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a b s t r a c t

In this survey, we review the copula-based input models that are well suited to provide multivariate
input-modeling support for stochastic simulations with dependent inputs. Specifically, we consider the
situation in which the dependence between pairs of simulation input random variables is measured
by tail dependence (i.e., the amount of dependence in the tails of a bivariate distribution) and review
the techniques to construct copula-based input models representing positive tail dependencies. We
complement the review with the parameter estimation from multivariate input data and the random-
vector generation from the estimated input model with the purpose of driving the simulation.
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1. Introduction

An important step in the design of a stochastic simulation
is input modeling; i.e., choosing a probability distribution to
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represent the inputs of the system being studied. Input modeling
is easily performed when the system inputs can be represented
as a sequence of independent and identically distributed random
variables. Reviews of such input models are available in [1–3].

The focus of this survey is on stochastic simulations with
dependent inputs that require the use of flexiblemultivariate input
models to capture their joint distributional properties. Examples
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of dependent inputs in need of multivariate input-modeling
support include the processing times of workpieces across work
centers [4], the inter-arrival times of file accesses in computer
systems [5–7], the medical characteristics of organ-transplant
donors and recipients [8], arrival and service processes of Web
servers [9], the inter-arrival times of customers in call centers [10],
and the product demands and exchange rates of global supply
chains [11]. Choosing correlation as the dependence measure,
Ghosh and Squillante [9] show that ignoring the correlation
between the inter-arrival and service times of Web server queues
leads to a 25% overestimation of thewaiting times, while assuming
independent and identically distributed inter-arrival times leads
to the underestimation of the expected waiting times by a factor
of four. Clearly, the independence assumption can lead to very
poor estimates of the performancemeasureswhen there is actually
correlation present, and the consequences of ignoring correlation
can be severe. A comprehensive review of the multivariate input
models measuring dependence by correlation is available in [12].
Patton [13], on the other hand, demonstrates the need for an
input model that captures not only the correlation but also the
dependence in the tails of the exchange rate processes. What
distinguishes our survey from others is its focus on this measure of
dependence, which is known as the tail dependence and defined as
the amount of dependence in the tails of a joint distribution. Other
applications with focus on tail dependence include Corbett and
Rajaram [14], Wagner et al. [15], and Tehrani et al. [16], and they
demonstrate that it is imperative to develop multivariate input
models that can capture stochastic tail dependencies among the
input random variables of stochastic systems.

A close look at the existing literature reveals that multivariate
input models can be classified into two types: random vectors and
multivariate time series. Specifically, a random vector X = (X1,
X2, . . . , Xk)

′ denotes a collection of k random components, each
of which is a real-valued random variable, and it is described
by its joint distribution function. A k-dimensional time series Xt =

{(X1,t , X2,t , . . . , Xk,t)
′
; t = 1, 2, . . .}, on the other hand, denotes a

sequence of random vectors observed at times t = 1, 2, . . . . In this
survey, we focus on random vectors and refer the reader to Biller
and Ghosh [12] for a comprehensive review of the time-series pro-
cesses for stochastic simulations. More specifically, we consider
multi-dimensional copula-based inputmodels that have the ability
to capture a wide variety of dependence structures by describing
dependence in a more general manner than correlation. The use of
correlation as the measure of dependence in the simulation input-
modeling research has been justified by the fact that making it
possible for simulation users to incorporate dependence via corre-
lation, while limited, is substantially better than the practice of ig-
noring dependence. However, when the simulation inputs are not
jointly elliptically distributed and require the use of a joint prob-
ability distribution with positive dependence in the tails, correla-
tion is no longer sufficient to describe the dependence structure
of these simulation inputs. Therefore, in this survey we go beyond
the use of correlation as a dependence measure and present the
application of copula theory to multivariate input modeling with
the purpose of constructing flexible density models that represent
a wide variety of dependence structures. Additionally, we consider
the problems of estimating the parameters of the copula-based in-
put models from multivariate data and generating random vec-
tors with the pre-specifiedmarginal distributions and dependence
structures to drive stochastic simulations. We refer the reader to
Craney and White [17] for input modeling techniques when no
data are available.

We organize the remainder of the paper as follows. In Section 2,
we introduce correlation and tail dependence as the twomeasures
of dependence that are used for multivariate input modeling with
focus on the limitations of correlation as the dependence measure.
In Section 3, we present copula-based input models with the
ability to measure tail dependence; Section 3.1 reviews copula
theory, Section 3.2 focuses on two-dimensional input models, and
Section 3.3 extends the discussion to multivariate input models
with three or more component random variables. In Section 4,
we describe how to estimate the parameters of the copula-based
input models from multivariate data via automated algorithms.
We present the goodness-of-fit tests specifically designed for
copula-based input models in Section 5. In Section 6, we provide
the sampling algorithms that generate random vectors from
the copula-based input models quickly and accurately to drive
stochastic simulations. We conclude our review with a discussion
of promising research areas in Section 7.

2. Two measures of dependence: correlation and tail depen-
dence

Dependent random vectors are often specified partially in
terms of the marginal distributions of their component random
variables and pair-wise measures of dependence summarizing
how these components interact with each other. Although this
may not uniquely or even correctly specify the joint distribution
of the random vector, the hope is to find a useful specification
for the dependence structure among the components, while
sparing the simulation practitioner the task of trying to estimate
the full joint distribution. In Section 2.1, we review product-
moment correlation and rank correlation as the dependence
measures that are often used for this purpose in simulation
input modeling. In Section 2.2, we introduce tail dependence and
motivate its consideration in this survey as a measure of the
dependence captured by neither product-moment correlation nor
rank correlation. The dependence measures we consider in each
of these sections are pair-wise measures, in that they are used to
quantify the dependence between the pairs of random variables.
It is important to note that, despite the focus of this survey,
correlation and tail dependence are not the onlymeans tomeasure
dependence; we refer the reader to Nelsen [18] for a discussion of
alternative measures.

2.1. Correlation

The product-moment correlation and the rank correlation are
the two widely used measures of dependence in applications
of stochastic simulations. Specifically, the rank correlation r(i, j)
between random variables Xi and Xj is defined by

r(i, j) =
E

Fi(Xi)Fj(Xj)


− E (Fi(Xi)) E


Fj(Xj)


Var (Fi(Xi))Var


Fj(Xj)

 ,

where Fi is the cumulative distribution function (cdf) of Xi [19]. The
product-moment correlation ρX(i, j) between Xi and Xj with finite
variances Var(Xi) and Var(Xj) is, on the other hand, given by

ρX(i, j) =
Cov


Xi, Xj


Var (Xi)Var


Xj
 = E


XiXj


− E (Xi) E


Xj


Var (Xi)Var

Xj
 ,

where Cov(Xi, Xj) is the product-moment covariance between
Xi and Xj [20]. Thus, a correlation of 1 is the maximum possi-
ble for bivariate normal random variables Φ−1(Fi(Xi)) (≡Zi) and
Φ−1(Fj(Xj)) (≡Zj), where Φ is the cdf of a standard normal ran-
dom variable. Therefore, taking Cov(Zi, Zj) = 1 is equivalent (in
distribution) to setting Zi ← Φ−1(U) and Zj ← Φ−1(U), where U
is a uniform random variable in the interval (0, 1) [21]. This def-
inition of Zi and Zj implies that Xi ← F−1i (U) and Xj ← F−1j (U),
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Fig. 1. Input models with standard normal marginals, but with different dependence structures.
from which it follows that ρX(i, j) takes on its maximum magni-
tude. Similarly, taking Cov(Zi, Zj) = −1 is equivalent (in distribu-
tion) to setting Xi ← F−1i (U) and Xj ← F−1j (1− U), in which case
the correlation ρX(i, j) assumes the minimum possible value for
the random variables Xi and Xj. Furthermore, in the special case of
jointly normal input random variables, the product-moment cor-
relation ρX(i, j) relates to the rank correlation r(i, j) by ρX(i, j) =
2 sin(πr(i, j)/6) [22].

Despite its wide use, the product-moment correlation suf-
fers from several limitations that have motivated simulation
practitioners to look for alternative measures of dependence
(e.g., [23,12]):

(1) The product-moment correlation cannot capture the nonlinear
dependence between random variables. Consequently, it
fails to model the non-zero dependence in the tails of a
bivariate distribution. As an example, Fig. 1 shows 10000
bivariate realizations sampled from twodifferent inputmodels
constructed for the random vector X = (Xi, Xj)

′. In both of
these models, Xi and Xj have standard normal marginal
distributions and the product-moment correlation ρX(i, j) is
0.8, but with different dependence structures: The first model
has the bivariate normal distribution, while the second model
has the Gumbel distribution with parameter θ that takes the
value of 3.8 (Section 3.2). More specifically, the dependence
in the tails of the joint distribution is zero in the first
model, while extreme positive realizations have a tendency
to occur together in the second model. Thus, the structure of
dependence in the two models cannot be distinguished on the
grounds of product-moment correlation alone.

(2) A product-moment correlation of zero between two random
variables does not guarantee their independence. For example,
the correlation ρX(i, j) is zero between Xi and Xj that are
uniformly distributed on the unit circle, but Xi and Xj are
dependent as X2

i + X2
j = 1.

(3) A weak product-moment correlation does not imply low
dependence. For example, the minimum product-moment
correlation between two lognormal random variables with
zero means and standard deviations of 1 and σ 2 is the
correlation between eZ and e−σZ , while the maximum
product-moment correlation between these two random
variables is the correlation between eZ and eσZ , where Z is a
standard normal random variable [23]. Although both of these
correlations tend to zero with increasing values of σ , they are
highly dependent.
(4) It follows from the definition of the product-moment correla-
tion that ρX(i, j) takes values between−1 and 1, but the actual
values ρX(i, j) can assume depends on the marginal distribu-
tions of the input random variables Xi and Xj [24]. For example,
the attainable interval for the product-moment correlation of
two lognormal random variables with zero means and stan-
dard deviations of 1 and 2 is [−0.090, 0.666]; i.e., it is not pos-
sible to find a bivariate distribution with these marginals and
a product-moment correlation of 0.7.

(5) Product-moment correlation is not invariant under transfor-
mations of the input random variables. For example, the
product-moment correlation between log(Xi) and log(Xj) is not
the same as the product-moment correlation between Xi and Xj
unless they are independent.

(6) Product-moment correlation is only defined when the vari-
ances of the random variables are finite. Therefore, it is not an
appropriate dependence measure for heavy-tailed inputs with
infinite variances.

