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The objective of this contribution is to present a unifying review on strain-driven compu-
tational homogenization at finite strains, thereby elaborating on computational aspects of
the finite element method. The underlying assumption of computational homogenization
is separation of length scales, and hence, computing the material response at the macro-
scopic scale from averaging the microscopic behavior. In doing so, the energetic equiva-
lence between the two scales, the Hill–Mandel condition, is guaranteed via imposing
proper boundary conditions such as linear displacement, periodic displacement and anti-
periodic traction, and constant traction boundary conditions. Focus is given on the finite
element implementation of these boundary conditions and their influence on the overall
response of the material. Computational frameworks for all canonical boundary condi-
tions are briefly formulated in order to demonstrate similarities and differences among
the various boundary conditions. Furthermore, we detail on the computational aspects of
the classical Reuss’ and Voigt’s bounds and their extensions to finite strains. A concise
and clear formulation for computing the macroscopic tangent necessary for FE2 calcula-
tions is presented. The performances of the proposed schemes are illustrated via a series
of two- and three-dimensional numerical examples. The numerical examples provide
enough details to serve as benchmarks. [DOI: 10.1115/1.4034024]

Keywords: computational homogenization, finite strains, random composite, FE2,
multiscale

Dedicated to the memory of Professor Christian Miehe, 1956–2016

1 Introduction

Almost all materials possess heterogeneous structures at a cer-
tain scale of observation. Such heterogeneities may be desirable,
for instance, in applications of magnetorheological elastomers in
artificial muscles. Understanding the behavior of such media is
not an easy task as their physical properties depend entirely on
their underlying microstructures which may differ in morphology,
volume fraction, and properties of the constituents from one to
another composite. The complexity of the microstructural behav-
ior is further pronounced by incorporating the interaction between
the constituents, debonding along interfaces or damage caused by
fracture of the constituents or matrix. Therefore, the prediction of
the responses of composite materials requires appropriate and
generally sophisticated methods.

Conducting experiments on a large number of material samples
with different physical and geometrical properties is nearly impos-
sible from time and cost point of views. Also, performing a direct
numerical simulation of the entire body including all the heteroge-
neities leads to a huge problem whose solution is computationally
expensive and demands high memory storage requirements. To
overcome this problem, several multiscale techniques have been
developed during the past decades. These models are based on the
physics of the microstructures and are able to effectively and effi-
ciently predict the macroscopic behavior of heterogeneous materi-
als. Multiscale models are traditionally categorized into the
homogenization method, where the length scales of micro- and
macroproblems are sufficiently separate, and the concurrent
method, see, e.g., Refs. [1–20], which considers strong coupling

between the scales.2 This contribution details on the former one.
In passing, we mention that one of the very popular tools for mod-
eling multiphase materials is asymptotic homogenization. This
approach is based on asymptotic expansions of strain and stress
fields around their corresponding macroscopic values and utilizing
variational principles leading to a set of boundary value problems
at the micro- and the macroscale. An extensive body of literature
is devoted to study this technique among which we refer to Refs.
[23–41]. Reviews of the different multiscale approaches can be
found in Refs. [42–44]. The main objective of the homogenization
method is to estimate the effective macroscopic properties of a
heterogeneous material from the response of its underlying micro-
structure, thereby allowing to substitute the heterogeneous mate-
rial with an equivalent homogeneous one. Although most of the
ongoing researches in homogenization methods are limited to the
spatial homogenization, different temporal scales might also exist
in different processes such as chemical reactions. Homogenization
in both space and time has been treated in Refs. [45–51].

The first part of this contribution provides a literature review of
analytical, semi-analytical, and computational homogenization.
Clearly, any attempt to provide a comprehensive review with this
scope is a challenging task and a matter of interest to a certain
extent. We believe that the following structure forms a continuous
and rigorous composition.

1.1 Historical Review of Analytical and Semi-Analytical
Homogenization. Preliminary steps in homogenization date back
to the 19th century when Voigt [52] proposed to assume uniform
strain within the heterogeneous material. This assumption was
later followed by Reuss [53] in a somewhat opposite manner.
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2In this contribution, we consider a continuum description of the composite and
its microstructure and exclude the atomistic level. However, the classification of
multiscale methods given here is commonly accepted in atomistic community too
[21,22].
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Reuss approximated the stress field within the aggregate of poly-
crystalline material as uniform. These two approximations, when
applied to multiphase composites in pure mechanical problems,
yield two bounds for the elastic strain energy [54]. The Voigt’s
assumption, as the upper bound, violates the equilibrium of the
stress field. Also, the Reuss’ assumption, as the lower bound, vio-
lates the compatibility of the strain field. The bounds are typically
quite wide [55] and are justified only for linear material proper-
ties. The nonlinear equivalents to Voigt’s and Reuss’ assumptions
are usually referred to as Taylor’s and Sachs’ bounds [56, 57],
respectively, originally derived for polycrystals [58]. While uni-
versal and very simple, these bounds do not carry any information
of the microstructural morphology and take only the inhomogene-
ity volume fraction into account. Even though several authors,
e.g., Leffers [59], Van Houtte [60], Kocks and Chandra [61], and
Van Houtte et al. [62], suggested weakening modifications of
these assumptions, they typically provide very rough estimates of
the overall material properties and are not reliable for complex
nonlinear structures.

Some decades later, Hashin and Shtrikman presented an exten-
sion of the method, based on variational formulations, to obtain
bounds on bulk and shear moduli [63] and magnetic permeability
[64] for isotropic composites consisting of isotropic constituents.
Their proposed bounds were later generalized by Walpole [65],
Milton and Kohn [66] for anisotropic media, and by Zimmerman
[67] to obtain bounds on the Poisson’s ratio of the composites.
Further improvements were achieved by using three point bounds
in the works of Beran and Molyneux [68], Milton and Phan-Thien
[69], and Torquato [70]. Employing the same approach, Rosen
and Hashin [71]; Gibiansky and Torquato [72] derived bounds for
the thermal expansion coefficient in thermoelastic problems and
Bisegna and Luciano [73,74]; Hori and Nemat-Nasser [75]
obtained bounds for the effective piezoelectric moduli in piezo-
electric problems. Note that Hashin–Shtrikman bounds and their
improvements yield very wide bounds for the case of considerable
mismatch in phase properties [76]. The generalization of the
Hashin–Shtrikman variational approach to predict tighter bounds
compared to the Voigt’s and Reuss’ bounds was made in Refs.
[77–79] mainly by incorporating the geometrical information of
the phases.

A more sophisticated method was established by Eshelby [80]
based on dilute family methods assuming that the inhomogeneities
are so dilutely distributed that their interactions might be
neglected. So, the problem is reformed into the analysis of a single
inclusion embedded in an infinite matrix [42]. Eshelby’s conjec-
ture on validity of his proposed method for only ellipsoidal inclu-
sions has been addressed in Refs. [81–88]. However, neglecting
the interaction of particles is an unrealistic assumption of Eshelby
for materials with randomly dispersed particulate microstructure,
even at a few percent volume fraction [89]. Further proposed
models such as Mori–Tanaka [90–92], the self-consistent scheme
[93–98], the generalized self-consistent scheme [99–103], and the
differential method [104,105] are mainly based on the mean-field
approximation [106] and approximate the interaction between the
phases. The extension of these models to account for the electroe-
lastic behavior of composite materials was addressed by Dunn
and Taya [107]. Further contributions to the self-consistent
scheme were made by Nemat-Nasser et al. [108] for periodic po-
rous composites, Herve and Zaoui [109] for multilayered spherical
inhomogeneities, and by Huang and Hu [110] for aligned elliptical
heterogeneities in two-dimensional problems. Recently, Benve-
niste and Milton [111,112] made a comprehensive comparison on
various derivatives of self-consistent and generalized self-
consistent schemes in the context of dielectric two-phase compo-
sites and elasticity. In particular, their results indicated that both
schemes may violate the Hashin–Shtrikman bounds under certain
circumstances, see also Ref. [113] for an overview of self-
consistent methods. Also, comparison of Mori–Tanaka estimate
and generalized version of Hashin–Shtrikman bounds [65,114]
can be found in Ref. [115]. Riccardi and Montheillet [116]

compared Mori–Tanaka estimate and the generalized self-
consistent scheme and showed that the generalized self-consistent
method predicts a stronger dependence on the inclusion aspect ra-
tio. Based on the works introduced in Refs. [100] and [117], Hal-
pin [118] and Halpin and Kardos [119] proposed the Halpin–Tsai
equations for the mechanical behavior of continuous aligned fiber
composites. Hori and Nemat-Nasser [120] proposed the double-
inclusion model which is a unified generalization of the self-
consistent and Mori–Tanaka schemes and takes the interaction
between the phases into account more appropriately. This model
has been developed and studied further in Refs. [121] and [122].
See Ref. [123] for an evaluation of accuracy of various analytical
models to predict the stiffness of aligned short-fiber composites.

The extension of the application of the analytical homogeniza-
tion to nonlinear composites and finite deformation elasticity was
studied in the pioneering works of Hill [124] and Ogden [125].
Improved bounds for nonlinear composites were obtained by Wil-
lis [126] for nonlinear dielectrics, Ponte Casta~neda and Willis
[127] for two-phase random composites made of nonlinearly vis-
cous phases, Suquet [128] for power-law composites, Olson [129]
for perfectly plastic composites, and Talbot and Willis [130] for
general classes of nonlinear composites. A significant develop-
ment took place with the derivation of a nonlinear variational
principle by Ponte Casta~neda et al. [131–135] to estimate the
effective property of nonlinear incompressible and compressible
composites, and in particular, composites made of a ductile and a
brittle phase, based on the corresponding linear properties with
the same microstructural distribution of phases. Later, exact
second-order estimates were established by Ponte Casta~neda
[136]. Lahellec et al. [137] employed and developed this method
to estimate the behavior of hyperelastic periodic composites and
compared their results with the experimental and numerical data.
Leroy and Ponte Casta~neda [138], however, demonstrated that
such a methodology may violate Hashin–Shtrikman bounds in
some special cases. In order to resolve this shortcoming, Ponte
Casta~neda [139,140] proposed an improvement of the method
which was further extended in Refs. [141] and [142]. Later,
deBotton and Hariton [143] and deBotton [144] obtained a general
expression for the behavior of incompressible sequentially lami-
nated composites in small deformation and finite elasticity and
compared their results with Hashin–Shtrikman bounds and pro-
posed estimates of Ponte Casta~neda [136]. In passing, we mention
that an important application of homogenization is to predict the
behavior of fiber-reinforced materials reported in Refs. [145–148]
and references therein.

Analytical methods for modeling reinforced composite materi-
als considering imperfect interface conditions have been devel-
oped recently [149–163]. Also, the importance of the interphase
zone in modeling composite materials has been discussed in
Refs. [164–176], among many. Detailed reviews and comparisons
of analytical models of micromechanics can be found in
Ref. [177–196]. In particular, see the review by Mura et al. [182].

1.2 Computational Homogenization. In the past two deca-
des, substantial progress has been made in the computational ho-
mogenization of complex multiphase materials. Detailed reviews
on computational homogenization can be found in Refs. [197] and
[198]. One of the widely used approaches in modeling heteroge-
neous materials is the unit-cell method which leads to a global
macroscopic constitutive model for a heterogeneous material
based on detailed modeling of the microstructure [199–203]. As a
generalization to unit-cell method, direct micro–macro methods
have been introduced. These methods evaluate the stress–strain
relationship at each point of the macroscale through solving the
boundary value problem associated with the microscale. In the lit-
erature, the microscale sample is referred to as representative vol-
ume element (RVE) for geometrically irregular microstructures
and to unit-cell for regular ones. The boundary conditions of the
microproblem are defined such that the energy equivalence

050801-2 / Vol. 68, SEPTEMBER 2016 Transactions of the ASME

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 07/22/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



between the two scales, known as Hill–Mandel condition
[124,204], is preserved. Extension of this formulation to account
for inertia and body forces is considered in Refs. [51] and
[205–210]. The transition between the two scales is obtained via
averaging the internal fields within the RVE. Yue and E [211] dis-
cussed alternative averaging methods and reported that weighted
or truncated averaging introduced in Refs. [212] and [213] can
improve the solution in some cases. Based on Saint-Venant’s prin-
ciple, Wongsto and Li [214] proposed to obtain the effective prop-
erties of unidirectional fiber-reinforced composites by only
considering the regions sufficiently far from the boundary so as to
avoid boundary condition effects.

1.2.1 Choice of the Boundary Condition. The Hill–Mandel
condition is satisfied for a variety of boundary conditions among
which (i) linear displacement boundary conditions, (ii) periodic
displacement and antiperiodic traction boundary conditions, and
(iii) constant traction boundary conditions are more common. The
first and the last boundary conditions are sometimes referred to as
homogeneous boundary conditions. Many authors, e.g., Refs.
[215–224], have shown that in pure mechanical linear and nonlin-
ear problems, the effective behavior derived under periodic
boundary conditions is bounded by linear displacement boundary
conditions from above and constant traction boundary conditions
from below for a finite size of the RVE. Kaczmarczyk et al. [225]
made similar conclusions in the context of second-order computa-
tional homogenization. However, this does not imply that the
results obtained under periodic boundary conditions are always
the closest ones to the exact solutions as clearly stated by Terada
et al. [221] “there is no guarantee that periodic boundary condi-
tions are the best among a class of possible boundary conditions.
Nonetheless, the periodic boundary conditions provide the reason-
able estimates on the effective moduli in the sense that they are
always bounded by the other.” Also, it has been claimed in Ref.
[226] that “periodic boundary conditions require the continuity of
the inclusions on opposite boundaries to ensure the periodicity of
the microstructure. Because such unnatural periodicity is seldom
observed in real heterogeneous materials, periodic boundary condi-
tions are not appropriate for finite element models developed by cut-
ting out fragments of actual microstructures or by using simulated
microstructures based on actual microstructures.” Furthermore,
Drago and Pindera [227] observed that for the effective value of
transverse Poisson’s ratio �23, the estimation based on periodic
boundary conditions is not necessarily bounded between the results
obtained from linear displacement boundary conditions and constant
traction boundary conditions. Recently, inspired by the classical
Irving–Kirkwood procedure, Mercer et al. [228] derived a wider set
of admissible boundary conditions for the RVE that fill the gap
between the homogeneous boundary conditions.

