2)k(x,2)) - b

= gu(2)k(z, 2 - b) = ((f7(a))7(b))(x)

and since (f7(a))7(b) = f(7(a)7(b)), it follows that 7(ab) = 7(a)7(b).
Consider the algebra Lin7(A) generated by 7(A) in £(&)
Lin7(A) ={)_A7(a;) In € N,X; € Coa; € A} C L(E).
j=1

Linearly extending the action of 7(A) on & to Lin 7(A), it follows that £ is turned
into a right Lin 7(A)-module.
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Next, we show that V(z - «) = V(z)7(«) for all x € X and o € A. Using
equation (3.14) and that k is doubly invariant, we obtain

V(- a))(y) = k(y, za) = k(y, z)a = (V(z)7(a))(y)
for all x,y € X and o € A.

We show that the right action of 7(«) respects the gramian. Let e = Kg,
f=Kh and a € A. Then

e, fr(@)le = ) gl@)h(yk(e.ya) = () g@)h(y)k(z.y))-a=[e, fle - a.

z,yeX z,yeX

In order to prove the uniqueness of the minimal doubly invariant linearisation,
let (&';V';n';7') be another minimal doubly invariant linearisation of k. By
uniqueness of the left invariant linearisation (£;V;7) by the proof of Theorem
3.2.7, there exists a unitary operator U: &€ — &' with UV (z) = V'(z) for all
x € X. Since, for any a € A, x € X we have

UV(z)r(a) =UV(z-a)=V(z-a)=V'(2)7(a) = UV(x)"(a),

and taking into account the minimality, we obtain uniqueness.

(2)=(1). Let (&;V;m;7) be a doubly invariant linearisation of the kernel k.
By te proof of Theorem 3.2.7 we only have to show that k is invariant under the

right action of A on X and Z. Let x,y € X and o € A. We have
k(z,ya) =[V(2),V(ya)le = [V(2), V(y)T(a)]e = [V(2), V(y)le - o = k(z,y) -

and the first condition holds. We also have

> sy 1)) = 32 sV, V) rle) = V), (3 sV (5)m(a)le

= (O slV(@), Vile) -7 = (O sk, u0)) -

=1 =1

for alln € N, {s;}, € C, z,{v;}1, 7 € A and the second condition is shown.

(2)=(3). Let (&;V;m;7) be a doubly invariant VE-space linearisation of the
kernel k and the actions of I' on X and A on X and Z. Without loss of generality
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we can assume that £ is minimal. By the proof of Theorem 3.2.7 there exists
a minimal reproducing kernel VE-space (R;p). Define o(7) for any v € A the
following way: k,o(y) = U((U 'k,)7(y)) where U : & — R is the unitary
operator in (2)=(3) of the proof of Theorem 3.2.7. It is easy to see that o(7)

gives a right module action on R. Moreover, we have

ky, ko0 (7)]r = [ky, U((U ko) T()]= = [V(1), V(2)7(7)]e
= [V<y)7 V(‘T ' 7)]5 = [kya kxv]’R

for all z,y € X and v € A, hence, by minimality, it follows that k,o(vy) = ky.,
for all x € X and v € A.

(3)=(2). Let (R; p;0) be a Z-reproducing kernel VE-space R of k and p: I' —
L*(R) a *-representation such that p(§)k, = ke, for all ¢ € I', x € X and a
representation o: A — L(R) turning R into a right module, and respecting the
gramian, i.e.

@ ro (M= = la:7]= -y
for all ¢,7 € R and v € A. By (2)=(3) of the proof of Theorem 3.2.7, (R; V; )

where 7 = p is a minimal invariant linearisation of k. Letting 7 = o, it is easy to
see that we obtain a minimal doubly invariant VE-space linearisation (R; V'; 7; 7)
of k. O]

Remark 3.2.12. By considering the right action of the trivial semigroup 7 on
the set X in Theorem 3.2.11 above we obtain Theorem 3.2.7.

Let A be a semigroup acting on the right to the topologically ordered x-space
Z. By definition, the right action of A on Z is continuous if for any convergent

net (z;)ie; € Z with lim; z; = z and a € A we have lim;(z; - a) = z - a.

We now state and prove a topological version of Theorem 3.2.11, which is a
generalization of Theorem 3.2.9 as it allows right actions, similar to the algebraic

case as in Remark 3.2.12.

Theorem 3.2.13. Assume that I' is a x-semigroup that acts on the nonempty

set X on the left, A is a semigroup that acts on the set X on the right, and also
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on an admissible space Z on the right, and that the right action of A on Z is
continuous. Let k: X x X — Z be a Z-valued kernel. The following assertions

are equivalent:

(1) k satisfies the following conditions:
(a) k is positive semidefinite.
(b) k is doubly invariant under the actions of I' and A on X.

(c) For any o € I and any seminorm p € S(Z), there exists a seminorm
q € S(Z) and a constant c,(a)) > 0 such that there ezists c(a) > 0

such that
Z titek(a - g, a0 25)) < ¢ Z titek (g, x;)) (3.37)
7,k=1 7,k=1

forneN, all zy,...,z, € X, and all ty,...,t, € C.
(d) For any a € A and any seminorm p € S(Z), there exists a seminorm
q € S(Z) and a constant c,(a) > 0 such that

n

p( Y titik(xy - a, x5 a)) < ¢pla Z titrk(xg, ;) (3.38)
Gk=1 Gk=1

formeN, allzy,...,z, € X, and all ty,...,t, € C.
(2) k has a doubly invariant VH-space linearisation (IC;V;m;T).

(3) k admits a doubly invariant reproducing kernel VH-space (R;p;0).

Moreover, in case any of the assertions (1), (2), or (3) holds, then a topo-
logically minimal doubly invariant linearisation can be constructed, any minimal
doubly invariant linearisation is unique up to unitary equivalence, and the triple

(R; p;0) as in assertion (3) is uniquely determined by k as well.

Proof. (1)=-(2). By the proof of Theorem 3.2.10, there exists a left invariant VH-
space linearisation (IC; V'; ), where the main constructions are, with notation as

in Subsection 3.1 and in the proof of Theorem 3.2.11, as follows: The VH-space K
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is the VH-space completion of the topological VE-space £ as defined by equations
(3.10) and (3.11). The consructions of V(z) € K for any z € X and 7(«) € L(K)
are similar, with the difference that using the boundedness condition 1.(c), an
operator 7(«) is uniquely extended from £ to K, to a continuous #-representation

of the semigroup I'.

We prove that the right action of 7(a) on the space £ is continuous for all
a € A. Let f = Kg for some g € C. By definition of 7(a) and condition (d),
we have

p([fr(a), fr(@le) = p( Y g(@)g(y)k(z-a,y-a))

z,yeX

< ep(a)’q( ) g(@)g(y)k(z,y))

= cp(a)’q([f. fle)

where p, ¢ € S(Z) and the continuity of the right action of 7(v) is proven. There-
fore the right action of 7(y) can be uniquely extended to the right action of an
operator L.(K) on K. By uniqueness, it follows that 7(aya2) = 7(a1)7(az) for all

ai,as € A. Hence 7 is a representation of the semigroup A on L.(K).

To prove that the right action of 7(a) for each a € A respects the gramian, let
k,l € K and a € A be arbitrary elements and let (k;);c; and (I;);es be nets in €
such that k; — k and [; — . Then by the continuity of the right action of A on

Z and the continuity of the gramian we have

[k, l7(a)] zlizm[k;i,lT(a)] = lim(lijm[k:i, liT(a)ls)

(2

=(lim(lim[k;, l;]¢)) -a = lizm[k;i, li-a=[klx-a

i
and by uniqueness of limits we have [k,I7(a)] = [k,[] - a for any k,l € K and
a € A.

The uniqueness of minimal doubly invariant VH-space linearisation follows as

usually.

(2)=-(1). Let (K;V;m;7) be a doubly invariant VH-space linearisation of the
kernel k. By the proof of Theorem 3.2.9 and Theorem 3.2.11 we only need to show
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that the boundedness condition (d) holds. Let a € A, n € N, z4,...,2, € X,
ti,...,tn, € C, p € S(Z) be arbitrary. Then

p(Y - Ttgk(a - a,x; - a) = p( Y Tty[V(@w)7(a), V(z;)r(a)k)

J:k=1 j.k=1

= p([>_ txV (w)7(a), Z t;V (x;)7(a)lc)
< ep(@)q() thV (), thV(Ij)]/C)

= Cp(a)z(J( Z Etjk(xk’v xj))v

J,k=1

for some g € S(Z) by the continuity of 7(a) and (d) holds with ¢,(a) > 0.

(2)=-(3). Let (K;V;m;7) be a doubly invariant VH-space linearisation of the
kernel k and the actions of I' on X and A on X and Z. Without loss of generality

we can assume that it is minimal.

Define k,o(a) = U(U'k,)7(a) for any a € A where U : K — R is the unitary
operator in (2)=-(3) of the proof of Theorem 3.2.9. A similar calculation as in
(2)=(3) of the proof of Theorem 3.2.11 and minimality shows that k,o(a) = k.,
for all x € X and a € A. Moreover, o is a representation of A in L.(K). It is

easy to see that o gives a right module action on R.

(3)=(2). Let (R;p;0) be a doubly invariant Z-reproducing kernel VH-space
R of k and the actions of I and A. By (3)=(2) of the proof of Theorem 3.2.9,
(R;m), where m = p is a minimal left invariant linearisation of k. Letting 7 = o,

it is easy to see that we obtain a minimal doubly invariant VH-space linearisation

(R;m;7) of k. O

Remark 3.2.14. By considering the right action of the trivial semigroup 7 on the
set X and the admissible space Z in Theorem 3.2.13 above we recover Theorem
3.2.9.

The following theorem is a version of Theorem 3.2.11 for kernels valued in

topologically ordered x-spaces. Its proof is similar to the proof of Theorem 3.2.11.
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Theorem 3.2.15. Assume that ' is a x-semigroup that acts on the nonempty set
X on the left, A is a semigroup that acts on the set X on the right, and also on
a topologically ordered x space Z on the right. Let k: X x X — Z be a Z-valued

kernel. The following assertions are equivalent:

1) k satisfies the following conditions:
( g
(a) k is positive semidefinite.
(b) k is doubly invariant under the actions of I' and A on X.

(¢c) For any o € I’ and any seminorm p € S(Z), there exists a seminorm

q € S(Z) and a constant c,(a) > 0 such that there ezists c(a) > 0

such that
Z titek(a - g, a0 25)) < ¢ Z titek(xy, x;)) (3.39)
Jk=1 4 k=1

formeN, allxzy,...,z, € X, and all ty,...,t, € C.

