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Abstract— Multifunctional and reconfigurable multiple-input
multiple-output (MR-MIMO) antennas are capable of dynam-
ically changing the operation frequencies, polarizations, and
radiation patterns, and can remarkably enhance system capa-
bilities. However, in coherent communication systems, using
MR-MIMO antennas with a large number of operational modes
may incur prohibitive complexity due to the need for channel
state estimation for each mode. To address this issue, we derive
an explicit relation among the radiation patterns for the antenna
modes and the resulting channel gains. We propose a joint
channel estimation/prediction scheme where only a subset of
all the antenna modes is trained for estimation, and then, the
channels associated with the modes that are not trained are
predicted using the correlations among the different antenna
modes. We propose various training mechanisms with reduced
overhead and improved estimation performance, and study the
impact of channel estimation error and training overhead on
the MR-MIMO system performance. We demonstrate that one
can achieve significantly improved data rates and lower error
probabilities utilizing the proposed approaches. For instance,
under practical settings, we observe about 25% throughput
increase or about 3-dB signal-to-noise ratio improvement under
the same training overhead with respect to non-reconfigurable
antenna systems.

Index Terms— Multifunctional and reconfigurable antennas,
MIMO, multipath channels, channel estimation, antenna
radiation patterns.

I. INTRODUCTION

MULTIFUNCTIONAL and reconfigurable antennas
(MRAs) form a new class of antennas that can dynam-

ically be configured to operate at different frequency bands,
and with different polarizations and radiation patterns [1], [2].
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Such antennas are strong candidates for 5G and beyond
technologies where a single device may need to support
multiple radio access technologies with different set of oper-
ational requirements (e.g., frequency band, polarization) [3].
In addition, the availability of multiple radiation patterns with
different polarizations can provide enhanced spatial diversity
that can fortify the techniques combating interference. One
can imagine that each reconfigurable mode of operation of
an MRA, a.k.a. antenna mode, creates a different antenna as
it may have a different operation frequency, polarization and
radiation pattern. Various enabling technologies (e.g., MEMS
switching, semi-conductor switches, liquid metals) and design
approaches (e.g., variable reactive loading, parasitic tuning
and structural/material modifications) have been developed to
create MRAs [1].

In this paper, we specifically consider the MRAs based on
the parasitic tuning approach [4], [5]. In this MRA technology,
an active antenna element is accompanied by a reconfig-
urable parasitic pixel layer whose pixels (electrically small
rectangular shaped metallic elements) are interconnected by
means of switching that are controlled via DC biased lines.
By properly modifying the switch statuses, the parasitic sur-
face layer is reshaped resulting in different radiation, frequency
and polarization properties, i.e., a different antenna mode.
We note, however, that the channel modelling as well as
the analysis and design approaches developed throughout the
paper can be applied to any MRA system, i.e., they are not
specific to the parasitic tuning technology.

The use of MRAs in wireless communication systems has
recently attracted significant attention due to the additional
degrees of freedom they offer which may be exploited to
achieve superior performance [6]–[12] as compared to systems
employing antennas with fixed properties. Combined with the
multiple-input multiple-output (MIMO) antenna technology,
the resulting MR-MIMO antennas offer even greater degrees of
freedom to combat the adverse effects of wireless propagation
environments [13]. On the other hand, for such systems,
extensive channel estimation requirements arise as a chal-
lenging and important issue. Since a rich scattering medium
results in multipath propagation, changes in antenna radiation
patterns result in different gains for different departure and
arrival paths, and hence, their superposition results in different
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channels for each radiation pattern, giving rise to pattern
diversity. Since each antenna mode creates a different channel,
one needs to estimate the corresponding channel state infor-
mation (CSI) separately. For cases with a few antenna modes,
this overhead may be tolerable, however, if there exists a large
number of antenna modes, the estimation overhead may be
prohibitive. This is the main motivation of this work which
attempts to develop efficient CSI estimation procedures for
MR-MIMO systems.

Some attempts have been made to attack the channel
estimation problem for MRAs in [14]–[16]. Eslami et al. [14]
proposes a reduced complexity training approach that involves
the selection of a number of modes and using only those modes
for communication. The authors attempt to reduce the number
of modes to be trained via statistical or direction finding
based approaches where the effective angle of arrivals are
determined to select better antenna modes. They also analyze
the use of all available modes being trained for different
pilot overheads. However, their approach does not allow for
an effective utilization of the antenna modes dismissed from
training sessions. In [15], Gulati and Dandekar propose a
multi-bandit learning algorithm to select the antenna modes
to reduce the required training overhead for CSI estimation.
Again, the goal is to actively use a smaller number of antenna
states for data transmission. In [16], Grau et. al. investigate
the use of a class of generic reconfigurable antennas under
a Kronecker channel correlation model and the assumption
that a number of antenna ports can be decoupled. However,
the decoupling assumption may not be valid for many MRA
design approaches, and it may limit the available number of
antenna modes for performance optimization.