The use of the rank correlation as the dependence measure
avoids the theoretical deficiencies in 3, 4, 5, and 6. It further
provides a natural way to separate the characterization of the
component distribution functions Fi(Xi) and Fj(Xj) from that of
the correlation between Xi and Xj. Danaher and Smith [25] use
the rank correlation to study the interaction between the length
of customer visit to an online store and the purchase amount.
A bivariate plot of the visit duration of a customer against the
total amount spent by this customer shows that the marginal
distributions are far from being normal and the product-moment
correlation between the visit duration and the purchase amount
is 0.08, indicating a weak relationship. However, Danaher and
Smith compute a stronger dependence via rank correlation with
a value of 0.26. A comprehensive review of similar monotone
and transformation-invariant measures of dependence like rank
correlation can be found in [18]. However, as in the case of
product-moment correlation, the dependence structures of the
input models in Fig. 1 cannot be distinguished on the grounds of
rank correlation alone, and deficiencies in 1 and 2 remain.

2.2. Tail dependence

Motivated by the pitfalls of correlation, focus on the recent
multivariate input-modeling research has been finding alternative
ways to understand and model dependence by moving away
from simple measures of dependence. An alternative measure of
dependence, which has been of interest in recent years, is tail
dependence; i.e., the amount of dependence in the tails of a joint
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Fig. 2. Examples of bivariate input models with standard normal marginals and positive tail dependencies.
distribution [26]. Specifically, the positive lower-tail dependence
νL(i, j) between random variables Xi and Xj is the amount of
dependence in the lower-quadrant tail of the joint distribution
of Xi and Xj and thus, it is given by limℓ↓0 Pr(Xi ≤ F−1i (ℓ)|Xj ≤

F−1j (ℓ)). The positive upper-tail dependence νU(i, j) is, on the
other hand, the amount of dependence in the upper-quadrant
tail of the joint distribution of Xi and Xj and thus, it is given by
limℓ↑1 Pr(Xi ≥ F−1i (ℓ)|Xj ≥ F−1j (ℓ)). Fig. 2 provides examples of
dependence structures for bivariate input models with standard
normal marginals, but different positive tail dependencies [27].
The plots of the first, second, and third columns of this illustration
are obtained for product-moment correlations of 0.2, 0.5, and 0.8,
respectively. However, the first-row (second-row) plots exhibit
greater dependence in the joint lower (upper) tail than in the joint
upper (lower) tail; i.e., νL(i, j) > 0 and νU(i, j) = 0 (νU(i, j) > 0
and νL(i, j) = 0). More specifically, the first-row (second-row)
plots are obtained from a Clayton (Gumbel) distribution with
parameters 0.43 (1.18) for the first column, 1.00 (1.71) for the
second column, and 3.11 (3.80) for the third column (Section 2).
The plots of Fig. 2 also coincide with the plots of Burr–Pareto-
Logistic family proposed by Cook and Johnson [28,29]. However,
mostmultivariate inputmodels, including themultivariate normal
distribution [30], multivariate Johnson translation system [31],
and the Normal-To-Anything (NORTA) distribution [32], measure
the dependence between simulation inputs using correlation;
therefore, they fail to capture the types of dependence structures
illustrated in Fig. 2.

The need for input models with asymmetric dependence struc-
tures arises in situations where extreme positive realizations have
a tendency to occur together. For example, Fortin and Kuzmics [33]
show that the stock-return pairs of financial markets exhibit high
dependence in the lower tail as well as low dependence in the
upper tail of their joint distribution. Similar empirical evidence
for the need to measure tail dependence is provided in [34–36].
Patton [13], on the other hand, studies the dependence between
mark–dollar and Yen–dollar exchange rates and shows that they
are more dependent when they are depreciating than when they
are appreciating. Thus, the asymmetric dependence structure of
these exchange-rate processes cannot be adequately modeled by
thewidely usedmultivariate inputmodels of the simulation input-
modeling literature.

Despite our focus on copula-based input models represent-
ing positive tail dependencies, it is important to note that
the notion of negative tail dependence has been introduced
by Zhang [37]. Specifically, the negative upper-tail dependence,
which is called the lower–upper tail dependence in [37], is defined
by limℓ↓0 Pr(Xi ≤ F−1i (ℓ)|Xj ≥ F−1j (ℓ)), while the negative lower-
tail dependence, which is also known as the upper–lower tail de-
pendence, is given by limℓ↑1 Pr(Xi ≥ F−1i (ℓ)|Xj ≤ F−1j (ℓ)). Copula
theory reviewed in this paper for positive tail dependence read-
ily extends to these definitions of negative tail dependence. How-
ever, most of the available empirical evidence has been for positive
tail dependence. Although Sun and Wu [38] provide empirical ev-
idence for the existence of negative tail dependence between the
returns of the S&P 500 index and the returns of the Market Volatil-
ity Index, the negative tail dependence is rarely mentioned. There-
fore, we restrict the focus of this survey to the representation of
positive tail dependence. In the next section, we describe how to
utilize copula theory to developmultivariate inputmodelswith the
ability to capture asymmetric dependence structures, which are
characterized by the positive tail dependencies among the simu-
lation input random variables.

3. Copula-based input modeling

Copulas have been used extensively for a variety of financial
applications including Value-at-Risk calculations [39–41], option
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pricing [42–46], credit risk modeling [47,48], and portfolio opti-
mization [49,50]. For a comprehensive review of the applications
of copulas in finance, we refer the reader to Patton [51]. However,
copulas are not used only for solving financial problems; they are
also used for decision and risk analysis [52], aggregation of expert
opinions [53], estimation of joint crop yield distributions [54], dis-
ruptive event modeling in project management [55], analysis of
accident precursors [56,57], and modeling travel behavior by ac-
commodating self-selection effects [58]. Recently, copulas have
also been used in marketing to model the purchase behavior of
customers [25], and in operations management to model retailer
demands [14], supplier defaults [15], and supply disruptions in
supply chains [16]. We provide the basics of copula theory in Sec-
tion 3.1, review bivariate copulamodels in Section 3.2, and present
multivariate copula models with three or more component ran-
dom variables in Section 3.3.

3.1. Fundamentals of copula theory

Away of modeling the dependence among the components of a
k-dimensional random vector that avoids the pitfalls of correlation
is to use a k-dimensional copula [18, Definition 2.10.6]:

Definition 1. A k-dimensional copula is a function Ck : [0, 1]k →
[0, 1] with the following properties: (1) For every u = (u1, u2,
. . . , uk) in [0, 1]k, Ck(u) = 0 if at least one coordinate of u is 0;
and if all coordinates of u are 1 except uℓ, then Ck(u) = uℓ for ℓ =
1, 2, . . . , k. (2) For every a = (a1, a2, . . . , ak) and b = (b1, b2,
. . . , bk) in [0, 1]k such that a ≤ b; i.e., aℓ ≤ bℓ, ℓ = 1, 2, . . . , k,
and for every k-box [a, b]; i.e., [a1, b1] × [a2, b2] × · · · × [ak, bk],
theCk-volumegiven by∆b

aCk (t) = ∆
bk
ak∆

bk−1
ak−1 · · ·∆

b2
a2∆

b1
a1Ck (t)with

∆
bℓ
aℓCk (t) = Ck(t1, . . . , tℓ−1, bℓ, tℓ+1, . . . , tk)− Ck(t1, . . . , tℓ−1, aℓ,

tℓ+1, . . . , tk) is≥ 0.

The first condition of this definition provides the lower bound on
the joint distribution function and insures that the marginal dis-
tributions of the copula are uniform. The second condition insures
that the probability of observing a point in a k-box is nonnegative.
Thus, a k-dimensional copula is simply a k-dimensional distribu-
tion function with uniform marginals.

It is important to note that copulas are not the only means to
obtain joint distribution functions from uniform marginals. There
exist useful families of multivariate uniform distributions that
could be the basis for multivariate input modeling: Multivariate
Burr distribution [59], multivariate Pareto distribution [60], and
multivariate logistic distribution [61] are essentially obtained by
transforming uniformmarginal distributions to arbitrary marginal
distributions. Similarly, Plackett’s distribution [62] is obtained by
transforming bivariate uniform marginal distributions to arbi-
trarymarginal distributions, whileMorgenstern’s distribution [63]
with uniform marginals is generalized to have arbitrary marginal
distributions in [64]. We refer the reader to Chapter 9 and Chap-
ter 10 of Johnson [65] for a detailed discussion on obtaining mul-
tivariate distributions with arbitrary marginals from multivariate
uniform distributions. This survey, however, focuses on tail depen-
dence and therefore, describes the use of copulas to obtain mul-
tivariate distributions with arbitrary marginals and positive tail
dependencies.

The use of a copula for representing the joint distribution
of a random vector has been studied extensively for the last
two decades [66,67,26,68,18]. The name ‘‘copula’’ emphasizes
the manner in which a k-dimensional distribution function is
‘‘coupled’’ to its k (one-dimensional) marginal distributions; this
property is formally stated in Sklar’s theorem [18, Theorem2.10.9]:
Theorem 1. Let F be a k-dimensional distribution function with
marginals Fi, i = 1, 2, . . . , k. Then, there exists a k-dimensional
copula Ck such that for all xi, i = 1, 2, . . . , k in domainℜk,

F (x1, x2, . . . , xk) = Ck (F1(x1), F2(x2), . . . , Fk(xk)) .

If Fi, i = 1, 2, . . . , k are all continuous, then Ck is unique; otherwise,
Ck is uniquely determined onRanF1×RanF2×· · ·×RanFk. Conversely,
if Ck is a k-dimensional copula and Fi, i = 1, 2, . . . , k are distribution
functions, then the function F is a k-dimensional distribution function
with marginals Fi, i = 1, 2, . . . , k.

The major implication of this theorem is that copula Ck is the
joint distribution function of Ui ≡ Fi(Xi), i = 1, 2, . . . , k, where
the random variables Ui, i = 1, 2, . . . , k are the probability inte-
gral transforms of Xi, i = 1, 2, . . . , k. Thus, each of the random
variables Ui, i = 1, 2, . . . , k follows a uniform distribution in
[0, 1], regardless of the distributions of the component random
variables Xi, i = 1, 2, . . . , k. Moreover, Ck can be uniquely deter-
mined when the marginal cdfs Fi, i = 1, 2, . . . , k are all contin-
uous. If the marginal cdfs Fi, i = 1, 2, . . . , k are all discrete, then
Ck is uniquely determined on RanF1× RanF2× · · · × RanFk, where
RanFi is the range of the cdf Fi. In any case, the copula Ck captures
the dependence structure of the joint cdf F and it can be written
as Ck(u1, u2, . . . , uk) = F(F−11 (u1), F−12 (u2), . . . , F−1k (uk)), where
F−1i is the generalized inverse of the marginal cdf Fi [18, Corollary
2.10.10].