(d) For any a € A and any seminorm p € S(Z), there exists a seminorm

q € S(Z) and a constant c,(a) > 0 such that
p( Z titek(zg - a, x5 - a)) < ¢p(a Z titek(zg, ;) (3.40)
Ji:k=1 7,k=1
formeN, all xq,...,z, € X, and all t,,...,t, € C.

(2) k has a doubly invariant topological VE-space linearisation (KC;V;m;T)
where m: T' — LX) and 7: A — L.(K).

(8) k admits a doubly invariant reproducing kernel topological VE-space
(R; p;0) where p: T' — LE(R) and 7: A — L(R).

Moreover, in case any of the assertions (1), (2), or (3) holds, then a topo-
logically minimal doubly invariant linearisation can be constructed, any minimal
doubly invariant linearisation is unique up to unitary equivalence, and the triple

(R; p;0) as in assertion (3) is uniquely determined by k as well.
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Chapter 4

Applications of the Main Dilation
Theorems I: Dilations of
Operator Valued Left Invariant

Positive Semidefinite Kernels

4.1 Invariant Kernels with Values Adjointable

Operators.

We show that Theorem 2.8 in [22] can be seen as a special case of Theorem 3.2.7.

We first recall necessary definitions from [22].

In this subsection we will consider a kernel on a nonempty set X and taking
values in L*(H), for a VE-space H over an ordered x-space Z, that is, a map

1: X x X — L*(H).

A kernel 1: X x X — L*(H) is called positive semidefinite if for all n € N,
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T1,%a, -, T, € X, and hq, ho, -+, h, € H, we have
n

> Wi, 5)hy, hilay > 0. (4.1)

ij=1

An invariant L*(H)-valued VE-space linearisation of a kernel 1 and an action

of a *-semigroup I' on X is, by definition, a triple (5 | f/) such that

(hvell) € is a VE-space over the same ordered -space Z,
(hvel2) 7: ' — L£*(€) is a *-representation,

(hvel3) V: X — L*(H,E), satisfying k(z,y) = V(z)*V(y) for all z,y € X and

o
V(E-2)=7)V(z) forallz € X, £ €T

If an invariant L£*(#H)-valued VE-space linearisation has the property that
LinV(X)H = &, then it is called minimal. Two invariant L£*(H)-VE-space
linearisations (&;7;V) and (F;p; W) of the same kernel 1 are called unitarily
equivalent if there exists a unitary operator U : € — F such that Uz (y) = p(y)U
for all v € ' and UV (z) = W (z) for all z € X.

Let H* be the vector space of all maps f: X — H, for a nonempty set X and
a VE-space H over the ordered #-space Z. A VE-space R over the same ordered
x-space Z is called a L*(H)-reproducing kernel VE-space on X of the kernel 1 if

(hrkl) R is a vector subspace of H¥X.

(hrk2) For all z € X and h € H, the H-valued function 1A := 1(-, 2)h belongs to
R.

(hrk3) For all f € R we have [f(x), hln = [f,1.h]5 for all z € X and h € H.

The space R is minimal if R = Lin{l,h | z € X, h € H}.

Theorem 4.1.1 (Theorem 2.8 in [22]). Let I' be a x-semigroup acting on a
nonempty set X, H be a VE-space on an ordered x-space Z, and 1: X x X —

L*(H) be a kernel. The following assertions are equivalent:
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(1) 1 satisfies the following properties:

(a) 1 is positive semidefinite.

(b) 1is invariant under the action of I' on X.

(2) 1 has an invariant L*(H)-valued VE-space linearisation (€;7;V).

(3) 1 admits a L*(H)-reproducing kernel VE-space R and there exists a -
representation p : T' — L*(R) such that p(€)l,h = le,h for all & € T,
reX,heH.

Moreover, in case any of the assertions (1), (2) or (3) holds, a minimal invariant
L*(H)-VE-space linearisation can be constructed, and a pair (R; p) as in (3) with
R can be always obtained as well.

Proof. (1)=(2). Define a kernel k: (X x H) x (X x H) — Z by

k((x7 h)’ (yvg)) = [l(y,x)h, g]H? T,y € X» h/,g € H.

Since 1 is semipositive definite in the sense of (4.1), k is weakly positive semidef-

inite:
Z tkt k [L’k, hk .Tj, ; Z tkt l’], Tk hk, h ] Z [l(l’j, l’k)tkhk, tjhj] Z
k,j=1 k,j=1 k,j=1

for all n € N, {z;}7_, € X, {h;}}_, € H and {t;}}_, € C.

Define an action of " on (X x H) in the following way: £ - (z,h) = (£ -z, h)
forall £ € I', x € X and h € H. Using the I" invariance of 1 it follows that k is I"
invariant: letting £ € I', x,y € X and g,h € ‘H we have

k(& (z,h),(y,9)) = Wy, & 2)h, gl = M -y, 2)h, g] = k((z, h), £ (y, 9)).

By Theorem 3.2.7, there exists a minimal weak VE-space linearisation (&;7; V)
of k and the action of I' on (X x ). By construction, see (3.14), it is clear that
V(x,h) depends linearly on h € H, therefore, for each z € X a linear operator of
VE-spaces V(z): H — &£ can be defined by V(z)h = V(z, h).
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We now have [V (z)h, V(y)gle = k((z,h), (y,9)) = 1(y, z)h, gl forall z,y € X
and h,g € H. By the minimality of &, it follows that V(z) is an adjointable
operator with V (y)*V (z) = 1(y, z) for all z,y € X.

On the other hand, we have 7(£)V(z,h) = V(£-2,h) = V(€-z)h for all h € H
and hence 7(&)V (z) = V(€ -z) for all € € T and z € X, showing that (£;m; V) is
a minimal invariant £*(H)-valued VE-space linearisation of the kernel 1 and the

action of I" on X.

(2)=(3). Let (£;7; V) be an invariant £*(H)-valued VE-space linearisation of
the kernel 1, hence 1(z,y) = V(2)*V (y) for all 2,5 € X. Define V: (X x 1) — €

by
V(z,h)=V(z)h, z€X, heH. (4.2)

We also have
OOV (x, h) =7V (e)h=V(Ex)h=V(Ex,h), e, zeX, heH, (4.3)

hence 7(€) leaves & = LinV(X,H) invariant for all £ € T. In the following,
we denote by the same symbol 7: [' — ,C*(g()), the *-representation viewed as
7(7): & — & forally € T. Then (&y; 7; V) is a minimal invariant weak VE-space
linearisation for the kernel k: (X x H) x (X x H) — Z defined by

k((z,h), (y,9)) = [V(z,h),V(y,9)ls
= [V(2)h, V(y)gle = [h, V(2)"V ()9l
= [h, Nz, 9)9ln, z,y€ X, h,g€H,

and the action of I' on (X x H) given by

E-(x,h)= (£ -x,h), €T, zeX, heH. (4.4)

By Theorem 3.2.7, there exists a minimal weak Z-reproducing kernel VE-space
R C ZX**H with reproducing kernel k, and a *-representation p: I' — L*(R)
such that p(§)kp = ke@n for all £ € I', 2 € X, h € H. As the proof of

Theorem 3.2.7 shows, without loss of generality we can assume that R is the
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collection of all maps X x H — Z defined by X x H > (z,h) — [V(2)h, f]z,
where f € &, which provides an identification of R with & by the formula

f(@h)=[V(z,h), flr = [V(@)h, fls = [0, V()" flu. heN. (4.5)

Consequently, for each f € R and x € X, there exists a unique vector f (x) =
V(z)*f € H such that

f(:Ev h) = [ha f(x)]?-[, h e 7‘[, (46>

which gives rise to a map R 3 f — f € HX. Let R be the vector space of all f,
for f € R. Since, by the reproducing property of the kernel k and (4.6) we have

[k(:r,h)v k(y,g)]R = k(y,g) ("Ev h) = [ha k(y,g) (x)]'Hv h,geH, v,y € X,

taking into account the reproducing property of the kernel 1, it follows that 1,h =

—~—

kKin) € R for all z € X and h € H.

It is easy to see that the map U: R 35 f — f € R is linear, one-to-one, and
onto. Therefore, defining | 1, dls = [f, glr makes R a VE-space, and U becomes
a unitary operator of VE-spaces. Defining j := UpU*, the pair (R, p) has all the

required properties.

(3)=(1). Assume that (R;p) is a pair consisting of an L£*(H)-reproducing

kernel VE-space of 1 and a s-representation p : I' — L*(R) such that p(§)l,h =
lezhforall €I, 2 € X, h € H. We have

> Wi, x)hy,hil = > [ayhy(wi), bl = > [l g, 1o, i)
ij—1 ij—1 ij—1

- [Z Li;hy, leihi] >0
Jj=1 i=1

for all n € N, {z;}, € X, {h;}}_; € H. Therefore 1 is positive semidefinite in
the sense of (4.1). Moreover, by (hrk3)

1z, & - y)h, g] = [eyh(x), g] = [p(E)Lh(z), g]
= [p()yh, Log] = [Lyh, p(§)lag] = W&z, y)h, g,
for all x,y € X and g, h € H, and the invariance of the kernel 1 is proven. O
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Remark 4.1.2. The crucial point in the proof of the implication (2)=(3) of
Theorem 4.1.1 is the proof of (4.6) which we obtained as a consequence of the
identification of R with &. In the following we show that there is a direct proof

of (4.6), without using this identification.

By minimality, R = Lin{ken |7 € X, h € H} solet f =377 a;k for

somen € N yi,...,y, € X, ¢1,...,9, € Hand ay,...,a, € C, be an arbitrary
element f € R. Then, for any x € X and h € H, we have

ZO‘J (y5,95) (2, h) ZO‘J (Y5, 95)) ZO‘J V(Y. 95))e
= Zaj y] 9l Za] V f/ (v5)95 ]
()" Z ajv(yj)gj]ﬂ
j=1

hence, letting f(z) = V (z)* > i a;V (y;)g;, (4.6) holds.

(v5,95)

4.1.1 Invariant Kernels with Values Continuously Ad-

jointable Operators.

In this subsection we show that Theorem 2.10 in [24] can be recovered as a special
case of Theorem 3.2.10. We first review definitions in [24] that we will use in this

subsection.

Let X be a nonempty set and let H be a VH-space over an admissible space
Z. In this subsection we will consider kernels k: X x X — L*(#). Such a kernel
k is called positive semidefinite if it is n-positive for all natural numbers n, in the
sense of (4.1).

