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Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant
examples of adaptive and intelligent systems created by self-assembly. Significant effort has
been devoted to understanding these sophisticated systems. The self-assembly process enables us
to create supramolecular nanostructures with high order and complexity, and peptide-based self-
assembling building blocks can serve as suitable platforms to construct nanostructures showing
diverse features and applications. In this review, peptide-based supramolecular assemblies will
be discussed in terms of their synthesis, design, characterization and application. Peptide
nanostructures arecategorized based on their chemical and physical properties and will be
examined by rationalizing the influence of peptide design on the resulting morphology and the
methods employed to characterize thesehigh order complex systems. Moreover, the
applicationof self-assembled peptide nanomaterials as functional materials in information
technologies and environmental sciences will be reviewed by providing examples from recently
published high-impact studies.

Keywords: peptide, nanomaterials, self-assembly, nanofiber

(Some figures may appear in colour only in the online journal)

1. Introduction

Molecular self-assembly is an emerging and powerful tool in
the synthesis of functional nanoscale structures as a bottom-
up fabrication method. It is defined as the spontaneous
organization of molecules into stable, well-defined structures
under equilibrium conditions through noncovalent interac-
tions. Self-assembly is ubiquitous in many biological systems
and results in the formation of a variety of complex biological
structures found in nature. These complex and elegant
examples inspire scientists to create similar artificial systems
by using the building blocks of life, such as amino acids,
lipids, nucleic acidsand saccharides. In most cases, thermo-
dynamically stable structures are formed through enthalpic
and entrophic interactions that involve both the assembling
subunits and the surrounding solvent molecules [1].

Naturally, many key developments have paved the way
forprogress inthis sophisticated field, such as the discovery
of close-packed forms of amphiphilic molecules, the
arrangement of monolayers by long chain hydrocarbon
amines and the distribution of ordered monolayers of alka-
nethiolate molecules on gold substrates [2].

In this review, we describe peptide synthesis strategies,
peptide self-assembly and the relation of the peptide design to
the corresponding self-assembled nanostructures. In addition
to the synthesis and functionalization of peptide nanos-
tructures, we also provide an overview of the characterization
techniques that have been developed for understanding the
interactions between individual peptide subunits and their
effecton the physical and chemical properties exhibited by
the self-assembled system. The peptide nanostructures are
considered to be attractive candidates for a broad range of
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biomedical applications, and have already been reviewed
extensively [3–6]. Here we present recent applications of
peptide-based nanomaterials by providing specific examples
such as peptide-templated inorganic nanomaterials, semi-
conducting peptide nanowiresand catalytic peptides.

2. Peptides: synthetic approaches

Peptides consisting of natural or synthetic amino acids are
interesting building blocks for the construction of supramo-
lecular assemblies. These simpler structures aid us in under-
standing more complex systems present in nature. Scientists
employ a variety of approaches in the synthesis of peptide
building blocks and strive for the production of the peptide of
interest while minimizing or eliminating other possible by-
products. Synthetic approaches utilized for the fabrication of
peptide molecules can be classified into three main classes:
solid phase strategies, ring-opening polymerization techni-
ques and genetic engineering [7, 8].

Solid phase peptide synthesis (SPPS) is the most widely
used method for thesynthesis of small to mediumsize pep-
tides. In this technique, the peptide sequence is grown, step-
by-step, on an insoluble polymeric resin through the
sequential addition of individual amino acids. Deviations
from the intended amino acid sequence are prevented through
use of modified amino acids with unreactive N-termini, which
can be activated only after treatment with a deprotecting agent
[9]. Amino acids used for the couplings bear orthogonal
protecting groups. The orthogonal chemistry approach
enables two or more protecting groups to be used con-
currently without affecting each other in situations where one
of the functional groups requires manipulation. General fea-
tures associated with these protecting groups can be con-
sidered as (i) their ease of introduction into the functional
group; (ii) their stability in different reaction conditions; and
(iii) their safe removal at the end of the synthetic process [10].
Prior to the coupling, there is a need to activate the carboxylic
group of the last amino acid in the sequence by using phos-
phonium, aminium, uronium or carbodiimide-based reagents
that catalyse the formation of amide bonds. Although carbo-
diimide derivatives lead to an increase in the degree of
racemization during the activation of amino acids, this effect
can be minimized by using additives, especially N-hydroxy
derivatives, which suppress the formation of N-acylurea by
shifting the reaction towards the formation of the active ester
form of the amino acid [11]. At the end of the synthesis, the
peptide is cleaved from the resin with an acid treatment.

Microwave-assisted SPPS is another option for synthe-
sizinglonger peptides with increased reaction rates and
purities. Typically, coupling reagents and additives used in
microwave-assisted SPPS are identical to those applied in
conventional SPPS, and peptide couplings are carried out at
temperatures in the range50 °C–80 °C unless amino acids
carry a potential risk of epimerization [12]. Setbacks
encountered in solution phase synthesis, such as time con-
suming isolation and purification of intermediate peptides, are
overcome with SPPS. With the SPPS strategy, it is possible to

control not only the amino acid sequence but also the C- and
N-terminal functionality of the created peptide [13]. There-
fore, this technique is eligible for the synthesis of linear,
branched, dendritic or cyclic peptides [14, 15]. In addition,
different chemical moieties, such as fatty acids, lipids, sac-
charides, nucleotides, polymers, drugs, aromatic unitsand
dyescan be incorporated into the peptide backbone through
linkage chemistry while the peptide is still on the resin.-
Further progress in peptide synthesis is native chemical
ligation, which bypasses the limitations of SPPS with respect
to the size and solubility of the peptides, and entails the
chemoselective conjugation of two unprotected peptides (an
α-thioester-containing peptide and an N-terminal cysteine-
ended peptide) throughthioester linkage. These peptides are
first individually synthesized using SPPS, and subsequently
linked to each other in thesolution phase to create large-sized
peptides and even complex proteins [16].

On the other hand, the preparation of high molecular
weight monodisperse polypeptides with precisely defined
primary structures can be achieved by protein engineering,
also called genetic engineering. This strategy allows the
synthesis of not only structural proteins but also de novo
designed proteins as a result of the cellular expression of
artificial genes [17]. In contrast to chemical synthesis meth-
ods, this technology can be considered as a biological tool for
thepreparation of peptide-based materials, and involves
insertion of a synthetically designed gene into a circular DNA
plasmid to produce the desired polypeptide or protein in
bacterial or eukaryotic expression systems [18]. One of the
advantages of this methodology is that a broad range of
nonproteogenic amino acids or functional groups can also be
integrated for the preparation of artificial proteins [19].

Polypeptides with high molecular weights, narrow
polydispersity and retained chiral integrity can be synthesized
by the ring-opening polymerization of amino acid
N-carboxyanhydrides (NCA) in a controlled manner [20]. For
the polymerization, there are two widely accepted mechan-
isms:normal amine and the activated monomer mechanisms.
In both mechanisms, a range of nucleophiles and bases such
as amines and metal alkoxides are used for the initiation of
polymerization [21]. Although NCA polymerization suffers
from a lack of control over the exact primary peptide
sequence, in contrast to SPPS or genetic engineering, it allows
the synthesis of polypeptides in high yields and large quan-
tities [22]. In some cases, side reactions that occur during
NCA polymerization may result in failure in the production of
homo and block polypeptides, which can be prevented by
introducing various metal- and organo-catalysts [20]. In
addition, some applications require using high purity mono-
mers to obtain optically pure polypeptides with predictable
molecular weights and low polydispersity.

Several other chemical methodologies have been devel-
oped to synthesize peptide- and protein-based hybrids.
Anchorage of two components has been achieved through
thiol–maleimide or alkyne–azide couplings as well as by
imine and hydrazone linkages, atom transfer radical poly-
merization and chemoselective peptide ligation methods
[8, 23, 24]. Although each strategy has its own limitations,

2

Nanotechnology 27 (2016) 402002 Topical Review



with recent advances in synthetic strategies, sophisticated
peptidic architectures can be created by using these versatile
chemical tools.

3. Self-assembly of peptides

Amino acids serve as a diverse biochemical toolbox for the
construction of peptide-based materials, exhibiting a broad
range of physicochemical properties with regards to their
charge, hydrophobicity, size and polarity. Consequently,
peptide materials containing different amino acid sequences
can be designed to serve a variety of biological functions.
This diversity is further enriched by the introduction of
nonproteinogenic groups into the peptide backbone. Since the
synthesis methods, structures and properties of peptides are
wellknown, peptide-based materials can also be utilized as
model systems to gain insight intobiological self-assembly
mechanisms in nature [25]. Peptide self-assembly is mainly
governed by noncovalent interactions. These interactions not
only drive the self-assembly process but also stabilizethe
secondary structure of peptides and proteins [26].

3.1. Forces drivingpeptide self-assembly

Noncovalent interactions such as hydrogen bonding, hydro-
phobic, electrostaticand van der Waals interactions, π–π

stacking and coordination bonds are the main contributors of
molecular self-assembly (figure 1) [27, 28]. While nonpolar
amino acids, including aliphatic (e.g. alanine, leucine, valine)
and aromatic (e.g. tyrosine, phenylalanine) amino acids, are
mainlyresponsible for hydrophobic clustering through
hydrophobic interactions and π–π stacking, respectively,
polar amino acids result in either hydrogen bonding or elec-
trostatic interactions depending on whether they have
uncharged (e.g. serine, asparagine) or charged (e.g. lysine,
histidine, glutamic acid) residues [29]. In addition to indivi-
dual amino acids, the peptide backbone itself provides con-
siderable stability through hydrogen bonds. Although these
interactions are individually weak, the cooperative action of
binding residues across multiple self-assembling subunits can
enable formation of stable assemblies. The cooperative

binding also ensures a degree of sequence-specificity in the
self-assembling system [30].

Naturally occurring hydrogen bonding patterns, such as
those found in β-sheets, α-helices, and coiled coils, are uti-
lized in the design of a number of peptide sequences to form
higher order structures as a result of self-assembly. The sta-
bilization of multiple peptide backbone arrangements occurs
through hydrogen bonding interactions between the backbone
amide and carbonyls and results in the formation of β-sheets.
These structures may be in parallel or antiparallel arrange-
ments depending on the direction of the strands. Peptides are
typically designed to contain repeating amino acid residues
for hydrophobic and hydrophilic regions, which ensure that
the hydrophobic part will be buried within the self-assembled
structure while the hydrophilic region, which often contains
functional sequences, is exposed to the aqueous environment
[31]. Unlike β-sheets, α-helices are formed by individual
peptide chains where backbone amide components are intra-
molecularly hydrogen bonded. This arrangement leads to the
presentation of the amino acid side chains on the surface of
each helix and further facilitates the accessibility of amino
acid side chains to the solvent. In some cases, these single α-
helices can assemble by coiling together and form so-called
coiled coils. Peptide sequences responsible forcoiled coil
formation generally bear a repeat motif consisting of seven
residues. These heptad motifs can be derived using general-
ized wheel diagrams that denote the positions and biochem-
ical properties of amino acids at each location. The rules
governing the formation of coiled coil structures are well-
studied and conceived. In this section of the review, we
present a relatively brief discussion for the H-bonding pat-
terns exploited in peptide self-assembly,however, there are
comprehensive reviews in the literature [32, 33].

3.2. Factors triggeringself-assembly

There is a growing interest in creating dynamic systems that
assemble and disassemble in response to external cues. Since
noncovalent interactions are delicate interactions, they have a
great tendency to respond to alterations in environmental
conditions such as pH, light, temperature, ionic strength, and
solvent polarity [34]. Among these, pH switch is the most
facile approach forcontrolling and directing the self-

Figure 1. Strength and properties of the noncovalent interactions involved in self-assembly.
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assembly [35–39]. A number of peptides are inherently sen-
sitive to pH change due to the introduced charged amino
acids, leading to a structural transformation. Apart from
pH stimuli, light-triggered systems designed by van Hest and
Stupp groups were developed by using aphotocleavable
group bearing peptide amphiphiles, and morphological tran-
sitions were observed for both cases in response to light [40–
42]. Furthermore, polymerizable diacetylene unit containing
peptide molecules were shown to respond to UV light irra-
diation to acquire one-dimensional nanostructures by the-
Tovar group [43]. On the other hand, thermally triggered
peptide-based materials causing a change in the self-assembly
of the nanostructure have beenreported by several groups
[44–49]. In addition to thermal energy, theUlijn group has
demonstrated that ultrasound energy can assist the reorgani-
zation of supramolecular nanostructures by temporarily dis-
rupting noncovalent interactions in the peptide system and
subsequently allowing their reformation in more thermo-
dynamically favourable positions [50]. In addition, the effect
of ionic strength and metal ions on the self-assembly mech-
anism of peptide molecules were examined by the addition of
different type of cations into the peptide-based systems.
While charged amino acids are mainly responsible forsalt-
induced self-assembly, as in the case of ionic-complementary
peptides [51], β-hairpin peptides [52], ultrashort peptides [53]
and peptide amphiphiles [54, 55], histidine residues have
been predominantly used in themetal-binding domain due to
the affinity of theimidazole ring to several coordination metal
ions [56–59]. In addition to the above-mentioned external
stimulus factors, solvent polarity can also exert a profound
effect on the supramolecular nanostructures. A solvent con-
trolled structural transition was observed for several peptides
due to the changed interactions between the hydrophobic
domain of the peptide and solvent molecules [60–63]. The
self-assembly mechanism can be alternatively induced by
enzyme catalysed reactions. Structural switches can be
employed in a controllable manner by using enzymes specific
to peptide sequences [64–68].