The practical premise of Sklar’s theorem in multivariate input
modeling is that the joint distribution F can be constructed by
choosing the marginal distributions Fi, i = 1, 2, . . . , k and the
copula density function ck separately. More specifically, any joint
probability density function (pdf) f can be written as a product of
its marginal pdfs fi, i = 1, 2, . . . , k and copula density function ck
for differentiable cdfs Fi, i = 1, 2, . . . , k and differentiable copula
Ck; i.e.,

f (x1, x2, . . . , xk) = ck

F1(x1), F2(x2), . . . , Fk(xk)


·

k
i=1

fi(xi).

The marginal pdf fi is obtained from ∂Fi(xi)/∂xi, while ∂kCk(u1,
u2, . . . , uk)/(∂u1∂u2 · · · ∂uk) provides the k-dimensional copula
density function ck, encoding all of the information about the de-
pendencies among the random variables Xi, i = 1, 2, . . . , k. Thus,
ck takes the value of 1 when Xi, i = 1, 2, . . . , k are independent,
and the joint density function reduces to the product of only the
marginal pdfs.

There are numerous parametric families of copulas proposed
in the literature, emphasizing different distributional properties.
In this survey, we distinguish these copulas on the grounds of the
tail dependence they capture; i.e., some copulas assign the value of
zero to the tail dependence, while others represent positive lower-
tail dependence and/or positive upper-tail dependence. Next, we
present a copula-based definition of the tail dependence for a
bivariate input model with copula C2 [26]:

Definition 2. If a two-dimensional copula C2 is such that limu↓0 C2
(u, u)/u = νL exists, then C2 has lower-tail dependence if νL ∈

(0, 1] and no lower-tail dependence if νL = 0. Similarly, if
limu↑1(1−2u+C2(u, u))/(1−u) = νU exists, thenC2 has upper-tail
dependence if νU ∈ (0, 1] and no upper-tail dependence if νU = 0.

A close look at the existing literature reveals that one of
the widely used copulas for bivariate input modeling is the
two-dimensional normal distribution. The application of Def-
inition 2 with the two-dimensional copula C2 replaced by
the two-dimensional standard normal cdf having correlation
ρ(1, 2) ∈ (−1, 1) between random variables Z1 (≡Φ−1(F1(X1)))
and Z2 (≡Φ−1(F2(X2))) results in the computation of zero for both



74 B. Biller, C. Gunes Corlu / Surveys in Operations Research and Management Science 17 (2012) 69–84
Table 1
Bivariate copulas and their tail-dependence functions.

Copula Parameter νL νU

Elliptically symmetric
Normal −1 < ρ < 1 0 0

t −1 < ρ < 1, 0 < d <∞ 2td+1


(d+1)(1−ρ)

(1+ρ)


2td+1


(d+1)(1−ρ)

(1+ρ)


Archimedean
Clayton θ ≥ 0 2−1/θ 0
Gumbel θ ≥ 1 0 2− 21/θ

θ ≥ 1 2−1/θ 2− 21/θ

θ1 > 0, θ2 ≥ 1 2−1/(θ1θ2) 2− 21/θ2

Max-infinitely divisible θ1 ≥ 0, θ2 ≥ 1 2−1/θ1 2− 21/θ2
the lower-tail dependence (νL(1, 2) = 0) and the upper-tail de-
pendence (νU(1, 2) = 0) between random variables X1 and X2.
Thus, regardless of the correlation ρ(1, 2) ∈ (−1, 1) we choose,
extreme events appear to occur independently in X1 and X2 when
we go far enough into the tails. This explains why a bivariate input
model building on the normal distribution fails to represent posi-
tive tail dependencies.

This discussion readily extends to the multi-dimensional set-
ting with k ≥ 2. A well known multivariate input model building
also on the normal distribution is the NORTA random vector in-
troduced by Cario and Nelson [32]. The goal of this input model is
to match the pre-specified properties of the random vector X =
(X1, X2, . . . , Xk)

′, i.e., the marginal distributions Fi, i = 1, 2, . . . , k
and the input correlations ρX(i, j), i, j = 1, 2, . . . , k, so as to drive
the simulation with random vectors that have these properties.
Therefore, the construction of the NORTA random vector builds
on (1) applying the probability integral transform Fi to the input
random variable Xi, which results in the uniform random variable
Ui (i.e., Fi(Xi) = Ui); and (2) applying the inverse cdf Φ−1 to Ui
from which the standard normal random variable Zi is obtained
(i.e., Zi = Φ−1(Fi(Xi))). Consequently, we obtain the joint cdf F
of the NORTA random vector X as follows:
F (x1, x2, . . . , xk)
= Pr (Xi ≤ xi; i = 1, 2, . . . , k)
= Pr (Fi(Xi) ≤ Fi(xi); i = 1, 2, . . . , k)
= Pr (Ui ≤ ui; i = 1, 2, . . . , k)
= Pr


Φ−1(Ui) ≤ Φ−1(ui); i = 1, 2, . . . , k


= Pr


Zi ≤ Φ−1(ui); i = 1, 2, . . . , k


= Φk


Φ−1(u1), Φ−1(u2), . . . , Φ−1(uk);6k


= Φk


Φ−1(F1(x1)), Φ−1(F2(x2)), . . . , Φ−1(Fk(xk));6k


.

In this representation, Φk(·;6k) is the joint cdf of the standard
normal random vector Z = (Z1, Z2, . . . , Zk)′ with the correlation
matrix 6k ≡ [ρ(i, j); i, j = 1, 2, . . . , k], where ρ(i, j) is the
correlation between the random variables Zi and Zj. The function
Φk(·;6k), which is simply the k-dimensional normal copula, cou-
ples the arbitrary marginal cdfs Fi, i = 1, 2, . . . , k with the cor-
relation matrix 6k to obtain the joint distribution function F . Thus,
the dependence structure of the k-dimensional NORTAdistribution
is represented by the k-dimensional normal copula, explaining the
failure of the NORTA distribution to represent non-zero tail depen-
dencies. This result further extends to themultivariate normal dis-
tribution and the multivariate Johnson translation system, which
are the special cases of the NORTA distribution. Specifically, we ob-
tain the multivariate normal distribution by allowing each of the
NORTA components to have a univariate normal distribution; we
obtain the multivariate Johnson translation system by letting each
component of the NORTA randomvector have a univariate Johnson
distribution [69].

A solution to the problem of capturing asymmetric dependence
structures with positive tail dependencies is to replace the k-
dimensional normal copula of the NORTA random vector Xwith a
k-dimensional copula having the ability tomatch the pre-specified
values of lower-tail dependencies νL(i, j), i, j = 1, 2, . . . , k and
upper-tail dependencies νU(i, j), i, j = 1, 2, . . . , k. Section 3.2 re-
views the bivariate copulamodels that can be used for this purpose
along with their tail dependence properties (i.e., k = 2). Focusing
on random vectors with three or more components (i.e., k ≥ 3),
Section 3.3 considers the representation of tail dependencies by
multivariate input models.

3.2. Bivariate copula models

The existing literature contains numerous parametric families
of bivariate copulas, emphasizing different distributional proper-
ties [26,68,18]. In this survey, we consider the property of tail de-
pendence. Table 1 provides the bivariate copulas that can be used
for capturing this measure of dependence between any pair of ran-
dom variables.

3.2.1. Elliptically symmetric copulas
Both the normal copula and the t copula fall into the class of

elliptically symmetric copulas, which are introduced in [70] and
discussed comprehensively in [71] as the generalizations of the
normal copula to those with elliptically symmetric contours. Thus,
the elliptically symmetric copulas inherit many of the tractable
properties of the normal copula and maintain the advantage of
being easy to sample. Specifically, the bivariate normal copulawith
the dependence parameter ρ ∈ (−1, 1) is given by

C2(u1, u2; ρ) =

 Φ−1(u1)

−∞

 Φ−1(u2)

−∞

1

2π

1− ρ2

× exp

−

z21 − 2ρz1z2 + z22
2(1− ρ2)


dz1dz2,

while the bivariate t copula with the degrees of freedom d ∈
(0,∞) is given by

C2(u1, u2; ρ, d) =
 t−1d (u1)

−∞

 t−1d (u2)

−∞

1

2π

1− ρ2

×


1+

z21 − 2ρz1z2 + z22
d(1− ρ2)

−(d+2)/2

dz1dz2,

where the parameter ρ corresponds to a dependence parameter
when d > 2. An important distinction between these two cop-
ulas is that the normal copula assigns the value of zero to the
tail dependencies, while both the lower-tail dependence and the
upper-tail dependence captured by the t copula are given by
2td+1(

√
d+ 1

√
1− ρ/

√
1+ ρ), where td denotes the univariate

t distribution function with d degrees of freedom [23]. Thus, the t
copula assumes positive tail dependence even for ρ = 0, but the
symmetry in the dependence structure (i.e., the equivalence be-
tween the lower-tail dependence and the upper-tail dependence)
restricts its use for bivariate input modeling; i.e., a property that is
shared by all elliptically symmetric copulas.
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3.2.2. Archimedean copulas
A family of non-elliptical copulas with the ability to capture

asymmetric dependence structures (i.e., different values for lower-
tail and upper-tail dependencies) is the class of Archimedean copu-
las. These copulas are analytically tractable in the sense that many
of their properties can be derived using elementary calculus [66].
Specifically, an Archimedean copula with parameter θ is of the
form C2(u1, u2; θ) = φ−1(φ(u1; θ)+φ(u2; θ); θ), where φ−1(·; θ)
is the pseudo-inverse of φ(·; θ) : [0, 1] → [0,∞], which is
a continuous, strictly decreasing, and convex generator function
satisfying φ(1; θ) = 0. Different generator functions lead to dif-
ferent types of Archimedean copulas. For instance, the generator
φ(t; θ) = (t−θ

−1)/θ produces the Clayton copula C2(u1, u2; θ) =
(u−θ

1 + u−θ
2 − 1)−1/θ with 0 ≤ θ <∞, leading to a lower-tail de-

pendence of νL(1, 2) = 2−1/θ between random variables X1 and
X2 [72]. This is the copula function used for obtaining the first-row
plots of Fig. 2, while the second-row plots are obtained from the
generator function φ(t; θ) = (− log t)θ , which leads to the Gum-
bel copula C2(u1, u2; θ) = exp(−((− log u1)

θ
+ (− log u2)

θ )1/θ ),
1 ≤ θ < ∞ with an upper-tail dependence of νU(1, 2) = 2 −
21/θ [73]. Thus, neither the Clayton copula nor the Gumbel cop-
ula can simultaneously represent positive lower-tail and upper-
tail dependencies. The generator function defined as φ(t; θ) =
(t−1− 1)θ , however, captures both the lower-tail dependence and
the upper-tail dependence. More specifically, it produces the cop-
ula C2(u1, u2; θ) = (1 + ((u−11 − 1)θ + (u−12 − 1)θ )1/θ )−1 with
θ ≥ 1, leading to a lower-tail dependence of νL(1, 2) = 2−1/θ and
an upper-tail dependence of νU(1, 2) = 2 − 21/θ [18]. However,
the values νL(1, 2) and νU(1, 2) can take are limited by the copula
parameter θ .