A L:(H)-valued VH-space linearisation of k, or L*(H)-valued VH-space Kol-

mogorov decomposition of k, is a pair (KC; V'), subject to the following conditions:

(vhll) K is a VH-space over Z.

65



(vhi2) V: X — LX(H,K) satisfies k(z,y) = V(z)*V (y) for all z,y € X.

(IC; V) is called topologically minimal if

(vhl3) Lin V(X)H is dense in K.

We call k I'-invariant if
k(fx,y)zk(x,f*y), fera l‘,yEX. (47)
A triple (IC;m; V) is called a I'-invariant L:(H)-valued VH-space linearisation for
k if
(ihll) (IC;V) is an L£f(H)-valued VH-space linearisation of k.
(ihl2) 7: ' = L(K) is a *-representation.
(ihl3) V(¢ -z) =m(§)V(x) for all € € I and all x € X.
Also, (IC;m; V) is topologically minimal if the L(H)-VH-space linearisation

(K; V) is topologically minimal, that is, K is the closure of the linear span of
V(X)H.

A VH-space R over the ordered -space Z is called a L(H)-reproducing kernel
VH-space on X if there exists a Hermitian kernel k: X x X — L*(H) such that

the following axioms are satisfied:

(rkh1) R is a subspace of HX, with all algebraic operations.
(rkh2) For all x € X and all h € H, the H-valued function k,h = k(-,x)h € R.
(rkh3) For all f € R we have [f(x), hly = [f, keh]|r, for all z € X and h € H.

(rkh4) For all x € X the evaluation operator R 5 f + f(x) € H is continuous.
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In this operator valued setting, let us note the appearance of the axiom (rkh4)
which makes a difference with classical cases, see [24] for some results pointing

out its significance.

Theorem 4.1.3 (Theorem 2.10 in [24]). Let I' be a x-semigroup that acts on the
nonempty set X and let 1: X x X — Li(H) be a kernel, for some VH-space H

over an admissible space Z. Then the following assertions are equivalent:

(1) 1 has the following properties:

(a) 1 is positive semidefinite, in the sense of (4.1), and invariant under
the action of T' on X, that is, (3.25) holds.

(b) For any & € T' and any seminorm p € S(Z), there exists a seminorm
q € S(Z) and a constant c,(§) > 0 such that for alln € N, {h;}I-, €
H, {z;}, € X we have

p(ZU@ 2, § - xg) s hila) < ep(€) Q(Z[l(%iﬁj)hw hilw)-

(¢c) For any x € X and any seminorm p € S(Z), there ezists a seminorm
q € S(Z) and a constant c,(x) > 0 such that for alln € N, {y;}1, €
X, {hi}l-, € H we have

p(z L, yi)hi, W, yi)hiln) < cp(x) Q(Z 1(yj, yi) his Bl )

(2) 1 has a U-invariant L:(H)-valued VH-space linearisation (IC;m; V).

(3) 1 admits an L:(H)-reproducing kernel VH-space R and there exists a *-
representation p: I' — LX(R) such that p(§)luh = le,h for all € € T,
reX,heH.

In addition, in case any of the assertions (1), (2), or (3) holds, then a minimal
[-invariant L (H)-valued VH-space linearisation of 1 can be constructed, and the

pair (R; p) as in assertion (3) can be chosen with R topologically minimal as well.
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Proof. (1)=-(2). Define the kernel k: (X x H) x (X x H) — Z by

k((z,h), (y,9)) == Wy, 2)h, gln, w,y€X, hygeH.

As in the proof of the implication (1)=-(2) of Theorem 4.1.4, k is weakly positive
semidefinite and invariant under the action of I on X x H given by £ - (z,h) =
(&-z,h) forall £ € T, x € X, h € H In order to see that this kernel satisfies
the property 1.(c) of Theorem 3.2.9, observe that for all n € N, {¢;}?, C C,
a €T, and p € S(Z), by assumption, see property 1.(b), there exists ¢ € S(Z)

and c(a) > 0, we have

p(OY - titrk(a - (zx, he), alzy, b)) = p(Y - ttelor- 2, 0 )y, By))
Ji:k=1 j.k=1

= p( ) - zj, 0 mp)tehy, thy)
k=1

< c(a)?q( Z (s, wp)trh, tihy])

J,k=1

= c(a)?q( Z titek((w, hi), (25, 15)))-

Jk=1

By Theorem 3.2.9, there exists a minimal weak VH-space linearisation
(K;m; V) of k and the action of I" on (X x H). Same arguments as in the proof of
the implication (1)=(2) of Theorem 4.1.4 show that, for any = € X, there exists
an adjointable operator of VE-spaces V(z): H — Ky, given by V(z)h: =V (x,h)
for x € X and h € H, where Ky: = LinV(X)H, with the property that
V(x)*V(y) = l(z,y) for all z,y € X. Arguing as in the proof of the implica-
tion (1)=(2) of Theorem 2.10 of [24], it follows that V(z) € L:(H,Ky). Now
using the boundedness condition (c), for any p € S(Z) there exist ¢ € S(Z) and
cp(x) > 0 such that, for all "7 | V(y;)h; € Ky we have

p([V(x)*(Z V(yi)hi), V(:U)*(Z V(yi)hi)ln) = p([z (2, y) i, : (2, yi) hil )
< Cp@)Q(Z 1y, yi) iy Bijla)

= c,(x) q([z V (i) hi, Z V(y:)hil,)
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hence V(z)* € L:(Ko, M) for any z € X. Consequently, V(z)* extends uniquely
to an operator V(z)* € LX(K,H) for each x € X. It follows that (KC;7; V) is an
invariant £}(H)-valued VH-space linearisation of the kernel 1 and the action of I'
on X.

(2)=(3). Let (K;#;V) be an invariant £*(#)-valued VH-space linearisation
of the kernel 1. In order to avoid repetition, we use some facts obtained during
the proof of the implication (2)=(3) of Theorem 4.1.1. Define V: (X x H) — K
by V(z,h) = V(x)h for all z € X and h € H. Letting Ky = Lin V (X, H) C K,
similarly we see that (Lin V (X, H); 7; V) is a topological minimal invariant weak
VH-space linearisation for the kernel k: (X x H) x (X x H) — Z defined by
k((z,h),(y,9)) = [V(z,h),V(y,g)] for all z,y € X and h,g € H and the action
of ' on (X x H) defined by & - (x,h) = (£ -x,h) forall £ €T, x € X and h € H.

By Theorem 3.2.9 there exists a topologically minimal weak Z-reproducing
kernel VH-space R and a *-representation p: I' = L%(R) such that p(&)kn =
ke op forall { €I, x € X, h € H. The rest of the proof is similar with the end
of the proof of the implication (2)=(3) as in Theorem 4.1.1. We show that, for
each f € R and x € X there exists a unique element f(z) such that (4.6) holds
and, consequently, this gives rise to amap R 3 f — Uf = f € H¥, which is
linear and bijective between R and its range R C HX. Letting [/, s =1f. 9=
for all f, g € R, R becomes an H-valued reproducing kernel VH-space with kernel
1, and then letting p: = UpU™, (7@, p) is a pair having all the required properties.

(3)=(1). Assume that the pair (R; /) consists of an £*(#)-valued reproducing
kernel VH-space of 1 and a #-representation j of I on £*(R) such that p(&)l,h =
lezh forall £ € T', o € X, h € H. Similarly as in the proof of the implication
(3)=(1) of Theorem 4.1.1, the kernel 1 is shown to be positive semidefinite and
invariant under the action of I" on X. On the other hand, the inequalities (b) and
(c) are obtained from the continuity of the operator p(§): R — R, for any { € I’
and, respectively, from the continuity of the evaluation operator E,: R — H, for

any r € X. O
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4.1.2 Invariant Kernels with Values Boundedly Ad-

jointable Operators.

We show that Theorem 4.2 in [23] is a special case of Theorem 3.2.9. We review

necessary definitions in [23].

Given a B*(H)-valued kernel 1 on a nonempty set X, where H is a VH-space
over the admissible space Z, a B*(H)-valued VH-space linearisation of 1 is a pair
(K; V) with

(hvhll) K is a VH-space over Z.

(hvhl2) V: X — B*(H; K) satisfies 1(z,y) = V(2)*V (y) for all z,y € X.

If I is a *-semigroup acting on X, (I@, T, ‘7) is called an invariant B*(H)-valued
VH-space linearisation of the kernel 1 and the action of I on X, if, in addition to
(hvhll) and (hvhl2), we have,

(hvhl3) 7: ' — B*(K) is a x-representation.

(hvhl4) V(€ -z) = 7(6)V(x) for every £ €T, z € X.
If we have
(hvhl5) LinV (X)H is dense in K,

then (K;7; V) is called topologically minimal.

Given a nonempty set X and a VH-space H over the admissible space Z, a
VH-space R over Z is called a B* (H)-valued reproducing kernel VH-space on X
if there exists a kernel 1: X x X — B*(#H) such that

(hrk1) R is a subspace of HX with all algebraic operations.
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(hrk2) L,h =1(-,2)h € R forall z € X, h € H.

(hrk3) [f(z), h)n = [f,1.h]z holds for all f € R, x € X and h € H.
R is called topologically minimal if
(hrk4) Lin{l,h |z € X, h € H} is dense in R,

and, in this case, R is uniquely determined by the kernel 1.

Theorem 4.1.4 (Theorem 4.2 in [23]). Let I' be a x-semigroup acting on a
nonempty set X, H be a VH-space on an admissible space Z, and1: X x X —
B*(H) be a kernel. Then the following are equivalent:

(1) 1 has the following properties:

(a) 1 is positive semidefinite.

(b) 1 is invariant under the action of T' on X .

(c) For any a € T there exists c¢(ar) > 0 such that, for all n € N,
r1,%o, Ty € X, hy,ho, -+, h, €H, we have

n

> Ma- i, - x)hy, hily < e(a)Mai, )by, by (4.8)

ij=1
(2) 1 has an invariant B*(H)-valued VH-space linearisation (€;7;V).

(3) 1 admits a B*(H)-reproducing kernel VH-space R and there exists a -

representation p : I' — B*(R) such that p(§)Lh = le,h for all € € T,
reX,heH.