Pecullan et al. [229] investigated the behavior of periodic unidir-
ectional linear composites with different inclusion to matrix stiffness
ratio under different boundary conditions. They demonstrated that
linear displacement boundary conditions produce a stiffness tensor
closer to the effective stiffness tensor for materials with stiff matrix
and compliant inclusions. In contrast, constant traction boundary
conditions yield better estimates for composites with compliant ma-
trix and stiff inclusions. Similar studies were conducted by Jiang
et al. [230], Ostoja-Starzewski [231], Larsson and Runesson [232],
and Saroukhani et al. [233]. Pecullan et al. [229] also concluded that
the effective bulk moduli obtained under linear DBCs for very high
matrix to inclusion stiffness contrast ratio may not satisfy the
Hashin–Shtrikman upper bound. Xia et al. [234] reported that the
homogeneous boundary conditions, when applied on periodic
microstructures, “are not only overconstrained, but may also violate
the boundary traction periodicity conditions” under loading types
with shear components. Hazanov and Huet [235], Hazanov and
Amieur [236], and Pahr and Zysset [237] proposed uniform mixed-
type boundary conditions that consider applying constant traction
boundary conditions on some parts of the boundary and linear dis-
placement boundary conditions to the other parts such that the

apparent elasticity tensor for this boundary condition lies between
the apparent tensors obtained with homogeneous boundary condi-
tions. Mesarovic and Padbidri [238] argued that there is no reason to
assume that an RVE with random microstructure behaves as a peri-
odic unit cell and suggested the use of minimal kinematic boundary
conditions. However, minimal kinematic boundary conditions are
sensitive to spurious localization in regions close to the RVE bound-
ary [239]. A comprehensive comparison of this type of boundary
conditions and periodic boundary conditions was made by Inglis
et al. [240]. Recently, Larsson et al. [241] presented a novel varia-
tional formulation based on the weak enforcement of periodic
boundary conditions. Their proposed idea resolves the restriction of
having a periodic RVE mesh to implement periodic boundary condi-
tions, see also Ref. [242]. Gl€uge [243] introduced a generalized
framework of the classical boundary conditions based on partition-
ing of the boundary of the RVE so that the stiffness of the RVE can
be adjusted. Aspects of the numerical solution and computational
cost associated with different types of boundary conditions are
investigated by Fritzen and B€ohlke [244].

1.2.2 The Size and Morphology of the RVE. The choice of the
RVE for heterogeneous materials with complex microstructures is
a delicate task. Ideally, one would like to reach the maximum ac-
curacy with the least computational effort. The RVE must be large
enough to be statistically representative of the composite so that it
effectively includes a sampling of all microstructural heterogene-
ities that occur in the composite [245]. On the other hand, it must
remain sufficiently small to be considered as a volume element of
continuum mechanics [223]. The first-order computational ho-
mogenization scheme critically relies on the principle of separa-
tion of scales, which requires that “the microscopic length scale is
assumed to be much smaller than the characteristic length over
which the macroscopic loading varies in space” [197]. This
assumption is particularly valid when macrogradients remain
small and material failure does not occur. The second-order com-
putational homogenization partly alleviates the assumption of
scale separation by taking the gradient of the macrodeformation
gradient tensor into account [246–250]. Furthermore, second-order
computational homogenization introduces a physical length to the
microscale that is missing in the first-order homogenization. It is also
possible to formulate a first-order computational homogenization
accounting for size effects by taking surface energies at the micro-
scale into account [251,252].3 This is justified by the fact that due to
the large surface-to-volume ratio at smaller scales, surface contribu-
tions to the overall response of the material are no longer negligible
at the microscale. This approach shows an excellent agreement with
atomistic simulations [255]; see also Ref. [256] where the size effect
is introduced in the context of the first-order computational homoge-
nization for transient heat conduction problems.

Strictly speaking, the response of the material must be inde-
pendent of the choice of boundary conditions imposed on the
RVE [257,258]. According to Hill [259], an RVE is well defined
when it contains a sufficient number of inclusions and the
responses under linear displacement and constant traction bound-
ary conditions coincide. The effective properties obtained from
volume elements smaller than the true RVE are referred to as
apparent properties [260]. Hill’s definition on the RVE has been
the basis of the work of Ostoja-Starzewski [231] to determine the
size of the RVE. He discussed that the size of the RVE is heavily
dependent on the type of the problem, and in particular, matrix-to-
inclusion stiffness ratio. Temizer and Zohdi [261] carried out sim-
ilar study and reported that depending on the mesh resolution of
the finite element discretization of the microsample, different
sizes of the RVE may be obtained. Jiang et al. [230] studied elas-
tic antiplane responses of unidirectional fiber-matrix composites
focusing on the effects of the scale of observation and boundary
conditions on the overall elastic moduli. They demonstrated that

3The link between second-gradient continua and first-order continua with surface
energies is interpretable in the seminal work of Mindlin [253], see also Ref. [254].
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the results obtained under displacement and traction boundary
conditions are more sensitive to the window size compared to
those obtained under periodic boundary conditions. Their results
were in accordance with the ones reported by El Houdaigui et al.
[262] for the case of isotropic polycrystalline copper. Jiang et al.
[230] concluded that a relatively small size of the RVE is suffi-
cient to estimate the effective moduli under periodic boundary
conditions for a wide range of inclusion to matrix stiffness ratios.
A new statistical definition for the RVE based on the mean consti-
tutive response was given by Drugan and Willis [245]. They
observed that the minimum size of the RVE is unexpectedly quite
small and approximately 4.5 reinforcement diameters to limit the
maximum error in the effective modulus estimates to 1% for a va-
riety of matrix and reinforcement materials within the elastic re-
gime. They also found that the apparent property obtained by
performing ensemble averaging of stress and strain on a finite
microstructure converges very quickly to those achieved from an
infinite length. Their findings were numerically verified by Gusev
[263]. Gusev studied the overall elastic constant of three-
dimensional microstructures subject to periodic boundary condi-
tions based on the finite element method and Monte Carlo simula-
tions and found out that only a few dozen spheres in the unit cell
are sufficient to obtain a small scatter in the apparent property.
Shan and Gokhale [264] utilized probability density functions of
critical microstructural variables such as nearest neighbor distan-
ces and also microstress distribution to derive a sufficiently small
RVE for a ceramic matrix composite possessing fiber-rich and
fiber-poor regions. Kanit et al. [223] proposed a quantitative defi-
nition for the RVE through statistical and numerical approaches in
the case of linear elasticity and thermal conductivity. Based on
their studies, the size of the RVE is a function of five parameters:
the physical property, the contrast of properties, the volume frac-
tions of components, the relative precision for the estimation of
the effective property, and the number of realizations of the
microstructure. Their proposed methodology was evaluated by
Dirrenberger et al. [265] to study the size of the RVE for a patho-
logical model of random structures. Harper et al. [266] determined
the critical size of the RVE for discontinuous fiber composites
with increasing fiber length and volume fraction. They evaluated
a number of microsamples and confirmed that it is computation-
ally more efficient to study fewer large microsamples rather than
many small ones. Jafari et al. [267] proposed the use of repeating
representative volume element (RRVE) which could be under-
stood as an RVE in which the particles along the boundaries are
periodically distributed. They employed similar criteria as
described in Ref. [266] to determine the size of the RRVE for pie-
zoelectric nanocomposites. The influence of the number of real-
izations of the microstructure on the obtained RVE size has been
also studied by Temizer and Zohdi [261]. They showed that
microsamples containing more inclusions typically require a
smaller number of realization. A comparison between two differ-
ent approaches, namely, ensemble averaging of multiple realiza-
tions and enlarging the size of a single microstructure, to
determine the size of the RVE was given in Ref. [268]. They
reported that these two methods generally yield equivalent results.
Trias et al. [269] reviewed various criteria such as the typical
interfiber distance distributions to determine the minimum size for
a statistical RVE. While they noted that it strongly depends on the
application of interest, they reported the minimum size of the sta-
tistical RVE to be 50 fiber radius for carbon fiber-reinforced ep-
oxy. Gitman et al. [270] carried out statistical studies on the
existence of an RVE in different regimes of the material behavior
such as linear elasticity, hardening, and softening. They showed
that the material loses the representative properties in the soften-
ing regime and no RVE can be found. In addition, they introduced
a new combined numerical-statistical method to determine the
size of the RVE. They made use of their proposed approach to
study the effect of volume fraction and material periodicity on the
size of the RVE. B€ohm and Han [271] reported that when inelastic
behavior of constituents is considered, larger sizes of the RVE are

required compared to the estimates given in the literature for elas-
tic composites. A similar conclusion was made by Pelissou et al.
[272] for quasi-brittle composites. The size of the RVE for nonlin-
ear composites containing elastic rigid heterogeneities embedded
in an elastoplastic or elastoviscoplastic matrix has been studied
recently by Hoang et al. [273]. Stroeven et al. [274] quantified the
size of the RVE for nonlinear heterogeneous microstructures by
performing statistical analysis based on specific factors such as
particle size, applied peak load, dissipated energy, and strain con-
centration. They clarified that each of these criteria leads to a dif-
ferent size for the RVE [275]. Khisaeva and Ostoja-Starzewski
[276], similar to Ref. [231], estimated the size of the RVE by per-
forming quantitative investigation on the convergence trend of the
material properties to the effective values with increasing size of
the microstructure for nonlinear elastic random composites at fi-
nite strains. They demonstrated that the RVE size changes
depending on the maximum stretch ratio, the deformation mode,
and the mismatch properties of constituents. They also made a
brief comparison on the methodology they utilized and the statisti-
cal approaches, for instance, the one introduced in Ref. [263], and
concluded that the size of the RVE obtained based on the statisti-
cal approach generally underestimates the one obtained under
their approach. Temizer et al. [277] proposed the use of window
method to investigate the convergence behavior of different
boundary conditions with increasing the size of the RVE in the
case of linear thermal conduction. They demonstrated that, given
a sufficiently thick embedding frame, the convergence of different
boundary conditions to the effective value exhibits a much faster
trend compared to the case that boundary conditions are directly
applied to the external boundary of the microsample. Salmi et al.
[278] reported that using nonsquare or noncubic microstructures
that contain no heterogeneity crossing the boundary leads to a sig-
nificantly improved rate of convergence of boundary conditions in
linear matrix-inclusion random composites. The comparison of
spherical and cubical RVE with different boundary conditions in
Ref. [279] concludes that the smaller surface-to-volume ratio
associated with a spherical RVE yields less influence of the
boundary resulting in a better convergence to the effective mate-
rial behavior as the size of the RVE increases, see also Ref. [280].
The size of the RVE has been also examined in the context of the
granular media by Meier et al. [281] where the discrete element
method is used to evaluate the size of the RVE. Balzani et al.
[282] and Scheunemann et al. [283] proposed the construction of
a statistically similar representative volume element (SSRVE) to
reduce the size and accordingly the computational effort associ-
ated with a large complex RVE. They compared the stress–strain
curves obtained with their proposed SSRVE including three inclu-
sions with the one obtained from a very large RVE and showed a
good agreement of the results along with a significant reduction of
computation time of the problem. Methods for determination of
the statistically equivalent representative volume element have
also been discussed by Swaminathan and Ghosh for fiber-
reinforced composites for two cases of with and without damage
[284,285]. Similarly, Zeman and �Sejnoha [286] employed two-
point probability functions and second-order intensity functions to
characterize the RVE of a graphite–epoxy composite in terms of a
periodic unit-cell which possesses similar statistical properties.
Furthermore, the minimum size of the RVE for polycrystals has
been studied in Refs. [287] and [288]. Recently, Moussaddy et al.
[289] argued the validity of existing well-known methodologies to
determine the critical size of the RVE for the case of composites
reinforced by randomly oriented fibers and presented a new
scheme based on statistical variations of average property.

The effects of the shape of heterogeneities and their spatial dis-
tribution on the macroscopic response of composite materials
have been extensively addressed in the literature through analyti-
cal and numerical methods [290–314]. Numerical studies to ana-
lyze the effect of shape, distribution, and volume fraction of
particles in a metal-matrix composite were performed by Brock-
enbrough et al. [315]. They reported that the distribution pattern
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of the particles has stronger effect on the overall response com-
pared to their shapes. Moreover, the influence of the inclusion
arrangement becomes more significant as the inclusion volume
fraction increases. Kouznetsova et al. [316] discussed the influ-
ence of the randomness of the microstructure on the macroscopic
behavior for a constant volume fraction of voids. Their results
show that a microstructure with random distribution of the voids
leads to more compliant behavior compared to a microstructure
with periodically distributed voids for elastic materials. These
results shall be compared with the results obtained by Wongsto
and Li [214] who carried out numerical analyses of unidirection-
ally fiber-reinforced composites for both random and regular
packed fibers in the context of linear elasticity. Trias et al. [317]
provided a detailed comparison on random and periodic models
for fiber-reinforced composites and reported that the periodic
models could lead to underestimation of matrix failure initiation.
Segurado and Llorca [318] conducted finite element analyses to
determine the influence of particle clustering in cubic RVE rein-
forced with stiff spherical elastic particles. They revealed that the
particles’ spatial distribution has no strong effect on the effective
properties of the composite in the elastic and plastic regimes. Kari
et al. [319] showed that, for a given volume fraction, the influence
of the size of the spherical particles on the effective material prop-
erties is not significant in the case of linear elasticity. The effect
of interface debonding and particle size on behavior of particulate
composite materials was studied by Tan et al. [320]. Based on
their observations, small and large particles yield hardening and
softening behavior, respectively. Chawla et al. [321] studied the
influence of different particle shapes (spherical, ellipsoidal, and
angular) on the elastic–plastic behavior of particle-reinforced
composites. They reported that the shape of the particles may
have a considerable impact on the behavior of the composite even
for very small strains. Li et al. [322] studied the influence of size,
interphase thickness, and inclusion shape on the enhancement
mechanism of composites via a closed-form approach based on
the Mori–Tanaka scheme. Mortazavi et al. [323] carried out three-
dimensional numerical investigations to evaluate the influence of
the interphase thickness, second phase geometry, volume fraction,
and properties contrast on the effective elastic modulus of nano-
composite RVEs. They demonstrated that the more the inclusion
shape deviates from spherical, the more the contrast between the
phases influences the effective property. Kochmann and Venturini
[324] studied the behavior of a composite with periodic arrange-
ment of stiff interconnected inclusions within a compliant matrix.
They showed that such a microstructure results in a composite
which exhibits auxetic behavior with auxeticity increasing with
increasing Young’s modulus mismatch. The effect of the particle
size and its distribution, volume fraction, and particle–matrix
interface adhesion strength on the macroscopic failure response of
heterogeneous adhesives made of stiff particles has been exam-
ined by Kulkarni et al. [325] based on a multiscale cohesive
framework described in Ref. [326], see also Ref. [327].