A way to overcome this limitation of a single-parameter cop-
ula is to construct a two-parameter Archimedean copula. This
can be done by using a composite generator function of the form
φ(t; θ1, θ2) = (φ(tθ1))θ2 . For example, defining the composite
generator functionφ(t; θ1, θ2) as (t−θ1−1)θ2 with θ1 > 0 and θ2 ≥
1 leads to the two-parameter Archimedean copula C2(u1, u2; θ) =

(((uθ1
1 − 1)θ2 + (uθ1

2 − 1)θ2)1/θ1 + 1)−1/θ1 with a lower-tail de-
pendence of νL(1, 2) = 2−1/(θ1θ2) and an upper-tail dependence
of νU(1, 2) = 2 − 21/θ2 . The upper-tail dependence νU(1, 2) can
take any value between 0 and 1, providingmore flexibility than the
single-parameter Archimedean copula in modeling the amount of
dependence in the upper-quadrant tail of the underlying joint dis-
tribution function. However, the value the lower-tail dependence
νL(1, 2) can assume is restricted by the value of the upper-tail de-
pendence νU(1, 2). This modeling challenge is overcome by the
max-infinitely divisible copulas introduced in the next section.

3.2.3. Max-infinitely divisible copulas
The lower-tail dependence νL(1, 2) ∈ (0, 1] and the upper-

tail dependence νU(1, 2) ∈ (0, 1] between random variables X1
and X2 can be jointly represented by using a family of copulas of
the form C2(u1, u2) = Θ(− log K(e−Θ−1(u1), e−Θ−1(u2))), where
Θ is a Laplace transformation and K is a max-infinitely divisible
bivariate copula between random variables U1 = F1(X1) and
U2 = F2(X2). Specifically, the distribution function K is max-
infinitely divisible if Kα is a distribution function for every α >
0 [74]. Furthermore, if K is an Archimedean copula, then C2
is an Archimedean copula. For example, letting K be the one-
parameter Clayton copula with parameter θ1 ≥ 0 and allowing
Θ to be the Laplace transformation satisfying Θ(t) = 1 − (1 −
e−t)1/θ2 with parameter θ2 ≥ 1 results in the two-parameter
copula of the form C2(u1, u2; θ1, θ2) = φ−1(φ(u1; θ1, θ2) +
φ(u2; θ1, θ2); θ1, θ2), where φ(t; θ1, θ2) = (1 − (1 − t)θ2)−θ1 −

1 [26]. The application of Definition 2 to this copula function results
in the lower-tail dependence νL(1, 2) = 2−1/θ1 and the upper-
tail dependence νU(1, 2) = 2 − 21/θ2 . Thus, parameter θ1 (θ2)
is used only for adjusting the lower-tail (upper-tail) dependence
νL(1, 2) (νU(1, 2)); i.e., the use of this two-parameter Archimedean
copula for bivariate input modeling allows both the lower-tail
dependence and the upper-tail dependence to assume arbitrary
values in [0, 1]. Further discussion on two-parameter bivariate
copulas can be found in [26].

3.3. Multivariate copula models

In this section, we discuss the extension of the bivariate cop-
ula models presented in Section 3.2 to three or more random
variables. Specifically, Section 3.3.1 reviews the multivariate ellip-
tical copulas; Section 3.3.2 presents the exchangeable multivari-
ate Archimedean copulas; Section 3.3.3 provides the mixtures of
max-infinitely divisible copulas; and finally Section 3.3.4 reviews
the vine specifications that are known to be the most flexible mul-
tivariate copula models with the ability to represent asymmetric
dependence structures with positive tail dependencies.

3.3.1. Multivariate elliptical copulas
Twowidely used copulas for representing the joint distribution

of three or more input random variables are the normal copula
associated with the multivariate normal distribution and the t
copula associated with the multivariate t distribution. Each of
these copulas is a member of the elliptical copula family that is
particularly easy to use for driving stochastic simulations with
multiple inputs. Specifically, the multivariate normal copula with
the positive definite correlation matrix 6k ≡ [ρ(i, j); i, j = 1, 2,
. . . , k] is given by

Ck(u1, u2, . . . , uk;6k)

= Φk

Φ−1(u1), Φ−1(u2), . . . , Φ−1(uk);6k


,

=

 Φ−1(u1)

−∞

. . .

 Φ−1(uk)

−∞

1
(2π)k/2|6k|

1/2

× exp

−

1
2
z′6−1k z


dz1 . . . dzk,

where z denotes the vector (z1, z2, . . . , zk)′. The limitation of
this multivariate copula in representing positive tail dependence
becomes apparent in modeling investor’s default risk [75,76]. For
further discussion on the limitations of the multivariate normal
copula, we refer the reader to Lipton and Rennie [77], Donnelly and
Embrechts [78] and Brigo et al. [79].

The multivariate t copula with the parameters 6k ≡ [ρ(i, j);
i, j = 1, 2, . . . , k] and d ∈ (0,∞) is given by

Ck(u1, u2, . . . , uk;6k, d)
= t


t−1d (u1), t−1d (u2), . . . , t−1d (uk);6k, d


,

=

 t−1d (u1)

−∞

. . .

 t−1d (uk)

−∞

Γ
 d+k

2


|6k|

−1/2

Γ
 d
2


(dπ)k/2

×


1+

1
d
z′6−1k z

− d+k
2

dz1 . . . dzk.

Even for ρ(i, j) = 0, the multivariate t copula represents sym-
metric tail dependencies νL(i, j) = νU(i, j) = 2td+1(−

√
d+ 1√

1− ρ(i, j)/
√
1+ ρ(i, j)), as can be deduced from Table 1 by fo-

cusing on the interaction between random variables Xi and Xj.
Thus, the multivariate t copula fails to capture asymmetric depen-
dence structures with different values for lower-tail and upper-
tail dependencies. In the following section, this limitation of the
multivariate t copula is overcome by using the exchangeable
Archimedean copula for multivariate input modeling.
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We conclude this section by noting that the class of the ellipti-
cally symmetric copulas includes the logistic copula [71], the ex-
ponential power copula [80], and the generalized t copula [81,82].
However, not all generalized t copulas are elliptically symmetric;
they allow for different degrees of freedom and different types of
dependencies among the components of the random vector. We
refer the reader to Mendes and Arslan [82] for the characterization
of the tail dependencies that can be captured by the generalized t
copulas.

3.3.2. Exchangeable multivariate Archimedean copulas
The extension of the Archimedean copula introduced in

Section 3.2 for bivariate input modeling is the k-dimensional
Archimedean copula of the following form:
Ck(u1, u2, . . . , uk; θ)

= φ−1 (φ(u1; θ)+ φ(u2; θ)+ · · · + φ(uk; θ); θ) .

φ(·; θ) : [0, 1] → [0,∞) is a continuous, strictly decreasing
function that satisfies φ(0; θ) = ∞ and φ(1; θ) = 0. Additionally,
φ−1(·; θ) is a completely monotonic function on [0,∞) (i.e.,
(−1)ℓ∂ℓφ−1(t; θ)/∂tℓ ≥ 0 for all t ∈ (0,∞) and ℓ = 0, 1,
. . . ,∞) [83]. This is a necessary and sufficient condition for the
function Ck(·; θ) to define a copula, and this condition is satisfied
by both the k-dimensional Clayton copula and the k-dimensional
Gumbel copula.

Specifically, the pseudo-inverse of the generator function of
the Clayton copula; i.e., φ−1(t; θ) = (1 + t)−1/θ is completely
monotonic on [0,∞). Therefore, the k-dimensional Clayton copula
with θ > 0 is given by

Ck(u1, u2, . . . , uk; θ) =

u−θ
1 + u−θ

2 + · · · + u−θ
k − k+ 1

−1/θ
.

Due to its ability to represent the joint probability of compo-
nent random variables taking very small values together, Tehrani
et al. [16] use this copula function to model dependent disruptions
in supply chains caused by catastrophic events. Wagner et al. [15],
on the other hand, use the multivariate Clayton copula for inves-
tigating the impact of positive default dependencies on the de-
sign of supplier portfolios. However, the k-dimensional Clayton
copula assumes a lower-tail dependence of 2−1/θ and an upper-
tail dependence of zero between all pairs of its components (i.e.,
νL(i, j) = 2−1/θ and νU(i, j) = 0 for i = 1, 2, . . . , k and j = i, i+1,
. . . , k), limiting its ability to perform flexible dependence model-
ing.

Similarly, the pseudo-inverse of the generator function of the
Gumbel copula; i.e., φ−1(t; θ) = exp(−t1/θ ) is completely mono-
tonic on [0,∞). Thus, the two-dimensional Gumbel copula of Sec-
tion 3.2 is generalized to the following k-dimensional copula with
θ ≥ 1:
Ck(u1, u2, . . . , uk; θ)

= exp

−

(− log u1)

θ
+ (− log u2)

θ
+ · · · + (− log uk)

θ
1/θ

.

The functional form of this copula leads to the tail dependencies of
νL(i, j) = 0 and νU(i, j) = 2 − 21/θ for i = 1, 2, . . . , k and j = i,
i+ 1, . . . , k.

The bivariate two-parameter Archimedean copulas can also
be generalized to be the k-dimensional Archimedean copulas.
As an example, we consider the composite generator function
φ(t; θ1, θ2) = (t−θ1 − 1)θ2 with θ1 > 0 and θ2 ≥ 1. Since the
pseudo-inverse of this generator function is completelymonotonic
on [0,∞), we obtain the following k-dimensional copula:
Ck(u1, u2, . . . , uk; θ1, θ2)

=


(u−θ1

1 − 1)θ2 + (u−θ1
2 − 1)θ2 + · · · + (u−θ1

k − 1)θ2
1/θ2
+ 1

−1/θ1
.