Moreover, in case any of the assertions (1), (2) or (3) holds, a topologically

minimal invariant B*(H)-valued VH-space linearisation can be constructed.
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Proof. (1)=-(2). Define the kernel k: (X x H) x (X x H) — Z by

k((z,h), (y,9)) == [y, 2)h, gln
forall z,y € X and h, g € H. Then k is weakly positive semidefinite and invariant
under the action of I' on X X H given by £ (z,h) = (-2, h) forall§ € ', z € X,
h € H, as in the proof of (1)=-(2) of Theorem 4.1.1. To see that this kernel
satisfies condition 1.(c) of Theorem 3.2.9, we use the assumption (c) and get

that, for any a € I" there exists ¢(a) > 0 such that, for all n € N, {¢;}, C C,

we have
Z titrk(a - (g, hy), oz, hy)) = Z tite[l o - 2y, o - 2p) hi, Byl
k=1 Jk=1
k=1
< (@) Y (g, xp)tehy, tihy]
k=1
= C(Oz)Q Z tjak((xlm hk)a (xj7 hj))
k=1

By Theorem 3.2.9, there exists a minimal weak VH-space linearisation
(K;V;m) of k and the action of I' on (X x H). Same arguments as in
proof of (1)=(2) of Theorem 4.1.1 gives an adjointable operator of VE-spaces
V(z): H — Ko, given by V(z)h: = V(z,h) for z € X and h € H, where
Ko: = LinV(X)H, with the property that V(z)*V (y) = 1(z,y) for all z,y € X.
Arguing as in the proof of Theorem 3.3 of [23], it follows that V(z) € B*(#, Ko)
and V(z)* € B*(Ky,H). Hence V(z)* extends uniquely to an operator V (z)* €
B*(K,H) for each x € X. Tt follows that (K;m;V) is a topologically minimal
invariant B*(H)-valued VH-space linearisation of the kernel 1 and the action of I'
on X.

(2)=(3). Let (K;7;V) be an invariant B*(H) VH-space linearisation of the
kernel 1. We essentially use Theorem 3.2.9 with details very close to the proof
of the implication (2)=(3) of Theorem 4.1.3, with the difference that we ob-

tain bounded adjointable operators instead of continuously adjointable opera-
tors. Define V: (X x H) — K by V(x,h) = V(z)h for all z € X and h € H.

72



We also have #(&)V(z)h = V(€ -x)h = V(€ -z,h) forall € € T, = € X,
h € H. Then (Lin(V(X,H);V:;#7) is a topologically minimal weak invariant
VH-space linearisation for the kernel k: (X x H) x (X x H) — Z defined by
k((z,h),(y,9)) = [V(z,h),V(y,g)], for all z,y € X and h,g € H, and the action
of T'on (X x H) defined by & - (x,h) = ({-x,h), forall { € T, z € X, and h € H.

By Theorem 3.2.9 there exists a weak Z-reproducing kernel VH-space R and
a *-representation p: I' — B*(R) such that p(§)kn) = ke(on) for all £ € T,
€ X, heH. Define f: X — H as follows: for each z € X let f(z) € H be
the unique element satisfying [f(x), hly = f(z, ) for all h € H and let R be the

vector space of all f , when f € R. Since we have

[k(x,h)y k(y,g)] = k(:t,h) (ya g) = [k(x,h) (y)7 g]a T,y € X7 h7 g &€ Ha
it follows that 1,h = 1?(:/,0 eRforallze X and h € H.

It is easy to check that the map U: R > f — f € R is linear, one-to-one,
and onto. Therefore, defining [f,§ls = [f, glr makes R a B*(H)-reproducing
kernel VH-space with reproducing kernel 1, and U becomes a unitary operator of

VH-spaces. Defining p := UpU~, the pair (7@, p) has all the required properties.

(3)=(1). Assume that (R; p) is a B*(H)-reproducing kernel VH-space of 1 with
a representation p of T' on B*(R) such that p(&)l,h = le,h forall € €T, 2 € X,
h € H. Similarly as in proof of the implication (3)=-(1) of Theorem 4.1.1, the
kernel 1 is shown to be positive semidefinite and invariant under the action of I
on X. On the other hand, using the fact that the linear operator p(§): H — H
is bounded for all £ € T', it follows that, for any £ € T', there exists ¢(£) > 0 such
that, for all € e I', n € N, {z;}, € X and {h;}, € H, we have

D 0 w6 w)bis hlw = Y ey (€ - 25), Pl
k=1 k=1
= > lew i lew, il = [ L), Y Lhy)lz
J,k=1 k=1 j=1
< (€D Lohu Y Lohyle = e(€)® > My, zi)hi, hyla,
k=1 j=1 jk=1
hence 1 has the property (c). O
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4.2 Positive Semidefinite £(X, A7) Valued Maps

on *-Semigroups.

In this subsection we obtain stronger versions of Theorem 3.1 and Theorem 4.2
in [46] as applications of Theorem 3.2.7 and, respectively, of Theorem 3.2.9. We

first reorganise some definitions from [46] and [13].

Let X be a vector space, and Z be an ordered *-space. By X/, we denote the
space of all conjugate linear functions from X to Z and call it the algebraic con-
Jugate Z-dual space. Let L(X, X)) denote the vector space of all linear operators
T: X — XJ,. For any VE-space £ over Z and any linear operator A: X — &, we
define a linear operator A’: & — X7, called the algebraic Z-adjoint operator, by

(A'f)(z) = [Az, fle, [f€E, z€X. (4.9)

If I' is a #-semigroup, a map T: ' — L(X,X}) is called L(X, X})-valued
n-positive if
> (Turs,w5) () = 0 for all (s;)f, € T and all (z;)]_, € X. (4.10)
ij=1
If T is n-positive for all n € N then it is called L(X, X})-valued positive semidef-
wmnite.

Remarks 4.2.1. With notation as before, let T: I' — L(X, 7).

(1) We define a kernel k: (I' x X) x (I' x X) — Z by
k((s,2),(t,y)) = (Tyuy)z, s;tel, zyeX. (4.11)

Then for all n € N, all ay,as,...,a, € C, and all (s;,2;)1, € (S x X) we have

Y amak((si,z), (s5,75) = Y Wy (T a)e = (Tors,a5m;) (i),

ij=1 ij=1 ij=1
This shows that, for n € N, the map T is n-positive if and only if the kernel k
is weakly n-positive. In particular, T is positive semidefinite if and only if the

kernel k is weakly positive semidefinite.
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(2) Recall that, see (3.2), the kernel k is Hermitian if k((s,z),(t,y)) =
k((t,y), (s,z))* for all s,t € I' and all z,y € X. From (4.11) it follows that

k is Hermitian if and only if
(Toy)x = (Tysz)y)*, forall s,t €I, and all z,y € X. (4.12)

Consequently, by Lemma 3.1.1 it follows that, if 7" is 2-positive, then (4.12) holds.

In addition, if I" has a unit e = e*, then (4.11) is equivalent with

(Tey)r = (Tsz)y)*, foralls el and all z,y € X. (4.13)

(3) We define a left action of T on (I" x X) by
u-(s,x) = (us,z), forall u,s € I', and all z € X. (4.14)
For all w € I" and all (s,z) € ' x X we have
k((s,2),u- (t,9)) = (Teuy)r = (Turswy) = k(u™(s, 2), (£,9)),

hence the kernel k is invariant under the left action of I' on I' x X defined as in
(4.14).

Theorem 4.2.2. Let Z be an ordered x-space, let X be complex vector space with
algebraic conjugate Z-dual space X}, and consider T: " — L(X, X)), for some

x-semigroup I with unit. The following assertions are equivalent:

(i) T is positive semidefinite, in the sense of (4.10).

(ii) There exist a VE-space £ over Z, a unital *-representation w: I' — L*(E),
and an operator A € L(X,E), such that

T, = A'n(t)A, teT. (4.15)

If any of the conditions (i) and (ii) holds, then the VE-space € can be chosen
minimal in the sense that it coincides with the linear span of m(I')AX and, in

this case, it is unique modulo a unitary equivalence.
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Proof. (1)=(ii). We consider the kernel k: I' x X — Z as in (4.11) and the left
action of I' on I' x X as in (4.14). By Remark 4.2.1.(1) and Remark 4.2.1.(2),
k is a Z-valued weakly positive semidefinite kernel invariant under the action of
I' as in (4.14) hence, by Theorem 3.2.7, there exists a minimal invariant weak

VE-space linearisation (€, 7, V") of k. Since
V(s ), V(t,y)le =k((s,2), (t,y)) = (Tsy)r, s, teT, z,yeX,

it follows that X > = +— V(s,x) € & is linear, for all s € I'. This shows that,
we can define V: T — L(X,&) by V(s)z = V(s,z), for all s € I and all z € X
Taking into account (4.9) it follows that

(f/(s)'f)x = [f/(s)m, le, sel, ze X, fe&,

hence, letting A = V(e) € L(X,E) it follows that, for all s € T and all z,y € X

we have

(A'm(s)Az)y = (V(e)'n(s)V (e)z)y = [V(e)y, m(s)V (e)ae
= [V(e,y), m(s)V(e,x)le = [V(e,y), V(s x)le = k((e, y), (s, 2)) = (Tey)z,

and hence (4.15) is proven. The minimality and the uniqueness property follow

by standard arguments that we omit.

(ii)=(i). This follows by a standard argument that we omit. O

Theorem 4.2.2 is stronger than Theorem 3.1 in [46] since, in addition to positive
semidefiniteness of 7" they require the condition (4.13) as well. As we have seen in
Remark 4.2.1.(3), this condition is a consequence of the positive semidefiniteness
of T'. Also, the ordered *-space Z need not be admissible, actually, the topology
of Z does not play any role.

From now on we assume that Z is a topologically ordered *-space and that X
is a locally bounded topological vector space, that is, in X there exists a bounded
neighbourhood of 0. By X we denote the subspace of X/ of all continuous
conjugate linear functions from X to Z and call it the topological conjugate Z-

dual space. The space X is considered with the topology of uniform convergence

76



on bounded sets, that is, a net (f;)iez € A converges to 0 if for any bounded
subset B C X the Z-valued net (fi(y))iezr converges to 0 uniformly with respect
to y € B, equivalently, for any bounded set B C &, any p € S(Z) and any
€ > 0, there exists iy € Z such that ¢ > iy implies p(fi(y)) < € for all y € B. Let

L.(X,X}) be the space of all continuous linear operators from X to XJ.

Let £ be a VE-space over Z, with topology defined as in Subsection 2.3. Fol-
lowing [46] and [14], for any A € L.(X,E) the topological Z-adjoint operator of
A is, by definition, the operator A*: £ — &7 defined by

(A" flz = [Az, fle, [fe€& zelX. (4.16)
By Lemma 2.3.2 the definition of A* is correct.