1.2.3 Analysis at the RVE Level. To date, numerous schemes
have been introduced to perform various analyses over the RVE.
Ghosh and Moorthy [328], Ghosh et al. [329], and Moorthy and
Ghosh [330] developed Voronoi cell finite element scheme to bet-
ter capture the arbitrary distribution of heterogeneities so as to
study the effects of microstructural morphologies on the effective
properties. The other technique recently developed is fast Fourier
transform (FFT) proposed originally by Moulinec and Suquet
[331] and further studied and improved in Ref. [332–338]. The
initial idea of the method was to make direct use of the digital
images of the real microstructure in the numerical simulation
which reduces the effort to generate compatible microstructural fi-
nite element discretizations [331]. Michel et al. [339] compared
and reviewed the analysis of RVE using the finite element method
and FFT. They concluded that the FFT method is computationally
superior for linear composites given that the contrast between the
phases is not too large. However, the basic model of FFT fails to

produce reasonable results in the presence of voids or rigid hetero-
geneities as its rate of the convergence is proportional to the con-
trast between the phases. Recently, Monchiet and Bonnet [340]
proposed a polarization-based FFT iterative scheme to determine
the overall properties of multiphase composites with arbitrary
phase contrast, see also Refs. [341–344]. The use of a discrete ele-
ment formulation to resolve the RVE problem has been addressed
in Refs. [345–347] among others, in particular for granular media.
Another approach to solve the boundary value problem at the
microscale is the boundary element method, studied, for instance,
by Kami�nski [348], Okada et al. [349], and Proch�azka [350].

Renard and Marmonier [351] first introduced the idea of using
a finite element discretization at the microstructure. This idea has
been further developed in Refs. [222] and [352–363]. Mo€es et al.
[364] presented an extended version of the classical finite element
method, referred to as XFEM, to solve microproblems involving
complex geometries [365]. Feyel [366] introduced the general
method of FE2 in which a spatially resolved RVE discretized by
finite elements corresponds to the macroscale integration points of
finite elements at the macroscale, and separate finite element com-
putations are performed at the two scales. Although this method is
known to be computationally expensive, it is trivially paralleliz-
able as the computations at the microscale are completely inde-
pendent of each other [367–370]. Also, a number of methods have
been recently developed aiming at reducing the computational
cost and increasing the accuracy of multiscale analysis [371–375].
These methods are typically based on decomposing the macro-
scale problem and selective usage of computational techniques
discussed in Refs. [5] and [376–378], employing a database to
directly map the effective behavior from macroscopic information
addressed in Refs. [379–383], transformation field analysis
[384–390], or proper orthogonal/generalized decomposition
[391–397].

1.2.4 Beyond Purely Elastic Problems. Extension of the com-
putational homogenization scheme to multiphysics problems can
be found in Refs. [398–405] for thermomechanical problems,
Refs. [406–409] for magnetomechanical problems, Refs.
[410–416] for electromechanical problems, and Refs. [417] and
[418] for hydromechanical problems, see also Refs. [419] and
[420]. Also, see Refs. [421–446] for more details on multiscale
modeling of failure, damage, and crack propagation and Refs.
[430] and [447–456] for background on modeling instability phe-
nomena such as buckling in the context of multiscale modeling.

1.3 Key Features and Objectives. Computational homogeni-
zation is a very mature field with an extensive body of literature.
However, some computational aspects seem to require further
details. This contribution elaborates on a unifying overview of the
first-order strain-driven computational homogenization frame-
work in the context of finite deformations using the finite element
method. Special attention is devoted to the presentation of subtle
details regarding the computational aspects and implementation of
this problem. The key features and objectives of this paper are as
follows:

� to detail on the computational implementation using the fi-
nite element method

� to study numerically the overall behavior of random
microstructures

� to investigate the converging behavior of different boundary
conditions when increasing the number of inclusions within
the RVE

� to present a concise and clear formulation for computing the
macrotangent necessary for the FE2 approach

� to provide simple numerical examples with enough details to
serve as benchmarks

� to demonstrate the influence of the nonlinearity and robust-
ness of the numerical schemes
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The rest of this paper is organized as follows. The finite defor-
mation formulations governing the response of the macro- and
microstructure, admissible boundary conditions, and the connec-
tion between the scales are discussed in Sec. 2. Section 3 furnishes
the finite element formulation of the microproblem and details on
the computational algorithms to solve the problem. The applic-
ability of the proposed algorithms is elucidated through numerical
results for both two- and three-dimensional problems. This is then
followed by presenting the finite element formulation of the mac-
roproblem and the associated computational algorithm. At the end
of this section, multiple FE2 simulations are performed. Section 4
summarizes this work. The notations, operators, and key defini-
tions used throughout the paper are listed in the Nomenclature
section.

2 Theory

This section elaborates on theoretical aspects of modeling a het-
erogeneous material whose microstructures are far smaller than
the characteristic length of the macroproblem. This separation of
scales allows to view the problem as two coupled subproblems at
the macro- and the microscale, see Ref. [231] for more details on
scale separation. Due to the heterogeneity, it is not easily possible
to assign a specific constitutive law to the material at the macro-
scale. It is assumed that the constitutive responses of the micro-
structures are known and in a homogenized sense result in the
overall macrobehavior. The central idea of computational homog-
enization is to solve the associated microproblem at each integra-
tion point of the macroproblem. This work is mainly based on the
first-order strain-driven computational homogenization. That is,
the input for the problem at the microscale is the macroscopic de-
formation gradient and outputs are the macroscopic Piola stress as
well as the macroscopic Piola tangent. Another possible approach
is stress-driven homogenization where the macroscopic stress is
given at the microscale, and the macroscopic deformation gradient
is obtained [457]. This approach is briefly discussed in Appendix
B. Strain-driven homogenization is, however, more common as it
captures the softening response of the material similar to a
displacement-control algorithm. Some of the contents presented
in this section bear certain similarities to those proposed in our
recent contribution [252], however, for computational homogeni-
zation accounting for surface energies. Admittedly, some relations
such as macrodeformation gradient MF assume the same format
whether or not surface contributions are considered. This, in gen-
eral, should not be taken for granted though. For instance, the for-
mat of the macro Piola stress MP as well as the Hill–Mandel
condition given in Ref. [252] differ from their classical definitions
here. In this section, fundamental definitions and concepts of the
theory of computational homogenization are briefly addressed in
order for this paper to be self-contained. In this contribution, all
relations are represented only in Lagrangian description, consider-
ing that it is straightforward to formulate the problem in Eulerian
description [206,402,408,458]. Furthermore, it is possible to es-
tablish the homogenization theory based on Green–Lagrange
strain and Piola–Kirchhoff stress as alternatively suitable strain
and stress measures [459,460].

2.1 Macroproblem Definition. Consider a continuum body
that takes the material configuration at time t¼ 0 and the spatial
configuration at any time t> 0, as shown in Fig. 1.4 At the macro-

scale, the body occupies the material configuration MB0 with the

boundary @MB0 at time t¼ 0. The outward unit normal vector to

@MB0 is denoted as MN. The macroscopic spatial configuration is

denoted MBt, with the boundary @MBt and the surface unit normal
Mn. A material point at the macroscale, labeled by the position

vector MX, is mapped to its spatial counterpart Mx via the nonlin-

ear deformation map Mu according to Mx¼MuðMXÞ. The macro-

scopic deformation gradient MF linearly maps a line element dMX

in the material configuration to a spatial line element dMx accord-
ing to

dMx¼MF � dMX and MF¼MGradMu (1)

The equations governing the macroproblem are the balances of
linear momentum and angular momentum. In the absence of iner-
tia effects, the balance of linear momentum reads

MDivMPþMb
p
0 ¼ 0 in MB0 subject to

MP�MN¼Mt0 on @MB0 and Mt0¼Mtp
0 on @MB0;N (2)

with Mb
p
0 denoting the macroscopic body force density in the ma-

terial configuration and MP denoting the macroscopic Piola stress.

The traction on @MB0 is Mt0, and Mt
p
0 denotes the prescribed trac-

tion on the Neumann portion of the boundary @MB0;N � @MB0.
The local form of the balance of angular momentum in the macro-
scopic material configuration reads

MP�MFt¼MF�MPt (3)

For the sake of simplicity of presentation, the material is assumed
to be hyperelastic, and thus nondissipative at the microscale and,
as a consequence, at the macroscale. Therefore, the macroscopic

free energy density Mw is only a function of the macrodeformation

gradient MF as Mw¼MwðMFÞ. The Coleman–Noll procedure dic-

tates that for a hyperelastic material, the macro Piola stress MP
derives from Mw as

MP :¼ @
Mw
@MF

¼MP MFð Þ (4)

Consequently, the macro Piola stress can only be a function of the
macrodeformation gradient. In order to solve a nonlinear problem
using the Newton–Raphson scheme, not only the stress but also
the stress tangent is needed. The macroscopic Piola tangent with
respect to the macrodeformation gradient is denoted MA and is a
fourth-order tensor

MA :¼ @MP

@MF
¼ @

2Mw

@MF2
¼MA MFð Þ (5)

In general, the macroscopic free energy and its derivatives can-
not be expressed explicitly due to the complex microstructures of
the material. This fact motivates the central idea of first-order
strain-driven computational homogenization. That is, to prescribe
the macroscopic deformation gradient MF to the microscale prob-
lem and to compute the overall response of the macroproblem as
shown in Fig. 1 (right).

2.2 Microproblem Definition. The material configuration at
the microscale is denoted B0 and is assumed to be representative
of the material at the macroscale in the sense that it contains
enough details to sufficiently capture the microstructural features
of the material. See Refs. [185], [231], [270], [282], and [461] for
more details on the definition of the RVE. The boundary of the
RVE is denoted @B0 with the outward unit normal N (see Fig. 1).
The spatial configuration at the microscale is defined in analogy
to the material configuration.

Let X be the position vector of a point in B0. The nonlinear de-
formation u maps X to its counterpart x in the spatial configura-
tion Bt. A material line element dX is mapped to its spatial
counterpart dx via the linear deformation map F ¼ G rad u. The

4In this contribution, we exclude the effect of inertia forces and treat the problem
as a quasi-static problem. Therefore, the time in this paper refers to a load evolution
parameter.
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determinant of the deformation gradient F is denoted as J :¼
DetF > 0 which is the ratio of the volume element in the spatial
configuration dv to the volume element in the material configura-
tion dV.

Similar to the macroproblem, the governing equations of the
microproblem are the balances of linear and angular momentum.
The balance of linear momentum reads

DivP ¼ 0 in B0 subject to P � N ¼ t0 on @B0

and t0 ¼ t
p
0 on @B0;N (6)

in which t0 denotes the traction on the boundary @B0. The pre-
scribed traction on the Neumann portions of the boundary
@B0;N � @B0 is denoted as t

p
0. The body forces at the microscale

are negligible due to the assumption of scale separation. The local
form of the balance of angular momentum in the microscopic
material configuration is

P � Ft ¼ F � Pt (7)

Finally, as pointed out earlier, the material response at the
microscale is assumed to be hyperelastic with the microscopic
free energy density w as a function of the microscopic deforma-
tion gradient F as w ¼ wðFÞ. From the Coleman–Noll procedure,
the micro Piola stress P derives from w as

P :¼ @w
@F
¼ P Fð Þ (8)

and, consequently, can only be a function of the microdeformation
gradient F. The micro Piola tangent with respect to the microde-
formation gradient is denoted by A and is a fourth-order tensor

A :¼ @P

@F
¼ @

2w

@F2
¼ A Fð Þ (9)

As an example, the free energy density function w per unit vol-
ume in the material configuration for a compressible neo-Hookean
material is chosen as

w Fð Þ ¼ 1

2
l F : F� 3� 2 log J½ � þ 1

2
k log2J (10)

with l and k denoting the Lam�e parameters. The microscopic free
energy density (10) results in the micro Piola stress and micro
Piola tangent

PðFÞ ¼ l F� F�t½ � þ k log J F�t (11)

AðFÞ ¼ l I �� I þ F�t�F�1
� �
þ k F�t � F�t � log J F�t�F�1

� �
(12)

Two nonstandard tensor products �� and � of two second-order
tensors A and B are the fourth-order tensors D ¼ A �� B with
components Dijkl ¼ AikBjl and C ¼ A�B with Cijkl ¼ AilBjk.

In general, the microstructure consists of various materials and
each of them has its own material parameters. In this contribution,
it is assumed that the microstructure consists of only two types of
materials being inclusions distributed in a matrix. This assumption
is only made for the sake of simplicity and in order to focus on the
main features of this work. It is straightforward to introduce more
materials into this study; nevertheless, it involves more notations
and details without providing additional insight into the problem
of interest here.