Therefore, the tail dependencies νL(i, j) and νU(i, j) are, respec-
tively, identified as 2−1/(θ1θ2) and 2− 21/θ2 for i = 1, 2, . . . , k and
j = i, i+ 1, . . . , k.
3.3.3. Mixtures of max-infinitely divisible copulas
A flexible bivariate copula with the ability to represent any

pair of lower-tail and upper-tail dependencies is themax-infinitely
divisible bivariate copula (Section 3.2). Thus, a natural question
to ask is whether it is possible to build on the mixtures of
max-infinitely divisible bivariate copulas so as to construct a
k-dimensional copula that would match arbitrary values of
νL(i, j) > 0 and νU(i, j) > 0 for i = 1, 2, . . . , k and j = i, i + 1,
. . . , k. While the answer to this question is no, there exists a
multivariate copula function, Ck(F1(x1), F2(x2), . . . , Fk(xk)) from
the family of extreme value copulas, which captures arbitrary
values for the positive upper-tail dependencies among the random
variables X1, X2, . . . , Xk, while modeling the positive lower-tail
dependencies with limited flexibility:

Θ


−

k
i=1

k
j>i

log Ki,j(e−Θ−1(Fi(xi))/(ϑi+k−1),

e−Θ−1(Fj(xj))/(ϑj+k−1))+

k
i=1

ϑi

ϑi + k− 1
Θ−1(Fi(xi))


.

For this representation, Joe [26] provides the interpretation that
Laplace transformation Θ represents a minimal level of pair-
wise global dependence, bivariate copula Ki,j adds individual pair-
wise dependence beyond the global dependence, and parameters
ϑi, i = 1, 2, . . . , k lead to bivariate and multivariate asymme-
try. Usually, the ϑi, i = 1, 2, . . . , k are nonnegative, although
they can be negative if some of the copulas Ki,j correspond to inde-
pendence. What is important to recognize here is that the Laplace
transformation Θ limits our ability to represent arbitrary values
for νL(i, j) > 0 and νU(i, j) > 0. This can be shown by selecting the
Galambos copula for Ki,j; i.e.,

Ki,j(ui, uj; θi,j)

= uiuj exp


(− log ui)
−θi,j + (− log uj)

−θi,j
−1/θi,j

with 0 ≤ θi,j < ∞ [84], and by choosing the Laplace transforma-
tion Θ as gamma type; i.e., Θ(s) = (1 + s)−1/δ with parameter
δ ≥ 0. In this case, we obtain an upper-tail dependence of

νU(i, j) =

(ϑi + k− 1)θi,j +


ϑj + k− 1

θi,j−1/θi,j
and a lower-tail dependence of

νL(i, j) =

2−


(ϑi + k− 1)θi,j +


ϑj + k− 1

θi,j−1/θi,j−1/δ
for i = 1, 2, . . . , k and j = i, i + 1, . . . , k. The parameter θi,j
is specific to the joint distribution of random variables Xi and
Xj, while global parameter δ is shared among all k components
Xi, i = 1, 2, . . . , k. Therefore, we can represent any arbitrary value
of upper-tail dependence between any pair of component random
variables, but the global parameter δ limits our ability to have the
same level of flexibility in representing lower-tail dependence.

To conclude, the use of mixtures of max-infinitely divisible
copulas as well as multivariate Archimedean copulas for input
modeling allows the representation of both the lower-tail depen-
dence and the upper-tail dependence among the components of
the random vector. However, the dependence structures captured
by these copula families are restricted by the use of insufficient
number of copula parameters. Although this particular limitation
is overcome by the vine copulawe present in the following section,
the copula-vinemethod characterizes the dependence structure of
the random vector using a mix of bivariate tail dependencies and
bivariate conditional tail dependencies. Thus, in low-dimensional
settings the simulation practitioner, who is interested in generat-
ing random vectors with pre-specified (unconditional) pair-wise
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lower-tail and upper-tail dependencies, might find the use of the
mixtures of max-infinitely divisible copulas of this section more
convenient than the vines of the following section.

3.3.4. Vines
A vine is a graphical model introduced in [85], studied

extensively in [86–89], and described comprehensively in [90] for
constructingmultivariate distributions using amix of bivariate and
conditional bivariate distributions of uniform random variables.
Specifically, a k-dimensional vine is a nested set of k− 1 spanning
trees where the edges of tree j are the nodes of tree j+ 1, starting
with a tree on a graph whose nodes are the k component random
variables Xi, i = 1, 2, . . . , k. A regular vine is, on the other hand, a
vine in which two edges in tree j are joined by an edge in tree j+ 1
only if they share a common node [90, Section 4.4].

Fig. 3 presents a four-dimensional vine, which is a nested set
of three spanning trees. Specifically, the first tree of this regular
vine is the collection of three bivariate distributions; i.e., the
joint distribution of the component random variables X1 and X2,
the joint distribution of X2 and X3, and the joint distribution of
X3 and X4. Since the solid line between X1 and X2 links these
random variables, we associate this solid line with the joint
distribution of X1 and X2, and label it as ‘‘1, 2’’, implying the
copula density function c2(F1(x1), F2(x2)). Similarly, we denote
the solid line between X2 and X3 by ‘‘2, 3’’ associated with the
copula density function c2(F2(x2), F3(x3)), anduse ‘‘3, 4’’ for the line
between X3 and X4 to correspond to the copula density function
c2(F3(x3), F4(x4)). The second tree, on the other hand, contains
two bivariate distributions, which are the joint distribution of
X1|X2 and X3|X2 and the joint distribution of X2|X3 and X4|X3 with
the respective copula density functions c2(F1|2(x1|x2), F3|2(x3|x2))
and c2(F2|3(x2|x3), F4|3(x4|x3)). Therefore, in Fig. 3 we mark the
lines ‘‘. . . ’’ of the second tree by ‘‘1, 3|2’’ and ‘‘2, 4|3’’. Finally,
the third tree corresponds to the joint distribution of X1|X2, X3
and X4|X2, X3 represented by the line ‘‘–..–’’, which is further
labeled by ‘‘1, 4|2, 3’’ implying the copula density function
c2(F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)).

The two edges of a tree in Fig. 3 are joined only if they share
a common component random variable to obtain an edge of the
following tree. For example, the edges ‘‘1, 2’’ and ‘‘2, 3’’ of the
first tree share the node associated with the random variable X2
and they are combined for the edge ‘‘1, 3|2’’ of the second tree,
while the edge ‘‘2, 4|3’’ of the second tree is obtained from the
edges ‘‘2, 3’’ and ‘‘3, 4’’ sharing the node of the random variable X3.
Similarly, the edges ‘‘1, 3|2’’ and ‘‘2, 4|3’’, which share the nodes
associated with the random variables X2 and X3 in the second tree,
are joined by the edge ‘‘1, 4|2, 3’’ of the third tree in a manner that
is consistent with the definition of a regular vine.

More specifically, the regular vine in Fig. 3 is known as the
drawable vine (D-vine). Its use for multivariate input modeling
allows the four-dimensional copula density function to be
represented by the product of the six bivariate linking copulas
illustrated in Fig. 3; i.e.,

c4 (F1(x1), F2(x2), F3(x3), F4(x4))
= c2 (F1(x1), F2(x2))× c2 (F2(x2), F3(x3))
× c2 (F3(x3), F4(x4))× c2


F1|2(x1|x2), F3|2(x3|x2)


× c2


F2|3(x2|x3), F4|3(x4|x3)


× c2


F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)


.

The bivariate linking copulas of the first row appear in the first
tree of Fig. 3, while the bivariate linking copulas of the next
two rows come from the second and third trees. Furthermore,
this characterization of the four-dimensional random vector is
easily generalized to a k-dimensional random vector; i.e., the joint
Fig. 3. A D-vine specification on four dependent random variables.

Fig. 4. A C-vine specification on four dependent random variables.

Fig. 5. An example of a non-regular vine on four dependent random variables.

density function of the k-dimensional D-vine copula is obtained
as a factorization of the univariate marginal density functionsk

i=1 fi(xi) and the product of the bivariate (unconditional) linking
copulas

k−1
i=1

c2 (Fi(xi), Fi+1(xi+1))

of the first tree and the bivariate (conditional) linking copulas

k−1
j=2

k−j
i=1

c2(Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1),

Fi+j|i+1,...,i+j−1(xi+j|xi+1, . . . , xi+j−1))

of the remaining k − 2 trees. Representing the dependence
structure of the k-dimensional random vector via these (k−1)(k−
2) bivariate copulas instead of a single k-dimensional copula leads
to computational tractability in the development of data-fitting
algorithms in Section 4, goodness-of-fit tests in Section 5, and
sampling procedures in Section 6 for copula-based multivariate
input modeling.

Nevertheless, no unique regular vine exists for representing the
dependence structure of a random vector. Fig. 4 presents another
type of four-dimensional regular vine, the canonical vine (C-vine),
which is often used for multivariate input modeling. Fig. 5, on
the other hand, provides an example of a four-dimensional non-
regular vine. The comparison of this vine to the regular vines in
Figs. 3 and 4 shows that the dependence structure of the regular
vine is represented in terms of unconditional and conditional
dependence measures that are algebraically independent of each
other; i.e., they do not need to satisfy any algebraic constraints for
positive definiteness. Therefore, all assignments of the numbers
between −1 and 1 to the edges of the regular vine are consistent
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in the sense that there is a joint distribution realizing these
dependence measures.

A close look at the existing literature on vines reveals C-vine and
D-vine to be the widely used regular vines for multi-dimensional
dependence modeling. In recent years, the theory on vines has
advanced considerably, accompanied by the development of
several packages released by R software. In particular, we refer
the reader to the recently released software packages CDVine,
Vines, and Copula for statistical inference, distribution function
evaluation, and simulation of C-vine and D-vine copulas. However,
even if we narrow our choice of copulas to a C-vine and a D-vine, it
is not clear which one of these vine structures would best capture
the underlying dependence structure. Fortunately, this modeling
challenge can be overcome by using the lattice-based algorithm
of Maugis and Guegan [91] to find the vine copula representation
that best models the dependence structure of the random vector
of interest.

Joe et al. [92] show that vine copulas can cover a wide range
of tail dependencies by choosing the bivariate linking copulas
appropriately. However, the information set used to construct a
vine copula is composed of a mix of unconditional bivariate tail
dependencies and conditional bivariate tail dependencies. This
raises the question of what the implied unconditional bivariate
tail dependencies are for the given conditional tail dependencies.
To explain this issue in detail, we consider the use of vines for
constructing a three-dimensional randomvectorwith components
X1, X2, and X3. If we are given bivariate joint cdfs F(X1, X2)
and F(X2, X3) and the two-dimensional copula C2 measuring the
amount of conditional dependence between X1|X2 and X3|X2, then
we first obtain the conditional marginal distributions F1|2 and
F3|2 of the random variables X1|X2 and X3|X2, respectively, from
∂F(x1, x2)/∂x2 and ∂F(x2, x3)/∂x2. Then, we use these conditional
marginal distributions and the copula C2 together with the
marginal distribution F2 of the random variable X2 to build the
three-dimensional distribution

F(x1, x2, x3) =
 x2

−∞

C2(F1|2(x1|x), F3|2(x3|x))dF2(x).