Theorem 4.2.3. Let I' be a x-semigroup with unit e and X be a locally bounded
topological vector space with topological conjugate Z-dual space X3 for an admis-

sible space Z. Let T: T' — L.(X, X)) subject to the following properties:

(a) T is an L(X,X},)-valued positive semidefinite map.

(b) For all w € T, there is a constant c(u) > 0 such that for all n € N, all

S$1,...,8, €', and all x4, ...,z, € X, we have
> (Trurus, i) (@) < c()® Y (T, a7) (2:). (4.17)
i,j=1 hj=1

(c) T(e) € L(X,X5).

Then:

(i) There exist a VH-space K over Z, a x-representation w: I' — B*(K) and
an operator A € L(X,K), such that Ts = A*n(s)A for any s € I'.

(i) Ts € Lo(X,X%) for all s €T,

(111) If (w)iec is a net in I' with sup,c, c(w) < 0o and (Tsy)ier converges to
Tsut, for some u € I' and any s,t € I', in the weak topology of L.(X,X}),
then (m(w))iec converges to w(u) in the weak topology of B*(KC).
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Proof. Define the kernel k: (I'x X)x (I'x X) — Z asin (4.11). By Remark 4.2.1,
it follows that k is a Z-valued weakly positive semidefinite kernel. Next, consider
the left action of I on (I'x X') as in (4.14) and by Remark 4.2.1 it follows that k is
invariant under this action. In order to show that the property 1.(c) of Theorem
3.2.9 holds, let w € I', n € N, (s;,x;)"; € (I' x X). Then, using (4.17) it follows
that

n

Z k(u- (si,z:),u- (55,75)) = > (Terurus, 5) s

i,7=1 ij—l
n

< c(u)? Z(TS*S]% (;) = c(u Zk ((si,24), (55, 25)).
3,j=1 1,j=1

By Theorem 3.2.9, there exists a topologically minimal invariant weak
VH-space linearisation (IC;m; V') of the kernel k. Since [V (s,z), V(t,y)]x =
k((s,2),(t,y)) = (Tsy)(z) for all s, € I' and z,y € X, we observe that
V(s,z) depends linearly on x € X for each s € I". As a consequence, letting
V(s)x = V(s,x), for all z € X, we obtain a linear operator V(s) : X — K for
each s € T. To see that V(s) is continuous for each s € T, let (2;);c, be a net in
X converging to 0. Since X is locally bounded, there exists B C X a bounded
neighbourhood of 0 and then there exists [; € £ such that (z;);>;, is contained in
B. Since T, € L.(X, X}), taking into account the topology of X%, given any ¢ > 0
and any p € S(Z) we can find [y € £ such that £ > [ > Iy implies p((T.x;)y) < €
for all y € B. Since L is directed, there exists lo € £ with [y > [; and [y > [5.
Then, for any [ >y, by (4.17) and taking into account how the topology of K is

defined, see Subsection 2.3, we have

p([V(s)ar, V(s)ailx) = p(k
= p(k(s - (e,21), 5 (e;m1)) < c(s)*p(k((e, 21), (e, 1))
= c(s)*p((Texr)m) < c(s)? Supp((T Dy) < c(s)’e

((s,21), (s, 21))
(s-

hence V(s) € L(X,K), for any s € I'. In addition, for each s € T the operator

V(s)* € L(K,X}) is defined as in (4.16).
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Letting A := V(e) we have

(A7 (s)Az)y = (V(e)'n(s)V (e)a)(y) = [V(e.y), V(s, 2)lk
=k((e,y),(s,z)) = (Tsx)y for all s € I" and z,y € X.

Therefore A*m(s)A =T, € L (X,X}), for all s € T".

The rest of the proof, which shows that m(u;);c, converges to m(u) in the
weak topology of B*(K), as in the second part of the conclusion, uses standard
arguments and is the same with that in [46]. For completeness, we present it
here. Let Ky := LinV(I" x X). By minimality, Ky is dense in K. Let e, f € Ko,
with e = >0 a;V(si, ;) and f =770, BV (r;,y;). We have

le, (w) f E a;V(si,x;)), m(uy) E B;V(rj,y;)]
n m

= Z Z@iﬁj (Tegur,93)(@s) = > D @B (Tapur,yj) i = [e,m(w) flic

i=1 j=1 i=1 j=1

by the assumption that (Ty,:)ee converges to Ty, for any s,t € I'. Now let
g,h € K and let (g;)ier € Ko be a net converging to g. For any p € S(Z), j €L
and [ € £ we have

p([(m(u) — 7(w))g, k) < p([r(u)(g — g;), hlx) + p([(7(u) — 7(w))g;, hx)
p([m(u)(g; — 9), hlx)
< 4p(h) (p(m(u)(g — g;)) + pm(u )( —9)) + p((m(u) — 7(w))g;))
< 4p(h)(*p(g — g;) + p((7(u) 95))

for some constant ¢, where the second inequality follows by the Schwarz type
inequality (2.12) and the third inequality by the fact that 7(u), 7(w;) € B*(K)
and the assumption that sup,.,c(u;) < oo. Now that weak convergence was

shown in Ky, a standard argument finishes the proof. O

Remarks 4.2.4. (1) Theorem 4.2.3 is stronger than Theorem 4.2 of [46], see
also the correction in [47], with respect to two aspects: firstly, since they have
the additional assumption that (4.13) holds, which is actually a consequence of

positive semidefiniteness, as Remark 4.2.1.(2) shows, and secondly since their
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assumption Ty € L.(X, X}), for all s € T', is actually a consequence of the weaker
one T, € L.(X,X}), as the proof of Theorem 4.2.3 shows.

(2) It is easy to see that, there is a "converse” to Theorem 4.2.3 in the sense
that, if assertion (i) is assumed, then assertions (a), (b), (¢), and (ii) are obtained

as consequences.
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Chapter 5

Applications of the Main Dilation
Theorems II: Unification of
Various Dilation Theorems in the
Context of Locally C*-Algebras

5.1 Locally C*-Algebras, Locally Hilbert Mod-

ules and Locally Hilbert C*-Correspondences

5.1.1 Hilbert Modules over Locally C*-Algebras

A x-algebra A that has a complete Hausdorff topology induced by a family of
C*-seminorms, that is, seminorms p on A that satisfy the C*-condition p(a*a) =
p(a)? for all a € A, is called a locally C*-algebra [43] (equivalent names are
(Locally Multiplicatively Convexr) LM C*-algebras [48], [34], or b*-algebra [49], [50],
or pro C*-algebra [51]), [35]. Note that, any C*-seminorm is submultiplicative,
p(ab) < p(a)p(b) for all a,b € A, cf. [52], and *-invariant, p(a*) = p(a) for

all a € A. Denote the collection of all continuous C*-seminorms by S.(A).
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Then S,(A) is a directed set under pointwise maximum seminorm, namely, given
p,q € S«(A), letting r(a) := max{p(a), q(a)} for all @ € A, then r is a continuous
C*-seminorm and p,q < r. Locally C*-algebras were studied in [49], [50], [43],
48], [35], and [53], to cite a few.

Any locally C*-algebra is, in particular, an admissible space, see [24].

A pre-Hilbert module over a pre-locally C*-algebra A, or a pre-Hilbert A-
module is a topological VE-module H over A. Note that the topology on the
pre-Hilbert A-module H is given by the family of seminorms {p},cs, (1), where
p(h) = p([h, h]))Y/? for all p € S,(A) and all h € H. A pre-Hilbert A-module H is
called a Hilbert A-module if it is complete, e.g. see [35].

For a Hilbert A-module X and p € S,(A), denote Z* := {a € A | p(a) = 0},
or simply Z, when there will be no danger of confusion on the ambient locally
C*-algebra, and f;” = {z € H | [z,2] €T}, or simply Z,. Then Z, is a closed
«-ideal in A and it is known, cf. [50], that the quotient A, := A/Z, is a C*-algebra
with C*-norm ||a + Z,|| 4, := p(a) for a € A. Also, Z, is a closed .A-submodule in
‘H and the quotient module H, := H /ip is a Hilbert module over the C*-algebra

A,, with module action given by
(h+Z)a+1T):=ha+TI, hcH, acA,
and gramian given by

W+ Zp k+ L)w, = [ klu +IL,, hk€H, ac A

On the other hand, when H and K are Hilbert modules over the same locally
C*-algebra A, the space of all adjointable linear operators T: H — K, denoted
by L*(H, K), has some additional properties, when compared to VH-spaces. Any
operator T' € L*(H,K) is automatically a module map and continuous, cf. [54]
or Lemma 3.2 in [53], in particular, T'(h-a) = T'(h) -a for all h € H, a € A and
LX(H,K) = L:(H,K), see Subsection 2.3 for notation.

For fixed p € S,(A), any operator T' € L*(H, K) induces an adjointable, hence

a continuous module map operator 7, from the Hilbert A,-module #, to the
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Hilbert A,-module K, via
T,(h+I}):=Th+IF, heH, (5.1)
with adjoint
* FICN\ . 7H
T(k+Z1Z;)=Tk+1), kek. (5.2)

Moreover, there is a constant C' > 0 such that
px(Th) < Cpy(h), heH, (5.3)
see [35] and [53].

A topology on L*(#H,K) can be defined via the collection of seminorms
{Prxctpes.(ay: for arbitrary p € S,(A),

Pux(T) = Tpll, T € LY(H,K), (5-4)

where || - || denotes the operator norm in £*(H,,/C,), equivalently, ||7}| is the
infimum of all C' > 0 satisfying inequality (5.3). For the case H = K, these
seminorms become C*-seminorms and they turn £*(#) into a locally C*-algebra,
c.f. [35] and [53].

A triple (H, A, B) where H is a locally Hilbert B-module and A is a locally C*-
algebra with a continuous left x-action on H, i.e. a continuous *-representation
of Aon L*(H) is called a locally Hilbert A-B correspondence. In the rest of the
article, when needed we will use 7(a)h to denote the left action of A on ‘H, where
7 denotes the s-representation of A on L£*(H). If this is not needed then we use

just ah, a € A, h € H to keep the notation simple.