Different from the previous approaches, in this paper, we
first consolidate the relation among the antenna modes and
the wireless channel. We formulate the relationship among
the antenna modes associated with radiation fields from
MR-MIMO antennas and the resulting channel realizations
with the goal of developing low-overhead channel estimation
techniques with reduced estimation errors. We consider a
realistic 3D double-directional channel model for the MR-
MIMO antenna link and also assume that any of the available
antenna modes can potentially be activated during transmis-
sion [17], [18]. Using the beamspace MIMO concept [19],
the effects of MR-MIMO radiation field on the channel gains
can be decoupled from those of the multipath propagation
medium. This allows for casting the CSI estimation as an
estimation/prediction problem where the antenna modes to be
trained are used for obtaining a low-dimensional observation
matrix from which the CSI for the other antenna modes are
predicted. The selection of the training modes can further be
optimized.

Our contributions can be summarized as follows: (i) an
explicit relation among the antenna modes and the result-
ing channel gains are determined for MR-MIMO antennas,
(ii) an efficient and effective channel estimation procedure is
developed which utilizes a relatively small number of modes
for explicit training and predicts the CSI for all available
modes, and (iii) methods for antenna mode set selection
to improve the CSI estimation performance are developed.

In our study, we consider the well-known Orthogonal
Frequency Division Multiplexing (OFDM) based transmis-
sions (e.g., as in the LTE and WiFi physical layers),
and via extensive simulations, we show that about 25%
theoretical throughput gain or about 3 dB signal-to-noise
ratio (SNR) improvement can be achieved with respect to non-
reconfigurable MIMO antenna systems in realistic scenarios.
With suitable selection of training mode set according to the
spatial correlation and the coherence time of the channel, we
demonstrate that the proposed estimation/prediction technique
can be employed to learn the CSI even when only a small set
of antenna modes are explicitly trained.

The rest of the paper is organized as follows. In the next
section, we provide the details on the underlying MRAs
and MR-MIMO antennas, and extend an existing MIMO
channel model to the case of MR-MIMO. In Section III,
we describe the proposed channel estimation approaches for
MR-MIMO systems. Extensive numerical examples are pro-
vided in Section IV, and finally, concluding remarks with some
future research directions are given in Section V.

Notation: The notation �f = fθ �eθ + fφ �eφ denotes spher-
ical coordinate representation of complex electric field with
�eθ and �eφ referring the unit vectors in θ and φ directions,
respectively. 〈 �f , �g〉 = f ∗

θ gθ + f ∗
φ gφ denotes the inner prod-

uct where (·)∗ indicates the complex conjugate operation.
Similarly, the inner product for matrices, CN×M =
〈 �AN×L , �BL×M 〉 is defined as

cn,m =
L∑

l=1

〈[ �A]n,l , [ �B]l,m〉.

[A]n,m (or [ �A]n,m) denotes the n × mth entry of the matrix
A (or �An,m). C N(a, b) denotes circularly symmetric complex
Gaussian distribution with mean a and variance b. A ⊗ B
denotes the Kronecker product of A and B, and vec(A)
denotes vectorization of the matrix A by stacking its columns
to a one dimensional vector. For a vector v, diag(v) represents
a diagonal matrix with elements of v on the main diagonal,
and for a set of L matrices Vi , i = 1, . . . , L, diag(Vi ),
∀i represents a block diagonal matrix constructed from Vi ’s.
AH denotes the conjugate transpose of A, and we use A−H

to indicate the inverse of AH .

II. CHANNEL MODEL FOR MR-MIMO ANTENNA LINKS

The double directional MIMO (DD-MIMO) channel
model [17], [20]–[23] is a widely accepted model that com-
bines ideas from ray tracing and statistical channel modeling
where a number of discrete direction of arrivals and departures
are generated randomly using certain distributions. DD-MIMO
channel model is suitable for accurately modelling the wireless
channel taking into account the antenna radiation patterns.
We first extend this model to the case of MR-MIMO antenna
links, and then develop the corresponding signaling model.

A. Legacy MIMO Versus MR-MIMO Antenna Links

Fig. 1.a compares a legacy MIMO antenna having elements
with fixed properties and an MR-MIMO antenna consisting
of MRA elements (see Fig. 1.b) with variable properties.
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Fig. 1. (a) Legacy MIMO antenna versus MR-MIMO antenna, each with M antenna elements. wm = |wm |e j � wm is the complex weight for antenna-m,
m = 1, . . . , M. DC lines are used to excite the specific antenna modes μm , m = 1, . . . , M, at antenna−m. (b) An MRA design based on parasitic coupling.
A 3 × 3 metallic pixel surface interconnected by 12 on-off switches (e.g., via p-i-n diodes).

Fig. 2. Double directional channel model. M transmit and N receive MRA elements, Lt direction of departures, and Lr direction of arrivals. The reference
coordinates are also depicted for the transmit and receive antennas.