2.3 Micro-to-Macro Transition. Central idea of the first-
order strain-driven computational homogenization is to prescribe
the macroscopic deformation gradient MF onto the microproblem
and to compute the overall response of the microproblem, and in
particular, the macro Piola stress MP and macro Piola tangent
MA. In this section, microscopic quantities are related to their
macroscopic counterparts through volume averaging over the
RVE and fundamental reasoning. It proves convenient to define
the averaging operator hf•gi in the material configuration as the
integral over the domain B0 divided by the volume V0 as

h •f gi :¼
1

V0

ð
B0

f•g dV with V0 ¼
ð
B0

dV (13)

Fig. 1 Graphical summary of computational homogenization. The macroscopic domain MB0 is mapped to the spatial config-
uration MBt via the nonlinear deformation map Mu. The domain B0 corresponds to a microscopic RVE. The motion u of the
RVE is associated with a macroscopic point MX within the bulk. In view of the first-order strain-driven homogenization, the
macroscopic deformation gradient is given, and the macro Piola stress and the macro Piola tangent are sought. These quan-
tities are evaluated through solving boundary value problems at the microscale.
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The volume V0 is the total volume surrounded by the (external)
boundary @B0. Note that in the case of porous materials, V0 takes
also the pore’s volume into account.

2.3.1 Average Piola Stress Theorem. THEOREM. Let Pc be a
given constant stress tensor and @B0 be the entire boundary of the
domain B0 with outward unit normal N as shown in Fig. 1. If P �
N ¼ t0 ¼ Pc � N is prescribed on @B0, then hPi ¼ Pc.

Proof. In order to prove the average Piola stress theorem, we
employ Lemma 1 given in Sec. A.1 of Appendix A which states

hPi ¼ 1

V0

ð
@B0

t0 � X dA (14)

Therefore, we have

hPi ¼ 1

V0

ð
@B0

t0 � X dA ¼ 1

V0

ð
@B0

Pc � N � X dA

¼ 1

V0

Pc �
ð
@B0

N � X dA (15)

Using the lemma
Ð
@B0

N � X dA ¼V0 I proven in Sec. A.2 of Ap-
pendix A, the relation (15) can be written as

hPi ¼ 1

V0

Pc � V0 I½ � ¼ Pc

The average Piola stress theorem states that when a body is sub-
ject to the traction Pc � N, the Piola stress averaged over the entire
body is the same as Pc regardless of the complexity of the stress
field within the RVE domain. In the context of the micro-to-
macro transition, the average Piola stress theorem motivates the
assumption of the macro Piola stress to be the average micro Piola
stress as

MP ¼ hPi ¼ 1

V0

ð
B0

P dV ¼ 1

V0

ð
@B0

t0 � X dA (16)

2.3.2 Average Deformation Gradient Theorem. THEOREM. Let
Fc be a given constant deformation gradient tensor and @B0 be
the entire boundary of the domain B0 with outward unit normal N
as shown in Fig. 1. If u ¼ Fc � X is prescribed on @B0, then
hFi ¼ Fc.

Proof. In order to prove the average deformation gradient theo-
rem, we employ the gradient theorem as follows:

hFi ¼ 1

V0

ð
B0

F dV ¼ 1

V0

ð
B0

Gradu dV ¼ 1

V0

ð
@B0

u� N dA

¼ 1

V0

Fc �
ð
@B0

X � N dA

(17)

Using the lemma
Ð
@B0

N � X dA ¼V0 I proven in Sec. A.2 of
Appendix A, the relation (17) can be written as

hFi ¼ 1

V0

Fc � V0 It½ � ¼ Fc � I ¼ Fc

The average deformation gradient theorem states that when a
body is subject to deformation Fc � X on its boundary, the defor-
mation gradient averaged over the entire body is the same as Fc

regardless of the complexity of the deformation gradient field
within the RVE domain. In the context of the micro-to-macro
transition, the average deformation gradient theorem motivates
the assumption of the macrodeformation gradient to be the aver-
age microdeformation gradient as

MF ¼ hFi ¼ 1

V0

ð
B0

F dV ¼ 1

V0

ð
@B0

u� N dA (18)

2.3.3 Hill–Mandel Condition. The celebrated Hill–Mandel
condition stipulates incremental internal energy equivalence
between the macro- and microscales as

hP : dFi�MP : dMF¼! 0 (19)

In order to solve the microproblem, the boundary conditions on
the RVE that satisfy the Hill–Mandel condition must be deter-
mined. These are obtained with the aid of Hill’s lemma

hP: dFi�MP: dMF¼
ð
@B0

du�dMF �X
� �

� t0�MP �N
� �

dA (20)

proven in Sec. A.3 of Appendix A. Hill’s lemma (20) expresses the
left-hand side of the Hill–Mandel condition (19) in terms of a sur-
face integral over the boundary of the RVE. Hill’s lemma trans-
forms the Hill–Mandel condition into a boundary integral from
which suitable boundary conditions can be extracted. In order to
satisfy the Hill–Mandel condition, the right-hand side of Eq. (20)
should identically vanish. The following conditions sufficiently sat-
isfy the Hill–Mandel condition as can be easily deduced:

� Constant deformation condition in B0 leading to Voigt’s
bound (Taylor’s assumption)

 u¼MF � X in B0

� Linear displacement boundary conditions (DBC)

 u¼MF � X on @B0

� Periodic displacement and antiperiodic traction boundary
conditions (PBC)

 u�MF � X
� �

: periodic and

t0�MP � N
� �

: antiperiodic on @B0

� Constant traction boundary conditions (TBC)

 t0¼MP � N on @B0

� Constant stress condition in B0 leading to Reuss’ bound
(Sachs’ assumption)

 P¼MP in B0

Note that, for the periodic boundary conditions, antiperiodic trac-
tion t0 satisfies the antiperiodicity of t0�MP � N½ � since MP � N is
antiperiodic itself due to antiperiodicity of the boundary normals.

Remark on Balance of Angular Momentum. These canonical
conditions automatically satisfy the balance of angular momentum
at the macroscale and guarantee the symmetry of MP�MFt [462].
This fact is proven in Sec. A.4 of Appendix A.

2.3.4 Average Piola Tangent Theorem. THEOREM. Let MF and
MP be given macrodeformation gradient tensor and macro Piola
stress tensor, respectively, and also, MF ¼ hFi and MP ¼ hPi.
The deformation gradient may not be uniform within the RVE but
can be decomposed into a uniform part and a zero-mean fluctua-
tion part as F¼MFþ ~F. Let the fourth-order tensor B be the lin-
ear mapping from dMF to its fluctuations d~F as d~F ¼ B : dMF.
The macro Piola tangent MA is, in general, not the average of the
micro Piola tangent MA 6¼ hAi but it can be computed according
to MA ¼ hAþA : Bi.

Proof. In order to prove the average Piola tangent theorem
stated above, recall that dMP¼MA : dMF. Then, from the assump-
tion that the variation of the macro Piola stress is the average of
the variation of the micro Piola stress over the RVE domain, we
have
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dMP ¼ hdPi
¼ hA : dFi
¼ hA : dMFþ d~F½ �i
¼ hA : dMFþA : d~Fi
¼ hA : dMFþA : B : dMFi
¼ hAþA : Bi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

MA

: dMF

Remark. The framework presented in this section is particularly
suitable for purely elastic materials. If capturing inelastic behavior
of the material, e.g., damage, is of interest, the Piola stress would
not only be a function of the deformation gradient but also of an
internal variable. Therefore, the variation of the Piola stress with
respect to the internal variable has to be considered as well. Pro-
viding every details about this issue would deviate us from the
main objective of this contribution, and we refer the interested
readers to the in-depth analysis provided by Temizer and
Wriggers [463].

3 Computation

3.1 Finite Element Formulation of the Microproblem. In
this section, we present a general finite element formulation for
solving the boundary value problem at the microscale. We start
with deriving the weak form of the balance of linear momentum
and then discretize it in space. The resulting nonlinear system of
equations is linearized and solved using the Newton–Raphson
scheme.

3.1.1 Weak Form. In order to establish the weak form of the
governing equation (6), both sides are contracted from the left by

a vector valued test function du and integrated over the bulk do-
main of the material configuration. Employing the divergence the-
orem and considering that the test function is defined such that it
vanishes over the Dirichlet portion of the boundary, the global
weak form of the balance of linear momentum readsð

B0

P : Graddu dV �
ð
@B0;N

du � tp
0 dA¼! 0 8du 2 H1

0ðB0Þ

(21)

whereH1
0 denotes the Sobolev space

H1
0ðB0Þ ¼ fy ¼ yðXÞ : y;Grady 2 L2ðB0Þ; y ¼ 0 on @B0;Dg

(22)

and @B0;D denotes the Dirichlet portion of the boundary
@B0;D � @B0.

3.1.2 Discretization. Next, the material domain is discretized
into sets of bulk and surface elements as

A
b¼1

#be
ð
Bb

0

P : Graddu dV � A
c¼1

#se
ð
@Bc

0;N

du � tp
0 dA¼! 0 (23)

where #be and #se represent the number of bulk and surface ele-
ments, respectively. The domain of the bulk element b is denoted
Bb

0 , and @Bc
0;N denotes the domain of the surface element c upon

which traction, and not deformation, is prescribed.
The geometries of the bulk and surface elements are approxi-

mated using the natural coordinates n. The Bubnov–Galerkin fi-
nite element method and standard interpolations together with the
isoparametric concept are employed as follows:

XjBb
0

� Xð n Þ ¼
X
a¼1

#nbe

Nað n ÞXa Xj@Bc
0;N
� Xð n Þ ¼

X
a¼1

#nse

Nað n ÞXa

xjBb
0

� xð n Þ ¼
X
a¼1

#nbe

Nað n Þxa xj@Bc
0;N
� xð n Þ ¼

X
a¼1

#nse

Nað n Þxa

dujBb
0

� duð n Þ ¼
X
a¼1

#nbe

Nað n Þdua duj@Bc
0;N
� duð n Þ ¼

X
a¼1

#nse

Nað n Þdua

(24)

where N denotes the shape functions. Note that we use the same
notation for the shape functions of the bulk and surface elements.
However, they shall not be mistaken as their domains are differ-
ent. That is, N in Eq. (24)left denotes the shape functions of the
bulk element defined on n 2 �1; 1½ �PD, and N in Eq. (24)right

denotes the shape functions of the boundary element defined on
n 2 �1; 1½ �PD�1

with PD being the problem dimension. Number
of nodes per bulk and surface elements are represented by #nbe
and #nse, respectively.

The fully discrete weak form of the balance of linear momen-
tum is obtained by replacing the test functions in Eq. (23) with
their spatial approximations defined in Eq. (24). The fully discrete
form of residual vector associated with the global node I reads

RI :¼ A
b¼1

#be
ð
Bb

0

P � GradNi dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RI

int

� A
c¼1

#se
ð
@Bc

0;N

t
p
0 � Ni dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RI
ext

¼! 0
(25)

where i is the local node corresponding to the global node I. We
denote the first and second terms of Eq. (25) as RI

int and RI
ext

representing all the internal and external forces acting on node I,
respectively. The nodal residuals are arranged in a global residual
vector R, and the fully discrete nonlinear system of governing
equations becomes

R ¼ RðdÞ¼! 0; R ¼ Rint þ Rext (26)

where d is the unknown global vector of deformations, and Rint

and Rext are the assembled vectors of RI
int and RI

ext, respectively.
Note that we use upright letters for assembled vectors in Eq. (26)
to distinguish them from the global nodal vectors in Eq. (25). The
same argument holds for the tangent stiffness in Sec. 3.1.3.

3.1.3 Linearization. In order to find the solution of the system
(26), the Newton–Raphson scheme is utilized. The consistent lin-
earization of the resulting system of equations yields

R dnþ1ð Þ ¼ R dnð Þ þK � Ddn¼
!

0 with K ¼ @R

@d
jn;

dnþ1 ¼ dn þ Ddn

(27)
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where n is the iteration step and K is the assembled tangent stiff-
ness matrix of nodal stiffness

KIJ ¼
ð
B0

@P

@F
:
�

GradNI � GradNJ½ � dV (28)

The nonstandard (double) contraction :� of a fourth-order tensor A
and a second-order tensor B is a second-order tensor C ¼ A :� B
with components Cik ¼ AijklBjl. Here, we assume that the pre-
scribed traction is constant and is not a follower force, thus
@Rext=@d ¼ 0. Solving Eq. (27) yields the iterative increment Ddn

and consequently dnþ1.

3.2 Microdeformation Implementation. While computa-
tional algorithms to implement DBC and PBC are well established
and discussed by many authors [241,246,462,464,465], special
care should be taken to deal with the stiffness matrix singularity
due to prescribing a pure Neumann boundary condition on the
RVE to implement TBC. Several authors have treated this prob-
lem using either mass-type diagonal perturbation to regularize the
stiffness matrix [462], construction of a free-flexibility matrix to
preserve the rigid body modes [466], adding very soft materials to
the microstructure, or in the most extreme case, completely fixing
enough degrees-of-freedom to make the problem well defined.
Here, we present a geometrically independent yet computationally
inexpensive and robust algorithm to implement TBC for finite de-
formation analysis. This section details on the computational algo-
rithms to implement TBC and Sachs’ assumption. Furthermore,
we briefly cover the computational algorithms to implement the
Taylor’s assumption, DBC, and PBC for the sake of completeness
and in order to demonstrate the similarities and differences among
various boundary conditions. The input of all algorithms is the
macrodeformation gradient, and the output is the macro Piola
stress. The derivation of the macro Piola tangent will be discussed
in detail in Sec. 3.4.