4. Design–nanostructure relation in peptide-based
systems

The number, type, and sequence of amino acids can be
manipulated to design self-assembling peptides. When amino
acids are considered individually, they have their own specific
characteristics. For instance, glycine imparts flexibility to the
peptide structure, as it lacks a side chain and does not carry
steric hindrance, while the proline ring constrains the number
of conformations that the peptide backbone can adopt,
resulting in a high degree of conformational rigidity [69, 70].
Cysteine, on the other hand, can be chemically or inter-
molecularly modified via thiol–maleimide chemistry or dis-
ulphide bridging, respectively. Moreover, tyrosine, serine and
threonine are utilized in further chemical and enzymatic
modifications through their hydroxyl groups. Depending
upon the chemical modifications of the C- or N-terminus,
theproperties of peptide building blocks can also be

modulated. There are two other major parameters affecting
the structure of peptide-based systems, the secondary struc-
ture and noncovalent interactions, which were mentioned in
the previous section. Peptides supported by α-helical or β-
sheet features allow theconstruction ofvarious different
nanostructures [71, 72]. While peptide secondary structures
are often sufficient to ensure the formation of kinetically and
thermodynamically stable structures, conformational interac-
tions can also be supported through linker residues that are
covalently conjugated to peptide building blocks [73]. In this
section, we discuss the structural features of peptide materials
and highlight representative studies of self-assembled systems
composed of peptide building blocks. This section is divided
into three parts, which discussthe importance of design in the
resulting self-assembled nanostructures of different classes of
peptides, namely peptides composed of only amino acids,
peptides modified by the attachment of hydrophobic acyl
chainsand peptide containing hybrid systems.

4.1. Peptides composed of only amino acids

Peptides highlighted in this sectiontypically contain both
hydrophobic and hydrophilic amino acid domains, as
amphiphilic peptide designs readily self-assemble into well-
organized nanostructures. The distribution andnumber
ofhydrophobic and hydrophilic amino acids in the peptide
sequence determine the final structure, including nanofibre,
nanotape, nanorod, nanovesicle, nanotube and micelle, of the
self-assembling peptides. Depending on the nature of the
hydrophobic domain, theaggregation propensity and, simi-
larly, thecritical aggregation concentration (CAC) of the
peptides can be modulated, which is very important for the
stability of the assembly in anaqueous environment [74].
Table 1 summarizes the sequences of the peptides discussed
in this section, the morphology of the nanostructures they
form, and additional information regarding the structural
features they exhibit.

The Zhang group has designed several short (7–8 amino
acid) peptides and described them as a new class of surfac-
tant-like peptides (SLPs) [75]. In their design, six consecutive
hydrophobic residues (A6, V6or L6) were attached to a head
group with one or two aspartic acid residues, and charges on
the N-termini were blocked by acetyl groups to prevent
positive charge formation in the hydrophobic tail. The self-
assembly of these peptides resulted in the formation of
nanotubes or vesicles measuring ~30–50 nm in diameter. The
type of nanostructure formed was affected by the hydro-
phobicity of the tail but not by the number of integrated
charged residues. They also reported that similar peptides
with two different positively charged (K and H) head groups
exhibited analogous structures in transition electron micro-
scopy(TEM) [96]. By using asimilar design, the influence of
the hydrophobic tail length on the formed nanostructure was
investigated by Lu’s group with A3K, A6K, and A9K peptides
[76]. These peptides exhibited structural transition as their
hydrophobic tail extended due to the change in packing
within the nanostructure. While A3K self-assembled into
unstable peptide sheet stacks, A6K and A9K formed long
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fibrillarworm-like micelles with uniform diameters of
8±1 nm and short nanorods with smaller diameters
ofaround 3±1 nm, respectively. The morphological diver-
sity of peptide nanostructures stems from the equally diverse
nature of the interactions between their constituent amino
acids, with both hydrophobic and hydrophilic residues
imparting characteristic properties to the overall structure. To
gain insight into this cooperative effect, Han et al synthesized
avariety of peptides containing three to five consecutive
leucine or isoleucine residues attached to one polar lysine
residue [77]. They systematically studied the role of hydrogen
bonding and its cooperative effect with hydrophobic inter-
actions by changing the number and the type of the hydro-
phobic residues. As expected, anincrease in the number of
hydrophobic residues gave rise to adecrease in the CAC
values of both LmK and ImK. Since isoleucine had a higher
propensity to form β-sheet conformation, the ImK series
formed long nanofibers through the combination of hydrogen
bonding and hydrophobic interactions, whereas L3K self-
assembled into spherical micelles. Moreover, the rest of the
LmK series exhibited nanofiber morphology due to the dom-
ination of intermolecular hydrogen bonding by additional
leucine residues. In thecase of ImK assemblies, the diameter
of the nanofibers gradually decreased as the number of iso-
leucine residues increased, stemming from the change in

chain packing. In another comparative study conducted by
Baumann and coworkers, I6K2, L6K2 and V6K2 peptides were
prepared in anaqueous salt solution (2 mM NaCl) to inves-
tigate the concentration dependence of the aggregation [78].
Although the secondary structures of all three peptides
remained steady over the wide range of concentrations,
morphological inspection of theself-assembled peptide
structures revealed that peptides showed variance in their
nanostructures as their concentrations changed. While pep-
tides prepared at lower concentrations tended to form rod- and
sheet-like structures with different cross sections, theaverage
rod length and ribbon/sheet area couldbe tuned by var-
yingthe concentration. The effect of the molecular geometry
on the nanostructure formation and its relation to the concept
of surfactant packing parameter were further analysed by
Khoe et al [79]. A cone-shaped molecular structure (Ac-
GAVILRR-Am) was synthesized usingfive subunits of
increasing size and hydrophobicity, starting with small gly-
cine and alanine residues and ending with two bulky arginine
residues that function as a cationic head group. Above its
CAC, it self-assembled into both vesicular and donut-shaped
nanostructures. Experimental results, together with model
fittings, demonstrated that donut-shaped nanostructures had
outer and inner diameters of 110 and 25 nm, respectively.
Additionally, the diameter of the spherical nanovesicles

Table 1. Recently reported peptide designs composed of only amino acids.

Peptide sequence Structure Details References

X6Dn (X=A, V, L and n=1, 2) Nanotube/vesicle 30–50 nm in diameter [75]
Ac-AmK-Am (m=3, 6and 9) Sheet/fibre—worm-like

micelle/rod
Hydrophobic peptide region—structural
transition relation

[76]

ImK, LmK (m=3–5) Micelle/nanofiber Sequence dependent structural change [77]
X6K2 (X=I, L and V) Flat ribbon/ rod-like

structure
Concentration dependent structural
change

[78]

Ac-GAVILRR-Am Nanodonut Outer and inner diameters:
105±12 nm and 22±10 nm,
respectively

[79]

A12R2 Twisted fibrils Diameter of fibrils 5–6 nm, pitch size of
a twist ~10 nm

[80]

P10R3-Am Vesicle Hydrodynamic radius (RH)=74 nm [81]
Ac-PSPCFKFEP-Am Nanofiber (β-sheet+β-turn) [82]
A6H Nanotape Twisted nanotapes 38.3±8.0 nm thick [83]
X6Kn (X=A, L and V; n=1–5) Nanotube/vesicle Hydrophobicity-structure relation [84]
Ac-A2V2L3WEn-COOH (n=2 or 7) Nanovesicle Roughly 120 nm in diameter [85]
EFL4FE Nanotube Diameter of tubes =20–30 nm [86]
Ac-EFFAAE-Am/Ac-KFFAAK-Am Nanofiber Co-assembled system [87]
Ac-X3-C and oxidized forms Ac-X3C-CX3-Ac
(X=A, V and I)

Nanosphere/fibre Effect of dimerization on self-assembly [88]

Ac-RARADADARARADADA-Am Nanofiber 10–20 nm in diameter [89]
Ac-FKFEFKFE-Am, Ac-KEFFFFKE-Am Nanoribbon/nanotape Sequence and concentration dependent

structural change
[90]

XKXKXKXKVDPPTKXKXKXKX-Am
(X=Val, Abu, Nva, Nle, Phe and Ile) Nanofiber Average fibril width =3.2–3.5 nm [91]
cyclo-[(QDAEDA)2] Nanotube/nanoparticle Nanotube diameter ≈1 μm [92]
cyclo-[(QDL)4] Fibre/bundle Formation of fibres from nanotubes [93]
cyclo[(WR)n] (n=3–5) Vesicle Ring size-vesicle size relation [94]
Ac-K2(QX)6K2-Am (X=L, F, W and Y) Nanofiber Multidomain peptides with ABA block

motif
[95]
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wereestimated to be around 41.5 nm, thesame as the dia-
meter of the average thickness of the donut-shaped structures.
The cationic arginine head group was also used in another
SLPdesign to integrate twelve alanine residues [80]. This
oligomeric peptide was synthesized via theNCA poly-
merization method rather than thestandard solid phase pep-
tide synthesis method to prevent the aggregation problem
encountered in the couplings of multiple identical amino
acids. 2wt% samples were analysed in cryo-TEM and it was
revealed that electrostatic repulsion between terminal arginine
residues, together with hydrogen bonding of alanine residues,
resulted in the formation of twisted fibrils. In another study, a
proline-rich sequence was used instead of alanine-rich
domains and one additional arginine residue was conjugated
to the hydrophilic segment [81]. The change in the type of
amino acid completely changed the self-assembly mech-
anism, leading to the formation of quite different supramo-
lecular nanostructures. Owing to the fact that apyrrolidine
ring in proline is responsible for the conformational con-
straints, this block polypeptide formed stiff helical rod
structures, known as polyproline type II (PPII) helices, in
aqueous solution. In contrast, arginine residues provided
flexibility to the structure. These two components created a
rod-coil system that is capable of self-assembling into vesi-
cular nanoaggregates with a unimodal distribution of hydro-
dynamic radii. Proline residues were used in another study at
both N- and C-termini of a nine-residual peptide to reduce the
hydrogen bonding network in the β-sheet structure at the
strand ends, and to bend the peptide chain by forming turns,
favouring the formation of interfibrillar structure [82]. Addi-
tionally, thehierarchical arrangement of these supramolecular
aggregates exhibited a concentration dependent manner.

Unlike theabove-mentioned SLPs, Castelletto et al
introduced for the first time ahistidine attached hexaalanine
sequence, which had the ability to chelate to transition metal
ions, particularly zinc cations, through its imidazole side
chain [83]. They compared the structural differences
betweenA6H assemblies prepared in water and aZnCl2
containing solution at neutral and acidic pHs,and observed
that while aqueous assemblies self-assembled into short
sheets at pH 7, A6H dissolved in ZnCl2 solution formed
pseudo-crystalline particles containing plate/tape-like sheets.
This workexamined the effect of the number and type of
integrated hydrophobic residues on the resulting supramole-
cular nanostructure but not the length of the head group. Liu
et al extended the hydrophilic amino acid chain length of X6,
where X was alanine, valine or leucine, by introducing one to
five lysine residues [84]. Extendingthe hydrophilic chain
length changed the surfactant-like character of peptides to
amore block-type arrangement. Morphological analysis
pointed out that alteration in the hydrophilicity varied the
morphology of the peptide assemblies. Peptides with a longer
hydrophilic segment but identical hydrophobic tail had a
higher CAC, leading to the formation of vesicles rather than
nanotubes. Accordingly, peptides having good solubility as
well as very high CAC above the working concentration
range failed to form any regular self-assembled structures. In
another study done by van Hell et al, an approach previously

used by theZhang group [79] was adopted to synthesize
cone-shaped amphiphilic peptides [85]. A conical shape was
provided by the addition of amino acids having bulkier side
chains near the charged glutamate residues at the C-terminus.
However, here, two different peptides were synthesized with
different lengths of hydrophilic domains (Ac-A2V2L3WE2/7-
COOH). They formed nanovesicles ofcomparable size with a
diameter of approximately 120 nm, irrespective of the number
of glutamate residues found in the head group.

By contrast to the classical design of traditional amphi-
philic peptides, thedouble-headed architecture of bolaam-
phiphiles, composed of ahydrophobic core and two
hydrophilic moieties flankingboth ends of the core, haver-
eceivedgrowing interest for their ability to form different
self-assembled nanostructures [97–99]. Recently, theHamley
group reported that theydesigned alinear octapeptide
(EFL4FE) self-assembled into nanotubes with diameters of
20–30 nm at high concentrations (1wt%), whereas they ten-
ded to form sheet-like structures at lower concentrations [86].
In another study conducted by our group, co-assembly of
oppositely charged Ac-EFFAAE-Am and Ac-KFFAAK-Am
peptides at physiological pH resulted in the formation of
nanofibers [87]. Recently, theCui group devised several
phenylalanine containing bolaamphiphiles, (EFFFFE,
KFFFFKand EFFFFK), whose terminal charges were
modulated to investigate the effect of electrostatic interactions
on the resulting polymorphic nanostructure [100]. Thisled to
the twisting of the β-sheet tapes and accordingly the forma-
tion of fibrils, twisted ribbons and belts.

Self-assembly can also be induced by utilizing specific
chemical functionalities found in the peptide backbone. For
instance, amphiphilic gemini peptides, formed as a result of
linking two cysteine containing single chain peptides with
disulphide bond through oxidation, were designed, and its
self-assembly behaviour was compared with that of the
corresponding single chain counterparts [88]. Furthermore,
three different hydrophobic amino acids (alanine, valineand
isoleucine) were chosen to tune the molecular hydrophobicity
of the peptides and to study its effect on the self-assembly
together withdimerization. As the hydrophobicity of the
single chain peptides increased, spherical aggregates became
larger by as much as 5.5±2.2 nm,and even short fibrils with
heights of 6.0±1.5 nm wereinitiated in the case of the
strongly hydrophobic I3C peptide. After oxidation, additional
constraints in molecular conformation were observed due to
the gemini geometry, further enhancing intra- and inter-
molecular interactions and supporting the self-assembly pro-
cess. All three gemini peptides formed thin fibres with heights
of approximately 1 nm and length of submicrometers. Hauser
et alpreviously demonstrated the synthesis of ultrashort (tri-
to heptamer) natural peptides and detailed their self-assembly
mechanisms [101, 102]. This group has also used cysteine in
a heptapeptide design (Ac-LIVAGKC-Am) to crosslink the
system through disulphide bridging in addition to non-
covalent interactions [103].