MRA elements provide additional degrees of freedom to the
MIMO system due to the variable element factors. For the
MRA design depicted in Fig. 1.b, this is accomplished by
changing the geometry of the parasitic surface via the on-off
switches embedded in between the metallic pixels constituting
the parasitic layer. Due to space constraints, we refer the reader
to [24] for details on the design and optimization of this MRA
design approach. The MRA depicted in Fig. 1.b comprises
of a 3 × 3 parasitic pixel surface interconnected by 12 p-i-n
diode switches. Thus, a total of 212 different switch states,
i.e., antenna modes, exist. A given set of switch states define
a specific polarization, frequency and radiation pattern, which
is referred to as the mode of operation.

In this paper, we focus on MR-MIMO antennas with
identical reconfigurable elements, but each element may be
set to a different mode. Let �f (θ, φ,μ) denote the elemental
complex far-field radiation pattern where μ ∈ {1, 2, . . . , Lμ}
is the antenna mode index representing the excited mode of

operation and Lμ is the number of antenna modes. Then,
for an MR-MIMO antenna with M MRA elements, ignoring
the mutual coupling among the parasitic surfaces of different
elements, the complex pattern for the mth element can be
expressed as

�f (θ, φ,μm) = fθ (θ, φ,μm)�eθ + fφ(θ, φ,μm)�eφ (1)

with μm ∈ {1, . . . , Lμ} representing the mode index of
antenna-m, m = 1, . . . , M . Note that there are L M

μ differ-
ent modes of operation corresponding to different radiation
patterns.

B. Double Directional MIMO Channel
Model for MR-MIMO Systems

Fig. 2 illustrates the double directional channel
model [20], [21] for an MR-MIMO system with M transmit
and N receive MRAs. According to this model, under the
balanced array [20] and plane wave propagation assumptions,
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TABLE I

DOUBLE DIRECTIONAL MIMO MODEL PARAMETERS

and assuming that the channel is fixed during the symbol
duration, the complex base-band channel gain between
transmit MRA-m and receive MRA-n for a narrow-band
signal at frequency ς can be expressed as

hn,m(μm, νn)

=
Lr∑

j=1

Lt∑

i=1

x j,i 〈 �f�(θi , φi , μm), �f�(ϑ j , ϕ j , νn)〉

×e− j 2π
λ (kT (θi ,φi )( pm− p1)+kT (ϑ j ,ϕ j )(qn−q1))− j2πςτi, j (2)

where the parameters are summarized in Table I.
Let [H]n,m(μ, ν) = hn,m(μm, νn) denote the N ×M MIMO

channel matrix. Each departure path is coupled with each of
the arrival paths resulting in a total of Lt Lr resolvable paths
whose gain and propagation delay are denoted by x j,i and
τ j,i , respectively, i = 1, . . . , Lt , j = 1, . . . , Lr . We denote
the Lr × Lt channel gain matrix by X.

To express (2) in a more compact form, let us first define
the transmit and receive steering matrices for the transmit and
arrival paths as, B = [

b1 . . . bLt

]
and A = [

a1 . . . aLr

]
,

respectively, where bi and a j are the transmit and receive
steering vectors given by

bi = [1 e− j 2π
λ kT (θi ,φi )( p2− p1) . . . e− j 2π

λ kT (θi ,φi )( pM− p1)]T (3)

for i = 1, . . . , Lt ,, and

a j = [1 e− j 2π
λ kT (ϑ j ,ϕ j )(q2−q1) . . . e− j 2π

λ kT (ϑ j ,ϕ j )(qN −q1)]T,

(4)

for j = 1, . . . , Lr . Next, by defining the pattern vectors

�f�(μm) = [ �f�(θ1, φ1, μm), . . . , �f�(θLt , φLt , μm ]T

�f�(νn) = [ �f�(ϑ1, ϕ1, νn), . . . , �f�(ϑLr , ϕLr , νn)]T

and expressing the rows of the steering matrices as diagonal
matrices

Um = diag([bm,1 . . . bm,Lt ]), bm,i = [B]m,i , i = 1, . . . , Lt ,

Vn = diag([an,1 . . . an,Lr ]), an,i = [A]n, j , j = 1, . . . , Lr ,

one can rewrite (2) as

hn,m(μm , νn) = f H
�,θ (μm)Um X ′T Vn f�,θ (νn)

+ f H
�,φ(μm)Um X ′T Vn f�,φ(νn)

= 〈 �f�(μm), H̃n,m �f�(νn)〉 (5)

where [X ′] j,i = x j,i e j2πςd, j t e− j2πςτ j,i , and

[H̃n,m ]i, j =[B]m,i ·[A]n, j · [X ′] j,i , i =1,. . . ,Lt , j =1,. . . ,Lr .