Throughout this section, we assume that the microstructure con-
sists of two different materials: the matrix and the inclusion. The
matrix is assumed to be a rectangular sample filling the two-
dimensional space in 0; 1½ �2 with inclusions of arbitrary shape and
distribution. In the limit of extremely compliant inclusions, the
microstructure represents porous media. We will also consider
three-dimensional microstructures filling the space in 0; 1½ �3.

Figure 2 illustrates three sample microstructures. In the following
sections, we often show the material configuration of the RVE
with a gray-border square and do not depict the microstructure
details so as to avoid cluttered figures.

3.2.1 Taylor’s Assumption. Taylor’s assumption, also referred
to as isostrain condition, assumes a linear homogeneous mapping
of the entire RVE domain and is implemented by deforming both
the inclusion and the matrix identically and according to the mac-
rodeformation gradient. This is illustrated in Fig. 3. Note that the
choice of rectangular inclusions in Fig. 3 is only to highlight the
linear homogeneous deformation within the microstructure and
shall not be understood as any kind of limitation on the generality
of the presented framework.

Under the Taylor’s assumption, the stress equilibrium at the
interface between the inclusion and the matrix is violated. The
apparent property of the material obtained under this condition
and the classical Voigt’s bound coincide in the linear regime. As
depicted in Fig. 4, the Taylor’s assumption can be resembled by a
set of parallel springs or a multiphase composite with parallel con-
stituents aligned in the direction of the applied displacement such
that they all share the same deformation.

This configuration furnishes the stiffest possible response from
two or more springs or constituents. Consequently, the overall
response of the microstructure under this condition is highly over-
estimated referred to as Voigt’s (Taylor’s) bound. The algorithm
to implement the Taylor’s assumption is given as follows:

Fig. 2 Examples of three- and two-dimensional microstructures: cubic microstructure
with random distribution of spherical particles (left), rectangular microstructures with
random shape and distribution of the inclusions (middle), and pores (right)

Fig. 3 The inclusions and the matrix deform identically under
the Taylor’s assumption

Fig. 4 Taylor’s assumption representations via system of par-
allel springs and multiphase composites

Fig. 5 The inclusions and the matrix do not necessarily deform
identically under DBC
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Algorithm 1: Taylor’s assumption

input: MF; material parameters, f (inclusion volume fraction)
create two separate unit elements representing the inclusion and
the matrix;
assign Dirichlet BC to the boundaries of the unit elements;
prescribe boundary nodes deformations according to MF;
evaluate volume average of the Piola stress in the inclusion hPif
and in the matrix hPim;

output: MP ¼ f hPif þ 1� f½ �hPim

3.2.2 Linear Displacement Boundary Conditions. Implemen-
tation of DBC is carried out by prescribing the deformations on
the boundary nodes according to the macrodeformation gradient
while the inner nodes are free. The displacements of the inner
nodes are updated accordingly such that the residual vector is
minimized. This is in contrast to Taylor’s assumption where the
deformations of all the nodes are prescribed (see Fig. 5). The algo-
rithm to implement DBC is given as follows:

Algorithm 2: Linear displacement boundary conditions

input: MF; material parameters

assign Dirichlet BC to the boundary nodes;
prescribe boundary nodes deformations through MF incrementally;
solve the system of equations (27);
update inner nodes positions;

output: MP ¼ hPi

3.2.3 Periodic Displacement and Antiperiodic Traction Bound-
ary Conditions. In order to implement PBC, the RVE boundary in
both the material and the spatial configuration is decomposed into two
disjoint sets as shown in Fig. 6: a minus part @B�0 ; @B�t and a plus

part @Bþ0 ; @Bþt with @B�0 [ @Bþ0 ¼ @B0 and @B�t [ @Bþt ¼ @Bt.
Any quantity on minus and plus parts is denoted as f•g� and

f•gþ, respectively, and f•g	 denotes quantities within the bulk do-
main. Following these notations, and considering that no external
force is exerted on the bulk domain, i.e., R	ext ¼ 0, the system of
equations (27) can be represented as

R�int þ R�ext

R	int

Rþint þ Rþext

2
4

3
5þ K�� K�	 K�þ

K	� K		 K	þ

Kþ� Kþ	 Kþþ

2
4

3
5 Dx�

Dx	

Dxþ

2
4

3
5 ¼ 0 (29)

Based on the fact that the deformation gradient at the RVE level
can be decomposed into a uniform part and a fluctuation part as
F¼MFþ ~F, two distinct fields contribute to the positions of the
boundary nodes: a homogeneous field given by the linear mapping

through the macroscopic deformation gradient MF � X and a non-
homogeneous fluctuation field ~F � X as

xþ¼MF � Xþ þ ~F � Xþ; x�¼MF � X� þ ~F � X� (30)

The deformation fluctuation field on the opposite boundary nodes
is assumed to be periodic in a PBC implementation. That is, ~F �
Xþ ¼ ~F � X�, and therefore, from Eq. (30) it follows that

xþ � x�¼MF � Xþ � X�½ � () xþ¼MF � Xþ � X�½ � þ x�

(31)

Hence, the displacements of the opposite boundary nodes are
equal to each other, Dxþ ¼ Dx�, and one of them can be elimi-
nated from the system of equations (29). Here, we omit Dxþ from
the system by adding the columns of the stiffness matrix associ-
ated with the opposite boundary nodes as

R�int þ R�ext

R	int

Rþint þ Rþext

2
4

3
5þ K�� þ K�þ K�	

K	� þ K	þ K		

Kþ� þ Kþþ Kþ	

2
4

3
5 Dx�

Dx	

� �
¼ 0 (32)

The antiperiodicity of t0 is enforced by assuming that the parallel
boundary nodes have the same traction but in opposite directions.
Under such assumption, the nodal external residual on the oppo-
site boundary nodes satisfy Rþext ¼ �R�ext. So, the system of equa-
tions (32) can be further reduced by adding the first and the last
rows corresponding to R� and Rþ, respectively, to each other as

(33)

Once Dx� is evaluated, it is used to update the positions of all the
boundary nodes.

In order to remove the rigid body motions, the motion of one of
the corner nodes is prescribed and set to zero. This makes the de-
formation fluctuations associated to all other corners to vanish
according to the deformation fluctuation periodicity assumption of
PBC. Hence, the deformations of the corner nodes are determined
only through the macroscopic deformation gradient. The algo-
rithm to implement PBC is given as follows:

Algorithm 3: Periodic displacement and antiperiodic traction
boundary conditions

input: MF; material parameters

assign Dirichlet BC to the corner nodes;
prescribe corner nodes deformations through MF incrementally;
xþ¼MF � Xþ � X�½ � þ x�;

solve the reduced system of equations (33);
x� ¼ X� þ Dx� and x	 ¼ X	 þ Dx	;

xþ¼MF � Xþ � X�½ � þ x�;
output: MP ¼ hPi

3.2.4 Constant Traction Boundary Conditions. Implementa-
tion of TBC is performed by prescribing MP � N uniformly on the
boundary of the material configuration with MP being constant. At
the beginning of the algorithm, MP is unknown. Therefore, an ini-
tial guess for the macro Piola stress is required to start the algo-
rithm. We initiate MP with zero. It is then updated iteratively until
the volume average of the deformation gradient reaches the mac-
rodeformation gradient, that is, until hFi¼MF.

In order to cope with the singularity of the stiffness matrix due
to prescribing purely Neumann boundary condition, sufficient
constraints should be added to eliminate rigid body motions using

Fig. 6 Graphical illustration of PBC implementation setting.
The boundary of the RVE is decomposed into minus and plus
parts. Positions of the boundary nodes are determined through
two distinct fields: MF � X and ~F � X.
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semi-Dirichlet boundary conditions. First, we assign Dirichlet
boundary conditions to three degrees-of-freedom in two-
dimensional problems and six degrees-of-freedom in three-
dimensional problems. Second, at the same time, we guarantee
that the Dirichlet part possesses the same traction identical to the
prescribed traction on the Neumann part so as to meet the neces-
sary assumption of the TBC, namely, uniform distribution of trac-
tion over the entire boundary of the RVE. This is performed by
modifying the locations of the semi-Dirichlet constraints such that
they accommodate for TBC. This procedure is further elaborated
in what follows.

In order to remove translational rigid body motions, a Dirichlet
boundary condition is assigned to an arbitrary point A on the ma-
terial configuration boundary in both directions (see Fig. 7).
Assigning Dirichlet boundary conditions to any other point (e.g.,
point B with XB

x 6¼ XA
x ) in y-direction eliminates the rotational

rigid body motions. But, if the solution of the TBC, illustrated
using the dashed line in Fig. 7, necessitates point B to displace in
the direction that it is fixed, extra reaction forces (in addition to
the contributions from MP � N) would exert on the Dirichlet part
resulting in inaccurate and unrealistic displacements and stresses.
Henceforth, we denote these extra forces as spurious forces in the
sense that they violate the essential prerequisite of the constant

traction boundary conditions. The corresponding spurious trac-
tions are denoted f.

The total nodal traction on points A and B considering the

existence of the spurious tractions reads tA¼MP � NA þ fA and

tB¼MP � NB þ fB with f being the spurious traction vector, fA
x ¼

0 and fA
y ¼ �fB

y . Accordingly, the volume average of the Piola

stress reads

hPi ¼ 1

V0

ð
@B0

tp
0 � X dA ¼ 1

V0

ð
@B0

MP � N½ � � X dA

þ 1

V0

X
i¼A;B

fi � Xi dAi¼MP

þ 1

V0

0

fA
y

" #
�

XA
x

XA
y

" #
þ

0

fB
y

" #
�

XB
x

XB
y

" #( )
dA¼MP

þ 1

V0

0 0

fA
y XA

x þ fB
y XB

x fA
y XA

y þ fB
y XB

y

" #
dA

assuming that the effective nodal areas of points A and B are iden-
tical and equal to dA. In order to ensure that the Dirichlet part is
under the same traction as prescribed on the Neumann part, both
fA

y and fB
y must always vanish.

Recall that the positions of points A and B on the material con-
figuration are arbitrary. A simple concrete case is to assign point
A to [0,0] and point B to [1,0], as illustrated in Fig. 8. Based on
this setting, the volume average of the Piola stress reads

hPi¼MPþ 1

V0

0 0

fB
y 0

� �
dA (34)

from which the required condition to suppress the spurious trac-
tion component fB

y is derived as

fB
y ¼

!
0() hPyxi�MPyx¼! 0 (35)

In order to satisfy this condition, rather than fixing the point B in
its initial position on the material configuration, we prescribe and
successively update the position of this point in y-direction until it
no longer introduces an extra traction.

Fig. 7 The entire boundary ›B0 except point A in both direc-
tions and point B in y-direction is prescribed with MP � N. Point
A is fixed in both directions and point B is fixed in y-direction
so as to remove rigid body motions. Fixing these points can
lead to introduction of spurious forces on the Dirichlet part of
the boundary. The spurious tractions are denoted f. The dashed
line and the solid black line indicate the deformation of the
microstructure in the absence and presence of the spurious
forces, respectively.

Fig. 8 Graphical illustration of the TBC implementation set-

ting. We prescribe and update MP � N and g iteratively until

hFi2MF 5
!

0 and fB
y 5

!
0 are satisfied.

Fig. 9 Graphical illustration of the TBC implementation setting
in three-dimensional problems. We prescribe and update

MP � N; gB; gC, and gD iteratively until hFi2MF 5
!

0; fB
x 5

!
0; fC

y 5
!

0,

and fD
z 5

!
0 are satisfied. Note that point D is free to move in x-

and y-directions.
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On the other hand, in order to reach the macroscopic deforma-

tion gradient, the condition hFi�MF¼! 0 must be satisfied. These
conditions are inserted into a vector denoted as error vector X
which is a nonlinear function of MP and g

XðMP; gÞ ¼ hFi�MF; fB
y

h it

¼! 0 (36)

with g being the displacement to be prescribed at point B in y-
direction. The consistent linearization of this nonlinear vector
function reads

X MPnþ1; gnþ1

� �
¼ X MPn; gn

� �
þ @X
@MP

jn : DMPn

þ @X
@g
jnDgn¼

!
0 MPnþ1¼MPn þ DMPn; gnþ1 ¼ gn þ Dgn

(37)

where n is the iteration step. Solving Eq. (37) yields the iterative
increment DMPn; Dgn and consequently MPnþ1 and gnþ1. The
algorithm to implement TBC is given as follows:

Algorithm 4: Constant traction boundary conditions

input: MF; material parameters
MP ¼ 0, g¼ 0;

assign homogeneous Dirichlet and semi-Dirichlet BC to eliminate
rigid body motion;
while MP and g are not correct do

apply MP � N on the Neumann part and update semi-Dirichlet
BC;
Solve the system of equations (27);
evaluate hPi and hFi;
XðMP; gÞ ¼ hFi�MF; hPyxi�MPyx

� �t
;

if jjXjj < tol then
MP and g are correct

else

solve the system of equations (37);
MP¼MPþ DMP;

g ¼ gþ Dg;
end

end

output: MP

In three-dimensional problems, six degrees-of-freedom need to
be fixed to prevent rigid body motions. Figure 9 illustrates how to
implement TBC in three-dimensional space. Similar to two-
dimensional problem, it is performed through assigning Dirichlet
boundary condition to point A in x-, y-, and z-directions to elimi-
nate translational rigid body motions and semi-Dirichlet boundary
conditions to the points B in x-direction, C in y-direction, and D in
z-direction to remove rotational rigid body motions. That is, we
first assign Dirichlet boundary conditions to these degrees-of-
freedom and then update their locations until a uniform distribu-
tion of traction on the RVE is achieved. Prescribing any location
on these degrees-of-freedom not identical to their final locations
leads to the evolution of spurious forces on the Dirichlet part of
the boundary. Taking the existence of spurious forces into

account, the total nodal tractions on points A, B, C, D read
ti¼MP � Ni þ fi for i ¼ A; B; C; D. Accordingly, the volume av-
erage of the Piola stress becomes

hPi ¼ 1

V0

ð
@B0

t
p
0 � X dA

¼ 1

V0

ð
@B0

MP � N½ � � X dAþ 1

V0

X
i¼A;B;C;D

fi � Xi dAi

¼MPþ 1

V0

fA
x

fA
y

fA
z

2
664

3
775�

0

0

0

2
64
3
75þ fB

x

0

0

2
664

3
775�

0

0

1

2
64
3
75

8>><
>>:

þ
0

fC
y

0

2
64

3
75� 1

0

0

2
64
3
75þ 0

0

fD
z

2
64

3
75� 0

1

0

2
64
3
75
9>=
>;

dA¼MPþ 1

V0

0 0 fB
x

fC
y 0 0

0 fD
z 0

2
664

3
775 dA ;

from which the required conditions to suppress the spurious forces
are derived

fB
x ¼

!
0() hPxzi�MPxz¼! 0; fC

y ¼
!