Amphiphatic peptides arranged in an alternating fashion
were firstly developed by theZhang group [89, 104, 105].
The ionic self-complementary peptides formed stable β-strand
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and β-sheet structures thatfurther self-assembled into well-
ordered nanofibres due toelectrostatic interactions. Although
Zhang et al classified complementary ionic sides into various
moduli based on the alternation of the charges, the(XZXZ)n
motif, where X and Z represented polar and nonpolar amino
acids, respectively, is the most frequently exploited sequence
to direct self-assembly [106, 107]. Beta-sheets are generally
arranged into bilayer structures where the hydrophobic side
chains are localized in the interior part and the hydrophilic
side chains are exposed to the aqueous medium. Lee et al
dissected the effect of sequence pattern variation on the self-
assembly of amphiphatic peptides by using thefrequently
studied Ac-(FKFE)2-Am peptide as a model [90]. They
compared the self-assembly behaviour of all four related
sequences to that of amodel peptide. The alteration in the
amino acid groupings and the disruption of the alternating
pattern not only decreased the self-assembly ability but also
changed the morphology of the resulting materials. On the
other hand, Ramachandran et al worked with two oppositely
charged amphiphatic peptides (KVW10 and EVW10) pre-
senting either cationic or anionic amino acids to create a co-
assembled system driven by charge neutralization [108].
While the individual peptide solutions did not have any
fibrillar structures, nanofibrous network formation was
observed upon mixing of oppositely charged peptide solu-
tions. Schneider et aldesigned a series of amphiphatic pep-
tides consisting of two-sided alternating nonpolar valine and
polar lysine residues flanking a type II β-turn promoter
sequence (-VDPPT-) [109, 110]. This turn-inducing sequence
elicited a slight kink in the peptide skeleton and directed the
self-assembly of molecules into bilayer β-sheet fibrils toge-
therwith acontribution of alternating amino acid residues. In
some cases, when some alterations were made in the amino
acids, fibril lamination was observed, which is the main
consequence of the disruption of hydrogen bonding pattern as
well as β-hairpin conformation. Recently, Micklitsch
et alalso investigated the influence of nonpolar amino acid
units in the hydrophobic face of the hairpin on self-assembly
behaviour and fibril morphology [91]. Six different amino
acids were selected based on the varying content of hydro-
phobicity, β-sheet propensity and aromaticity. Although the
type of amino acid used in the peptide design did not show
asignificant influence on the local morphology of the fibrils,
the residue type became an important factor when fibrils
underwent higher order assembly.

Alternating sequences have been also used in cyclic
peptide design to form nanotubular structures. While the
assembly ofcyclic peptides was firstproposed by De
Santiset al [111], theGhadiri group first demonstrated that
controlled acidification of an even-numbered pH responsive
heterochiral cyclic peptide resulted in the formation of
nanotubes [112]. The assembly of extended tubular structures
is predominantly driven by intermolecular hydrogen bonding
between cyclic peptide rings where carbonyl and amide bonds
are perpendicularly oriented to the plane of the ring, while
amino acid side chains generate the exterior walls of the
nanotube. It was recentlyreported that the morphology of the
self-assembled nanostructures of acyclo-[(QDAEDA)2]

peptide was controlled by changing pH, reaction and soni-
cation time. Also, the size of resulting cyclic peptide nano-
tubes and nanoparticles were shown to be tuned by
monitoring multiple parameters such as peptide concentration
and PEG modification [92]. Rubin and coworkers showed
that cyclo-[(QDL)4] peptide monomers assembled into large,
rod-like structures with diameters up to 2 μm and lengths of
tens to hundreds of micrometres were composed of thousands
of individual nanotubes with adiameter of 2 nm [93]. Unlike
heterochiral cyclic peptides, surfactant-like cyclic peptides
firstdeveloped by theParang group can also form self-
assembled nanostructures in anaqueous environment
depending on the hydrophobicity/charge balance in the
peptide sequence [94]. Among the cyclic peptides, cyclo
[WR]n peptides formed vesicle-like structures whose dia-
meters increased as the ring size increased. For amore
detailed background on the design principles of cyclic pep-
tides and related examples, we direct readers to recently
published reviews [15, 113, 114].

Another class of peptide assemblies described by Hart-
gerink group is multidomain peptides (MDPs) [115, 116].
The side chains of the peptides arearranged in an ABA block
motif, where aB block composed of alternating hydrophilic
and hydrophobic amino acid residues isthe major motif
driving the self-assembly, and peripheral A blocks employ-
charged amino acids to control the self-assembly through
electrostatic interactions. The extended β-sheet conformation
of the peptides leads to creating a facial amphiphile. Packing
of two of the hydrophobic faces against each other formsa
‘hydrophobic sandwich’, which further elongatesthrough
antiparallel β-sheet hydrogen bonding. Although the length of
the fibres depended on the design of theABA motif, the
width and height of the fibres were 6 nm and 2 nm, respec-
tively. The self-assembly of MDPs was further explored by
introducing aromatic amino acid residues into the core and it
was concluded that hydrogen bonding pattern changed
depending on the type of substituted aromatic amino acid
without affecting the basic nanofiber morphology [95].

4.2. Peptide amphiphiles

The second class of self-assembling peptide molecules
reviewed in this section is peptide amphiphiles (PAs),also
called lipidated peptides or lipopeptides, which are composed
of two main regions, ahydrophobic alkyl tail and ahy-
drophilic peptide sequence. These molecules are naturally
present in living organisms, which have important roles
asinitiators in the signal transduction pathways [117, 118]
and in the host defence mechanisms of bacteria [119]. The
lipidic parts of these molecules are believed to take part in
protein–protein and protein–lipid interactions and provide a
link to the cellular membrane [118].

Amphiphilicity is the main triggering factor for the self-
assembly ofPA monomers into well-defined supramolecular
nanostructures and the stability of the resulting assemblies
can be further improved by enhancing the amphiphaticity of
thePAs. Self-assembly is mediated by a variety of different
noncovalent interactions, such as electrostatic interactions
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between charged amino acids, hydrogen bonding, π–π

stacking and hydrophobic interactions. These interactions
may lead to the formation of nanostructures with diverse
morphologies, including fibres, micelles, nanotapes, nano-
tubes and nanosheets [70]. As described by theIsraelachvili
group, the balance between hydrophobic and electrostatic
interactions needs to be taken into account whendetermining
the geometry of amphiphiles with minimum free energy
[120]. Since an alteration in the hydrophilic segment can lead
to a change in the critical packing parameter[121], it can
affect the morphology of the overall assembly [122, 123].
Also, Velichko et al investigated the contribution of hydro-
phobic interactions and hydrogen bonding to the morphology
of the resulting PA assemblies by molecular simulation
techniques and created a phase diagram displaying distinct
morphologies with respect to the corresponding variables
[124]. Experimental results were also in good agreement with
those obtained by computational analysis. While ahigh
content of intermolecular hydrogen bonds between peptide
blocks favoured the formation of cylindrical PA nanofibers in

solution, PA molecules lackinghydrogen bonds had a ten-
dency to form micellar structures [125, 126]. Tsonchev et al
performed Monte Carlo simulations to demonstrate the role of
electrostatic interactions in the self-assembly ofPA nanofi-
bers [127]. Later, the proposed self-assembly mechanism was
further studied by Lee et al and Fu et al through molecular
dynamic simulations and it was revealed that individual PAs
initially formed spherical micelles, and they transformed into
long thin fibres by merging with one another due to hydro-
phobic interactions [128, 129]. The PA assemblies can be
engineered to display various morphologies and fulfil various
functions by modifying the peptide building blocks. The type
of hydrophobic group, the choice of amino acids and the
secondary structure formed by the system affect the morph-
ology of the final PA assembly. Recently published studies
presenting the design of PAs are discussed in this section
(table 2).

The Stupp groupdemonstrated that aC16H31O-V3A3E3

PA, in which hydrophilicity of the peptide domain increased
towards the C-terminus, self-assembled into elongated fibres

Table 2. Recently published studies using peptide amphiphile architectures.

Peptide amphiphile Structure Details References

C16H31O-V3A3E3 Nanofiber Salt-induced nanofiber formation [130, 131]
C16H31O-F3E3 Twisted/helical ribbon Time/sequence dependent mor-

phological transformation
[132]

C16H31O-(VE)2, C16H31O-V2E2, C16H31O-(EV)2,
C16H31O-E2V2

Nanobelt/nanofiber/
nanoribbon

Structural variation in isomeric
peptide amphiphiles

[133]

C16H31O-(VE)n (n=2, 4 and 6) Nanobelt Dimensions of belt structure versus
number of amino acid

[134]

C16H31O-WA4KA4KA4KA Worm-like micelle/
nanofibers

Time dependent morphological
transition

[135]

C16H31O-A4LSQETFSDLWKLLPEN Worm-like micelle Secondary structure-supramole-
cular structure relation

[136]

C16H31O-KTTKS Flat tape-like/twisted
structure/spherical
micelle

pH tuned morphology [35]

C12H23O-GAGAGAGY Nanofiber/twisted
nanoribbon

pH tuned morphology [137]

C16H31O-IAAAEEEE-Am Nanofiber pH and concentration dependent
self-assembly

[138]

C16H31O-KKFFVLK Nanotube-helical ribbon/
twisted tapes

Thermo-reversible transition [45]

C12H23O-VFDNFVLK-Am and C12H23O-VVAGE
(mixture)

Nanofiber Nanofiber diameter ≈10–20 nm [139]

C12H23O-P4R4-Am, C12H23O-P4K2R8-Am Nanosphere Diameter ≈15–45 nm [140]
KLWVLPKCK2A2V2K(−OC12H23)-Am
KLWVLPKCK2K(−OC22H41)-Am

Nanofiber/nanosphere Importance of β-sheet forming
region on self-assembly

[141]

CnH(2n−1)O-VRGDV (n=10, 12, 14 and 16) Nanofiber Tail length versus self-assembly at
different pH

[142]

C16H31O-H6-(OEG)4-Am, (OEG)4-H6K(-OC12H23)-Am Nanofiber/nanosphere Position of aliphatic tail-control on
morphology

[39]

C24H47O-GANPNAAG (diacetylene units on C24 chain:
4,6- 10,12- or 16-18-positions)

Nanofiber Temperature versus fibre stability [143]

diC16H31O-EQLESIINFEKLTWE-Am Cylindrical micelle 8.0±2.3 nm in diameter, poly-
disperse in length

[144]

qC8-Tat, dC8-Tat, mC8-Tat Nanofiber Mean diameter of nanofi-
ber ≈15 nm

[145]
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after neutralization by pH adjustment or by the salt-mediated
screening of charged glutamic residues. Although both for-
mulations exhibited similar morphologies, salt-induced PA
nanofibers formed stronger intra- and interfiber crosslinks
through calcium mediated ionic bridges [130]. Additionally,
highly aligned fibrils were obtained usingthe same design by
either injecting aheated PA solution into a saline solution or
dragging the same solution through a film of calcium salt
solution [131]. The lamellar plaque structure generated during
the heat treatment transformed into bundles of nanofibers
upon cooling. Theyalso observed an unexpected morpholo-
gical transformation from twisted ribbons into energetically
more stable helical ribbons in C16H31O-F3E3 PAs after aging
them at room temperature for a month [132]. To clarify the
reason behind this phenomenon, asimilar peptide was syn-
thesized by replacing phenylalanine residues with alanine
residues and it was observed that thenewly designed peptide
formed 7–9 nm diametercylindrical fibrils and did not exhibit
any change after being aged, indicating that this conforma-
tional change is due to the aromatic stacking rearrangement
and stems from the existence of the phenyalanine residues.
Another critical parameter causing the morphological change
in the nanostructure is the concentration. Cui et al designed an
alternating hydrophobic and hydrophilic amino acids con-
taining PA, C16H31O-VEVE [146]. In the customized mole-
cular design, laterally grown PAs self-assembled into one-
dimensional ultralong and wide nanobelts, with widths ofthe
order of 150 nm and height between 10 and20 nm, presenting
peptide epitopes at the surfaces. With a decrease in con-
centration, a morphological transition from large nanobelts to
twisted nanoribbons was observed by TEM. The same peptide
domain was also used in another study, together with its
isomeric counterparts, to investigate the importance of pep-
tide side chain interactions in the morphology of theresulting
supramolecular assembly [133]. Each peptide amphiphile
isomer displayed a different one-dimensional nanostructure,
such as nanobelts, nanofibres, twisted and helical ribbonsand
nanotubes, due to the switch in the amino acid order. While
alternating sequence bearing molecules, VEVE and EVEV,
exhibited flat morphologies as nanobelts and twisted ribbons,
respectively, VVEE and EEVV peptide segments led to the
formation of two distinct types of nanofibers. In addition to
the amino acid order, the effect of the number of valine-
glutamic acid (VE) dimeric repeats on the shape and dimen-
sion of the supramolecular nanostructures was also system-
atically studied [134]. As the length of the peptide sequence
increased, a shift from flat to cylindrical structures was
observed. This effect was attributed to a higher tendency to
form twisted β-sheets by longer sequences.

In addition tothe discussed nanostructures, theTirrell
group demonstratedtwo different peptides self-assembling
into worm-like micelles due to their ɑ-helix propensities
[135, 136]. In the first design, lysine residues were symme-
trically distributed around the helical structure to provide
individual helices in the micellar state [135]. The results
acquired from cryo-TEM, IR andcircular dichroism(CD)
revealed that time dependent morphological transition from
spherical to worm-like micelles was observed after days, and

they wereeventuallytransformed into long nanofibrillar
structures with anouter diameter of ∼10 nm. In the second
design, they explored the influence of hydrophobic amino
acid residues on the self-assembly of PAs by conjugating four
alanine residues between the palmitic acid and oligopeptide
sequence [136]. The inclusion of hydrophobic alanine resi-
dues has resulted in major changes in the morphology of the
PA structures, which formed worm-like micelles rather than
nanoribbons, and were rich in β-sheets rather than α-helices.