Note that (5) decouples the impact of element-wise recon-
figuration of the MR-MIMO antenna from the other terms
related to steering vectors and the multipath propagation
effects. In addition, the inner product expression among the
electric field vectors reflects the impact of the field polarization
mismatch among the received signal polarization and antenna
polarizations [25], [26]. Furthermore, (5) shows explicitly the
dependence of the channel variations on the scatterers and
the user speed through x j,i and ςd, j . In what follows, it is
assumed that the scatterers are quasistatic, that is, they remain
the same over a long period of time, while the temporal
variations due to ςd, j are more pronounced. Note that for
MR-MIMO antennas, (5) can be employed to generate the
channel matrix Hn,m(μ, ν). For legacy MIMO with identical
elements, this relation can be simplified to H = B Hs AT

where Hs is the Lt × Lr matrix whose entries are the complex
path gains between all departure and arrival angles including
the associated antenna gains [20].

Using the superposition principle [25], [26], after matched
filtering [27, Ch. 4], the signal received from antenna-n for a
narrow-band transmission can be written as

rn(μ, νn) =
M∑

m=1

hn,m(μm , νn)wmsm + zn (6)

where it is assumed that the channel is fixed during the
symbol transmission time, and zn ∼ C N(0, σ 2

z ) denotes the
additive white Gaussian noise at the receive antenna-n. In (6),
sm denotes the unit power signal emanating from antenna-m,
and wm is the complex gain weighting at that antenna. From
(5) and (6), it is seen that changing the transmit and/or receive
antenna modes result in different channel realizations for
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the same propagation medium. This point will be elaborated
further in the following sections.

III. CHANNEL ESTIMATION FOR MR-MIMO
ANTENNA SYSTEMS

Employing MRAs at the transmitter and/or receiver intro-
duces variations due to antenna reconfigurations in addition to
the usual temporal and spatial variations created by multipath
fading. Each one of the large number of antenna modes
associated with an MRA creates a different channel, thereby
making channel estimation a challenging task. In order to fully
exploit the degrees of freedom available, it is necessary to
estimate the channel for different (perhaps all) antenna modes
within the coherence time of the channel. With the presence
of a large number of modes (e.g., 4096 for the MRA shown
in Fig. 1.b), the channel estimation based on an exhaustive
training requires excessive overhead and delay, which makes it
undesirable, or even infeasible. Therefore, an efficient MIMO
channel estimation procedure for MRA systems requires a
unified framework taking into account both the structure
of the wireless medium and the underlying MRA radiation
capabilities. With this motivation, we utilize the beamspace
representation of radiation patterns [28]–[30] and resulting
wireless channels [31]–[33], and develop an analytical frame-
work for the combined estimation and prediction procedure.
The explicit relation in (5) among the underlying antenna
modes and the channel realizations enables the development
of a formulation where only a small set of antenna modes need
to be explicitly trained, and the remaining modes are predicted
using the correlations among them.

A. Antenna Patterns and the Wireless Channel

Equation (5) relates the underlying antenna radiation pat-
terns and the resulting channel realizations. This relation, how-
ever, requires the explicit knowledge of departure and arrival
angles. To avoid this issue and evaluate the impact of different
radiation patterns on the CSI, one can utilize the beamspace
concept of [19, Ch. 3] and [21]. To that end, let there exist
Lμ antenna modes for the element of an MR-MIMO antenna,
and therefore, Lμ different radiation patterns, �f (θ, φ,μ),
μ ∈ {1, . . . , Lμ}. In addition, let there be � ≤ Lμ

orthonormal basis radiation pattern functions, �ωi (θ, φ),
i = 1, . . . , �, which can be used to represent all the radiation
patterns. For instance, for a given set of radiation pattern
functions �f (θ, φ,μ), μ ∈ {1, . . . , Lμ}, the Gram-Schmidt
process can be used to compute one such basis function set
[19, Ch. 3]. Thus, we have the analysis-synthesis relations as

�f (θ, φ,μ) =
�∑

i=1

αμ,i �ωi (θ, φ)

s.t. αμ,i =
∫∫

〈 �f (θ, φ,μ), �ωi (θ, φ)〉 sin(θ)dθdφ. (7)

From (7), we can express correlation among radiation patterns
corresponding to modes μk and μl as

ρ̆μk ,μl = αH
μk

αμl

||αμk || · ||αμl ||
(8)

where αμ = [αμ,1 . . . αμ,�]. Applying (7) to both the transmit
and receive radiation patterns in (5) (for brevity, we drop the
(t, f ) for this section), we obtain

hn,m(μm, νn) = 〈 ��αμm , H̃n,m ��γνn 〉
= αH

μm
〈 ��, H̃n,m ��〉γνn

= αH
μm

H̄n,mγνm

= (γ ∗
νn

⊗ αμm )H vec(H̄n,m) (9)

where αμm and γνn are, respectively, the �t × 1 and �r × 1
synthesis coefficients for transmit and receive patterns, �� is
the Lt ×�t basis radiation pattern values evaluated at (θi , φi ),
for i = 1, . . . , Lt , and �� is the Lr ×�r basis radiation pattern
values evaluated at (ϑi , ϕi ), for i = 1, . . . , Lr . To obtain (9),
we collect the terms other than the antenna mode configuration
into an �t × �r matrix using H̄n,m = 〈 ��, H̃n,m ��〉. Hence,
all the unknown variables appear in the matrix H̄n,m . With
the exact knowledge of this matrix, along with the synthesis
coefficients αμm and γνn that can be calculated off-line, (9) can
be used to evaluate the relation among the element radiation
patterns and the channel gains for all the antenna modes.