0() hPyxi�MPyx¼! 0;

fD
z ¼

!
0() hPzyi�MPzy¼

!
0

In order to satisfy these conditions, we prescribe and successively
update the positions of the points B, C, D in x-, y-, and z-directions,

respectively. Hence, the error vector reads XðMP; gB; gC; gDÞ ¼
½hFi�MF; fB

x ; f
C
y ; f

D
z �

t¼! 0 with gB; gC; and gD being the prescribed

displacements on points B–D. The consistent linearization of this
nonlinear vector function reads

X MPnþ1; g
B
nþ1; g

C
nþ1; g

D
nþ1

	 

¼ X MPn; g

B
n ; g

C
n ; g

D
n

� �
þ @X
@MP

jn : DMPn þ
@X
@gB
jnDgB

n þ
@X
@gC
jnDgC

n

þ @X
@gD
jnDgD

n ¼
!

0 MPnþ1¼MPn þ DMPn;

gB
nþ1 ¼ gB

n þ DgB
n ; gC

nþ1 ¼ gC
n þ DgC

n ; gD
nþ1 ¼ gD

n þ DgD
n

(38)

where n is the iteration step. Solving Eq. (38) yields the iterative

increment DMPn; DgB
n ; DgC

n ; and DgD
n and consequently MPnþ1;

gB
nþ1; gC

nþ1, and gD
nþ1.

Remark. Another well-known approach from the literature to
implement constant traction boundary conditions in the context of
the finite element analysis is given by Miehe and Koch [357],
Miehe [462], Larsson and Runesson [232], and Fish and Fan
[467]. This approach is based on employing a variational formula-
tion and imposing the prescribed macrodeformation gradient via a
Lagrange multiplier which is identified by the macro Piola stress.
More precisely, the Lagrange multiplier is added as a new
unknown to the problem and updated along with the unknown
vector of displacements, see Appendix C for further details about
this approach. We shall note (i) our proposed algorithm would
become nearly identical to the algorithm given by Miehe if we
insert the condition (36) into the residual vector in Eq. (26) and
update the displacements, macro Piola stress, and the prescribed
displacement at semi-Dirichlet boundary condition simultane-
ously, and (ii) the applicability of our proposed approach is not
limited to the strain-driven computational homogenization but it
is also capable of efficiently dealing with stress-driven

Fig. 10 The compatibility of the deformation field is violated
under Sachs’ assumption
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homogenization. This is discussed in Appendix B. The algorithm
proposed in Ref. [462] may be capable of coping with such prob-
lems but it is critically developed for the strain-driven homogeni-
zation framework. We have implemented the approach of in Ref.
[462] too, and both approaches obviously lead to identical results.
A thorough comparison of both approaches is out of the scope of
this review and shall be studied in a separate contribution.

3.2.5 Sachs’ Assumption. Sachs’ assumption, also referred to
as isostress condition, postulates that the entire domain of the
RVE has the same stress MP. In other words, both the inclusion
and the matrix assume the same stress MP, but not the same defor-
mations. Clearly, this condition violates the compatibility of the
deformation field. This is illustrated in Fig. 10. The apparent prop-
erty of the material obtained under this condition and the classical
Reuss’ bound coincide in the linear regime.

Sachs’ assumption allows to simplify the geometry of the RVE
to two separate unit elements representing the inclusion and the
matrix each possessing the same stress MP. We begin the algo-
rithm with MP ¼ 0 and improve it iteratively until the volume av-
erage of the deformation gradient in the inclusion and the matrix
reaches the macroscopic deformation gradient. That is, hFitot¼MF
given hFitot ¼ f hFif þ 1� f½ �hFim with hFif and hFim being the
volume averages of the deformation gradient in the inclusion and
in the matrix, respectively.

Similar to TBC implementation, translational rigid body
motions are eliminated by assigning Dirichlet boundary condition
to points A¼ [0,0] and C¼ [0,0] in both directions (see Fig. 11).
In order to remove rotational rigid body motions and also to
ensure uniform distribution of the traction on the boundaries of
the matrix and the inclusion, the locations of points B and D are
prescribed using semi-Dirichlet boundary conditions and updated
iteratively until no spurious force develops. We should, however,
highlight that the prescribed displacements at point [1,0] in
y-direction for the inclusion and the matrix are, in general, not
identical.

The error vector takes the form XðMP; gf ; gmÞ
¼ ½hFitot�MF; fB

y ; f
D
y �

t¼! 0, with gf and gm being the prescribed

displacements on points B and D, respectively, in y-direction.

Spurious tractions on points B and D are denoted fB
y and fD

y ,

respectively. The consistent linearization of this vector function
would be

X MPnþ1; g
f
nþ1; g

m
nþ1

	 

¼ X MPn;g

f
n; g

m
n

� �
þ @X
@MP

jn : DMPn

þ@X
@gf
jnDgf

n þ
@X
@gm
jnDgm

n ¼
!

0 MPnþ1¼MPn þ DMPn;

gf
nþ1 ¼ gf

n þ Dgf
n; gm

nþ1 ¼ gm
n þ Dgm

n : (39)

Solving Eq. (39) yields the iterative increment DMPn;
Dgf

n; and Dgm
n and consequently MPnþ1; gf

nþ1, and gm
nþ1.

In passing, we mention that the presentation of Sachs’ assump-
tion in three dimensions is formally identical to the two-
dimensional case, and formulating this problem in two dimensions
here was carried out for simplicity.

Sachs’ assumption can be represented by a set of serial springs
or a multiphase composite with parallel constituents which are
aligned perpendicular to the direction of the applied force such
that they carry the same force. This is illustrated in Fig. 12.

This system furnishes the most compliant possible response
from two or more springs or constituents. Likewise, the overall
response of the microstructure under this condition is always
highly underestimated and referred to as Reuss’ (Sachs’) bound.
The algorithm to implement Sachs’ assumption is given as
follows:

Algorithm 5: Sachs’ assumption

input: MF; material parameters, f
MP ¼ 0; gf ¼ 0; gm ¼ 0;

create two separate unit elements representing the inclusion and
the matrix;
assign homogeneous Dirichlet and semi-Dirichlet BC to eliminate
rigid body motion;
while MP; gf and gm are not correct do

apply MP � N on Neumann part of the unit elements and
update semi-Dirichlet BCs;
solve the system of equations (27);
evaluate hFitot; hPif and hPim;
XðMP; gf ; gmÞ ¼ ½hFitot�MF; hPyxif�MPyx; hPyxim�MPyx�t;
if jjXjj < tol then

MP; gf and gm are correct
else

Solve the system of equations (39);
MP ¼ MPþDMP;
gf ¼ gf þ Dgf ;
gm ¼ gm þ Dgm

end

end

output: MP

3.3 Numerical Examples of the Microproblem. The objec-
tive of this section is to illustrate the performance of the proposed
scheme via a series of numerical examples. In doing so, a macro-
deformation gradient is prescribed, and the algorithms in the
previous sections are exploited to solve the microproblem. Both
two-dimensional numerical examples corresponding to fiber-
reinforced composites as well as three-dimensional microstructure
representing particle-reinforced composites are studied.

First, the influence of the choice of the boundary conditions on
the evolution of the macro Piola stress for various macrodeforma-
tion gradients is investigated. Both two- and three-dimensional
microstructures are considered. This is then followed by studying
the influence of different inclusion material parameters on the
overall microresponse. Finally, the effects of number and distribu-
tion of the inclusions on the overall behavior of two microstruc-
tures are examined. More specifically, periodic and random
microstructures are studied in detail.

The inclusion volume fraction is set to f¼ 25% for all the sec-
tions. The samples are discretized by four- and eight-node bilinear
finite elements in two- and three-dimensional problems, respec-
tively. The samples and the associated finite element discretiza-
tions are shown in Fig. 13. The material parameters of the matrix
are assumed as the shear modulus lm ¼ 8.0 and the Poisson’s

Fig. 11 The left and right unit elements represent the inclusion
and the matrix, respectively

Fig. 12 Sachs’ assumption representation via system of serial
springs and multiphase composites
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ratio �m ¼ 0.3. The same Poisson’s ratio is chosen for the inclu-
sion material. Both inclusion and the matrix are assumed to
behave according to the constitutive free energy density (10). The
inclusion to matrix shear modulus ratio is denoted r. Perfect bond-
ing between the matrix and the inclusion is assumed. All the
examples are solved using our in-house finite element code in
Cþþ syntax. The solution procedure is robust and for all examples
shows asymptotically the quadratic rate of convergence associated
with the Newton–Raphson scheme.

3.3.1 Illustration of Geometrically Nonlinear Overall
Response of the Microstructure. The primary objective of this sec-
tion is to illustrate the computational efficiency and robustness of

the presented framework and to investigate the influence of the
applied macrodeformation gradient on the average response of
two- and three-dimensional microstructures under various
conditions.

First, two macroscopic deformation gradients of uniaxial stretch
in x-direction and simple-shear deformation in the xy-plane are
imposed, and the influence of the choice of the boundary condi-
tion on the macroscopic Piola stress is examined. Next, the overall
microstructural response with increasing the deformation for both
deformation types is evaluated. The macrodeformation gradients
for simple-shear and uniaxial stretch deformation types are of the
form

MF ¼ 1 MFxy

0 1

� �
and MF ¼

MFxx 0

0 1

� �

for two-dimensional problems and

MF ¼
1 MFxy 0

0 1 0

0 0 1

2
4

3
5 and MF ¼

MFxx 0 0

0 1 0

0 0 1

2
4

3
5

for three-dimensional problems, respectively, with MFxx and MFxy

being the stretch and the shear. The stretch varies from the case of
no stretch MFxx ¼ 1:0 up to MFxx ¼ 3:5 and the shear varies from
the case of no shear MFxy ¼ 0 up to MFxy ¼ 2:5. Additionally,
Taylor’s and Sachs’ assumptions are added to the remaining
boundary conditions to solve the microproblem. For both sets of
studies, inclusion material parameters of r¼ 0.1 and r¼ 10 are
considered. Recall that r¼ 0.1 indicates that the inclusion is ten
times more compliant to the matrix, and the extreme of r! 0
leads to porous materials. Similarly, r¼ 10 indicates that the
inclusion is ten times stiffer than the matrix and the limit of
r!1 recovers rigid inclusions in the matrix.

Fig. 14 Two-dimensional microstructure analysis using DBC, PBC, and TBC for r 5 0.1 and r 5 10. Top: simple-shear defor-
mation in xy-plane. Distribution of the micro Piola stress (xy-component) normalized by its macro counterpart. Bottom: Uni-
axial stretch in x-direction. Distribution of the micro Piola stress (xx-component) normalized by its macro counterpart.

Fig. 13 Mesh qualities of the three- and two-dimensional
samples
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Figure 14 illustrates the numerical results for the micro Piola
stress distribution normalized by the corresponding macro Piola
stress. The numerical simulations indicate that when 100%
simple-shear deformation is applied on the two-dimensional

microstructure and r¼ 0.1, the overall response using DBC over-
estimates the results from PBC by 6.83%. On the contrary, the
response obtained using TBC underestimates the PBC results by
3.46%. When the inclusion is stronger than the matrix, the overall

Fig. 15 Three-dimensional microstructure analysis using DBC, PBC, and TBC for r 5 0.1 and r 5 10. Top: simple-shear defor-
mation in xy-plane. Distribution of the micro Piola stress (xy-component) normalized by its macro counterpart. Bottom: Uni-
axial stretch in x-direction: Distribution of the micro Piola stress (xx-component) normalized by its macro counterpart.

Fig. 16 Evolution of the macro Piola stress due to the increase of simple-shear deformation (top) and uniaxial stretch (bot-
tom) for r 5 0.1 (left) and r 5 10 (right) for the two-dimensional microstructure. The depicted deformation modes correspond
to the results of the PBC for 100% deformation with r 5 0.1.
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response under DBC overestimates the one under PBC with
9.12% while TBC underestimation remains almost the same, and
it gives 3.23% underestimated response compared to the PBC. In
contrast, when the microstructure undergoes 100% uniaxial
stretch, utilizing different boundary conditions leads to much
more similar responses compared to simple-shear test, for both
cases of r¼ 0.1 and r¼ 10.

The same study is conducted for a three-dimensional micro-
structure, as shown in Fig. 15. It is verified that the gaps between
the results of different boundary conditions are wider in all the
cases compared to the two-dimensional microstructure. The only
exception is found to be the 100% simple-shear deformation type
where the inclusion is more compliant to the matrix. In this case,
the DBC overestimates the results of the PBC by 3.93%, which is
lower than its counterpart in the two-dimensional microstructure.
Moreover, it is observed that the macro Piola stresses obtained for
three-dimensional microstructure overestimate the ones obtained
for two-dimensional microstructures for all the cases. Clearly, the
choice of the boundary condition does not affect the microres-
ponse when the inclusion and the matrix are identical.

Figures 16 and 17 depict the evolution of the macro Piola stress
versus the prescribed macrodeformation gradient obtained using

Taylor’s assumption, DBC, PBC, TBC, and Sachs’ assumption for
two deformation types and different inclusion material parameters
for two-dimensional and three-dimensional microstructures,
respectively.