Nanostructured features of the PAs can be manipulated
by varying the external parameters such as pH, temperature or
ionic strength. The effect of pH and temperature on the self-
assembly behaviour of C16H31O-KTTKS was investigated in
two separate studies [35, 147]. Whilst an increase in the
temperature gave rise to the formation of micellar structures
rather than extended tape structure due to the disruption of
hydrogen bonding, a gradual decrease in pH transformed
nanotapes into twisted fibrils at pH 4 and spherical micelles at
pH 2. Similarly, pH dependent morphological alteration was
reported for C12H23O-GAGAGAGY PAs[137]. Cylindrical
nanofibers observed at pH 9 transformed into twisted ribbons
at pH 4, most likely due to the neutralization of carboxylic
acid, and subsequently the weakening of electrostatic inter-
actions, leading to the stacking of the β-sheet laminates.
Furthermore, Ghosh et al demonstrated that the tendency of
PAs to respond to pH change can be programmed by chan-
ging the position of single hydrophobic amino acid residue in
a short amphiphilic peptide [138]. As isoleucine moved away
from the alkyl tail, nanofiber formation was favoured over
spherical micelles due to the enhanced propensity forβ-sheet
formation. In another study carried out by theHamley group,
thermo-responsive structural change was reported in PAs
decorated with a KLVFF core motif that induced self-
assembly through π–π stacking and hydrophobic interactions
[45]. A reversible unwinding transition was observed between
twisted tapes and nanotubes/ribbons in a temperature
dependent manner.

Co-assembly of two oppositely charged PAs can also
lead to some modifications in the self-assembled nanos-
tructures due to the electrostatic interactions occurring
between charged amino acid residues. Cylindrical nanofibers
were observed by theStupp group upon mixing oppositely
charged palmitoylated peptides [148, 149]. Our group have
also reported that lauric acid conjugated lysine and glutamic
acid bearing peptides self-assembled into high aspect ratio,
one-dimensional fibrillar nanostructures [54]. We alsoob-
served that short bioactive sequences exploited in the PA
design did not alter the shape of theresulting supramolecular
assemblies [139, 150, 151]. TheHamley group studied the
co-assembly of oppositely charged PAs by mixing them at
different ratios [152]. Co-assembly driven mainly by elec-
trostatic interactions brought about enhanced β-sheet forma-
tion compared to samples prepared with a single component
and resulted in the formation of nanotapes.

The shape of the nanostructure can be tuned by either
varying or omitting the β-sheet forming domain
[74, 140, 153]. Guler et al studied the importance of hydrogen
bonding among the peptide segment in supramolecular
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assemblies by areplacing trileucine sequence with triproline
[74]. Due to the β-sheet breaking nature of proline residues,
spherical aggregates were observed instead of the cylindrical
nanofibers obtained with the former system. Mammadov
et al [154]and Mumcuogluet al [140] also used proline
residues to form micellar structures by disrupting the β-sheet
secondary structure to study the importance of nanostructural
features in tuning theimmune response and to develop an
efficient delivery vehicle for the transfection of oligonucleo-
tides, respectively. Recently, Moyer et al demonstrated that
nanofibre formation was disrupted when a β-sheet forming
region (A2V2) was removed from the peptide sequence. This
truncated sequence self-assembled into nanospheres with
diameters in the range5–10 nm depending on the length of
the tail region [141].

The conjugation of an alkyl group to a peptide segment
was shown to enhance the thermal stability of the corresp-
onding structure [14, 118]. The influence of alkyl tail length,
its position and number on the self-assembly of PAs was
investigated in detail by several research groups. The van
Hest group examined the effect of alkyl tail length on the
stability of β-sheet assemblies of GANPNAAG [155] and
KTVIIE [156] peptides. As the length of the tail increased, the
thermal stability of the PAs improved and the transition from
β-sheet to random coil was observed at higher temperatures.
Furthermore, Xu et al synthesized four PAs with different tail
lengths by using the VRGDV sequence as the peptide domain
and showed that PAs with shorter tail lengths did not main-
tainstability at higher pH due to weaker hydrophobic inter-
actions [142]. On the other hand, therelationship between the
sitewhere thehydrophobic segment is attached to the peptide
domain and the resulting nanostructure shape was investi-
gated by incorporating an alkyl tail on either theN- or
C-terminus of an oligo-histidine peptide sequence,and it was
revealed that cylindrical and spherical morphologies were
obtained at physiological conditions, respectively [39]. He
et al reported that while two aliphatic tails attached to one
side of the peptide sequence formed long fibrils, pepti-
desconjugated from either side self-assembled into short
twisted fibrils [157]. In addition, van del Heuvel et al showed
that thestability of the self-assembled nanofibres can be
controlled by changing the position of the diacetylene moiety
on the hydrophobic tail without varyingthe length of the tail
[143]. TheTirrell group introduced adialkyl chain containing
peptides [158] and investigated the effect of the length of
double tail on the thermal stability of thecollagen-like
structure in the peptide amphiphile [159]. They further stu-
died the effects of both the number and the length of alkyl tail
on the nanostructured features of model collagen peptide
amphiphiles by using a combination of small-angle neutron
scattering and cryo-TEM [160]. In their design,dialkyl con-
jugatedT-cell epitope bearing apeptide self-assembled into
8 nm diameter of cylindrical micelles [144]. In addition to the
dialkyl tail bearing peptide amphiphiles, theCui group
designed three Tat-peptide conjugates with different numbers
of octanoic acid tails [145]. It was reported that while single
and double tail containing peptides could not form any well-
defined nanostructures, four aliphatic tails attached one self-

assembled into afibrillar structure with adiameter of 15 nm,
most likely due to enhanced intermolecular hydrogen
bonding.

4.3. Peptides containing other hybrid systems

In this section, peptidic hybrid systems composed of various
chemical groups besides peptides such as lipids, polymers,
nucleobases, saccharides, aromatic groups, halogen elements,
etc are elaborated to understand the key factors affecting the
self-assembly behaviour of the related molecules. Table 3
depicts the self-assembled forms of recently reported hybrid
peptide systems and gives additional informationregarding
their assembly properties. Peptides were modified not only by
changing their amino acid sequences, but also by using cap-
ping molecules at the N- or C-termini or by inserting a linker
between peptide domains. These modifications have been
used both to investigate the mechanisms involved in self-
assembly behaviour and to control the structural features of
peptide assemblies for practical purposes [161–163].

Using aromatic moieties at the N-terminus of the peptide
is another strategy fordrivingself-assembly by providing
amphiphilicity to the structure. Unlike the assembly mech-
anism of aliphatic peptide amphiphiles, here aromatic moiety
dominantly directs the self-assembly by its planar structure
and resulting geometric restrictions due to the preferred
stacking arrangements [181]. Vegners et al synthesized an
aromatic peptide amphiphile, Fmoc-LD, which folded into
filamentous micelles [182]. Various dipeptide combinations
have beenexploited togetherwith theFmoc (9-fluor-
enylmethoxycarbonyl) unit since then [67, 183–186]. Tang
et al examined the self-assembly behaviour of Fmoc-dipep-
tides composed of acombination of phenylalanine and gly-
cine residues and revealed that the flexibility of the overall
structure as well as the resultant conformation were affected
bythe amino acid type and sequence, leading to the formation
of structurally different assemblies [164]. In addition,Fmoc-
dipeptides, Fmoc-tripeptides, andtetra- and pentapeptide
derivatives were also presented, which exhibited nanofibrous
or nanotubular structures [187–190]. In addition, the effect of
ahalogen substituent and the position of its substitution on
the aromatic side chain of Fmoc-F were systematically stu-
died by theNilsson group [165]. Since the identity of halogen
and its position on the benzyl ring affected the self-assembly
process and the morphology of the self-assembled fibrillar
structures, it was hypothesized that the mentioned variations
lead to the perturbation in the energetics of the aromatic π–π
interactions that driveself-assembly. The influence of the
C-terminal modifications on fluorinated Fmoc-F derivatives
(Fmoc-F5-Phe-OH and Fmoc-3-F-Phe-OH) was further
investigated by the same group [166]. The hydrophobicity
and hydrogen bonding capacity of the C-terminus were
adjusted by altering thecarboxylic acid group of theC-
terminal with the amide and methyl ester derivatives. Their
assembly kinetics and resultant structural features were stu-
died either one by one or in co-assembled form. They recently
reported that theelectronic nature of the substituent anchored
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to the benzyl ring of Fmoc-F also exerted influence on the
self-assembly [191].

Other than the Fmoc group, naphthalene [167, 192],
phenothiazine [168], pyrene [169], carboxybenzyl [193],
azobenzene [194, 195], naproxen [196] and benzimidazole
[197] moieties were also utilized as aromatic capping at the
N-terminus facilitating the self-assembly. TheXu group
demonstrated that the incorporation of anon-proteinaceous
amino acid, taurineand naphthalene into the peptide back-
bone resulted in the formation of nanotubes, nanofibers or
nanoribbons depending on the assembly conditions, such as
temperature, sonication and pH [167]. In another study, Ou
et al showed that phenothiazine conjugated tetrapeptide
(-GFFY) prepared at 0.2wt% formed uniform nanofibres with
diameters of 25 nm [168]. On the other hand, pyrene was
conjugated to the peptide sequence (VVAGH) with an
ò-aminohexanoic acid linker by our group. The formation of
the nanofibres, observed in TEM, was mainly driven by the
solvophobic effect [169]. The assembly also led to helical
organization of pyrene within thehydrophobic core and
toacquiring chirality, which was verified by fluorescence
spectroscopy and CD measurements.

Unlike aromatic capping groups, thetert-butoxycarbonyl
(Boc) moiety was also anchored to short peptide sequences
[170, 187]. TheGazit group studied the structural and
mechanical properties of theBoc-FF peptide and a morpho-
logical characterization conducted by SEM and AFM
revealed that Boc-FF peptide dissolved in organic solvent
self-assembled into spherical structures whose diameters
showed variation from 30 nm to 2 μm. The same sequence

was also investigated in terms of the effect of solvent on the
resultant morphology and a structural change was observed
from spheres to nanotubes when water was used instead of
ethanol as adiluent for the peptides prepared in HFIP [198].

Peptide π-electron rich systems are another well-studied
class of hybrid peptide systems, and their self-assembled
architectures exhibitdifferent photophysical, electricaland
mechanical properties. The π-electron rich systems can be
integrated into peptide backbone in many different ways: as a
side chain [199], as a linker between two peptide sequences
[200] or as a capping molecule at the N-terminus [201]. While
designing a peptide and π-electron construct, anamino acid
sequence/π-electron system pair should be selected carefully
in terms of itsenergetic contributions to the self-assembly in
order to form supramolecular structures with improved elec-
tron transport properties [202, 203]. TheHodgkiss group
examined the thermodynamic factors affecting the self-
assembly of peptide–perylene diimide conjugates by altering
the peptide hydrophobicity, charge density, length, stereo-
centre inversion and amphiphilic substitution [171]. The self-
assembly of alanine-rich conjugates resulted in the formation
of bundles with heights of 15–45 nm. Moreover, changes in
peptide hydrophobicity and the insertion of an imide hexyl
group resulted in the most prominent effect with respect to
changes in thermodynamic properties. As another π-con-
jugated system, aterthiophene moiety was coupled to four
different dipeptides by theStupp group, which assembled
into one-dimensional nanostructures [172]. The main con-
sideration in their design was the selection of hydrophobic
amino acids, based on van der Waals volume and

Table 3. Recently reported hybrid peptide systems.

Hybrid system Structure Details References

Fmoc-FF, Fmoc-FG, Fmoc-GG, Fmoc-GF Nanoribbon/fibre/sheet Effect of glycine substitution on self-
assembly

[164]

Fmoc-n-X-Phe (n=2, 3 or 4 and X=F, Cl or Br) Fibril Observed fibril diameter =16–45 nm [165]
Fmoc-3-F-Phe-X and Fmoc-F5-Phe-X (X=OH,
NH2 or OMe)

Fibril Effect of C-terminal modification on self-
assembly

[166]

Naphthalene-FF-taurine Nanotube Nanotube diameter =9±2 nm [167]
Phenothiazine-GFFY Nanofibre Nanofiber diameter ≈ 25 nm [168]
Pyrenebutyryl-ò-Ahx-VVAGH-Am Nanofibre Induced chirality [169]
Boc-FF Nanosphere 30 nm–2 μm [170]
E3-X-G-perylene diimide-G-X-E3 (X=A3 or

DA3) Nanofibre/fibre bundle Bundle heights 15–45 nm [171]
Terthiophene-XE (X=G, V, I and L) Nanosheet/nanotube Amino acid- nanostructure relation [172]
DXX-quaterthiophene-XXD (X=G, A, V, I, F) Nanofibre Interactions of amino acids withπ-elec-

tron core
[173]

Trigonal WTW Nanosphere/nanofibre Structural change upon pH change [174]
mPEO7-F4-OEt Nanotube Mean wall thickness ≈7 nm [175]
PEG-Pep-fluorophore-Pep-PEG Micelle Average hydrodynamic diameter

≈15–20 nm
[176]

CREKA-PEG2000-DSPE Micelle Average hydrodynamic diameter of
17.0±1.0 nm

[177]

KK(K-hepta thymine-K)G3A3K(-OC16H31)-Am Nanofibre Nanofibres with a diameter of 8±1 nm [178]
C18H35O-CTGACTGA-E4-Am Micelle Spherical micelles with diameter of

5–30 nm
[179]

Nucleobase-Fn-glucoside (n=1 or 2) Nanofiber/nanoparticle Nanofibers: 9–15 nm, nanoparticles:
18–27 nm

[180]
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hydrophobicity values, to study the impact of steric hindrance
and hydrophobic van der Waals interactions on the supra-
molecular structure. On the other hand, theTovar group
worked with peptide–π–peptide triblock molecules [204], and
demonstrated that acidic solutions of quaterthiophene-peptide
(DXX) conjugates prepared at 0.1wt% exhibited one-dimen-
sional nanostructures [173]. Some variations in the width or
persistence length of the nanostructure were obtained
depending on the type of amino acid residue used adjacent to
the π-core.