Using (9), the cross correlation between the channel with
modes μm = i, νn = j and μm = k, νn = l, denoted by
ρn,m(i, j, k, l), is given by

ρn,m(i, j, k, l)

= E{hn,m(i, j)h∗
n,m(k, l)}

√
E{||hn,m(i, j)||2}E{||hn,m(k, l)||2}

=
Tr

(
(γ ∗

l γ T
j ⊗ αkα

H
i )Rx̄

)

√
Tr

(
(γ ∗

j γ T
j ⊗ αiα

H
i )Rx̄

)
Tr

(
(γ ∗

l γ T
l ⊗ αkα

H
k )Rx̄

)

(10)

where x̄ = vec(H̄n,m), Rx̄ = E{x̄ x̄ H }, and we exploit
the relation Tr(AB) = Tr(B A). It is seen that as long
as the correlation matrix Rx̄ remains same, the correlation
between the channels for the different modes of operation
remains the same. This observation is important especially for
a slowly varying channel where the scatterers are quasistatic
and channel realization for a given mode can be predicted from
the channel realization of another or some other modes using
the correlations ρn,m(·). The channel correlations between
different modes of operation can also be justified directly
from (2) where it is observed that a small change in radi-
ation pattern functions can create only a small change in
respective channel realizations. The changes in the channel
gain depend on the similarities among the antenna radiation
patterns. Equation (10) provides a mathematical framework for
this observation.

The relation in (10) can further be simplified provided that
the medium is a uniformly rich scattering environment where
Rx̄ is modelled as an identity matrix, i.e.,

ρn,m(i, j, k, l) = (γ T
j γ ∗

l ) · (αH
i αk)

||γ j || · ||γl || · ||αi || · ||αk || (11)

which depicts a more clear relation between the pattern and
channel correlations. That is, those antenna modes that have
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Fig. 3. Pattern correlations versus channel correlations. The channels are
averaged over 20 different multipath conditions each with 10000 channel
realizations.

smaller pattern cross-correlations will result in smaller channel
correlations. If the mode of the transmit or the receive antenna
is fixed, one can further simplify (11) to

ρn,m(i0, j, i0, l) = γ T
j γ ∗

l

||γ j || · ||γl || , (12)

ρn,m(i, j0, k, j0) = αH
i αk

||αi || · ||αk || , (13)

where i0 denotes the transmit MRA mode, and j0 denotes
the receive MRA mode indices in (12) and (13), respectively.
For (11)-(13), it is seen that the channel correlations reduce
to radiation pattern correlations defined in (8). We note that
the expressions in (11)-(13) are provided to highlight the
relationship between the pattern and channel correlations.
For actual system analysis and numerical examples in the
subsequent sections, we employ (10) to evaluate the channel
correlations.

Let us study the relationship between different antenna
modes and the resulting channel gains using a numerical exam-
ple. Fig. 3 depicts the relations among the pattern correlations
using (10) and the corresponding realized channel correlations
obtained by changing the antenna mode while keeping the
propagation medium fixed. We investigate both a relatively
low scattering environment modeled by micro-cell channel
model B1 from Winner+ project [34]–[37], and a uniformly
rich scattering environment modeled via 400 transmit and
400 receive rays with 3D uniform AoD and AoA spreads.
In this example, the receive antenna mode is fixed
and the channels are generated for 25 different transmit
antenna modes, which amounts to a total of 325 auto- and
cross-correlation values. The correlation values are sorted
according to the absolute value of the radiation pattern
correlations, and at each index, the corresponding channel
correlation is plotted. In both cases, it is seen that as the
radiation pattern correlations increase, the channel correlations
tend to increase as well; however, this relationship is more
pronounced for a uniform scattering environment. This result
clearly demonstrates that the CSI estimates for a number of
modes will help predict the CSI for the others.

B. Channel Estimation for MR-MIMO Links

We consider pilot-assisted training with narrow-band trans-
mission where a known pilot signal sequence is intermittently
transmitted to allow the receiver to perform channel estima-
tion. In addition, we assume an orthogonal training mechanism
for the MIMO case where only one transmit antenna is active
for a given training symbol duration.