Regardless of the applied deformation type and deformation
value, the results of DBC, PBC, and TBC are bounded by the Tay-
lor’s bound from the top and by the Sachs’ bound from the bottom
with DBC and TBC overestimating and underestimating the
results of the PBC, respectively. However, the results from differ-
ent boundary conditions tend more toward the Taylor’s bound
when the inclusion is more compliant to the matrix while they
approach the results from the Sachs’ bound when the inclusion is
stiffer than the matrix. Note that different boundary conditions
render more similar results for uniaxial stretch compared to
simple-shear deformation for all the prescribed deformation
values.

3.3.2 Influence of Material Parameters. This section details
on the impact of the inclusion to matrix shear modulus ratio r on
the overall response of the two-dimensional microstructure. The
value of r varies from 0.0001 with inclusions resembling voids up
to 10,000 with inclusions resembling rigid particles distributed in

Fig. 17 Evolution of the macro Piola stress due to the increase of simple-shear deformation (top) and uniaxial stretch (bot-
tom) for r 5 0.1 (left) and r 5 10 (right) for the three-dimensional microstructure. The depicted deformation modes correspond
to the results of the PBC for 100% deformation with r 5 0.1.

Fig. 18 Evolution of macro Piola stress due to the increase of f from 0.0001 to 10,000 when
100% simple-shear deformation (left) and uniaxial stretch (right) is imposed
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the matrix. The microstructure undergoes 100% simple-shear de-
formation in xy-plane and 100% uniaxial stretch in x-direction.
Figure 18 shows that regardless of the deformation type, increas-
ing r from 0.0001 to 0.01 does not have a significant impact on
the overall behavior for DBC, PBC, and TBC. However, increas-
ing this value from 0.01 to 100 gives a rapid rise in the macrores-
ponse. Further increase of this value does not result in a
substantial variation of the average microresponse. But the results
from the Taylor’s bound increase indefinitely as the value of r
increases, while, on the other hand, the results from the Sachs’
bound approach zero as the composite resembles porous materials.
Both behaviors are nonphysical and can be well explained by con-
sidering the microstructure as systems of parallel and serial
springs as explained in Secs. 3.2.1 and 3.2.5. Again, the gaps
between the results of the different boundary conditions are wider
for simple-shear deformation compared to uniaxial stretch for
both r¼ 0.1 and r¼ 10. Moreover, the results from DBC, TBC,
and PBC always lie between the two bounds where DBC overesti-
mates and TBC underestimates the PBC. Numerical results also
confirm that the results from different boundary conditions are
closer to Taylor’s bound for r< 1 and tend more toward the
Sachs’ bound for r> 1.

3.3.3 Influence of the Number of Inclusions. A common
assumption in computational homogenization is that the inclu-
sions are uniformly distributed in the material which is often a
simplification of real composites. Heterogeneous materials usually
have a nonperiodic or spatially random microstructural composi-
tion. Obviously, variation of the inclusion distribution in the
microstructure considerably affects the overall response of the
composite. This section aims to highlight the influence of different
morphologies of the microstructures on the macroresponse of the
material. The macro Piola stress for various microstructures with
identical inclusion volume fraction of 25% but different number
of inclusions for both periodic and random distributions is eval-
uated and compared. Periodic microstructures are modeled by cir-
cular inclusions of the same size distributed uniformly while
random microstructures contain inclusions of different size spread
nonuniformly such that inclusions do not overlap. Contacts of the
inclusions with the borders of the microstructure are also avoided.
The first level of the random microstructure is exactly the same as
the first level of the periodic microstructure. That is, a unit cell
with 25% inclusion volume fraction. Any higher level of random
microstructure, for example, level n, is created such that it con-
tains the information of all the lower level random microstruc-
tures, 1, …, n�1, and the information associated to the level n
itself. This is schematically shown for the first four levels of ran-
dom microstructure in Fig. 19.

Both types of microstructures are discretized by four-node
bilinear finite elements. As an example, Fig. 20 depicts the mesh
resolutions for periodic and random microstructures of level 3.
The algorithm employed to generate finite element meshes for
microstructures considered in this section is not described as it is
out of the scope of the current contribution. See, for instance,
Refs. [468–481] for details on different approaches to generate
and deal with complex microstructures.

Note that in spite of increasing the number of inclusions inside
the microstructure, the physical size of all the microstructures
remains identical. This study is conducted for 1% and 25% uniax-
ial stretch in x-direction with r¼ 0.1 and r¼ 10. Both periodic

Fig. 19 Level n of the random microstructure consists of all the smaller microstructures and
the information associated to size n. All the levels have the inclusion volume fraction of 25%.

Fig. 20 Mesh qualities of periodic and random
microstructures

Fig. 21 Periodic and random microstructures. The inclusion volume fraction in all the micro-
structures is set to be f 5 25%.
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and random microstructures from level 1 up to level 15 are con-
sidered (see Fig. 21).

Figures 22 and 23 show the evolution of the macro Piola stress
with increasing number of inclusions both periodically and ran-
domly for 1% (top) and 25% (bottom) of uniaxial stretch for
r¼ 0.1 and r¼ 10, respectively. The numerical simulations illus-
trate that the results from the Taylor’s and Sachs’ assumptions are
independent of the inclusion distribution pattern and solely
depend on the inclusion volume fraction and provide a very rough
estimate of the material response. In both types of the microstruc-
tures and deformations, the gap between the results from DBC,
PBC, and TBC becomes smaller as the number of inclusions
inside the matrix increases without exactly reaching each other.
This trend is smoother for periodic microstructure compared to
the case of random microstructure where minor fluctuations are
observed. These fluctuations are however damped as the number
of inclusions increases sufficiently.

3.4 Finite Element Formulation of the Macroproblem
(FE2). Solving the full two-scale problem involves satisfying the
linear momentum not only at the microscale but also at the macro-
scale. Deriving the finite element formulation of the macroscale
problem is nearly identical to the microscale problem and is not
presented here for the sake of brevity. The fully discrete form of
residual vector associated with the global node I at the macroscale
reads

MRIðMdÞ : ¼ A
b¼1

#be
ð

MBb
0

MP�MGradNi dMV

� A
c¼1

#se
ð

M@Bc
0;N

Mt
p
0 � Ni dMA� A

b¼1

#be
ð

MBb
0

Mb
p
0 � Ni dMV¼! 0

(40)

Fig. 22 Evolution of macrostress versus number of inclusions
for 1% (top) and 25% (bottom) of uniaxial stretch and r 5 0.1.
Results of the Taylor’s and Sachs’ bounds are independent of
the distribution pattern of the microstructure and only depend
on the volume fraction. Choice of the boundary condition
becomes less significant as the number of inclusions inside the
RVE increases. Note that the results which are drawn by bolder
lines correspond to periodic microstructures.

Fig. 23 Evolution of macrostress versus number of inclusions
for 1% (top) and 25% (bottom) of uniaxial stretch and r 5 10.
Results of the Taylor’s and Sachs’ bounds are independent of
the distribution pattern of the microstructure and only depend
on the volume fraction. Choice of the boundary condition
becomes less significant as the number of inclusions inside the
RVE increases. Note that the results which are drawn by bolder
lines correspond to periodic microstructures.

Fig. 24 The ratio d~F=dMF is evaluated through solving linear
problems at the converged solution of the microproblem

Fig. 25 Macro- and microscale samples and the associated
finite element discretizations
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The nodal residuals are arranged in a global residual vector MR,
and the fully discrete nonlinear system of governing equations
reads

MR¼MRðMdÞ¼! 0 (41)

with Md being the unknown global vector of macroscopic defor-
mations. Similar to the microproblem procedure, the
Newton–Raphson scheme is utilized to solve this nonlinear prob-
lem. The consistent linearization of the system of equations (41)
yields

MR Mdnþ1

� �
¼MR Mdn

� �
þMK � DMdn¼

!
0

with MK ¼ @
MR

@Md
jn; Mdnþ1¼Mdn þ DMdn (42)

where n is the iteration step and K is the assembled macroscopic
tangent stiffness matrix of nodal stiffness

MKIJ ¼
ð

MB0

@MP

@MF
�: MGradNI�MGradNJ½ � dMV

¼
ð

MB0

MA�: MGradNI�MGradNJ½ � dMV

(43)

Solving Eq. (42) yields the iterative increment DMdn and conse-
quently Mdnþ1.

As discussed in Sec. 2.3, the macro Piola stress is calculated as
the volume average of its micro counterpart. However, the macro

Piola tangent is not the volume average of the micro Piola tan-
gents, but computed as MA ¼ hAþA : Bi. Recall that B is a
fourth-order tensor that linearly maps the variation of the macro-
deformation gradient dMF to the variation of the microdeforma-
tion gradient fluctuations d~F as d~F ¼ B : dMF. In this section, a
systematic algorithm to calculate the tensor B and accordingly
MA is given.

We determine B at the converged solution of the nonlinear

microproblem and based on the linear relationship between dMF

and d~F. Therefore, regardless of dMF, the ratio d~F=dMF remains

constant. That is, B is numerically evaluated by perturbing MF

and calculating the resultant d~F through solving a system of linear
problems. This is schematically shown in Fig. 24. Detailed algo-

rithm to compute B and MA is given as follows:

Algorithm 6: Macroscopic Piola tangent

input: MF; material parameters

solve the non-linear problem using Alg. 1,2,3,4 or 5 and store A;
for r ¼ 1! PD do

for s ¼ 1! PD do

dMFij ¼ dirdjs i; j ¼ 1;…; PD;
solve the problem linearly for dMF at the converged
solution;
Bijrs ¼ d~F ij i; j ¼ 1;…; PD;

end

end

output: MA ¼ hAþA : Bi

Fig. 26 Distribution of the yx-component of the stress within the macrostructure and its microstructures. The micropro-
blem is solved through different boundary conditions and r 5 0.1.
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In the above algorithm, d denotes the Kronecker delta. Note

that prescribing dMF or a dMF, with a being any real number,
both render the same result. Here, we work with identities for sim-
plicity. Otherwise, the coefficients should be properly normalized
by a. See Refs. [363] and [414] for further discussions about com-
putation of macro Piola tangent in the discrete formulation. Once
MA is calculated, all the ingredients to perform the full FE2 simu-
lation are provided.

3.5 Numerical Examples of FE2 for Various Microdefor-
mation Assumptions. Equipped with the complete strain-driven
computational homogenization framework for finite deformation
analysis, full FE2 simulations of a Cook’s membrane problem
made of uniformly arranged fiber-reinforced composite are per-
formed under varying conditions. As depicted in Fig. 25, the mac-
rosample is fixed along the left side and is loaded by the force
vector of f ¼ 0; 5½ �t along the right side.

The microstructure of the composite is a unit cell possessing
the inclusion volume fraction of 25%. Similar to previous numeri-
cal examples, the material parameters of the matrix are assumed
to be shear modulus lm ¼ 8.0 and Poisson’s ratio �m ¼ 0.3. The
simulations are carried out for two different inclusion material
types of r¼ 0.1 and r¼ 10, along with three different boundary
conditions, DBC, PBC, and TBC, to solve the boundary value
problem at the microscale. In addition to the response of the mac-
roproblem, the responses of the microproblems at two different
points corresponding to the Gauss points located at the bottom left
corner of two macroelements are presented. These points are

labeled A and B and illustrated in Fig. 25. The figure also depicts
the macro- and microsample and their mesh resolutions. The mac-
rodomain and the microstructure are discretized by 200 and 720
bilinear finite elements, respectively. Figures 26 and 27 show the
distribution of the yx-component of the stress within the macro-
structure and the corresponding microstructures at points A and B
for r¼ 0.1 and r¼ 10, respectively.

As anticipated, the highest macrostructural deformation is
observed in the case that the microproblem is solved using TBC,
and the inclusion is more compliant to the matrix. Obviously, the
higher deformation of the composites under employing TBC leads
to the evolution of slightly more stress concentrations within the
macrostructure. The numerical results confirm that different
boundary conditions render almost identical macrostructural
deformations and stress distributions when the inclusion is stiffer
than the matrix.

4 Summary

A comprehensive review of the first-order strain-driven compu-
tational homogenization scheme at finite deformations with pri-
mary focus on associated computational aspects is presented.
First, the historical development of analytical and computational
methods available in the literature to model heterogeneous materi-
als is reviewed; their specific features are extensively discussed
and in several cases compared. Next, the main emphasis is put on
establishing a unifying first-order strain-driven computational ho-
mogenization framework based on the finite element method,

Fig. 27 Distribution of the yx-component of the stress within the macrostructure and its microstructures. The micropro-
blem is solved through different boundary conditions and r 5 10.
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thereby the behavior of multiphase materials under large deforma-
tions is captured. More particularly, computational issues regarding
the finite element implementation of different boundary conditions
satisfying the Hill–Mandel condition to solve the microscale prob-
lem are introduced and explored. These conditions are linear DBCs,
periodic displacement and antiperiodic TBCs, and finally, constant
TBCs. Furthermore, the computational details to implement the non-
linear extensions of the Voigt’s and Reuss’ bounds known as the
Taylor’s and Sachs’ assumptions are given. The efficiency of the
proposed framework is demonstrated through presenting numerical
examples for two- and three-dimensional microproblems under vari-
ous conditions. In particular, the influence of the choice of the
boundary condition, mismatch between the phases, amount of defor-
mation, number of inclusions, and their distribution pattern on the
overall response of the material is investigated. Finally, a concise
and unified formulation to compute the macrotangent is given.
Equipped with the presented framework, full FE2 simulation of a
Cook’s membrane made of uniformly arranged fiber-reinforced
composite is performed. The numerical results show that utilizing
different boundary conditions at the microscale leads to qualitatively
almost identical macroscopic response.