Peptides can alsobe functionalized on an organic tem-
plate to provide symmetry in the structure and yield an
ordered architecture. Different molecules such as tris(2-ami-
noethyl)amine (TREN) [205], 1,3,5-tris(aminomethyl)-2,4,6-
triethylbenzene [206], and pentaazacyclopentadecane [207],
were used to conjugate different peptides to these trigonal or
pentagonal templates to afford nanoassemblies with different
structures. TheKimizuka group designed aC3-symmetric
peptide conjugate (Trigonal WTW) where an iodoacetoami-
dated core was used for the coupling of an8-mer tryptophane
zipper-forming peptide, and its self-assembly resulted in the
formation of nanospheres and nanofibres depending on the
pH [174].

Amphiphilicity in the hybrid structure can alternatively
be achieved by anchoring hydrophilic polymers to hydro-
phobic peptide segments, or vice versa, through different
chemistries to afford copolymer conjugates of varied struc-
tures [208]. The nature of the polymer, the chemical hetero-
geneity of the peptide, the conjugation site, and the reaction
medium can affect the structure, dynamics and function of the
corresponding hybrid system. A number of polymer–peptide
conjugates have been reported, where polymers with different
composition, number andlength ofside chains were used to
create different forms of nanostructures [209, 210]. Tzokova
et al showed amPEO7–F4–OEt conjugate via click chemistry
and its self-assembly afforded nanotubes with a mean internal
diameter of 3 nm and a mean wall thickness of roughly 7 nm
[175]. While tetrapeptide domain provided the antiparallel β-
sheet structure, PEO chains assisted to the stabilization of the
structure. It is also possible to synthesize amphiphilic triblock
polymer–peptide conjugates. TheMandal group designed
anABA type triblock conjugate composed of a hydrophobic
peptide part and ahydrophilic PEG moiety at both ends of the
peptide domain [176]. Micelle formation was observed when
thehybrid system underwent aggregation in water and the
diameter of resultant spherical micelles was found to be
15–20 nm based on TEM imaging. In addition to the polymer
conjugation, phospholipids have been used to create peptide
hybrids [177, 211–213]. Tirrell and coworkers reported
amulticomponent system (peptide-PEG-DSPE) that self-
assembled into micellar structures with an average hydro-
dynamic diameter of 17±1 nm in anaqueous environment
[177]. While the peptide domain served as the polar head
group, PEG and DSPE were used as the spacer and tail,
respectively.

Similar to lipids, nucleobases or saccharides can also be
conjugated to the peptides [186]. A peptide nucleic acid
(PNA)/peptide amphiphile conjugate, designed by theStupp

group, was constructed on a solid support and apoly-thymine
PNA heptamer was built on the peptide amphiphile whose
self-assembly resulted in the formation of uniform nanofibers
with a diameter of 8±1 nm [178]. Similar approach was
later used by Zhang group to synthesize a series of peptide
nucleic acid amphiphiles (PNAA) containing different
hydrophobic and hydrophilic moieties [179]. The self-
assembly driven mainly by the base pair stacking of PNAA
duplexes and intermolecular noncovalent interactions led to
the formation of spherical micelles with adiameter of about
5−30 nm. On the other hand, Xu et al preferred utilizing
simple building blocks, basically a nucleobase, amino acid
and saccharide, rather than using peptide nucleic acid deri-
vatives or glyco amino acid units to generate molecular
architectures with defined structures [180]. Supramolecular
assemblies obtained by pH increment exhibited differences in
morphology due to the number and type of presenting amino
acid and nucleobase residues. Saccharide incorporated pep-
tide conjugates were also developed, which can form uniform
self-assembled nanostructures. They can be synthesized
through a number of synthetic approaches, including the use
of glycosylated amino acids [214], direct conjugation of the
sugar to the peptide backbone or amino acid side chains
through amino bonds [215], or the use of a linker molecule
for indirect conjugation [216, 217].

5. Characterization of self-assembled peptide
nanostructures

Characterization of the self-assembled nanoscale architectures
can be done usingsophisticated techniques due to their
complex and dynamic nanoscale nature. Advances in mate-
rials characterization methods, in conjunction with recent
developments in nanotechnology, have resulted in the
development of advanced tools and approaches for the
investigation of chemical, physical, electrical and mechanical
properties. These techniques can be classified as spectro-
scopic, x-ray, microscopic, electrical and mechanical char-
acterizations with various examples leading the material
developments in different fields (figure 2).

5.1. Spectroscopic analysis

Spectroscopic methods are used to understand the chemical
and physical characteristics of nanoscale peptide organiza-
tions, such as their bond properties, vibrational modes and
covalent and noncovalent interactions. Although the basic
principles of the spectroscopic techniques rely on the detec-
tion of the transitions on the molecules such as nuclear spin,
molecular vibrations or electronic states,the detection meth-
ods for these transitions become different depending on the
radiation source. The common spectroscopic techniques such
as nuclear magnetic resonance (NMR), Fourier transform
infrared spectroscopy (FTIR), Raman and CD spectroscopy
have been widely used for the analysis of different self-
assembled peptide nanostructures designed for various
applications. NMR is a powerful technique enabling the
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analysis of the peptide-based architectures at both liquid and
solid conditions [218]. The self-assembly mechanism of
Fmoc-protected peptide networks have been studied via 1D
proton and 2D nuclear overhauser NMR spectroscopy
(NOESY) in liquid and sol–gel transition states, and hydro-
phobic and intermolecular interactions were demonstrated to
be particularly vital for nanostructure formation [219]. In
another study, diffusion ordered NMR (DOESY NMR)
spectroscopy [220] was conducted to follow the transitions on
the structural organization of the peptide nanostructures due
to the biocatalytic activity and hydrolysis of the assemblies in
aliquid environment [221]. On the other hand, solution state
NMR methods limit the characterization of more complex
peptide assemblies in liquid environment with high resolu-
tions. Magic-angle spinning (MAS) solid-state NMR
(ssNMR) spectroscopy overcomes the limits of solution-
based NMR techniques, enabling through-space interatomic
distance and torsion angle measurements on isotopically
labelled peptide molecules [222–224]. The packing of self-
assembled palmitoyl PA nanostructures and their supramo-
lecular organization have been identified by the incorporation
of the data collected via ssNMR and rotational-echo double
resonance NMR analysis [225] measuring the distances
between 13C and 15N isotopically labelled PA molecules
[226]. The molecular organization of 13C-labelled self-
assembled RADA-l peptide nanofibre matrices, developed as
anextracellular matrix (ECM) mimicking microenvironment
have been identified via the detailed analysis of across-
polarization MAS (CPMAS) spectrum including the peak
positions, line widths and dipolar couplings [227]. In addi-
tion, ssNMR measurements revealed the high resolution
structural organization of the supramolecular peptide-based
nanocarrier (figure 3) [228] and self-assembled monomorphic
MAX1 fibrils within thehydrogel network [229].

Infrared (IR) spectroscopy deals with the electromagnetic
spectrum change of peptides due to molecular vibrations and
conformational changes within amide A (∼3200–3300 cm−1),
amide I (∼1600–1700 cm−1), amide II (∼1480–1580 cm−1)

and amide III (∼1200–1300 cm−1) bands in themid-infrared
region [230–232]. The shifts in the amide I band were ana-
lysed to monitor the structural changes as a result of the
peptide self-assembly, which can be triggered via different
factors such as UV irradiation [233], ultrasonication
[234, 235], pH, ion addition or electrostatic interactions. In
particular, the peaks in the amide I bands, which are corre-
lated with C=O stretching of the self-assembled peptide
nanostructures, contribute to the analysis of parallel or anti-
parallel β-sheet [236, 237], α-helix, β-turn or random-coil
secondary structure organization of the peptide assemblies.
The effect of trifluoroacetic acid salt on cationic peptide
nanostructures [238] can be determined on FTIR spectra
within the amide I region [239]. In addition totransmission
IR approaches, grazing angle IR, in which the sample is dried
and placed almost parallel to IR beam [125], can be used to
determine the preferred hydrogen bonding orientation within
the peptide nanostructures [95]. The attenuated total reflec-
tance (ATR) mode also enables the characterization ofthe
self-assembled peptide nanostructures at the surfaces or
within the solutions [240] without any pellet preparation or
sample manipulation [241]. The collected ATR-FTIR spec-
trum of the pentapeptide assemblies has beenreported to
show the vibrational peaks associated with β-sheet secondary
structure organization within the amide I band [242].

Although IR spectroscopy provides many advantages for
the study of the self-assembly process and the structural
organization of peptide nanostructures, thestrong background
of water molecules overlapping in the amide I region limits
the analysis of the peptide samples prepared inphysiological
conditions [243, 244]. The use of deuterated solvents such as
D2O during the IR spectroscopy suppresses the background
absorption in liquid conditions [245]. In the literature, the
effect of ultrasonication on the reconfiguration of the peptide
assemblies in D2O was studied by analysing the changes in
the amide I band [235]. Real time FTIR analysis of the
peptide bolaamphiphiles in D2O pointed tothe β-sheet
structural organization of the self-assembled nanostructures
due to the progress of the enzymatic reactions [246]. The
isotope-edited IR spectroscopy allows the site specific ana-
lysis of the peptide assemblies with high resolutions [247].
The co-assembly of two enantiomeric short amphipathic
peptides into rippled β-sheet co-fibrils has been revealed via
13C-labelled carbonyls in the peptide backbone (figure 4)
[248]. Moreover, the analysis of isotope-edited high spectral
resolutions, cross-peak couplings and solvent exposure
through 2D line shapes were facilitated via 2D IR
spectroscopy [249], in which the nonequilibrium conditions
of the peptide conformations were monitored in real time
[250] with submicrosecond [251] or picosecond resolutions
[252]. This approach was also applied to study the salt bridges
between oppositely charged amino acids:glutamate (Glu−)
and arginine (Arg+) in solution with picosecond time reso-
lution [253].

Similar to the vibrational IR techniques, the Raman
scattering of the peptide assemblies assists the analysis of the
structural properties in the assigned modes of molecular
bonds found in the peptide architectures [254]. However,

Figure 2. Common characterization techniques for a variety of self-
assembled peptide nanostructures.
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conventional Raman spectroscopy lacks the spatial resolution
fordetailed characterizations of the peptide nanostructures
duelow signal to noise ratios at dilute conditions,and dif-
ferent approaches have been developed to improve the scat-
tering intensities for the analysis. UV resonance Raman
spectroscopy, which enhances the frequencies in vibrational
amide modes including amide III and Cα–H bands were
applied to selectively monitor the secondary, tertiary or
quaternary organization of the peptides in solution [255–258].
The relatively low Raman signal of the peptide assemblies
wasalso increased via surface-enhanced Raman scattering
(SERS) using the localized surface plasmon resonances of the
metallic clusters in liquid or solid environments [259, 260]. In
addition to the surface enhancement, tip-enhanced Raman
scattering (TERS) enables the comprehensive characterization

of the peptide nanostructures merging the scanning probe
approach with vibrational spectroscopy [261, 262].

The chiral biomolecules including DNA, proteins and
peptides interact with right- and left-handed photons differ-
ently, and that difference generates anon-zero CDsignal
depending on the conformation of the molecules [263]. CD
spectroscopy functions at the near and far UV regions
(180–320 nm) and provides information onthe secondary
structure of peptide assemblies [264], conformational changes
that may occur following pH change [265], chirality of
supramolecular peptide architectures [266] and interactions
between toxic molecules [267], or metal ions [268] and self-
assembling peptides. Recently, induced supramolecular chir-
ality of achiral chromophores, whether covalently attached or
noncovalently conjugated to the chiral PA molecules as a

Figure 3. Detailed structural model of a self-assembled peptide-based nanocarrier developed in the light ofssNMRexperiments. Adapted
with permission from [228]. Copyright 2015 American Chemical Society.

Figure 4. Schematic representation of self-assembly of enantiomeric, amphipathic peptides into co-assembled rippled β-sheet fibrils (right).
Adapted with permission from [248]. Copyright 2012 American Chemical Society. The analysis of the IR spectra of unlabelled and 13C-
labelled L, D and mixed L- and D-Ac-(FKFE)2-NH2 fibrils (left) points tothe alternating organization of the peptides with L and D chirality
(top) instead ofself-sorted enantiomeric ordering (bottom) within the extended β-sheets.
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result of self-assembly, have been studied using this techni-
que in solution phase [169]. The β-sheet organization of
asymmetric self-neutralizing amphiphilic peptide wedges,
which enhances strong positive and negative peaks at 190 and
220 nm, respectively, was reported as a result of CD analysis
of the supramolecular assemblies [269]. Blue shifted CD
spectra of the peptide assemblies, with apositive maximum at
195 nm and two negative maxima at around 205 and 218 nm,
showed formation of the super-helical peptide assemblies
[270]. The conformational differences, such as twisting or
disordered β-sheets in the assemblies, can be detected via
shift in the CD spectra due to the π–π* transitions within the
peptide backbone [265, 271]. The effect of increased solution
temperature on the secondary structures of the semiconductor
functionalized peptide α-helices [272], elastin–b–collagen-
like peptide bioconjugates [273] and β-hairpin peptide
amphiphile assemblies [91] were also analysed by using CD
spectroscopy. In addition, quantitative analysis of secondary
structures within the peptide nanostructures is possible via
exploration of the CD spectra using computational methods
[274]. Previously, the random coil, β-turns, ordered and dis-
ordered α-helix and β-sheets amounts within the solution
were calculated using the CD spectra collected via synchro-
tron radiation, and the comparison based on the differences of
secondary structure organizations were reported [275]. In
addition to secondary structure analysis, it is also possible to
monitor π–π interactions between aromatic peptide assem-
blies [100, 276], and the intensity of the β-sheet signal at
200 nm is especially useful for monitoring the self-assembly
process [98].