Let Tc and Kc denote the number of symbols and subcar-
riers, respectively, in a channel training and data transmission
session, and let (ti , ki, j ), i = 1, . . . , L p , j = 1, . . . , Ki ,
denote the symbol and subcarrier indices of the resource
elements (REs) at which pilot signals, pm , m = 1, . . . , M ,
from antenna-m are transmitted. Assuming a symbol duration
Ts , we have t = ti Ts , and ς = ki, j � f. L p is the number
of training symbols (e.g., channel uses) such that 1 ≤ t1 <
. . . < tL p ≤ Tc, and Ki is the number of training subcarriers
for symbol-i such that 1 ≤ Ki ≤ Kc. Hence, a total of
LT = ∑L p

i=1 Ki out of Tc Kc subcarriers are employed for
training. The received signal at antenna-n, n = 1, . . . , N, is
given by

rn(μti , νn,ti ) =
M∑

m=1

hn,m(μm,ti , νn,ti )pm,ti ,ki, j + zn,ti ,ki, j ,

for i = 1, . . . , L p, j = 1, . . . , Ki , which can be rewritten as

r(μ, ν) = Ph(μ, ν) + z (14)

by stacking the rn(μti , νn,ti ) and zn,ti ,ki, j to N LT × 1 vectors,
hn,m(μm,ti , νn,ti ) to M N LT × 1, vector and expressing the
pilot sequence as a block diagonal matrix P = diag{ pT

i, j ⊗
IN×N }, i = 1, . . . , L p , j = 1, . . . , Ki , with pi, j =
[p1,ti,ki, j . . . pM,ti ,ki, j ]T . The minimum mean square error
estimation (MMSE) [38] for the channel and the corresponding
mean square error covariance matrix are then given by

ĥ(μ, ν) = Rhh

(
Rhh + P−1 Rzz P−H

)−1
P−1r(μ, ν),

Rεε(μ, ν) = Rhh − Rhh(Rhh + P−1 Rzz P−H )−1 Rhh, (15)

respectively. Here Rhh and Rzz = σ 2
z IM N LT are the covari-

ance matrices of the channel vector and the noise vector,
respectively. Note that h is a vector containing channel gains
at REs at which pilot symbols are transmitted over different
antennas, and hence Rhh contains temporal, spectral and
spatial correlations.

Note that for reduced training overhead, the amount of
training symbols should be kept small. Typically, a portion
of the subcarriers are reserved for pilot transmission in an
OFDM symbol which means that data is also being transmitted
concurrently. Let us assume that the mode training procedure
is activated from time to time. That is, during a regular
transmission period, the transmitter uses the selected antenna
mode for both training and data transmission. During the
mode training session, the transmitter activates F antenna
modes meanwhile usual data transmission is performed at the
data subcarriers. During the training period, ideas similar to
adaptive modulation and coding [39], [40] can be used to take
into account the excitation of different antenna modes. Finally,
we note that we consider the transmit antenna reconfiguration
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Fig. 4. Channel training protocol for transmission with reconfigurable
antennas. Each training period of Tc channel uses employs L p channel
uses for training the mode group Sbn for the nth training session, with

bn = (
n mod

Lμ
F

)
. With fixed mode groups, Sb, b = 0, . . . ,

Lμ
F − 1, this

protocol corresponds to exhaustive mode training. The training groups can ba
updated according to intelligent mode update criteria as well.

while keeping receive antenna at a fixed configuration in the
following. It is straightforward to extend the proposed con-
cepts to the general case where both transmitter and receiver
perform mode configuration.

C. Antenna Mode Training for MR-MIMO

When there are many antenna modes, it may not be feasible
to train all the modes during one coherence block. To develop a
complete scheme, let us first extend the periodic-training based
channel estimation procedure to a MR-MIMO link where the
channels for a relatively small number of antenna modes are
to be estimated.

1) Exhaustive Training: Out of the all possible Lμ transmit
modes, the transmitter and receiver arbitrarily agree on the set
of transmit antenna mode sets

Sb = {μb,1, . . . , μb,F }
for the bth antenna mode group. There are a total of Lμ/F dif-
ferent groups to be employed for transmission. Each antenna
mode is trained for an equal number of channel uses denoted
by β = L p

F . As depicted in Fig. 4, the channel training with
the subsequent mode group starts Tc channel uses later. It is
assumed that the training groups are repeated according to
modulo-Lμ/F if the total transmission time to the user takes
longer than LμTc

F channel uses. During the initial L p channel
uses of the training period, the receiver estimates the channel
for each mode and reports the best modes to the transmitter.
The transmitter uses the selected mode for the rest of the
coherence block until the next channel training period. Note
that with this approach, regardless of the number of antenna
modes, the training overhead is fixed at LT /Tc Kc. Reducing
the number of training symbols per antenna mode results in
larger delays for CSI estimation of the remaining modes. Later,
it will be shown by numerical examples that the selection
of the design parameters strongly depends on the channel
coherence time and the correlations among different antenna
modes.

2) Intelligent Mode Update: While small scale fading
causes relatively fast temporal variations, the higher order
variations, such as spatial correlation of the MIMO channel,
vary much more slowly. This is mainly due to the fact that the
main scatterers do not change significantly for low-mobility
users over multiple coherence blocks [20]. This implies that
certain antenna modes will better fit to a propagation environ-
ment. Thus, as transmissions go on, the system may be able

to learn the appropriate antenna modes and limit the antenna
reconfiguration to those.