While the tail dependence parameters are explicitly chosen for
the bivariate copulas, which link the random variables X1 and
X2, the random variables X2 and X3, and the conditional random
variables X1|X2 and X3|X2, the tail dependence between random
variables X1 and X3 are not explicitly defined, even though it can be
obtained from the joint cdf F . Under certain regularity conditions,
Joe [26] proves the existence of an upper-tail dependence between
X1 and X3 when both the bivariate copula linking X1 and X2 and the
bivariate copula linking X2 and X3 have upper-tail dependencies.
This result is further shown to hold for a k-dimensional random
vector [92].

An alternative to the representation of the dependence
structure of a multivariate random vector in terms of bivariate
tail dependencies is to measure the multivariate tail dependence.
Joe et al. [92] define the lower-tail dependence of the k-
dimensional copula Ck as limu↓0 Ck(u, u, . . . , u)/u and the upper-
tail dependence as limu↓0 C̄k(1 − u, 1 − u, . . . , 1 − u)/u with C̄k
the survival function of Ck. It is shown that the multivariate tail
dependence function of a vine copula can be expressed recursively
by the tail dependence and conditional tail dependence functions
of lower-dimensional margins. Also, a vine copula is identified as
tail dependent if all the bivariate linking copulas associated with
the first tree of the vine (i.e., baseline copulas) are tail dependent.
More specifically, if the baseline copulas are all lower-tail (upper-
tail) dependent, then the vine copula is lower-tail (upper-tail)
dependent provided that [0, 1]2 is the support of the bivariate
linking copulas. However, if some of the baseline copulas are tail
independent, then the vine copula is tail independent.
4. Fitting methods

In this section, we assume the availability of multivariate
input data and review the methods of parameter estimation for
the copulas of Section 3. Specifically, Section 4.1 discusses the
use of frequentist methods (i.e., the methods that only rely on
the available input data), while Section 4.2 reviews the limited
literature on Bayesian methods (i.e., the methods that combine
the input data with the prior information available about the joint
distribution parameters) for copula-parameter estimation.

4.1. Frequentist method

This section reviews the methods of Maximum Likelihood
Estimation (MLE) and the Inference For Margins (IFM) to estimate
the parameters of the copula-based input models.

The application of the MLE method for parameter estimation
requires the maximization of the joint likelihood function of the
available input data xi,t , i = 1, 2, . . . , k, t = 1, 2, . . . , n of length
n with respect to the parameters of the joint density function. The
utilization of Sklar’s marginal-copula representation for the joint
density function of the k-dimensional random vector X = (X1, X2,
. . . , Xk)

′ with marginal-distribution parameter vectors 9i, i = 1,
2, . . . , k and the copula parameter vector ϒ leads to the following
log-likelihood function, where x denotes the vector of the available
input data:

L(91, 92, . . . , 9k, ϒ|x) =
k

i=1

n
t=1

log fi(xi,t;9i)

+

n
t=1

log ck(F1(x1,t;91),

F2(x2,t;92), . . . , Fk(xk,t;9k);ϒ).

The maximum likelihood estimators 9̃
MLE
i , i = 1, 2, . . . , k, and

ϒ̃
MLE

are obtained from the maximization of this log-likelihood
function; i.e.,
9̃

MLE
1 , 9̃

MLE
2 , . . . , 9̃

MLE
k , ϒ̃

MLE
′

= argmax
91,92,...,9k,ϒ

L(91, 92, . . . , 9k, ϒ|x).

Under the regularity conditions of the asymptotic likelihood the-
ory [93], 9̃

MLE
i , i = 1, 2, . . . , k, and ϒ̃

MLE
are strongly consistent

and asymptotically normal; i.e., as n→∞, the random vec-
tor
√
n((9̃

MLE
1 , 9̃

MLE
2 , . . . , 9̃

MLE
k , ϒ̃

MLE
)′ − (9∗1, 9∗2, . . . , 9∗k , ϒ∗)′)

converges to be normally distributed with the zero mean vec-
tor and the variance–covariance matrix τ−1(9∗1, 9∗2, . . . , 9∗k , ϒ∗),
where 9∗i , i = 1, 2, . . . , k, and ϒ∗ are the true marginal-distribu-
tion and copula parameter vectors and τ(9∗1, 9∗2, . . . , 9∗k , ϒ∗) is
the Fisher’s information matrix [94].

Despite the wide use of the MLE method for parameter esti-
mation, the simultaneous estimation of the marginal-distribution
parameters and the copula parameters gets computationally de-
manding with k, the number of component random variables.
Fortunately, the log-likelihood function L(91, 92, . . . , 9k, ϒ|x)
can be partitioned into terms that separately relate to the
component marginal density functions and the copula density
function. This makes it possible to estimate the marginal distri-
bution parameters and the copula parameters in two stages. The
resulting method of parameter estimation is known as the IFM
method [26, Chapter 10]. First, we independently estimate the
marginal distribution parameters 9̃

IFM
i , i = 1, 2, . . . , k from the

log-likelihood functions associatedwith themarginal distributions
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Li(9i|xi) =
n

t=1 log fi(xi,t;9i), i = 1, 2, . . . , k; i.e., 9̃
IFM
i =

argmax9i
Li(9i|xi) for i = 1, 2, . . . , k. Then, we estimate the cop-

ula parameter vector ϒ̃
IFM

from the part of the log-likelihood func-
tion that is associated with the copula density function; i.e.,

Lc(ϒ|91, 92, . . . , 9k, x)

=

n
t=1

log ck

F1(x1,t;91), F2(x2,t;92), . . . , Fk(xk,t;9k);ϒ


,

by using the marginal distribution parameter estimates 9̃
IFM
i ,

i = 1, 2, . . . , k obtained in the first stage; i.e., ϒ̃
IFM
= argmaxϒ Lc

(ϒ|9̃
IFM
1 , 9̃

IFM
2 , . . . , 9̃

IFM
k , x). However, the use of a copula-vine

specification to construct a k-dimensional input model as a nested
set of k − 1 spanning trees further decomposes the estimation of
the copula parameter vector into k− 1 stages.

The IFM estimators 9̃
IFM
i , i = 1, 2, . . . , k, and ϒ̃

IFM
are gener-

ally not equivalent to the MLE estimators 9̃
MLE
i , i = 1, 2, . . . , k,

and ϒ̃
MLE

except for the normal copula with the normally dis-
tributed marginal distributions. Nevertheless, Joe [26] proves that
the IFM estimators are also strongly consistent and asymptotically
normal under certain regularity conditions; i.e.,

√
n((9̃

IFM
1 , 9̃

IFM
2 ,

. . . , 9̃
IFM
k , ϒ̃

IFM
)′ − (9∗1, 9∗2, . . . , 9∗k , ϒ∗)′) → N(0,G−1(9∗1, 9∗2,

. . . , 9∗k , ϒ∗)) with G(91, 92, . . . , 9k, ϒ) the Godambe informa-
tion matrix. If we define S(91, 92, . . . , 9k, ϒ) as a vector whose
transpose is the collection of ▽9i

Li(9i|xi), i = 1, 2, . . . , k, and
▽ϒ Lc(ϒ|91, 92, . . . , 9k, x), then the Godambe information ma-
trix G(91, 92, . . . , 9k, ϒ) is given by D−1V(D−1)′, where D =
E(▽S(91, 92, . . . , 9k, ϒ)/ ▽ (91, 92, . . . , 9k, ϒ)) and V = E(S
(91, 92, . . . , 9k, ϒ)S(91, 92, . . . , 9k, ϒ)′) [44]. However, it is
well known that the estimators obtained from the entire log-
likelihood function are the most efficient estimators, in that they
attain theminimum asymptotic variance bound, while the estima-
tors obtained from the multi-stage maximum-likelihood estima-
tion do not attain this bound. Furthermore, an inappropriate choice
of models for the marginal distributions may have detrimental ef-
fects on the estimation of the copula parameter vector [95]. There-
fore, the IFM estimators 9̃

IFM
i , i = 1, 2, . . . , k, and ϒ̃

IFM
pro-

vide good starting points for obtainingmore efficient estimators by
solving L(91, 92, . . . , 9k, ϒ|x) for both themarginal-distribution
parameter vectors 9i, i = 1, 2, . . . , k and the copula parameter
vector ϒ in a single stage.

4.2. Bayesian method

An alternative method to the use of the frequentist MLE
and IFM methods for parameter estimation is the Bayesian
method. The Bayesian method starts with the determination
of a joint prior density function that quantifies the initial
uncertainty about the multivariate distribution parameters. Then,
the joint prior distribution is updated with the joint likelihood
function of the available historical data, and we obtain the joint
posterior distribution that captures the uncertainty associated
with the multivariate distribution parameters. The derivation of
the posterior density function generally requires the computation
of high-dimensional integrals, limiting the use of the Bayesian
method for parameter estimation in multi-dimensional settings.
However, the advancement of the Markov Chain Monte Carlo
(MCMC) method in recent years has made it possible to estimate
distribution parameters with any posterior density function. In
this section, we review Bayesian estimation using the MCMC
method to obtain parameter estimates for three copula models:
the multivariate normal copula, the multivariate t copula, and
the D-vine built on bivariate t copulas. Although the multivariate
normal copula does not capture any tail dependence, we describe
a Bayesian estimation for this copula due to its relation to the
multivariate t copula.

Dalla Valle [96] builds a Bayesian model to estimate the
correlation matrix 6k of the k-dimensional normal copula density
function with a likelihood function of the following form, where
xt is the vector of input data xi,t , i = 1, 2, . . . , k and Ik is the k-
dimensional identity matrix:

|6k|
−n/2 exp


−

1
2

n
t=1

x′t

6−1k − Ik


xt


.

Dalla Valle [96] uses the Inverse Wishart density function as
the conjugate prior for the correlation matrix 6k; i.e., 6k ∼

Inverse Wishart(α, B) [97]. The parameters of this conjugate prior
are chosen as α ≡ k + 1 and B ≡ [diag(γi); i = 1, 2, . . . , k],
where γi is the gamma random variable whose scale and shape
parameters are 0.001 to minimize the impact of the prior density
function on the posterior density function. Therefore, the posterior
density function is identified as the Inverse Wishart with param-
eters n/2 + α and B +

n
t=1 xtx

′
t/2. Dalla Valle [96] obtains an

estimate of 6k from this posterior density function via the use of
a Gibbs sampler algorithm, which is a widely used MCMC method
that requires the sampling of6k from its conditional posterior den-
sity function. The key idea behind anyMCMCmethod is to simulate
a randomwalk on the entire parameter space that converges to the
joint posterior density function of the parameters [98]. Then, the
parameters sampled in each replication of the Gibbs sampler algo-
rithm are averaged to estimate the copula parameters.