Finally, noting that homogenization is a rich, vast, and mature
field, including all the relevant works in a single review paper is
hardly possible. Nonetheless, we endeavored to selectively men-
tion notable and pioneering contributions as well as recent devel-
opments revolving around this subject. The authors would
welcome anyone’s comment in the case that any major contribu-
tion is not included in this review.
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Nomenclature

A ¼ Piola tangent
A ¼ assembly operator
Bt ¼ spatial configuration
B0 ¼ material configuration

d ¼ global vector of deformation
DBC ¼ displacement boundary conditions

Det ¼ determinant operator
Div ¼ divergence operator

f ¼ inclusion volume fraction
F ¼ deformation gradient

Grad ¼ gradient operator
I ¼ identity tensor
J ¼ Jacobian of the deformation gradient
K ¼ nodal stiffness tensor
K ¼ assembled tangent stiffness matrix
n ¼ spatial unit normal to boundary
N ¼ shape functions of bulk and surface elements
N ¼ material unit normal to boundary
P ¼ Piola stress

PD ¼ problem dimension
r ¼ inclusion to matrix stiffness ratio

R ¼ nodal residual vector
R ¼ assembled residual vector
t
p
0 ¼ prescribed traction on material configuration

TBC ¼ traction boundary conditions
V0 ¼ material bounded volume

x ¼ spatial coordinates
X ¼ material coordinates

du ¼ test function
l, k ¼ Lam�e parameters

u ¼ deformation map

w ¼ free energy density function
@Bt ¼ boundary of spatial configuration
@B0 ¼ boundary of material configuration

@B0;D ¼ Dirichlet boundary of material configuration
@B0;N ¼ Neumann boundary of material configuration

hi ¼ volume averaging operator
~f•g ¼ fluctuation part of {�}
f•gt ¼ transpose of {�}
f•g�t ¼ transpose inverse of {�}
Mf•g ¼ macro counterpart of micro {�}
f•g�1 ¼ inverse of {�}

#be ¼ number of bulk elements
#nbe ¼ number of nodes per bulk element
#nse ¼ number of nodes per surface element
#se ¼ number of surface elements

Note:

� The term Piola tangent refers to the derivative of the Piola
stress with respect to its work conjugate, the deformation
gradient, and is a fourth-order constitutive tensor.

� The terms macro and micro are frequently used instead of
macroscopic and microscopic.

� The term inclusion is used to refer to fibers in two-
dimensional problems and to inclusions in three-dimensional
problems.

Appendix A: Useful Lemmas and Relations

In this section, some useful lemmas and relations which are
employed in this work are given. Furthermore, the intermediate
steps and technicalities of some proofs are detailed. The extension
of the relations and proofs presented in this section to account for
surface energies is given in Ref. [252].

A.1 Lemma 1

hPi ¼ 1

V0

ð
@B0

t0 � X dA

Proof of the Lemma 1

hPi ¼ 1

V0

ð
B0

P dV ¼ 1

V0

ð
B0

P � I dV ¼ 1

V0

ð
B0

P � GradX dV

using the relation P � GradX ¼ DivðP �� XÞ � DivP� X and the
fact that DivP ¼ 0 inside B0

¼ 1

V0

ð
B0

Div P �� Xð Þ dV

with the aid of the divergence theorem

¼ 1

V0

ð
@B0

P �� X½ � � N dA ¼ 1

V0

ð
@B0

P � N � X dA

from the balance equations (6)2

¼ 1

V0

ð
@B0

t0 � X dA �

The nonstandard product �� between a second-order tensor A and
a vector b renders a third-order tensor C ¼ A �� b with its compo-
nents Cijk ¼ Aikbj.

A.2 Lemma 2 ð
@B0

N � X dA ¼V0 I
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Proof of the Lemma 2. Using the gradient theorem

ð
@B0

N � X dA ¼
ð
B0

GradX½ �t dV ¼
ð
B0

I dV ¼ I

ð
B0

dV ¼V0 I

A.3 Hill’s Lemma

hP : dFi�MP : dMF ¼ 1

V0

ð
@B0

du� dMF � X
� �

� t0�MP � N
� �

dA (A1)

In order to prove Hill’s lemma, the right-hand side is expanded and manipulated until it eventually results in the left-hand side. Since
only the equality operator is used, all the steps are also valid in the reverse order. First, we use t0 ¼ P � N on @B0 and expand the right-
hand side

ð
@B0

du� dMF � X
� �

� t0�MP � N
� �

dA ¼
ð
@B0

du� dMF � X
� �

� P � N�MP � N½ � dA

¼
ð
@B0

du � P � N½ � dA�
ð
@B0

du � MP � N½ � dA�
ð
@B0

dMF � X½ � � P � N dAþ
ð
@B0

dMF � X½ ��MP � N dA

¼
ð
@B0

du � P½ � � N dA�
ð
@B0

MP : du� N½ � dA�
ð
@B0

dMF : P � N½ � � X½ � dAþ
ð
@B0

dMFt�MP½ � : X � N½ � dA

Using the divergence theorem on the first integral and taking the constants out of the integral operators

¼
ð
B0

Divðdu � PÞ dV�MP :

ð
@B0

du� N dA� dMF :

ð
@B0

P � N½ � � X½ � dAþ dMFt�MP½ � :
ð
@B0

X � N dA

The first integral is simplified with the relation Divðdu � PÞ ¼ du � DivPþ P : Graddu ¼ P : dF since DivP ¼ 0 due to balance of linear
momentum. The second integral is rewritten using the gradient theorem as

Ð
@B0

du� N dA ¼
Ð
B0

Graddu dV. The third integral is indeed

the first term on the right-hand side of Lemma 1 since t0 ¼ P � N, and therefore, it can be expressed as
Ð
@B0

P � N½ � � X½ � dA ¼V0 hPi.
The last integral simplifies using Lemma 2 in its transposed format as

Ð
@B0

X � N dA ¼V0 I

¼
ð
B0

P : dF dV�MP :

ð
B0

Graddu dV � dMF : hPi þ dMFt�MP½ � : V0 I½ �

¼V0 hP : dFi �V0
MP : hdFi �V0 hPi : dMFþV0

MP : dMF :

From the definitions of the average Piola stress (16) and the average deformation gradient (18)

¼V0 hP : dFi �V0
MP : dMF�V0

MP : dMFþV0
MP : dMF

¼V0 hP : dFi �V0
MP : dMF ¼V0 hP : dFi�MP : dMF

� �
:

A.4 Balance of Angular Momentum at the Macroscale. The global form of the balance of angular momentum at the microscale
in the material configuration is ð

@B0

u
 t dV ¼ 0 ()
ð
@B0

t � u dA ¼
ð
@B0

u� t dA (A2)

A.4.1 Linear DBCs. In case of linear DBCs, substituting the material configuration position vector u¼MF � X into Eq. (A2)2 leads
to

ð
@B0

t � u dA ¼
ð
@B0

u� t dA

()
ð
@B0

t�MF � X dA ¼
ð
@B0

MF � X � t dA

()
ð
@B0

t � X dA�MFt¼MF �
ð
@B0

X � t dA

() MP�MFt¼MF�MPt

Applied Mechanics Reviews SEPTEMBER 2016, Vol. 68 / 050801-23

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 07/22/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



A.4.2 Periodic Displacement and Antiperiodic TBCs. Taking
into account the periodicity of the boundary displacement fluctua-
tions leading to uþ ¼ u�þMF � Xþ � X�½ � and antiperiodicity of
the boundary tractions, that is, tþ ¼ �t�, Eq. (A2)2 can be formu-
lated as5

ð
@B0

t � u dA ¼
ð
@B0

u� t dA

()
ð
@Bþ0

t � uþ � t � u�
� �

dA ¼
ð
@Bþ0

uþ � t � u� � t
� �

dA

()
ð
@Bþ0

t � u�þMF � Xþ � X�½ �
� �

� t � u�
� �

dA

¼
ð
@Bþ0

u�þMF � Xþ � X�½ � � t
� �

� u� � t
� �

dA

()
ð
@Bþ

0

t�MF � Xþ � X�½ � dA ¼
ð
@Bþ

0

MF � Xþ � X�½ � � t dA

()
ð
@Bþ0

t � Xþ � X�½ � dA�MFt¼MF �
ð
@Bþ0

Xþ � X�½ � � t dA

()
ð
@B0

t � X dA�MFt¼MF �
ð
@B0

X � t dA

() MP�MFt¼MF�MPt

A.4.3 Constant TBCs. Substitution of constant TBCs defini-
tion, i.e., t¼MP � N, into Eq. (A2)2 rendersð

@B0

t � u dA ¼
ð
@B0

u� t dA

()
ð
@B0

MP � N � u dA ¼
ð
@B0

u�MP � N dA

() MP �
ð
@B0

N � u dA ¼
ð
@B0

u� N dA�MPt

() MP�MFt¼MF�MPt

Appendix B: Stress-Driven Homogenization

Numerous problems which are of practical importance require
the prescription of the macro Piola stress rather than the macrode-
formation gradient [339,460,482]. In this section, we briefly pres-
ent the computational algorithms to implement DBC, PBC, and
TBC in the context of the stress-driven computational homogeni-
zation. Implementations of DBC and PBC in stress-driven homog-
enization are fairly similar to implementation of TBC in the
strain-driven homogenization in the sense that iterations are
required to reach the final solution. The algorithms start with an
initial guess for the macrodeformation gradient. This guess is then
iteratively updated until the volume average of the micro Piola
stress reaches the macro Piola stress, that is, until hPi¼MP.
Hence, the error vector takes the form

XðMFÞ ¼ hPi�MP
� �t¼! 0 (B1)

The consistent linearization of this nonlinear vector function reads

X MFnþ1

� �
¼X MFnð Þþ @X

@MF
jn : DMFn¼! 0 MFnþ1¼MFnþDMFn

(B2)

where n is the iteration step. Solving Eq. (B2) yields the iterative
increment DMFn and consequently MFnþ1. The algorithms to
implement DBC and PBC in stress-driven homogenization are
given as follows:

Algorithm 7: Linear displacement boundary conditions (stress-
driven)

input: MP, material parameters
MF ¼ 0;

while MF is not correct do

run Alg. 2;
if jjhPi�MPjj < tol then

MF is correct
else

solve the system of equations (B.2);
MF¼MFþ DMF;

end

end

output: MF

Algorithm 8: Periodic displacement and antiperiodic traction
boundary conditions (stress-driven)

input: MP, material parameters
MF ¼ 0;

while MF is not correct do

run Alg. 3;
if jjhPi�MPjj < tol then

MF is correct
else

solve the system of equations (B.2);
MF¼MFþ DMF;

end

end

output: MF

Implementation of TBC for stress-driven homogenization is
performed by prescribing the tractions, MP � N, uniformly over the
boundary of the microstructure. In order to deal with the rigid
body motions, the configuration illustrated in Fig. 8 is employed.
Obviously, no iteration for updating the macro Piola stress is
required as it is known as the input of the problem. However, the
displacement to be prescribed on semi-DBCs has to be updated
until uniform distribution of the traction over the boundary of the
microstructure is guaranteed. Hence, the condition (36) and the
system of equations (37) reduce to

XðgÞ ¼ fB
y ¼

!
0 (B3)

and

X gnþ1ð Þ ¼ X gnð Þ þ
@X
g
jnDgn¼

!
0; gnþ1 ¼ gn þ Dgn (B4)

respectively. The algorithm to implement TBC in stress-driven
homogenization is given as follows:

Algorithm 9: Constant traction boundary conditions (stress-driven)

input: MP, material parameters
g¼ 0;
assign homogeneous Dirichlet and semi-Dirichlet BC to elimi-
nate rigid body motion;

while g is not correct do

apply MP � N on the Neumann part and update semi-Dirichlet BC;
solve the system of equations (27);
evaluate hPi;
XðgÞ ¼ hPyxi�MPyx

� �t
;

if jjXjj < tol then

g is correct
else

solve the system of equation (B4);
g ¼ gþ Dg;

end

end

output: MF5Notations and symbols used here and detailed discussion on PBC are given in
Sec. 3.2.3
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Appendix C: Implementing TBC in a Strain-Driven

Homogenization Via a Lagrange Multiplier

The main objective of this section is to briefly address the
approach given by Miehe [462] to implement constant TBCs via
the Lagrange multiplier method. This methodology is essentially
based on solving the incremental minimization problem of
homogenization

MW MFð Þ ¼ infM
d W dð Þ with MW dð Þ ¼ 1

V0

ð
B0

W F; Xð Þ dV

(C1)

with d being the unknown global vector of deformations, which
minimizes the average incremental energy of the microstructure
for a given macrodeformation gradient. In order to impose the
constraint hFi�MF ¼ 0, the Lagrange multiplier method is used
which yields the Lagrangian

Xðd; k;MFÞ¼MWðdÞ � k : hFi�MF
� �

(C2)

with k being the Lagrange multiplier. It can be verified that

@X d; k;MF
� �
@MF

¼MP with MP ¼ k (C3)

Next, the derivatives of the Lagrangian functional with respect to
its variables are set to zero, and the following system of equations
is obtained:

@X d;MP;MF
� �
@d

¼ 0 ) @MW dð Þ
@d|fflfflfflfflffl{zfflfflfflfflffl}
Rint

�MP :
@hFi
@d|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Rext

¼ 0

@X d;MP;MF
� �
@MP

¼ 0 ) MF� hFi ¼ 0

8>>>><
>>>>:

(C4)

Linearization of this system of equation yields, in matrix format,
the system of equations

@Rint

@d
� @Rext

@MP

� @hFi
@d

0

2
6664

3
7775 Dd

DMP

" #
¼

Rext � Rint

hFi�MF

" #
(C5)

The system of equations (C5) is not singular and can be solved
without further modifications.
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[47] Ladevèze, P., and Nouy, A., 2003, “On a Multiscale Computational Strategy
With Time and Space Homogenization for Structural Mechanics,” Comput.
Methods Appl. Mech. Eng., 192(28–30), pp. 3061–3087.
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