To that end, we assume that there is a low-rate feedback
channel where the antenna modes selected by the receiver
are fed back to the transmitter. The transmitter and receiver
initially agree on the set of antenna mode pairs as in the
exhaustive mode training approach. The receiver then mon-
itors the system performance during data transmission periods
and updates the training mode groups Sb according to some
criterion. For example, for a training mode pair (μ, ν), assum-
ing equal power allocation, one such metric is the average
achievable rate estimate

C(μ, ν) = 1

Uμ,ν

∑

i, j,μti =μ,νti =ν

log2

∣∣∣∣I + 1

σ 2
z

Ĥ(μ, ν)Ĥ H (μ, ν)

∣∣∣∣

where Uμ,ν is the number of REs for which the mode pair
(μ, ν) is trained, and

[
Ĥ(μ, ν)

]
n,m = ĥn,m(μm,ti , νn,ti ) is the

estimated N × M MIMO channel.
During the training sessions, the receiver sorts the modes

according to the resulting channel qualities and stores them.
Within a certain number of training sessions, the receiver
gathers a list of antenna modes with relatively good channel
qualities. At the end of the training sessions, the receiver
reports the list to the transmitter implying that the upcoming
transmissions will employ only the modes within the list. Thus,
a lower number of antenna modes will be trained, and hence
the training overhead will be reduced. Such a procedure also
alleviates the estimation problem when some or all of selected
trained modes in Sbn experience a deep fade as the transmitter
updates the modes to be trained for the next training round.
Note that the list may be updated whenever the channel
qualities for the selected list of antenna modes become worse.
To do so, the transmitter and/or receiver may request to reset
the list and restart the training procedure with the initially
agreed upon list.

D. Joint Estimation and Prediction for MR-MIMO Channels

The overhead due to the training mechanisms described in
Section III-C may be prohibitive in the presence of many
antenna modes. In order to reduce this overhead, we utilize
the channel representations developed in the previous section.
Using the analysis developed in Section III-A, one can exploit
the presence of correlations among the channels at different
antenna modes. For instance, a subset of antenna modes can be
selected to train the channel to obtain an estimate of H̄n,m and
then the channel gains for all other modes can be predicted.
To that end, let us assume that F antenna modes are selected
for channel training. At a given instance, the CSI for these
F modes can be written from (9) as

hn,m = �vec(H̄n,m), (16)

with � = [γ T
ν ⊗ αH

μ1
. . . γ T

ν ⊗ αH
μF

]T , and hn,m =
[hn,m(μ1, ν), . . . , hn,m(μF , ν)]T . By using (9), the same pro-
cedure can be repeated for all the remaining Lμ − F antenna
modes to obtain the corresponding channel state estimates

hc
n,m = [hn,m(μF+1, ν), . . . , hn,m(μLμ, ν)]T .
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Different prediction algorithms can be used. For instance, by
using the least squares (LS) criterion, we can represent hc

n,m in
terms of the channel realizations from the training set hn,m as

hc
n,m = �c

(
�H�

)−1
�H hn,m (17)

with �c = [γ T
ν ⊗ αH

μF+1
. . . γ T

ν ⊗ αH
μLμ

]T .

When Ft Fr > F , which is typical for the underlying
MR-MIMO systems, the system is under-determined since we
have more unknown variables than the available observations.
Therefore, the LS solution may not perform well and the
performance may get worse as the number of untrained
modes Lμ − F increases well beyond the number of trained
modes. Furthermore, the errors inherited from the estimation
of trained modes may become more critical for the prediction
performance. On the other hand, as described in Section III-A,
channel correlations exist among different antenna modes, and
thus, the problem can be formulated as an MMSE prediction
problem as described next.

1) MMSE Estimation and Prediction: We can utilize the
inherent correlation between the channel realizations of dif-
ferent antenna modes for the same channel propagation state.
Using MMSE to obtain ĥc

n,m from the received signal r(μ, ν)
in (14), we obtain the channel estimates as

ĥc
n,m = Rhc h(Rhh + P−1 Rzz P−H )−1 P−1r

= Rhc h R−1
hh ĥ, (18)

which clearly indicates that the estimates for hc
n,m can be pre-

dicted from the estimates of hn,m using the cross-correlations
among the channel realizations of the trained modes and the
remaining ones. The error covariance matrix for this estimator
is given by

Rεcεc (μ, ν) = Rhc hc − Rhc h(Rhh + P−1 Rzz P−H )−1 Rhhc .

(19)

Using the estimation and prediction covariance matrices
in (15) and (19), the overall mean square error for channel
estimation and prediction from the received signal can be
expressed as

ε = 1

Lμ
Tr(Rhh + Rhc hc )

= 1 − 1

Lμ
Tr

((
R2

hh + Rhhc RH
hhc

)(
Rhh + P−1 Rzz P−H )−1

)
.