For a locally C*-algebra A, let M, (A) denote the x-algebra of all n x n ma-
trices over A. M, (A) becomes a locally C*-algebra considered with the topology

generated by the C*-seminorms

n

Pullaglii=1) = lay + Lpli o Iy, lagli=1 € Mu(A),

where || - ||a,(4,) is the C*-norm on the C*-algebra M, (.A,).
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Given a locally Hilbert A-B correspondence H, consider n-fold the alge-
braic direct sum H(™ for some n € N. Then H™ has a natural structure
of an M, (A)-B correspondence. The continuous *-representation of M, (A) on
LH(H™) is 7 ([aij]}7=1) = [7(ai)]i= for [ais]f,—1 € Mn(A) acting on H™ by
[m(ai;)i 1 [hilisy = laiihyliy and the inner product is ([hiliiy, [giliii)wr =
Z?:1<hi,9i>?t-

In what follows we state and prove a series of lemmas on locally C*-algebras
and locally Hilbert modules that will have a technical role in the next section,
where we apply theorems 3.2.11 and 3.2.13 in the context of locally C*-algebras
and locally Hilbert C*-modules to obtain various dilation theorems. Lemmas
5.1.1 and 5.1.2 below are known, see e.g. [35]. Lemma 5.1.3 is stated mainly for
the lack of an explicit reference and it should be known as well. Lemmas 5.1.8,
5.1.5 and 5.1.7 are variations of Lemma 3.7. in [24] and they will be used to prove
boundedness of some kernels under certain left actions in the next section. We

provide proofs for all of the lemmas for the sake of completeness.

The proof of the lemma below uses an idea from [55].

Lemma 5.1.1. Let A be a locally C*-algebra. Then for any a € A we have

spa)= |J splay)

peS*(A)

Proof. By passing to unitization of A if necessary, we can assume without loss of

generality that A is unital.

"sp(a) 2 Upes+(a)sp(ap)”: Assume there exists A € (J,cg-(4)SP(ap), but such
that A ¢ sp(a). Then Ae — a is invertible, so by passing to quotients, (Ae —a), =
Aep — ay is invertible for each p € 5*(A) and consequently A & | cg-(4) SP(a), &

contradiction.

"sp(a) C U,es+(a)5P(ap)”: Assume to the contrary that we have A € sp(a),
but there is no p € S*(A) such that A € sp(a,). Then (Xe, —a,) = (Ae — a),
is invertible in the C*-algebra A, for any fixed p € S*(A), so there exists a
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net of elements (b(p))pes*( 4) in A such that b](?p )()\e —a), = ep, or equivalently,
p(b® (e —a) —e) = 0.

We claim that the net (b)),cg«(4) is a Cauchy net in A. Given any g € S*(A),
and € > 0, fix ¢ as an index. Then given any ry,r, € S*(A) with ry,rs > ¢ we
have

g0 (e —a) —e) < (B (Ne —a) —e) =0

for ©+ = 1,2. By uniqueness of inverse in a C*-algebra we have bé”’ = b((fz) ,

consequently q(b(") — b("2)) = 0 < € and the claim is proven.

Now let the limit of the net (b'?)),cs+(4) be b. Given p € S*(A) and § > 0,
choose s € S*(A) such that p(b® —b) < §/M, where M > 1 is a number such
that M > p(Ae — a). By subadditivity and submultiplicativity of any p € S*(.A)

we have
p(b(he —a) —e) < p((b®)(Ae —a) —e) + p((b—b)(Ne —a)) <0+ =10

so p(b(Ae —a) —e) = 0 for all p € S*(A). Since A is Hausdorff separated,
b(Ae — a) — e = 0 and therefore A ¢ sp(a), a contradiction which finishes the
proof. O]

Lemma 5.1.2. Let A be a locally C*-algebra. Let a € A be self adjoint. Then
a 1s positive if and only if a, is positive in the quotient C*-algebra A, for all

p € S*(A).

Proof. 7 = 7: Assume a is positive in \A. By definition we have sp(a) C R+. By
Lemma 5.1.1 sp(a) = U,cg+(4)SP(ap) so we have sp(a,) C R+ for any p € 5*(A).
We also have a; = a, for any p € S*(A), hence q, is positive in A, for any

p € S*(A).

7 <" Assume q, is positive in A, for any p € S*(A). Since a; = a,, we have
p(a* —a) = 0 for all p € S*(A) and since A is Hausdorff separated, it follows
that a* = a. We also have sp(a,) € R+ for any p € S*(A) and consequently
Upes+(a)sP(ap) € R+, whence by Lemma 5.1.1 it follows that sp(a) C R+, so a

is positive. O]
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Lemma 5.1.3. Let A be a locally C*-algebra, n € N and A := [a; 5]} ,-, € M,(A)
be a matriz. Then A is positive in the locally C*-algebra M, (A) if and only if we

zn: bf(l@jbj Z 0

1,j=1

have

for any elements {bx}7_; C A.

Proof. Using the definitions it is straightforward to check that the two C*-
algebras M, (A,) and (M, (A)), for any p € S.(A) can be identified isometri-
cally *-isomorphically by t,: (Mn(A))y = Mn(Ay), (1) = [ri;, )71 Wwhere
R = [ry;]#,=1- For all purposes in this article we can therefore assume that

M,(A,) = (M,(A)), for all p € S,(A).

7 = 7: Assume that a matrix A := [a;;]7,_; € M,(A) is positive. By Lemma
5.1.2, the matrix A, € M,(A,) is positive for any p € S,(A). By a well known
characterization of positivity in the C*-algebra M, (A,), see [28], we have

Z b,pa”p iy = Z b;a; ;b;

3,j=1 4,j=1

for any {b;}?_; € A. By Lemma 5.1.2 again, y .., bfa; ;b; > 0.

i,7=1 "1

7 <= 7: We observe that all the steps in ” = 7 above can be reversed and the

proof is finished. O

Lemma 5.1.4. Let A, B and C be C*-algebras and (€;7) be an A— B correspon-
dence and (F;p) be a B — C correspondence. Then for any a € A there exists
a constant c(a) > 0 with c¢(a) < ||7(a)||such that for any n € N, {o;}, € C,
{z:}, € &, {yi}, € F we have

Z @ (Y, (ami, axj)ey;) 7 < c(a)? Z Qi (Yi, (T, ) eYj) F-

1,7=1 1,7=1

Consequently, we have

n

1D @y, (axs, axg)eys) Flle < e(a)’|] ) @ag(yi, (26, 25)ey;) -
i,j=1 i,j=1
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Proof. Let a € A be such that ||7(a)|| < 1, by dividing by ||7(a)|| + € for some
e > 0 if necessary. Hence ||7(a*a)|| < 1. Let I¢ be the identity operator on .
Then Iz — m(a*a) is positive in the C*-algebra £*(£), so there exists a positive
element y € L*(€) such that I¢ — w(a*a) = y?. We then have

> @y, (T x5)y;) — ) g {ys, (as, azs)y;)

i,j=1 t,j=1

= Z ;0 (Y, (Ie — m(a*a)z;, x;)y;)
ij=1

= Z a0 (Yis (YTi, Y5)Y;)
ij=1

=([ouyiliz1. [<yxiayxj)]Zj:I[ajyj]?:1>]:” >0

for any n € N, {a;}i, € C, (i, 4:)i, € € x F where the operator [(yz;, yz;)]7 ;-
is positive by the same argument in (5.2.2). The first inequality now follows with
some c¢(a) > 0 with ¢(a) < ||7(a)||, while the second inequality follows by taking
norms of both sides of the first. O

Lemma 5.1.5. Let A, B and C be locally C*-algebras and (€;7) be an A — B
correspondence and (F;p) be a B —C correspondence. Then for any a € A and
p € Si(C) there exists a constant c,(a) > 0 such that for anyn € N, {a;}}, € C,
{z;}, € &, {yi}, € F we have

P(Z aia(yi, (azi, ary)ey;) ) < Cp(a)Qp(Z @i (i, (Tiy ) eY5) F)-
i,j=1 i,j=1

Moreover, ¢, can be chosen such that there exists a seminorm r € S.(A) with the

property that c,(a) < r(a) for all a € A.

Proof. Fix any p € S,(C). Since S,(B) is directed and p is continuous, there
exists ¢ € S.(B) and a constant d,, > 0 such that p(p(z)) < d,,q(x) for any
x € B. So if ¢(z) = 0 for some x € B, then p(p(x)) = 0. Consequently, the map
pp: By = L*(F,) given by py(b+ IF) := p(b),, b € B is well defined.

Similarly, since S,(A) is directed and 7 is continuous, there exists r € S,(A)

and a constant e, , > 0 such that g(7(y)) < e,,r(y) for any y € B. So if r(y) =0
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for some y € B, then g(7(y)) = 0. Consequently, the map w,: B, — L*(&,) given
by 7,(a + I2) :=7w(a),, a € A is well defined.

Now for any n € N, {a;}7, € C, {x;}1~, € €, {y;}}-, € F we have

Z%O@ yi, p(m(a)zim(a)z;))ey;) )

= |l Z Yips pp((Talar)(iq), Talar)(2,))e,)Y5,) 7, lle,
< Cpar(@)? D Wips p((Tig 25,)e, )93, 5 e,

i,j=1

- Cpqr ar Z Oé,Oé] Yi, P xuxj))é'yj)}')
2,7=1

where the inequality follows by Lemma 5.1.4 with ¢, ,(a,) < [|7,(a,)|, = q(7(a)).
Hence we have ¢, ,,(a,) < r(a). Since once p € S,(C) is fixed, ¢ € S.(B)
and r € S,(A) are also fixed, we can write ¢, ,(a,) = ¢,(a) and the proof is

finished. O

For the next lemma, given two pre-C*-algebras A and B, let B(A, B) be the
set of all bounded linear mappings. The positivity assumption that appears in

the lemma is due to [9], see subsection 5.2.4 for more details.

Lemma 5.1.6. Let A and B be two unital pre-C*-algebras, X be a nonempty set
and k: X x X — B(A, B) be a kernel satisfying

> bik(w;, ;) (aja)b; > 0 (5.5)
1,]
for alln € N, {z;}", € X, {a;}!-, € A, {bi}-, € B. Then for any a € A there

exists a constant c(a) > 0 with c(a) < ||a|| such that we have

Z a;obik(zg, x5)(afa*aa;)b; < c(a Z ;b k(s z5)(afa;)b;

4,j=1 7,7=1

for alln € N, {a;}, € C, {z;}, {ai}, € A, {b;}, € B.
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Consequently, for any a € A there exists a constant c(a) > 0 with c(a) < ||al|
such that

1~ @asbik (s, x5) (afa”aa)b;|| < c(a)’]| Y @Gasbik (@, x5)(afa;)bs|

i,j=1 4,j=1

foralln € N, {ai}il; € C, {zi}il,, {aibin, € A, {bi}iL, € B.

Proof. Since k(zx,y), z,y € X is a bounded linear mapping, it has unique linear
bounded extension to the C*-algebra completion of A and valued in the C*-
algebra completion of B, which we denote by the same symbol. By continuity
arguments and closedness of positive elements in a C*-algebra, the positivity

property remains true for the extended kernel as well.