Another distribution Dalla Valle [96] considers is the k-
dimensional t copula with a likelihood function given by
Γ


d+ k
2

n 
Γ


d+ 1
2

−kn 
Γ


d
2

n(k−1)

× |6k|
−n/2

n
t=1


1+

x′t6
−1
k xt
d

− d+k
2 n

t=1

k
i=1


1+

x2it
d

 d+1
2

.

Similar to the selection of a joint prior density function for the
normal copula parameters, Dalla Valle chooses the InverseWishart
priorwith parametersα andB for6k of the k-dimensional t copula.
Additionally, the truncated Poisson distribution with parameter
h is selected as a prior for d. Consequently, the posterior density
function of 6k is obtained as

|6k|
−

n
2−α+ k+1

2

n
t=1


1+

x′t6
−1
k xt
d

− d+k
2

exp

−tr(B6−1k )


,

while the posterior density function of d is given by
Γ


d+ k
2

n 
Γ


d+ 1
2

−kn 
Γ


d
2

n(k−1)

×

n
t=1


1+

x′t6
−1
k xt
d

 d+k
2 n

t=1

k
i=1


1+

x2it
d

 d+1
2 hd

d!
.

Both of these posterior density functions are in non-standard
forms; therefore, Dalla Valle [96] resorts to the use of an
MCMC method known as the Metropolis Hastings algorithm for
estimating 6k and d. The implementation details of this algorithm
can be found in [98].

Czado and Min [99], on the other hand, consider the Bayesian
estimation of the parameters of a D-vine built on bivariate
t copulas with the following key assumption: The degrees of
freedom parameter, the dependence parameters of the baseline
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copulas, and the conditional dependence parameters of the
conditional bivariate linking copulas are independent. Czado and
Min use a uniform prior in the interval (1, 100) for the degrees of
freedom parameter and a uniform prior in the interval (−1, 1) for
each of the dependence parameters. However, the resulting joint
posterior density function of the copula parameters does not have
awell-defined form; therefore, the authors also use theMetropolis
Hastings algorithm for estimating the vine copula parameters.
Details of implementing this algorithm for the D-vine are available
in [99].

5. Goodness-of-fit tests

The next step in multivariate input modeling is to assess the
goodness of the estimated copula parameters in capturing the joint
distributional characteristics of the available input data. A close
look at the existing literature reveals several goodness-of-fit tests
that have been built specifically for copulas; we refer the reader to
Berg [100] and Genest et al. [101] for a comprehensive review as
well as a comparison of these tests. In this section, we review only
two of these tests; i.e., a test that is based on the empirical copula
and a test proposed by Genest et al. [101] building on a variation of
Rosenblatt’s transformation. The reason for considering only these
tests in our survey is that they work for any copula function and
they are not sensitive to the grouping of the data. Genest et al. [101]
call the tests with such characteristics the ‘‘blanket’’ tests. Among
all blanket tests considered in [101], the ones that are reviewed
here standout as the best blanket tests that have been developed
for copula models.

To focus our presentation on the fit of the copula itself and avoid
any distributional assumptions about the component marginal
distributions, we consider the ranks of the historical data in this
section and denote them by bi,t , i = 1, 2, . . . , k, t = 1, 2, . . . ,
n. Therefore, we define a pseudo-observation, ui,t by bi,t/(n + 1).
The pseudo-observations ui,t , i = 1, 2, . . . , k, t = 1, 2, . . . , n
can be interpreted as a sample from the underlying k-dimensional
copula Ck, whose empirical counterpart Ck,n(u) with u = (u1, u2,
. . . , uk)

′
∈ [0, 1]k is given by

Ck,n(u) =
1
n

n
t=1

I(u1,t ≤ u1, u2,t ≤ u2, . . . , uk,t ≤ uk),

where I represents the indicator function that equals 1 if its
argument is true, and 0 otherwise [102]. It is important to note
that the pseudo-observations are not mutually independent and
they are only approximately uniform on [0, 1]. Any inference
procedure based on the pseudo-observations should take these
features into account. A detailed discussion about the significance
of these properties of the pseudo-observations on the performance
of the goodness-of-fit tests is available in [101].

Building on the empirical copula Ck,n, Genest and Rémil-
lard [103] propose the use of the rank-based version of Cramér von
Mises test statistic,

Sn =

[0,1]k

n

Ck,n(u)− Ck(u; ϒ̂n)

2
dCk,n(u)

and the rank-based version of the Kolmogorov–Smirnov test
statistic,

Tn = sup
u∈[0,1]k

√n

Ck,n(u)− Ck(u; ϒ̂n)

 ,
where Ck(·; ϒ̂n) denotes the k-dimensional copula with the
dependence parameter vector ϒ̂n estimated from multivariate
data of length n. Small values of Sn and Tn indicate the goodness
of the copula fit. The approximate p values of these tests can be
obtained from their limiting distributions. However, in practice
the limiting distributions of Sn and Tn depend on the copula
family of interest and the unknown dependence parameter vector
ϒ. Therefore, the common practice is to obtain the asymptotic
distribution of these tests and the approximate p values via Monte
Carlo methods [101]. A parametric bootstrap procedure, which
can be used for this purpose, is available in Appendix A of Genest
et al. [101], while the consistency and the asymptotic convergence
of these tests are proven in [103].

The second goodness-of-fit test we present for copula-based
input modeling is based on Rosenblatt’s transformation [104],
which is a general procedure used in simulation for decompos-
ing a random vector with a given distribution into mutually inde-
pendent components that are uniformly distributed on the unit in-
terval. Specifically, Rosenblatt [104] transforms the random vector
U = (U1,U2, . . . ,Uk)

′
∈ [0, 1]k to the random vector R(U) =

(Y1, Y2, . . . , Yk)
′
∈ [0, 1]k with Y1 = U1 and

Yi =


∂ i−1Ck (U1,U2, . . . ,Ui−1,Ui, 1, . . . , 1;ϒ)


/ (∂U1∂U2 · · · ∂Ui−1)

∂ i−1Ck (U1,U2, . . . ,Ui−1, 1, 1, . . . , 1;ϒ)

/ (∂U1∂U2 · · · ∂Ui−1)

for i = 2, 3, . . . , k. The use of this probability integral transform of
the k-dimensional copula Ck(·;ϒ) for measuring the goodness of a
copula fit leads to the interpretation that the pseudo-observations
yt = (y1,t , y2,t , . . . , yk,t)′, t = 1, 2, . . . , n, which are obtained
from R(ut), t = 1, 2, . . . , n with ut = (u1,t , u2,t , . . . , uk,t)

′,
correspond to a sample from the independence copula C⊥(u) (i.e.,
C⊥(u1, u2, . . . , uk) = u1u2 · · · uk) [101].

Building on this result, Genest et al. [101] devise two tests that
are based on the empirical distribution function

Dk,n(u) =
1
n

n
t=1

I(yt ≤ u)

associated with the pseudo-observations yt , t = 1, 2, . . . , n. Any
discrepancy between this empirical copula (Dk,n(u)) and the inde-
pendence copula (C⊥(u)) is interpreted as an indication of a lack
of fit. The statistics of the resulting Cramér von Mises tests are as
follows:

S(B)
n = n


[0,1]k


Dk,n(u)− C⊥(u)

2 du,

=
n
3k
−

1
2k−1

n
t=1

k
i=1

(1− y2i,t)

+
1
n

n
s=1

n
t=1

k
i=1

(1−max(yi,s, yi,t)).

S(C)
n = n


[0,1]k


Dk,n(u)− C⊥(u)

2 dDk,n(u),

=

n
t=1


Dk,n(yt)− C⊥(yt)

2
.

We refer the reader to Appendix D of Genest et al. [101] for a para-
metric bootstrap procedure using the test statistics S(B)

n and S(C)
n to

measure the goodness of a copula fit.
A comprehensive experimental study conducted by Genest

et al. [101] shows that the test statistics based on the Cramér–von
Mises distance perform better than the test statistics based on
the Kolmogorov–Smirnov distance; i.e., the test statistics Sn, S

(B)
n ,

and S(C)
n outperform the test statistic Tn. Furthermore, among the

test statistics based on Cramér–von Mises distance, Sn and S(B)
n are

the most promising tests for various copula models including the
normal copula, the t copula, the Clayton copula, and the Gumbel
copula. Recent applications of these test statistics to financial data
can be found in [105].
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6. Sampling

We discuss the well known methods of generating random
vectors frommultivariate normal and t copulas in Section 6.1, from
Archimedean copulas via conditional sampling in Section 6.2, and
from C-vine and D-vine specifications in Section 6.3.

6.1. Sampling from the normal copula and the t copula

The well known approach to the sampling of a uniform ran-
dom vector (U1,U2, . . . ,Uk)

′ from the k-dimensional normal cop-
ula with correlation matrix 6k is based on using the Cholesky
decomposition for variate generation [106]. Specifically, we first
find the Cholesky decomposition of the correlation matrix 6k;
i.e., 6k = AA′. Then, we generate k independent standard nor-
mal random variates zi, i = 1, 2, . . . , k; construct vector z =
(z1, z2, . . . , zk)′; and set x = (x1, x2, . . . , xk)′ to Az. Finally, we ap-
ply the transformation ui = Φ(xi) for i = 1, 2, . . . , k.

We can similarly sample a uniform random vector from the k-
dimensional t copula with parameters 6k and d. First, we obtain
the vector x as described above for the k-dimensional normal
copula. Then, we generate a random variate s from a chi-square
distribution with d degrees of freedom and set m =

√
(d/s)x.

Finally, we obtain ui, i = 1, 2, . . . , k from the transformation
td(mi), i = 1, 2, . . . , k.

6.2. Sampling from the Archimedean copulas

The generation of a two-dimensional random vector of the
form (u1, u2)

′ from the copula C2 starts with the sampling of two
independent uniform random variates u1 and w. Then, we ob-
tain the uniform random variate u2 from the quasi-inverse func-
tion of the conditional distribution Pr(U2 ≤ u2|U1 = u1); i.e.,
u2 = C−12|1 (w|u1). Specifically, we obtain the conditional copula
C2|1(u2|u1) from ∂C2(u1, u2)/∂u1. In the case of a k-dimensional
setting with k ≥ 3, we similarly generate k independent uni-
form random variates, u1, w1, w2, . . . , wk−1, and obtain the ran-
dom variates u2, u3, . . . , uk by

u2 = C−12|1 (w1|u1),

u3 = C−13|1,2(w2|u1, u2),

...

uk = C−1k|1,2,...,k−1(wk−1|u1, u2, . . . , uk−1),

where Ck|1,2,...,k−1(uk|u1, u2, . . . , uk−1) = Pr(Uk ≤ uk|U1 =

u1,U2 = u2, . . . ,Uk−1 = uk−1) is given by
∂k−1Ck (u1, u2, . . . , uk)


/ (∂u1 . . . ∂uk−1)

∂k−1Ck−1 (u1, u2, . . . , uk−1)

/ (∂u1 . . . ∂uk−1)

.