Dynamic light scattering (DLS) is another method
thatrelies on fluctuations in the scattered light due to the
internal mobility of the structures within the1–1000 nm size
range in the solution [277, 278]. This technique enables
examination of noncovalent interactions between small
molecules and self-assembling peptides [279]. It can also be
used to gain greater insight in assembly mechanisms [280–
282] and to determine the physical properties of peptide
nanostructures in solution [283]. Various supramolecular
peptide nanostructures and peptide–polymer conjugates
[273, 284, 285] have been analysed via DLS,and the size
distribution, hydrodynamic radii [286, 287], polydispersity
index and zeta potential [54] of the assemblies were reported
in conjunction with other characterization techniques. The
pH dependent size and zeta potential change of the tailorable
cyclic peptide nanostructures were studied by using this
technique [92]. In addition to the structural characterizations,
the aggregation mechanism of collagen-based peptides upon
addition of different metal ions wasalso studied [58].

In addition, fluorescence emission spectroscopy mea-
sures the changes in the wavelength of light that result from
the intramolecular resonance transfer between donor and
acceptor units, and can be used to investigate the aggregation
kinetics and self-assembly mechanisms of chromophore-
conjugated peptides. The time resolved self-assembly prop-
erties of chromophore-conjugated peptides were shown by
using this technique [288]. It was also used to show assembly
characteristics of aromatic peptides [289, 290] and β-sheet

peptide fibrils [291] monitoring the signal of π–π stacking on
the fluorescence emission spectra. The fluorescence resonance
energy transfer (FRET) process can also be used to investi-
gate peptide self-assembly mechanisms through theuse of
fluorescence probe-conjugated peptide molecules, as the dis-
tance between individual peptide units decreases during self-
assembly, and the resulting quenching effect can be quantified
by fluorescence spectroscopy [292, 293].

In addition to the conventional techniques, several
spectroscopic characterizations have been improved for the
specific requirements of sample analysis. For example, the
analysis of peptide assemblies at the interface is quite chal-
lenging using conventional methods, but thesum frequency
generation (SFG) spectroscopy technique provides a new
opportunity foranalysing thesecondary structure and the
molecular organization of the peptide assemblies at the lipid–
water and solid–air interfaces [294, 295]. The structural
dynamics of surface-bonded peptide monolayers hasbeen
studied using a 2D SFG approach, and IR spectra were used
to demonstrate that the helical structure of the soluble peptide
is retained following its incorporation onto a gold surface
[296]. In addition, internal dynamics and fluctuations of
supramolecular PA nanostructures have been studied with the
help of quantitative electron paramagnetic resonancespec-
troscopy, where local molecular motion within the assemblies
can be tracked via site specific spin-label probes located in the
PA molecules [297]. This technique also enables the invest-
igation of therelationship between hydrogen bonding density
within the β-sheet internal organization and the supramole-
cular cohesion of self-assembled PA nanostructures [298].

Computer simulation studies also aim to predict the
molecular organization of peptide molecules and can be used
for the optimization of peptide design in conjunction with
experimental findings [299–303]. Incorporation of the
experimental results and the simulation outputs developed
using different molecular dynamics (MD) simulation pro-
grams improves the information on the structural properties of
the peptide assemblies [93, 228, 304–307]. Previously, suc-
cessful candidates were determined among 8000 different
peptide molecules using computational approaches. They
were synthesized and their supramolecular assemblies were
characterized using spectroscopic techniques including NMR,
FTIR and DLS [308]. The assembly characteristics of
synthetic amyloid peptide fragment at different conditions
were characterized via detailed 2D NMR spectroscopy and
the structural model was developed in the light of both
experimental methods and the molecular dynamics simula-
tions [309]. In addition, the spectral simulations of IR,
vibrational CD, and Raman techniques were conducted for
the conformational study of the various peptide assemblies to
highlight aggregation and fibril formation behaviours
[310, 311].

5.2. X-ray techniques

X-rays are high energy electromagnetic waves and their
interactions (reflection, diffraction or scattering) with the self-
assembled peptide nanostructures provide valuable
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information for the determination of size, shape and structural
orientation. X-ray diffraction (XRD) patterns of self-assem-
bled peptide nanostructures were used to determine packing
parameters and molecular organization focusing on the non-
covalent interactions between the building blocks
[67, 169, 312]. The peaks associated with the hydrogen
bonding, π–π stacking and β-sheet secondary structure
organization were reported and the spacing between peptide
molecules were estimated usingBragg’s law [132, 313]. The
crystalline organization and unit cell parameters of the self-
assembled arginine-capped peptide bolaamphiphile nanosh-
eets were revealed via XRD measurements in addition to the
other characterization techniques [98]. On the other hand, the
estimated structural parameters for the secondary structure
could slightly change depending on the ordered and dis-
ordered degree of the peptide organization consisting ofa-
mino acid sequences to direct self-assembly. In addition
tothe powder diffraction examples, the oriented nanofiber
wide angle x-ray scattering of isomeric tetrapeptide amphi-
philes wasperformed with the peptide solutions by loading
intoquartz capillaries [133]. In another study, molecular
organization of dipeptide assemblies and interatomic dis-
tances at thegel state were determined using thex-ray fibre
diffraction technique [314].

Small-angle x-ray scattering (SAXS) eliminates the
drawbacks of powder diffraction and enables the analysis of
disordered peptide assemblies in their native conditions
without time consuming sample preparation steps. SAXS is
performed using lower angle x-ray scatterings at a range of 1°

to 10° [315, 316]. The SAXS analysis of arginine-capped
peptide bolaamphiphile structures at liquid conditions
revealed the nanosheet assembly with bilayer organization
complementary to the other structural characterizations
(figure 5) [98]. SAXS profiles of the oppositely charged
PAmixtures prepared at different ratios underlined the for-
mation of bilayers after thethermal treatment process [152].
The self-assembly of the maspin-mimetic PA into a mixture
of cylindrical and ribbon-like shapes was characterized based
on the analysis of the scattering data in theGuinier
region [317].

Although x-ray applications are known as nondestructive
ways to analyse the biological samples, the effect of the x-ray
radiation on the structural organization of the self-assembled
peptide nanostructures were shown in the literature [318].
Hence, radiation time and optimization experiments should be
conducted carefully to eliminate the outcomes of the mea-
surements on the structural parameters.

5.3. Imaging techniques

With the invention of transmission electron microscopy
(TEM) in the1930s, microscopic approaches became a fun-
damental way ofunderstanding the structural and material
properties ofmaterials at thenanoscale. Advances in micro-
scopic tools enhanced the visualization of the peptide-based
nanostructures using different imaging techniques including
TEM, atomic force microscopy (AFM), scanning electron
microscopy (SEM), fluorescence and other microscopies at
high resolutions. Conventional TEM imaging of the peptide

Figure 5. The scattering (a) and electron density (b) profiles of the self-assembled arginine-capped peptide bolaamphiphile solutions prepared
at different concentrations, and the fitting lines of the model according to a bilayer form factor. Adapted with permission from reference [98].
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nanostructures requires special sample preparation proce-
dures, including staining via heavy metal salts such as uranyl
acetate and drying of the sample beforeimaging [319]. A
variety of TEM images of the self-assembled peptide aggre-
gates including nanofibers, nanospheres, nanobundles, nano-
tubes, helices, etc have beenreported and the details of the
sample preparation proceduresshown [140, 154, 320,
321]. Although TEM imaging is a crucial way forshowing
the structural properties of the peptide nanostructures, the
effect of drying and staining on the peptide organization could
be important. On the other hand, cryogenic TEM (cryo-
TEM), in which the sample is vitrified using special tools,
overcomes the sample preparation limits and enables thei-
maging ofpeptide nanostructures in their native conditions
[322–324]. The direct structural analysis of the dimeric α-
helical coiled coils within the de novo designed self-assem-
bled nanofiber system was performed via incorporation
ofcryo-TEM imaging with image processing (figure 6) [325].
In another study, the effect of salt concentration on the
morphology of self-assembled amyloid peptide assemblies
was shown via cryo-TEM, and the results suggested that the
formation of flat ribbons and adecrease intwisted fibrils
occurs due to the salt screening of electrostatic interactions
between the peptide molecules [326].

AFM facilitates in situ visualization of the self-assembly
process of the variety of peptide building blocks into supra-
molecular nanostructures with nanoscale resolutions at liquid
conditions [327]. Monitoring structural changes associated
with the environmental factors including pH, ion effect,
temperature, concentration, etc is also possible via time-lapse
AFM procedures. AFM imaging has also beenperformed to

monitor time dependent changes of the resilin-elastin-col-
lagen-like chimeric polypeptide assemblies incubated in water
at 50 °C [328]. AFM imaging has also been used to observe
the formation of right-twisted helical ribbons and their con-
version to micro-crystals in an amyloid derived peptide
fragment, ILQINS hexapeptide, which is normally found as
left-handed helical ribbons and is organized into nanotubes
inlysozyme [329].

Direct observation ofpeptide self-assembly is also pos-
sible via covalent conjugation offluorescence probes to the
peptides using fluorescence imaging techniques [330]. Sto-
chastic imaging and deconvolution methods were also used to
decrease resolution limits and monitor the supramolecular
peptide organization at nanoscale. In addition, the intrinsic
fluorescence properties of the peptide nanostructures were
used for imaging of the assemblies via confocal microscopy
without any probe conjugation [331, 332]. Without any
staining or probe conjugation, chemical and spatial informa-
tion collected via Raman spectroscopy enhanced the sto-
chastic imaging ofbiological samples [333, 334].Self-
assembled amyloid inspired peptide nanofibres were imaged
using theSERS blinking effect during in situ Raman spec-
trum measurements [259]. In addition, thetip-enhanced
Raman imaging technique, which is the incorporation ofs-
canning probe microscopy with Raman spectroscopy [335],
enabled the imaging ofself-assembled peptide nanotapes with
additional chemical information [261].

5.4. Electrical characterization techniques

Electrical properties of the peptide nanostructures, including
conductivity, resistivity and charge mobility, are determined
based oncurrent (I)–voltage (V ) measurements using the
probe stations connected to the electrodes [331, 336, 337].
The linear fitting of I–V data of amyloid-based peptide fibrils
obtained via a probe station was processed to understand
resistance characteristics of the self-assembled nanostructures
depending on the nonnatural heterocyclic side chain differ-
ences [338]. Recently, the effect of relative humidity on the
electron and proton transfer mechanisms of amyloid derived
peptide filaments were discussed in the light of I–V mea-
surements [199].

In addition to the probe stations, AFM-based approaches
including conductive probe AFM (CP-AFM) is commonly
used forI–V measurements ofpeptide nanostructures. The
charge transfer characteristics of self-assembled peptide
nanotubes have been determined using CP-AFM [339], which
combinesforce and current measurements using-
mechanically oscillating conductive probes [340, 341]. The
most important advantage of CP-AFM compared toscanning
tunnelling microscopy is the independent optical feed-back
mechanism that controls the exact position of the probe in
contact with the sample [342, 343]. The applied force
dependent electronic characteristics of coil-coiled archi-
tectures [344] and α-helical peptide monolayers [345]
immobilized on the gold surfaces, and the conductive prop-
erties of tryptophan containing peptide assemblies [346]
havealso beencharacterized using CP-AFM.

Figure 6.Direct visualization of the self-assembled dimeric α-helical
coiled coils within peptide assemblies (a), and (b, c) the regular
lattice of high-contrast striations within the magnified region before
(left) and after (right) image processing. Adapted with permission
from reference [325].
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Electrostatic force microscopy (EFM) is another nanos-
cale electrical characterization technique based on the reso-
nance frequency shift of the mechanically oscillating
cantilever due to the electrostatic interactions between the tip
and the surface during noncontact AFM operation [347]. The
technique assists the structural imaging of the peptide
nanostructures before the electrical phase measurement,
which is also called thelift-off mode [348]. EFM analysis of
the self-assembled dipeptide nanotubes wasconducted to
analyse the electrochemical differences between the designed
nanostructures [349]. Surface potential mapping of the sur-
faces functionalized with synthetic peptide assemblies were
obtained using theEFM technique to distinguish purple
membrane–peptide interactions at the interfaces [350]. EFM
measurements were also performed to study theelectronic
behaviour of the polymerizable unit conjugated peptide
assemblies [43] and peptide–carbon nanotube hybrid archi-
tectures [351]. Within AFM-based approaches, Kelvin probe
force microscopy (KPFM) [352] is used for the character-
ization ofpeptide assemblies to determine contact potential
differences (CPD), which is related tothe work function of
the samples. In the literature, synthetic coil-coiled structures
absorbed on gold surfaces were characterized using this
technique [353]. KPFM images of the short peptide nanos-
tructures, which revealed both CPD parameters and the
structural properties of the assemblies have been also repor-
ted [354].

Impedance spectroscopy (IS) enables the analysis of
theelectrochemical properties of peptide functionalized sur-
faces [355, 356] and the interactions of peptide nanostructures
with other components [357]. IS functions by applying a
periodic AC bias to the sample while collecting signals
related to its complex impedance behaviour. The conductive
properties of the dried peptide nanostructure obtained via
enzyme-triggered self-assembly of aromatic PAs were studied
using complex impedance spectroscopy that determined the
sheet resistivity of the nanotubular architectures [358]. The
electrochemical behaviour of the self-assembled peptide
nanofibre functionalized gold surfaces developed as ametal
ion biosensor was also evaluated using this technique [359].

5.5. Mechanical characterization techniques

Development of nanomechanical characterization techniques
for peptide nanostructures is a requirement since the tradi-
tional mechanical characterization methods are incapable
ofoperatingat biologically relevant length and force scales
with applicable time periods. The nanoscale AFM probes
facilitate the implementation of traditional approaches
including adhesion, tensile, compression or bending tests to
analyse thenanomechanics of self-assembled peptide nanos-
tructures at miniaturized experimental conditions.