Given a € A by dividing by |la|| + € for some € > 0 if necessary, we can
assume that ||a|| < 1. We have, for all n € N, {o;}, € C, {z;},, {a;}1-, € A,
{bi}?ZI S Ba

Z aobik(z, x5)(afa;)b; — Z aobik(z,, x5)(afa*aa;)b;

i,j=1 ,j=1
n
= @a;bik(wi, z;)(a;a;(ea — a*a)) > 0
i,j=1

where the inequality follows by arguing similar to the proof of Lemma 5.1.4. It

follows that the constant ¢(a) > 0 can be chosen to satisfy c(a) < ||a]| as well.

The second inequality in the lemma follows by the first by taking norms of
both sides. ]

For the next lemma, given two pre-locally C*-algebras A and B, let L.(.A, B)
be the set of all linear and continuous mappings from A to B. See subsection

5.2.4 for the positivity assumption that appears in the lemma.

Lemma 5.1.7. Let A and B be two wunital pre-locally C*-algebras, X be a
nonempty set and k: X x X — L.(A, B) be a kernel satisfying

> k(@i x;)(aja;)b; > 0 (5.6)
ij
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for alln € N, {z;}, € X, {a;}, € A, {b;}}~, € B. In addition, assume that
we have the following uniform continuity condition that, for any p € S.(B) there
exists ¢ € Si(A) such that p(k(x,y)(a)) < q(a) holds for all z,y € X and a € A.

Then for any p € S.(B) and a € A there exists a constant c,(a) > 0 such that

p( Y @aybik(wi, ;) (a;a"aa)b;) < cpfa Z aiabik (i, ;) (a7 a;)b;)
1,5=1 i,j=1
holds for all m € N, {a;}, € C, {x;},, {a;}l, € A, {b;}, € B. Moreover,
¢ can be chosen such that there exists a seminorm q € S.(A) with the property

that c,(a) < q(a) for all a € A.

Proof. Arguing similar to the proof of Lemma 5.1.6, a map k(z,y), z,y € X
extends uniquely to a linear continuous mapping from the locally C*-algebra
completion of A to locally C*-algebra completion of B, which we denote with the

same symbol.

Using the uniform boundedness condition and similarly to the proof of Lemma
5.1.5, the maps k(z,y)p: Ay = B, given by k(z,y),(a + ) := k(x,y)(a) + I}
are well defined for any z,y € X; moreover, they are linear and bounded. Now
define kernel k,: X x X — B(A,, B,) by k,(z,v)(a,) := (k(z,y)(a)),. It follows
by the positivity assumption (5.6) and Lemma 5.1.2, that the positivity condition
(5.5) of Lemma 5.1.6 is satisfied, that is,

Z b; kp(zi, ) (ai ,a;,)b;, > 0

i,j=1

for p and ¢ as above and any n € N, {a;}", € A and {b;}", € B.

Now, similar to the proof of Lemma 5.1.5 again, for p as above and any a € A
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we have

p( Y @abik(z;, x;)(aja"aa,)b;)

ij—=1
n
=Y @y k(@i 2;) (af 0" gaqa;,)bj, |l
ij—=1
n
< eplag)’l| Y Wb Ky (i, x5) (a7 ;)05 |1

1,j=1

Z aiabik(xs, ;) (aia;)b;)

1,7=1
where the inequality follows by Lemma 5.1.6 with c¢,(a,) < ||a,ll; = ¢(a). Since
once p € S.(B) is fixed, ¢ € S.(A) is also fixed, we can write ¢,(a,) = ¢,(a) and
the proof is finished. O

Lemma 5.1.8. Let A and B be locally C*-algebras and ¢: A — B be a continuous
and completely positive map. Then for any a € A and any p € S.(B) there exists a
constant c,(a) > 0 such that, for alln € N, {o;}?, € C, {a;}?, € A, {b;}}, € B

we have

p(z obip(aja”aa;)b;) < cp(a Z azabip(agaz)b;).
i,j=1 i,j=1
Moreover, ¢, can be chosen such that there exists a seminorm q € S.(A) with the

property that c,(a) < q(a) for alla € A

Proof. Let X := {x} be a one point set and define kernel k: X x X — L.(A, B)
by k(x,x) := ¢. The positivity condition of Lemma 5.1.7 is characterized by the
complete positivity of ¢, using Lemma 5.1.3 and the fact that positive matrix in

M, (A) is a sum matrices of the form [afa,|!',_,, where this fact is proven with the

i,j=1>
same way as in C*-algebra case. The uniform boundedness condition of Lemma
5.1.7 is satisfied by the continuity of ¢, and then an application of Lemma 5.1.7

produces Lemma 5.1.8. O
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5.2 Unification of Some Dilation Theorems

In this section, we prove some dilation theorems from applications of Theorems
3.2.11 and 3.2.13.

5.2.1 Paschke’s Theorem for Completely Positive Maps

Paschke’s construction of Hilbert C*-correspondences from completely positive
maps of C*-algebras is well known. A similar construction for completely positive
maps of locally C*-algebras can be obtained from the more general Theorem 4.6.
of [56]. It can also be obtained from Theorem 5.2.4 below, see Remark 5.2.5. In
the following, we obtain this theorem directly from Theorem 3.2.13.

Theorem 5.2.1. Let A and B be unital locally C*-algebras and ¢: A — B be
a continuous completely positive map. Then there exists an A-B correspondence
K and an element ¢ € K such that ¢(a) = (a(,() for all a € A and the set
Lin{a(b | a € A,b € B} is dense in K.

Proof. Consider the set A x B with a left action of A, regarded as a *-semigroup,
as follows: a - (a1,b1) = (a1,by) for all a € A and (ay,b1) € (A x B). Also define
a right action of B, regarded as a semigroup, on A x B by (a1, b1)-b: = (a1, b1b)
for all b € B and (a1,b1) € (A x B), and also consider the right action of B on
itself. Since any locally C*-algebra is, in particular, an admissible space, see e.g.
[24], we can define the admissible space valued kernel k: (A x B) x (A x B) — B
by
k((a1,b1), (az, b2)): = bip(ajas)bs

for all a;,as € A and by,by € B. rIn the following we show that this kernel
is a weakly positive semidefinite doubly invariant kernel satisfying boundedness
conditions (1)(c)-(d) of Theorem 3.2.13.
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In order to verify that k is weakly positive semidefinite, we check that

E aok((a, b;), (aj,b; g a;obio(ala;)b;

1,7=1 1]1

—Za“ o(aia;)(a;b;) >0

foralln € N, ()", € C, (a;)!-, € Aand (b;)!, € B, by the complete positivity

of ¢ and Lemma 5.1.3. Therefore k is weakly positive semidefinite.

We have k((a1,b1),a- (ag, b)) = bip(asa*a;)by = k(a* - (ay,by), (az, by)) for all
a € Aand (ay,b1), (ag, by) € (A x B), so k is left invariant under the action of A.

We also have

k((a1,b1), (az, b2) - b) = byp(azar)bob
=k((a1,b1), (az, b2))b

for all b € B, (a1,b1),(as,by) € A x B, and clearly the action of B on itself is

linear. Therefore k is a doubly invariant kernel under the actions of A and B.

For the boundedness condition 1(c) of Theorem 3.2.13, given any p € S.(B)

and a € A we have

Z aask(a(ai,b;), alaz, b)) = p( Y @Gabip(asa*aa;)b;)

2,j=1 4,j=1
Z ;0 ZQO a; Gj Z Oéza] &17 (aj’ b])))
1,7=1 ,j=1

for all n € N, {a;}, € C, {(a;,b;)}; € A x B, where the inequality follows by
Lemma 5.1.8. Hence 1(c) holds.

For boundedness condition 1(d) of Theorem 3.2.13, given any p € S.(B) and
b € B we have

Z wogk((ai, bi) - b, (a5,b5) - b)) = p(v* (D Weybiep(ajai)b;)b)

2,7=1 ijl

Z alaj al? (aj’bj)))

i,7=1
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for all n € N, {a;}io, € C, b € B, {(a;, b:)}}';=; € (A x B) by the submultiplica-
tivity of p and condition 1(d) holds.

By theorem 3.2.13, there exists a minimal doubly invariant VH-space linearisa-
tion (IC; V';m; ), which, here is an A-B correspondence. Letting ¢ := V(ey, eg),

we have

(m(a)(, Ok = (V(a,es), Ve, en))x
= k((a,ep), (ea,e5)) = egp(eya)es = p(a)

for all a € A. Finally, since 7(a)(¢7(b)) = V(a,b) for all a € A, b € B, and K is

minimal,

Lin{7(a)(¢7()) | a € A,b € B} = Lin{(7w(a){)7(b) | a € A,b € B}
= Lin{V(a,b) |a € A,b € B}

is dense in K. O

5.2.2 Internal Tensor Product of Two C'*-Correspondences

Let A, B,C be locally C*-algebras and £ be an A-B correspondence, and F be a
B-C correspondence. In this subsection, as an application of Theorem 3.2.13, we

will obtain the internal tensor product £ ® F, as an A-C correspondence.

Theorem 5.2.2. Let A,B,C be locally C*-algebras and € be an A — B corre-
spondence, and F be a B — C correspondence. Then there exists an A — C corre-
spondence € ® F in which the simple tensors x © y satisfy (r1 © y1,T2 © y2) =
(y1, (w1, x2)y2) and the simple tensors span a dense subspace of € ® F, and we
have a(x @ y) = (az) Oy and x © by = (xb O y) for alla € A, b€ B, x € &,

y € F. Such an A-C correspondence is unique up to unitary equivalence.

Proof. Consider the set £ x F with a left action of A defined by a-(z,y): = (az,y)
foralla € A, x € £, y € F, and a right action of C defined by (z,y) - ¢ := (z, yc)
for all c € C, (x,y) € (€ x F).
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Define a kernel k: (€ x F) x (€ x F) — C by

k((71,91), (T2,92)): = (Y1, (1, T2)Y2) 7

We show that this kernel satisfies 1(a)—(d) of Theorem 3.2.13.