The functional form of the conditional copula for the k-
dimensional Archimedean copula reduces to the following repre-
sentation, where φ−1(i)(·; θ) stands for the ith-order derivative of
the pseudo-inverse of the generator function φ(·; θ) [44]:

Ci|1,2,...,i−1(ui|u1, u2, . . . , ui−1; θ)

=
φ−1(i−1)(φ(u1; θ)+ φ(u2; θ)+ · · · + φ(ui; θ); θ)

φ−1(i−1)(φ(u1; θ)+ φ(u2; θ)+ · · · + φ(ui−1; θ); θ)
,

i = 2, 3, . . . , k.

Therefore, we can sample from the k-dimensional Clayton copula
with

φ−1(i)(t; θ) = (−1)i
(θ + 1)(θ + 2) . . . (θ + i− 1)

θ i
(t + 1)−1/θ−i
as follows: First, we generate k independent, uniformly distributed
random variates wi, i = 1, 2, . . . , k. Then, we set u1 = w1 and
w2 = C2|1(u2|w1) with c1 = φ(u1; θ) = u−θ

1 − 1, c2 = φ(u1; θ)+

φ(u2; θ) = u−θ
1 +u

−θ
2 −2, andC2|1(u2|w1) = φ−1(1)(c2)/φ−1(1)(c1).

Therefore, we obtain w2 = ((u−θ
1 + u−θ

2 − 1)/u−θ
1 )−1/θ−1, which

leads to u2 = ((w−θ
1 (w

−θ/(θ+1)
2 − 1)) + 1)−1/θ . Similarly, we set

w3 = C3|1,2(u3|u1, u2) = φ−1(2)(c3)/φ−1(2)(c2) = ((u−θ
1 + u−θ

2 +

u−θ
3 − 2)/(u−θ

1 + u−θ
2 − 1))−1/θ−2, which results in

u3 =


w
−θ/(1+2θ)

3


w−θ

1 + w−θ
2 − 1


− w−θ

1 − w−θ
2 + 2

−1/θ
.

As a result of using this recursion, we obtain

wk = Ck|1,2,...,k−1(uk|u1, u2, . . . , uk−1)

=


u−θ
1 + u−θ

2 + · · · + u−θ
k − k+ 1

u−θ
1 + u−θ

2 + · · · + u−θ
k−1 − k+ 2

−1/θ−k+1
and thus,

uk = ((u−θ
1 + u−θ

2 + · · · + u−θ
k−1 − k+ 2)

× (w
θ/(θ(1−k)−1)
k − 1)+ 1)−1/θ .

The generation of k random variates from the k-dimensional
Gumbel copula also starts with the sampling of k independent,
uniformly distributed random variates wi, i = 1, 2, . . . , k. Then,
we set u1 = w1 and w2 = C2|1(u2|w1) = φ−1(1)(c2)/φ−1(1)(c1)
with c1 = φ(u1; θ) = (− log(u1))

θ and c2 = φ(u1; θ) +
φ(u2; θ) = (− log(u1))

θ
+ (− log(u2))

θ , and solve the resulting
equation for u2. We obtain u3, u4, . . . , uk in a similar manner
by setting wi = Ci|1,2,...,i−1 (ui|u1, u2, . . . , ui−1) = φ−1(i−1)

(ci; θ)/φ−1(i−1)(ci−1) and solving this equation for ui, i = 3, 4,
. . . , k. Thus, unlike the Clayton copula, there is no recursive
formula for the inverse of the generator function of the k-
dimensional Gumbel copula. Nevertheless, we can easily obtain
u1, u2, . . . , uk via the use of numerical search procedures.

Another way of sampling a k-dimensional Gumbel copula is
to use the Marshall and Olkin generation method [107] with the
(1/θ)-stable randomvariable γ and the Laplace transformΘ(γ ) =
exp(−γ 1/θ )4. Specifically, we first generate a random variable γ
from the Stable (1, 0, 0) distribution with parameter 1/θ . We
do this by sampling a uniform random variable r on the interval
(−π/2, π/2) and an exponential random variable ξ with mean 1,
and setting

γ =
sin(r/θ)

(cos(r))θ


cos((1− 1/θ)r)

ξ

(1−1/θ)/(1/θ)

.

Then, independent of the previous step,we generate k independent
uniform random variates wi, i = 1, 2, . . . , k and apply the trans-
formation ui = Θ(− log(wi)/γ ) for i = 1, 2, . . . , k. Similarly, the
Marshall and Olkin generation method can be used for sampling
from a k-dimensional Clayton copula with γ defined as a gamma
random variable having shape parameter 1 and scale parameter
1/θ and the Laplace transform Θ(γ ) defined by (1+ γ )−1/θ [108].

6.3. Sampling from the C-vine and D-vine specifications

The sampling of a random vector with a copula-vine specifi-
cation starts with the generation of k independent uniform ran-
dom variates wi, i = 1, 2, . . . , k; proceeds by traversing the
regular vine of interest in a specific order; and applying succes-
sive inversions of the conditional distributions derived from the
two-dimensional copulas of each edge. Specifically, the sampling
algorithm associated with a C-vine specification is based on the
graphical representation of the k-dimensional distribution with
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(conditional) tail dependencies assigned to the following edges of
the vine:

1, 2 1, 3 1, 4 · · · 1, k
2, 3|1 2, 4|1 · · · 2, k|1

3, 4|1, 2 · · · 3, k|1, 2
. . .

...

k− 1, k|1, 2, . . . , k− 2

In particular, ‘‘1, k’’ refers to the edge between the (unconditional)
random variables X1 and Xk, while ‘‘k − 1, k|1, 2, . . . , k − 2’’
represents the edge associated with the conditional random
variables Xk−1|X1, X2, . . . , Xk−2 and Xk|X1, X2, . . . , Xk−2. Thus, we
sample the uniform random vector (U1,U2, . . . ,Uk)

′ with a k-
dimensional distribution function represented by a C-vine as
follows:

u1 ← w1.

u2 ← C−12|1 (w2|u1) .

u3 ← C−13|1


C−13|2:1 (w3|u2) |u1


.

u4 ← C−14|1


C−14|2:1


C−14|3:1,2 (w4|u3) |u2


|u1

.

...

uk ← C−1k|1 (C−1k|2:1(C
−1
k|3:1,2(· · · (C

−1
k|k−1:1,2,...,k−2

(wk|uk−1)|uk−2) · · ·)|u3)|u2)|u1).

In this sampling algorithm, Ci|j is the conditional distribution
associated with the bivariate copula between random variables
Ui and Uj (i.e., Ci|j(ui|uj) = ∂C2(ui, uj)/∂uj), while Ci|j:1,2,...,j−1 is
the conditional distribution associatedwith the conditional copula
Ci,j|1,2,...,j−1 between the random variables Ui|U1,U2, . . . ,Uj−1 and
Uj|U1,U2, . . . ,Uj−1; i.e.,

Ci|j:1,2,...,j−1(ui|uj) =
∂C2(ui, uj|u1, u2, . . . , uj−1)

∂uj
.

The uniform random variates w1, w2, . . . , wk are generated inde-
pendently and u1, u2, . . . , uk are obtained by applying successive
inverse cdfs. Furthermore, the first four rows of this sampling al-
gorithm describe the generation of random variates u1, u2, u3, and
u4 from the four-dimensional C-vine illustrated in Fig. 4.

When the joint distribution function of the random variables
U1,U2, . . . ,Uk is specified by a D-vine, which is illustrated
in Fig. 3 for a four-dimensional random vector, the graphical
representation is obtained in terms of the dependence measures
associated with the following edges of the vine:

1,
2

1, 3|2 1, 4|2, 3 · · · 1, k|2, . . . , k− 1

2, 3 2, 4|3 · · · 2, k|3, . . . , k− 1
3, 4 · · · 3, k|4, . . . , k− 1

. . .
...

k− 2, k|k− 1
k− 1, k

Therefore, we first generate k independent uniform random vari-
ates w1, w2, . . . , wk and then sample the uniform random vector
(U1,U2, . . . ,Uk)

′ represented with the D-vine by calculating

u1 ← w1,

u2 ← C−12|1 (w2|u1) ,

u3 ← C−13|2


C−13|1,2


w3|C1|2(u1|u2)


|u2

,

u4

← C−14|3


C−14|2,3


C−14|1,2,3


w4|C1|2,3(u1|u2, u3)


|C2|3(u2|u3)


|u3

,

...

uk ← C−1k|k−1(C
−1
k|k−2,k−1(· · · C

−1
k|1,2,...,k−1(wk|C1|2,3,...,k−1

(u1|u2, u3, . . . , uk−1)) · · · |Ck−2|k−1(uk−2|uk−1))|uk−1).

Thus, the sampling procedure for D-vine uses both conditional
distributions and inverse conditional distributions. The first four
rows of this sampling procedure further describe the sampling of a
uniform random vector from the four-dimensional D-vine in Fig. 3.

7. Conclusion

As large-scale stochastic simulation becomes a tool that is
used routinely for the design and analysis of complex systems,
it is important to develop multivariate input models that are
flexible enough to capture the joint distributional properties of the
system inputs. A close look at the existing literature shows that
the development of a large number of multivariate input models
builds on the use of the normal copula for dependence modeling.
However, the normal copula fails to represent the dependence
structures with tail dependencies that arise in the context of
extreme events.

In this survey, we reviewed the copula-based input models for
stochastic simulations with dependent inputs by focusing on the
tail dependence. First, we reviewed the bivariate copula models
along with their tail dependence properties and then extended
our discussion to the multivariate copula models with three or
more component randomvariables. Finally,wediscussedhow to fit
these copula models to the available historical data sets, and how
to generate random vectors from the resulting joint distributions.

The case of bivariate copulas with tail-dependence power has
been well studied, but these do not readily extend to multiple
dimensions. Recently, several multivariate parametric copulas
have been introduced, but the study of their tail-dependence
properties is still in its infancy.Webelieve that the study of the tail-
dependence characteristics of the existing multivariate copulas as
well as the development of new multivariate copulas that have
the ability to capture a wide variety of asymmetric dependence
structures are the promising research areas to enhance the field
of multivariate input modeling for stochastic simulations.
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