AFM-based nanoindentation is a widely used approach to
determine the mechanical properties of peptide nanostructures
(e.g. their hardness, stiffness and elasticity) based on the
load–distance curves collected during analysis [360, 361].
Interactions between the tip and nanostructures are modelled
based on different approaches to estimate their

nanomechanical characteristics [362–364]. The elastic mod-
ulus values of the self-assembled PA nanofibers formed via
Ca2+ crosslinking or pH change were estimated using the
force–distance data obtained via AFM nanoindentation [365].
AFM nanoindentation experiments were conducted to show
the nanomechanical differences of azide containing spherical
peptide assemblies before and after UV irradiation [366]. In
another study, the effect of the structural transition of che-
mically modified self-assembled diphenyl nanostructures on
their mechanical properties were analysed via AFM-based
nanomechanical measurements [195]. Moreover, double pass-
force–distance mapping is able to combine topography ima-
ging with the mechanical characterization of the imaged area,
and uses tapping mode AFM in conjunction with the acqui-
sition of force–distance curves associated with tip-oscillating
sample interactions [367]. The technique increased the speed
of nanomechanical characterization of the nanostructures and
enhanced the high resolution force mapping of the amyloid
inspired peptide assemblies using AFM [87].

The unique mechanical behaviour of the amyloid like
peptide assemblies contributedto the design of functional
materials including conductive fibres, energy harvesting sys-
tems or tissue scaffolds [368–372]. Cross-β sheet organiza-
tion, excess hydrogen bonding and aromatic interactions
between the amyloid-based peptides are the inherent sources
of the mechanical stability and rigidity of the amyloid derived
peptide assemblies [373]. Several studies were conducted to
determine thenanomechanical properties of the amyloid-
based assemblies using theAFM nanoindentation technique.
Recently, the nanomechanics of amyloid like fibrils assem-
bled at different pH were revealed by peak-force quantitative
nanomechanical property mapping (PF-QNM) [374]. In
another study, the mechanical reinforcement of electrospun
polymer fibres incorporated into peptide assemblies was
demonstrated via AFM-based nanoindentation experiments
with a spherical colloidal tip [375].

In addition to AFM-based nanoindentation, different
characterization approaches have been developed to deter-
mine themechanical characteristics of the self-assembled
peptide nanostructures and their three-dimensional supramo-
lecular networks [376]. Similar to amyloid peptide assem-
blies, cyclic peptide architectures reveal intriguing
hierarchical organizations with tunable mechanical properties
and rigid geometries [15]. The nanomechanical properties of
these architectures including elastic modulus, hardness,
strength and Young’s modulus were determined by using
AFM nanoindentation;self-assembled cyclic QL4 fibres
exhibited the stiffest material characteristics within the known
proteinaceous micro- and nanofibres (figure 7) [93].

The viscoelastic behaviour of different peptide assem-
blies were also determined using oscillatory rheology or
microrheology techniques, which highlight the sol–gel
transition of the peptide architectures due to the external or
internal stimulus [377–381]. In addition, a microfluidic-based
microcantilever system was developed to determine the forces
produced by amyloid peptide polymerization, by monitoring
microcantilever deflections that are correlated with the
mechanical changes that occur during the process [382].
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6. Functional self-assembled peptide
nanostructures

Supramolecular chemistry is a powerful tool for-
fabricatinginnovative materials for the next generation
devices and applications. Peptide self-assembly has been
extensively utilized to produce functional nanomaterials. In
this section, we review recent functional materials applica-
tions of self-assembled peptide nanostructures.

6.1. Supramolecular self-assembled peptide catalysts

Extraordinary catalytic performance and superior selectivity
of enzymes in organic transformations under physiological
conditions have always been a source of inspiration for sci-
entists. The complex structure and function of biocatalysts
have forced scientists to develop minimalistic approaches and
mimicfragments of multifaceted biocatalysts such as active
site, hydrophobic pocketor structure [383].Supramolecular
self-assembled peptide nanostructures have been utilized to
build essential functional groups within a nanoenviroment to
catalyse thedesired organic transformations in an efficient
manner. TheStupp group demonstratedself-assembled pep-
tide amphiphile nanostructures, which are well-defined cata-
lytic nanostructures in aqueous media [384]. Four different

peptide sequences containing histidine residues as reactive
sites were designed and synthesized (figures 8(A) and (B)).
The peptide 1 having alanine and valine residues promoted
formation of β-sheets and palmitoyl tail assisted hydrophobic
collapse of the peptide molecules into high aspect ratio 1D
nanofibers, as shown in figure 8(C).

The same peptide sequence without palmitoyl tail (3)
formed nanospheres is shown infigure 8(D), meanwhilethe
peptide sequences having proline residues (2 and 4) also
formed polydisperse nanospheres. Hydrolysis of 2,
4-dinitrophenyl acetate (DNPA) by these nanostructures has
shown that 1D nanofibers promoted thehighest hydrolysis
rate when compared to nanospheres or soluble histidine
residues. Interestingly, 1D nanofibres showed a Michaelis–
Menten enzyme-like behaviour, whereas the other peptide
sequences (2–4) demonstrated a linear rate increase with
substrate concentration increase. This study showed that
assembling reactive sites within a nanoenviroment could
afford a synergistic effect thatenhancesthe rate of hydrolysis
of DNPA. This study was one of the first examples of asu-
pramolecular self-assembled peptide catalyst, which inspired
many research groups to develop new catalytic supramole-
cular peptide nanostructures. The Escuder and Miravet
research groups have extensively studied the structure and
catalytic activity of proline-based supramolecular gelators

Figure 7. Nanomechanical properties of the D, L cyclic peptide assemblies were determined via depth sensing-based bending system (top)
and the fractures formed on the nanostructures during the measurement were imaging using electron microscopy (bottom). Adapted with
permission from [93]. Copyright 2015 American Chemical Society.
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[385]. L-proline is a well-known stereoselective organocata-
lyst forcatalysingC–C bond formation reactions, such as
aldol and Michael addition reactions [386]. A series of
bolaamphiphilic molecules containing two L-prolines have
beendesigned and used in aldol reactions [387]. Due to the
presence of hydrogen-bond promoting valine residues in the
structure of bolaamphiphilic peptide molecules, they could
encapsulate alarge amount of organic solvents (acetonitrile
and ethyl acetate) to form gels. These peptide molecules
catalysed the aldol reaction in solution state while racemiza-
tion of the products was observed in thegel state where the
reactions were left for several days. The reason for racemi-
zation was explained by theincrease of basicity of the solu-
tion due to the close assembly of prolines in the gel state. The
authors exploited the emergence of anew property (increased
basicity) caused by cooperativity of neighbouring prolines in
thegel state [388]. They performed theHenry nitroaldol
reaction, which requires a basic catalyst for deprotonation of
nitroalkane and then addition to carbonyl functional group to
form new C–C bonds. A bolaamphiphile peptide molecule
was used to form agel in nitromethane and nitroethane. This
basic catalytic gel promoted the addition of nitroalkane to
4-nitrobenzylaldehyde. The assembled bolaamphiphile pep-
tide molecules into fibrous networks showed excellent
catalytic activity while dispersed peptide molecules showed
poor catalytic activity. Performing organic reactions in
aqueous media motivated the researchers to synthesize
a new proline conjugated amphiphilic peptide molecule,
which formed hydrogels [389]. This catalytic hydrogel
assisted the direct aldol reaction between cyclohexanone and
4-nitrobenzaldehyde. The reactants dissolved in toluene were
gently dropped on apre-formed peptide hydrogel andshowed

high stereoselectivity (anti: syn 92:8, 88% ee). The catalytic
nanostructure was recycled three times without loss of effi-
ciency and stereoselectivity.

In addition toL-proline-based supramolecular catalysts,
the researchers have also developed different novel approa-
ches to mimic active sites of enzymes. Liu et al demonstrated
that co-assembly of two different amino acid residues could
enhance the rate of hydrolysis [390]. They synthesized two
short amphiphilic peptide sequences, one bearing histidine
(Fmoc-FFH-Am) and other bearing arginine residues (Fmoc-
FFR-Am). The Fmoc-FFH-Am molecule self-assembled into
nanotubes in aqueous medium can catalyse p-nitrophenyl
acetate efficiently. Upon co-assembly of both peptides into
nanotubes, the catalytic activity was further enhanced. A
similar study was conducted by theLiang group [391]. Co-
assembly of histidine and arginine bearing self-assembled
peptide nanofibres canenhance the hydrolysis of p-nitro-
phenyl acetate. These two studies underlined the importance
of arginine residues, which stabilized the transition state of
the hydrolytic reaction.

Metal ions play an important role as cofactors in metal-
loenzymes. Metal ion-based cofactors are present in the active
site of enzymes, which aid the chemical reactions inpro-
ceeding [392]. Self-assembled supramolecular peptide
nanostructures can be used to emulate part of the metalloen-
zyme and replicate the function of the whole enzyme. Liu
et aldesigned and synthesized glutamic acid bearing
bolaamphiphile nanotubes that are able to bind copper (II)
ions through electrostatic interactions. The nanotubes induced
chirality to copper (II) ions and catalysed the Diels–Alder
reaction between cyclopentadiene and an aza-chalcone [393].
TheKorendovych group studied short metallopeptides for

Figure 8. Chemical structures of peptide molecules (A) and (B), schematic representation of self-assembled nanofibres (C) and spherical
aggregates (D).
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mimicking metalloenzymes. A series of short amyloid like
peptides, which have binding affinity towards Zn (II) ions
were designed and synthesized [394]. A β-sheet forminga
heptapeptide sequence (LKLKLKL) was modifiedat posi-
tions 2, 4 and 6 by different amino acids. Hydrophobic leu-
cine (L) required for self-assembly waskept unchanged while
lysine (K) residues at positions 2 and 4 were replaced by Zn+2

binding histidine residues. Lysine at position 6 was replaced
by either acidic (Asp, Glu), neutral (Gln, Tyr) or basic (His,
Lys, Arg) residues with various pKa values. The peptide
sequence Ac-LHLHLRL-Am in the presence of ZnCl2
showed Michaelis–Menten behaviour with catalytic efficiency
of kcat/KM=18±4M−1 s−1. When the R residuewas
replaced by Q residue (Ac-LHLHLQL-CONH2), the catalytic
efficiency was further increased to kcat/KM=
30±3M−1 s−1. Peptides with Asp, Glu or His residues at
position 6 had little catalytic activity. However, catalytic
activity was drastically enhanced (kcat/KM=62±
2M−1 s−1) when the hydrophobic L was replaced by the
isoleucine (I) in the heptapeptide sequence, while keeping
Gln at the 6th position (Ac-IHIHIQI-Am).

We alsorecentlydeveloped a β-sheet forming peptide
amphiphile, which had high binding affinity towards copper
ions. This short peptide sequence assembled into nanofibres
having histidine residues over the surface. The copper ions
bound on pre-assembled peptide nanofibres could catalyse
click alkyne–azide cycloaddition in aqueous media [395]. The
conversion of the reactants into product was almost quanti-
tative (95%) usingour supramolecular nanocatalyst, while
soluble histidine-Cu complexes showed a moderate efficiency
of 65%. Active sites demonstrated positive cooperativity
when assembled within a confined environment on the pep-
tide nanofibres. The supramolecular nanocatalyst did not only
show superior catalytic activity but also lowered the cyto-
toxicity of the copper ion. Therefore, we utilized the metal-
lopeptide to label alkyne decorated live cells by click alkyne–
azide cycloaddition.

6.2. Supramolecular semiconductor peptide nanostructures

Organic electronics can be divided into three major fields:
supramolecular, plasticand molecular electronics [396]. The
latter two fields have beenstudied in detail and aNobel Prize
in chemistry was awarded for the discovery of electrically
conductive polymers (plastic electronics) in 2000. Although
supramolecular electronics is a relatively obscure research
field, it has nonetheless achieved considerable progress in the
last decade. Supramolecular chemistry is a powerful tool for
designing and constructing well-defined nanowires for
nanosized optoelectronic devices using noncovalent interac-
tions [396]. The rich chemistry of 20 natural amino acids
makes them an eye-catching tool forbuilding novel supra-
molecular soft semiconducting materials thatcould be
employed for bioelectronics [204], light harvesting systems
[397], OFETS, nanoscale devices and nanosensors [398].

The main strategy forfabricatinga nanosized semi-
conducting wire is to conjugate hydrophobic, π-conjugated
p-n-type semiconductor molecules to hydrophilic or charged

self-assembling peptide sequences. Upon hydrophobic col-
lapse in aqueous media, the semiconductor conjugated pep-
tide molecules can form variety of nanostructures. This
strategy also allows working with highly hydrophobic mole-
cules in aqueous media. Parquette et al conjugated an n-type
semiconducting molecule (1,4,5,8-naphthalenetetracarboxylic
acid diimide, NDI) to a series of dipeptides (Ac-KK-Am) and
studied their self-assembly in aqueous medium and tri-
fluoroethanol (TFE) [399]. The NDI semiconductor peptide
conjugate assembly was studied by UV and CD spectro-
scopies. The NDI-peptide molecule dissolved in TFE showed
absorption peaks at 240 nm (band II) and in the range of
300–400 nm (band I), which are characteristic absorption
peaks of molecular NDI molecules. When TFE was exchan-
ged with water, there was a decrease in absorption intensities
followed by large red shift in the absorption bands of NDI.
This change showed formation of j-aggregates in water. The
IR bands at 1612 and 1608 cm−1, and XRD analysis proved
the presence of aβ-sheet in Ac-KK (NDI)-Am and in Ac-K
(NDI)-K-Am peptides. TEM and AFM images of Ac-KK
(NDI)-Am peptide molecules showed helical nanofibres while
Ac-K(NDI)-K-Am peptides showed flattened, twisted nano-
ribbon morphology. They also conducted a similar study by
conjugating two lysine moieties to the two arms of NDI
forming n-type bolaamphiphiles [400]. Bolaamphiphile
molecules formed hydrogel when dissolved 1% (w/w). The
designed molecule formed nanotubes as imaged by TEM and
AFM. UV–vis absorption spectroscopy demonstrated a red
shift in the absorption bands showing the formation of NDI j-
aggregates in assembled state. CD spectra revealed additional
peaks at the absorption bands of the NDI molecule demon-
strating that induced chirality is due to supramolecular orga-
nization of NDI molecules within the assembled nanotubes.
The fluorescence decay of nanotubes excited at 350 nm was
monitored by time-correlated single photon counting at 410
and 505 nm. The lifetime (64 ps) of excited NDI nanotubes
wasslightly longer than that ofmolecular NDI. The excimer
emission at 505 nm showed much longer decay lifetime
(197 ps (86%) and 950 ps (14%)), which is due to closely
stacked and packed NDI molecules in the nanotubes.