Let ™ be the direct sum of F with itself n times, for any n € N. k is weakly
positive semidefinite, for we have

n

> @moak((wi i), (25, 95) = D> (s, (@i, 25)05y;)

i,j=1 ,j=1
= ([ayilizy, Kxhxj>]2j:1[ajyj]?:l>}'("> >0

for all {o,;}, € C, (z4,y:)1, € € x F. The inequality follows since the matrix
(24, 25)]7 ;=1 € Myn(B) is positive by

Z bi (xi, x;)b; = (Z x;b;, ijbj> > ()
=1 j=1

ij=1

for all {b;}; € B, and by Lemma 5.1.3.
We show that k is invariant under the left action of A:

k((z1,51),a - (2,12)) Y1, (T1, ax2)ys)

=
= (y1, (a" 1, T2)y2)
k(a® - (21,y1), (72, 92))

for all @ € A and (x1,y1), (22,y2) € € x F, and left invariance is shown. We also

have

k((z1,91), (w2,92)c) = (Y1, (71, T2)20)
(y1, (T1, T2)y2)C
k((‘rhyl)v <x27y2>>c

for all ¢ € C, (z1,y1), (x2,92) € € X F, and k is right invariant under the action

C. Therefore, k is a doubly invariant kernel under the actions of A and C.
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To verify that condition 1(c) of Theorem 3.2.13 holds, given any p € S.(C)
and a € A we check that

Z aask(a- (z,y:),a- (2, 95))) = p( > @oy (s, (ai, az;)y;)

2,7=1 i,0=1

S Z aloz] Yi, <17Z7933 yj Z OzZOz] xzuyz (xj7yj)))

4,j=1 3,j=1

for all n € N, {a;}1, € C, (x;,y:), € € x F, where the inequality follows by

Lemma 5.1.5 for some constant ¢(a) > 0. Hence condition 1(c) holds.

In order to see that 1(d) of Theorem 3.2.13 holds, given any p € S,(C) and
c € C we check that

Z k(@i 9:) - ¢ (25,95) - ) = p(¢" Y @y, (i, ;)y5)¢)

1,j=1 1,j=1

Z Oé,Oé] xzayl («Tj7yj>>>

7,7=1

forallce C,n e N, (z;,y;,)", € (E X F), (a;), € C, by the submultiplicativity
of p and condition 1(d) holds.

By theorem 3.2.13, there exists a minimal doubly invariant VH-space lineari-
sation (K;V;m;7), which is clearly an A-C correspondence. By minimality of
IC, LinV (€ x F) is dense in K. We check that we have w(a)V (z,y) = V(az,y),
V(z,y)r(c) =V(x,yc) foralla e A, ceC, x € &, y € F. We also have

(V(xb,y), V(2,t))k = (y, (xb, 2)t)
= (by, (z,2)t)
= <V($,by), V(Zut»lC
forall b € B, z,z € £ and y,t € F. By minimality, V(zb,y) = V(x, by) for all
be B,z €& andy e F. Hence, defining x © y := V(z,y), K = £€® F is the

required space. Finally, uniqueness up to unitary equivalence follows as well. [
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5.2.3 A characterization of y-maps through dilations

For this subsection, following [17], we make the following definitions. Let E and
F be locally Hilbert modules over locally C*-algebras B and C, respectively. Let
@ be a map from B to C. A linear map T : E — F is called a p-map if

(Tx, Ty) = p({z,y))

for all x,y € F.

The following theorem is locally Hilbert module analogue of the Theorem in
[17]. A slightly differently stated version of it was proved in Lemma 3.2 of [57]. In
this article we will prove it as an application of our Theorem 3.2.13. The tensor

product notation ® is used for the internal tensor product, see Theorem 5.2.2.

Theorem 5.2.3. Let E and F' be locally Hilbert modules over unital locally C*-
algebras B and C, respectively. Then for every linear map T : EE — F' the following

are equivalent:

(i) T is a @-map for some completely positive map ¢ : B — C.

(ii) There exists a pair (F,C) of locally C*-correspondence F from B to C and
a vector ¢ € F, and there exists an isometry v : B © F — F such that

T=v(idg®():z—v(xe]).

Proof. (ii))=(i). ¢: B — C defined by ¢(b) := (¢, b() is such a map. Taking into
account Lemma 5.1.3, this follows with the same arguments as in the C*-algebra

case.

(i)=(ii). By Paschke’s Theorem for locally C*-algebras, see Theorem 5.2.1,
there exists a B-C correspondence F and a vector ¢ € F such that (¢,b() = ¢(b)
for all b € B and F = LinB(C.

Consider the kernel k: €& x & — C given by k(z,y) = ¢((z,y)). Since T is a

@-map, it follows that Lin7T'(E) C F' with linearisation 7" is a minimal VH-space
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linearisation of k. On the other hand, since we have

<.1'@ C,y © C> = <Cv <$7y>C> = @((xvy»

for all x,y € €, Lin(E ® () C E ® F with linearisation z ® ( is also a minimal

VH-space linearisation of k.

By Theorem 3.2.13, there exists a unitary operator U: Lin(E ® ¢) — LinT(FE)
such that U(z ® ¢) = Tz for all 2 € £. Since F = LinB(C and = ® b¢ = 2b ©
for all z € € and b € B, U extends uniquely to a unitary operator, which we
still denote with U, U: £ ® F — LinT(€)C, which can be considered an isometry
v:EOF = F. O

5.2.4 Dilations of Continuous Mapping Valued Com-
pletely Positive Definite Kernels

Following [9], we define completely positive definite kernels in the context of
locally C*-algebras. Let X be a nonempty set and A and B be pre-locally C*-
algebras. Let L.(A, B) be the set of all linear continuous mappings from A to
B. Let k: X x X — L.(A, B) be a kernel. Then k is called completely positive
definite if it satisfies

1,3

foralln € N, {z;}~, € X, {a;}, € A, {b;}}_, € B.

The following theorem is a locally C*-algebra version of Theorem 3.2.3 in [9].

Theorem 5.2.4. Let A and B be unital pre-locally C*-algebras, X a nonempty
set, k: X x X — L.(A, B) be a kernel satisfying the hypothesis of Lemma 5.1.7,
that is, a completely positive definite kernel having the property that for any p €
S«(B) and a € A there exists ¢ € S.(A) such that p(k(z,y)(a)) < q(a) holds
for all xz,y € X. Then there exists a pre-locally Hilbert A-B-module £ with the

representations of A and B both continuous and a mapping i : X — & such that

k(z,y)(a) = (i(x), ai(y)) (5-8)
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forall z;y € X and a € A and & is minimal in the sense that it is the linear

span of Ai(X)B. Moreover, (£,1) is unique up to unitary equivalence.

Conwversely, if € is a pre-locally Hilbert A-B module with both representations
continuous and X C &, then the kernel k(z,y)(a) := (x,ay), z,y € X anda € A

1s completely positive definite.

Proof. Consider the set A x X x B, with a left action of A by a - (aj,z1,b1) =
(aay,xz1,by) for all @ € A and (a1, 21,b1) € (A x X x B) and a right action of
B by (ay,x1,b1) - b := (a1, x1,b1b) for all b € B and (a1, x1,b1) € (A x X x B).
Define kernel 1: (A x X x B) x (A x X x B) — B, where the pre C*-algebra B
is regarded as a topological VE-space, see [24], by

1((a1,$1, b1), (a2,$27 bz)) = ka(ﬁl,@)(aT%)bQ

for all (a1, x1,b1), (ag, 2, b2) € (A x X x B). We check that 1 is weakly positive

semidefinite. We have
> @mol((ai, xi, bi), (a5, 25, 05)) = Y (aibi) K(ws, ;) (aga;) (azb;) > 0
i,j=1 i,j=1
for all n € N, (o), € C, (a;,z;,b;); € (Ax X x B) and 1 is weakly positive

semidefinite.

We show that 1 is left invariant under the left action of A.

1((ax1,b1),a- (ag, xa, b)) = bik(z1, z2)(ajaas)bs

= l(a*<a1, x]_, bl), (a27 X2, b2))

for all a € A and (ay,z1,b1), (az, 2,b2) € (A x X X B) holds, so left invariance

of the kernel 1 is shown.

To see the right invariance of 1 under the right action of B, note that

1((a1, 21, b1), (az, 22, b2) - b) = (bik(x1, 22)(ajaz)bz)b
=1((a1,x1,b1), (a2, z2,b)) - b
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for all b € B and (a1, x1,b1), (a2, z2,b3) € (A x X x B). Hence 11is right invariant
as well. We conclude that 1 is a doubly invariant kernel under the actions of A
and B.

For the boundedness condition 1(c) of Theorem 3.2.15, note that given any
p € S.(B) and a € A, by Lemma 5.1.7 we have

p(>  @asl(ala;, v, bi), ala, x5, b;)))

ij=1
=p( ) @oybik(z;, z;)(a;a”aa;)b;)
ij=1
< c(a)’p( > @oybik(x;, ;) (a}a;)b;)

ij=1
= c(a)2p( Z Eiajl((ah Lis bl)v (aj7 Lj, bj)))
ij=1
foralln € N, ()7, € C, (a;,x;, b)), € (Ax X x B), where for some g € S,(A)
we have c(a) < g(a) for all a € A. So condition 1(c) of Theorem 3.2.15 holds.

For the boundedness condition 1(d) of Theorem 3.2.15, note that given any
p € S«(B) and b € B we have

p(Y - @asl((as, @i, bi) - by(a, 5, b;) - b))

ij=1
= p(>_ @b bik(w;, x;)(a; a;)b;b)
ij=1
< p(b)°p( > oy k(x,2;) (0] a;)by)

ij=1
= p(0)°p()_ @al((as, 2:,bi) - b, (a5, b;) - 1))
ij=1
since p is submultiplicative and p(b*) = p(b). Hence 1(d) of Theorem 3.2.15 holds
with d(b) < p(b).

By Theorem 3.2.15 there exists a minimal doubly invariant topological VE-
space linearisation (&;V;m;7) with 7: A — LI () and 7: B — L.,(E),
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which turns out to be a pre-Hilbert A-B module. Define i : X — & by
i(z) := V(eyq,z,e5) where e4 and ep are the units of A and B, respectively.

Then we have

k(z1,72)(a) =1((ea, 71, €5), (a4, T2, ep)) = (i(x1), 7(a)i(z2))

for all 21,29 € X and a € A. We also have £ = LinV(A x X x B) =
Linm(A)i(X)7(B), by minimality. A pair £, as in (5.8) produces a minimal
doubly invariant topological VE-space linearisation of the kernel 1, so it should
be unique up to unitary equivalence by Theorem 3.2.15. Finally, since we have

c(a) < q(a) and d(b) < p(b), the representations m and 7 are continuous.

Converse statement is straightforward and is left to the reader. O]

Remark 5.2.5. As in the proof of Lemma 5.1.8, putting k(z,z) := ¢ where
© is as in the statement of Theorem 5.2.1 and an application of Theorem 5.2.4

produces Theorem 5.2.1. The details are left to the reader.
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