Tovar [43, 173, 401–404] and others [200, 405, 406]
have developed semiconducting oligomers conjugated to
peptides (figure 9) assembled into well-defined nanostructures
in aqueous media. In this design, oligomers were located at
middle and peptide sequences were conjugated at two sides.
This strategy facilitated face to face aggregation of the
semiconducting molecules, which may increase their con-
ductivity by enhancing their hole or electron transporting
properties. TheTovar group also developed a straightforward
method forconjugatingoligomer molecules on solid phase
resin. On resin synthesis avoids multiple synthetic routes and
complex purification techniques. Charge transport properties
of self-assembled soft fibrous nanonetworks were measured
by constructing a field-effect transistor [401]. The peptide
conjugated quaterthiophene was used as asemiconductor
layer and mobilities of 10−3

–10−5 cm2V−1s−1were mea-
sured. When the nanowires were aligned via shear-assembly,
the mobilities were increased to 0.03 cm2V−1s−1.
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The Ashkenasy group conducted a detailed study on
theconductivity of self-assembled semiconducting peptide
nanostructures [199, 337]. A well-known amyloid β-peptide
(AAKLVFF) was studied by incorporating 2-thienylalanine
and 3-thienylalanine moieties instead of FF. They investi-
gated theself-assembly of these molecules in different sol-
vents and demonstrated that the solvent type had a
considerable effect on nanostructure morphology. They also
observed that thepeptide molecule forming long range and
straight nanofibers showed highest conductivity. In another
research work [405], they demonstrated that both protons and
electrons are responsible for thecharge transport process in
self-assembled nanostructures. In ahighly humid environ-
ment, proton conductivity dominated electron conductivity.
Hodgkiss et al haverecently constructed a water-processed
bio-organic field-effect transistor (biOFET) based on bioin-
spired assembled peptide–perylene conjugates [407]. The
peptide sequence of IKHLSVN, which is responsible for the
homo dimerization of peroxiredoxin protein was modified as
IRHLSVN. Three glumatic acid residues were conjugated to
IRHLSVN to enhance the solubility of IRHLSVN–perylene
molecules in water. The self-assembly of these bioinspired
molecules was studied by CD and UV–vis spectroscopy to
see whether the β-sheet forming characteristic of the native
IKHLSVN sequence was affected by the modifications and
perylene conjugation. Long nanofibers of assembled
IRHLSVN–perylene were imaged by TEM and AFM. Inter-
estingly, the semiconducting nanofibers showed p-type
behaviour, responding to an increasing positive gate bias with
a decreasing current.

One component semiconductor peptide self-assembly
was further extended to two components including co-
assembly of p-n-type semiconductors to achieve charge

transfer or photoconductive supramolecular nanomaterials.
TheUlijn group [408–410]conducted a series of research on
biocatalytic self-assembly of n-type semiconductor con-
jugated peptides that could form charge transfer supramole-
cular nanostructures with variety of p-type semiconductors
(figure 10). NDI-functionalized tyrosine (NDI-Y) was con-
jugated to phenylalanine-amide (F-NH2) by the addition of
thermolysin to triggerself-assembly and formation ofth-
ermodynamic nanostructures. In the presence of p-type
dihydroxy/alkoxy naphthalene donors, NDI-Y formed poly-
disperse spherical nanostructures when thermolysin was
absent, as imaged by TEM and AFM. Upon addition of
abiocatalyst to asolution of NDI-Y and naphthalene donors,
ayellowish gel was formed and spherical nanostructures were
converted to highly-ordered long nanofibers. The change in
the colour of the solution was followed by donor emission
quenching and the appearance of a new absorption band at
550 nm, which was attributed to the successful formation of a
charge transfer complex. The same group conjugated a well-
known p-type tetrathiafulvalene (TTF) to a self-assembling
peptide sequence (-FF-Am). TTF-FF-Am molecules formed
self-standing gel in chloroform and dried gels showed con-
ductivity of 1.9×10−10 s cm−1. When the organogel was
doped by an acceptor molecule (TCNQ) the conductivity was
increased to 3.6×10−4 s cm−1. However, iodine vapour
doping did not enhance the conductivity to a great extent as in
thecase of acceptor doping [411]. There are also some studies
showingenergy transfer within self-assembled peptide
nanostructures through donor–acceptor interactions
[412, 413].

Recently, theMartín research groupexploited electro-
static interactions to assemble donor–acceptor molecules in
ahighly organized manner within a peptide nanofiber [414].

Figure 9. Semiconducting oligomers conjugated to peptide molecules.
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Electron donor tetrathiafulvalene was conjugated to ananio-
nic peptide sequence bearing glutamic acid while electron–
acceptor perylene-bisimide was conjugated to acationic
peptide sequence bearing residue. These two complimentary
p-n nanofibers could co-assemble into highly alternating p-n
stacks in the single nanofiber. The co-assembled p-n nanofi-
bers showed photoconductivity of 0.8 cm2V−1s−1. These
typesof novel and straightforward methodologies are pro-
mising for design and fabrication of next generation
nanodevices.

6.3. Self-assembled peptide nanostructure templated
synthesis of inorganic nanomaterials

Synthesis of inorganic nanomaterials with precise shape, size
and composition has potential industrial applications. Bio-
molecules having well-defined shapes and sizes are remark-
able platforms for the synthesis of inorganic functional
nanomaterials [415]. Cutting-edge developments have been

achieved by utilizing biotemplates such as viruses [416–418],
bacteria [419, 420], nucleic acids (DNA or RNA) [421] and
proteins [422, 423] for the mineralization process, resulting in
the fabrication of well-ordered functional nanomaterials for
catalysis, sensing, imaging, therapy, energy storage/conver-
sion, and electronic and piezoelectric devices. Self-assem-
bling peptide-templated synthesis of functional nanostructures
is another emerging area, which has been extensively studied.

Matsui et al designed a bolaamphiphile peptide molecule
(bis (N-R-amido-glycylglycine)-1,7-heptane dicarboxylate),
which assembled into nanotubes at pH 6 citric acid/NaOH
solution. The amide groups on pre-assembled nanotubes
could coordinate with metal ions (Cu and Ni) which served as
nucleation sites. Nanotube coated ions were further reduced
by reducing agents to get metalized nanotubes [424]. In
another study conducted by Matsui, thesame bolaamphiphile
peptide nanotube was further modified by a histidine-rich
peptide sequence (AHHAHHAAD). Histidine modified
nanotubes were treated with gold ions followed by NaBH4

Figure 10. Biocatalytic self-assembly of acceptor-appended peptides to form charge transfer nanostructures. Adapted with permission from
[409]. Copyright 2014, Wiley-VCH.
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reduction to form gold nanoparticles (figure 11). Metal-
binding histidine residues directed the formation of gold
nanoparticles over nanotubes homogenously. The crystal
lattice of gold nanoparticles was calculated as (111) and (220)
from electron diffraction patterns [425].

The Stupp group developedunasymmetric bolaamphi-
phile peptide molecules such as (L-glutamyl)3 glycine-ter-
minated bolaamphiphile (1) and (L-lysine)3-terminated
bolaamphiphile. This molecule formed a self-standing
hydrogel in the presence of ammonia vapour. When the
secondary structure of these molecules were studied by CD,
they showed random coil structure in their soluble form while
β-sheets were observed upon gelation. These 1D nanofibrous
networks were utilized to mineralize CdS nanostructures.
Peptide nanostructures were treated with adilute solution of
Cd(NO3)2 followed by exposure to H2S vapour. Peptide
nanostructure templated CdS nanostructures had wurtzite and
zinc blende polymorph crystal structures [426].

In another study, theStupp group demonstrated the metal
ion-binding capacity of a self-assembling peptide amphiphile
containing three histidine residues [427]. The peptide
amphiphile molecule dissolved in water formed a gel upon
increasing thepH above 6. The gel consisted of peptide
nanofibers with 8–10 nm diameters and microns in length as
imaged by TEM. This nanofibrous network was used to
template magnetite mineralization. A black precipitate was
formed upon mixing of 1:2 ratio of FeCl2:FeCl3 solutions
with peptide nanofibres followed by exposure to ammonia
vapour. This black precipitate was responsive to magnetic
fields, suggesting that it contained magnetite (Fe3O4) nanos-
tructures embedded in the peptide matrix. Raman spectrosc-
opy showed apeak at 674 cm−1, which further confirmed the
presence of Fe3O4 mineralized on peptide nanofibres.

Our group also developed various self-assembled peptide
templates to synthesize Pd, Au, SiO2, TiO2and ZnO nanos-
tructures. An amyloid inspired short peptide sequence (Ac-

KFFAAK-Am) was designed and synthesized which formed
1D nanofibres. This fibrous nanonetwork was used as
atemplate to mineralize SiO2 and TiO2. After calcination of
theorganic part, micron-long nanotubes of SiO2 and TiO2

were formed [428]. Amyloid inspired templated porous silica
nanotubes were used as ahigh surface area explosive detec-
tor. The surface of thesilica nanotubes wasmodified using
afluorescent probe by physical adsorption. These fluorescent
silica nanotubes demonstrated fast, sensitiveand highly
selective fluorescence quenching towards nitro-explosive
vapours [429]. We further utilized amyloid inspired templated
porous titania nanotubes as dye sensitized solar cell anodic
materials. In this study, we showed that porous, high surface
area (150 m2 g−1) titania nanotubes could adsorb more dye
than the nontemplated titania. As a result, dye sensitized solar
cell constructed from porous titania nanotubes showed
anefficiency of 0.83%, which is three-fold better than non-
templated titania [430].

Amyloid inspired peptide nanofibres were further
exploited to template gold nanostructuresynthesis. Amine
decorated peptide nanofibres interacted with gold ions and
gold nanostructures were grown upon reduction by ascorbic
acid. AFM was used to investigate thenanoscale electrical
properties of thegold decorated peptide nanofibres. Bias
dependent current (I–V ) measurements on gold nanofibers
demonstrated tunnelling dominated transport and resistive
switching [336].

In addition to amyloid inspired peptide templates, our
group also designed self-assembling peptide amphiphiles,
which could template palladium nanoparticle synthesis. A
histidine-rich peptide amphiphile nanofibre was designed to
synthesize Pd nanoparticles, which could be utilized as
ananocatalyst for Suzuki coupling reactions. Our designed
Pd nanocatalyst showed high catalytic activities under
environmentally friendly conditions. Reaction products were
obtained almost quantitatively in the presence of our catalyst

Figure 11. Schematice diagramof Au nanowire fabrication. (a) Modification of pre-assembled nanofibres by histidine-rich peptide. (b)
Formation of gold nanoparticles at the histidine sites of the nanofibres. Adapted with permission from [425]. Copyright 2002 American
Chemical Society.
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in addition to theease of recycling [431]. In another study,
we utilized critically-dried 3D peptide nanonetworks as a
scaffold for atomic layer deposition, using the porosity and
high surface area of the peptide material to produce highly
conformal and uniform titania and silica nanotubes. These
highly precise nanostructures showed high photocatalytic
activities towards methylene blue degradation. The photo-
catalytic activity was exclusively dependent on wall thickness
and surface area per unit mass of titania and silica nano-
tubes [432].

Others have also exploited various self-assembled pep-
tide templates such as I3K, phage-displayed P7A peptides
[433] and aniline–GGAAKLVFF [434] to synthesize Pt
nanoparticles for different applications. I3K assembled
nanofibres have beenused to template Pt nanoparticles while
phage-displayed P7A peptides were utilized to tune
morphologies of Pt nanoparticles. I3K assembled nanofibre
decorated Pt nanostructures were used for electrochemical
oxidation of hydrogen and methanol while aniline–
GGAAKLVFF supported Pt nanoparticles were used as
anelectrocatalyst to improve oxygen-reduction reac-
tion [434].

Tuning thespatial arrangement of metallic nanos-
tructures via peptide morphology to induce new properties is
another exciting field. A peptide amphiphile (lauryl-
FPPMPPAGAYSS), which formed double helices, directed
the formation of left-handed gold nanoparticles [435]. The-
Liu research group produced chiral silica nanotubes via
helical bolaamphiphilic peptide templates. Chiral silica
nanotubes modified by photoactive azobenzene moieties
canrecognize a chiroptical switch [436].

7. Conclusion and future perspective

One of the reasons behind the rapid growth of self-assembly
is that it allows the synthesis of larger structures that are
notfeasible with covalent bonds due to poor stability.
Accordingly, peptide constructs with well-defined character-
istics can be created through aself-assembly process, and the
morphology and function of the resulting structures can be
manipulated at the molecular level by altering the number,
type and sequence of amino acids, or exposing the system to
external stimuli such as pH, temperature, electric or magnetic
fields, lightand sound. The systematic investigation ofthe
structure-function relation of the self-assembled peptide
nanostructures using variety of advanced characterization
techniques at nanometre scale will accelerate the progress on
developments of functional peptide-based architectures.
Although different characterization tools and methods have
been developed forself-assembled peptide-based functional
nanostructures,most of the techniques still require advanced
sample preparation and sophisticated analysis tools to reveal
deep knowledge on the intriguing properties and energy
landscapes ofself-assembly. On the other hand, we believe
thatadvancements on these techniques can be pursued via
incorporation of the different scientific disciplines, including
chemistry, biology, material science and engineering, since

the problems in the technical advances require aninterdisci-
plinary research environment. Constructing novel nanoma-
terials with new properties using supramolecular interactions
is an exciting research field. A vast number of cutting-edge
applications of supramolecular materials have been demon-
strated so far. Designing controllable materials with precise
length, composition and complex shapes will be the challenge
of next generation supramolecular materials.
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