We observe that the selection of F training modes from
Lμ candidates can be cast as an optimization problem to
minimize εt , which can be simplified to

(μ∗, ν∗) = arg max
μ,ν

Tr
((

R2
hh + Rhhc RH

hhc

)

× (
Rhh + P−1 Rzz P−H )−1

)
. (20)

At high SNRs, e.g., as Rzz → 0, we can further sim-
plify (20) as

(μ∗, ν∗) = arg max
μ,ν

Tr(RH
hhc R−1

hh Rhhc ). (21)

The optimization in (21) is a combinatorial problem
where the selection of F modes amounts to finding an

Fig. 5. Example MRA training over time.

F × F sub-matrix, Rhh , the resulting F × Lμ − F cross-
correlation matrix, Rhhc from the Lμ×Lμ correlation matrices
evaluated for the Lμ candidate modes. For a small number
of candidate modes, this search can be performed quickly.
In case of a large number of modes, random search methods
can be utilized to determine a sub-optimal but efficient solution
(see, e.g. [41]).

Once the channel for each mode are estimated/predicted, the
receiver reports the selected antenna mode(s) to the transmitter
after a feedback delay. Let T f b denote the number of channel
uses required for transmitter to receive this report after the last
training symbol is transmitted. During this time, the transmitter
and the receiver may agree to employ a specific mode, for
instance, the most recent mode reported since it is likely to
be still a good choice for slow fading channels. This feedback
delay is typically very small and for T f b � Tc, its impact
on the performance will be negligible. Fig. 5 depicts a typical
estimation/prediction timing using an OFDM frame structure
where at any transmission subframe, one of the modes is used
for probing the channel training. In the example, 8 different
modes exist, and 3 of them are selected for training. Note that
before the actual training starts with the selected modes, the
system may employ the procedure described in Section III-C
to train all the 8 modes and obtain estimates for the chan-
nel covariance matrices to be employed during the MMSE
prediction step.

Number of Training Modes: We next develop a technique
to determine a suitable value for the number of modes (F) to
be trained. Since the estimates of the wireless channel gains
are valid within the coherence time of the channel, let us
consider a training within a coherence block of Tc symbols
during which the channel remains fixed. Assuming that each
mode is trained for β ∈ {1, 2, . . . , � Tc

F �} symbols, we have
L p = β F symbols where the transmission is performed via
the trained modes, and Tc − β F symbols with transmission
employing the best mode, μ∗. The average achievable rate
for this transmission can be approximated by (using Jensen’s
inequality along with the Shannon capacity for a fading
channel) [20]

C(F) � β

Tc

F∑

i=1

log2(1 + 1

σ 2
z

E{|h(μi)|2}) +
(

1 − β F

Tc

)

× log2(1 + 1

σ 2
z

E{|h(μ∗)|2})
s.t. μ∗ = arg max

μ∈{μ1,...,μLμ } |ĥ(μ)|2. (22)
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where μ∗ is obtained at the end of mode training session.
With the MMSE based estimation/prediction method, we have
ĥ(μ) = h(μ) + e(μ) where the estimation error e(μi) ∼
C N(0, σ 2

ei
) with σ 2

ei
= [Rεε]i,i , for i ∈ {1, . . . , F} and

σ 2
ei

= [Rεcεc ]i−F,i−F for i ∈ {F + 1, . . . , Lμ}. Given ĥ(μi ),
i = 1, . . . , Lμ, we can express h(μ∗) as

h(μ∗) =
Lμ∑

i=1

h(μi )
∏

n �=i

I (|ĥ(μi )|2 ≥ |ĥ(μn)|2 ) (23)

where I (·) is the indicator function, i.e., I (A) = 1 if the
condition defined by A is satisfied. Using the total expectation
theorem, we can write

E{|h(μ∗)|2}

= E

⎧
⎨

⎩

Lμ∑

i=1

E{|h(μi )|2

×
∏

n �=i

I (|ĥ(μi )|2 ≥ |ĥ(μn)|2)|ĥ(μi )}
⎫
⎬

⎭ (24)

= E

⎧
⎨

⎩

Lμ∑

i=1

E{|h(μi )|2|ĥ(μi )}

× E

⎧
⎨

⎩
∏

n �=i

I (|ĥ(μi )|2 ≥ |ĥ(μn)|2)|ĥ(μi )

⎫
⎬

⎭

⎫
⎬

⎭ (25)

where (25) follows as h(μi ) and I (|ĥ(μi )|2 ≥ |ĥ(μ j ))|2 are
conditionally independent given ĥ(μi ). This expression can be
evaluated numerically, however, to obtain a tractable analytical
solution, let us consider the case where h(μi ) ∼ C N(0, σ 2

hi
),

with σ 2
hi

= [Rhh]i,i , i = 1, . . . , F , and σ 2
hi

= [Rhchc ]i−F,i−F ,
i = F + 1, . . . , Lm , are mutually independent. Then, we can
write

E{|h(μ∗)|2} ≈ E

⎧
⎨

⎩

Lμ∑

i=1

E{|h(μi )|2|ĥ(μi )}

×
∏

n �=i

E
{

I (|ĥ(μi )|2 ≥ |ĥ(μn)|2)|ĥ(μi )
}
⎫
⎬

⎭

=
Lμ∑

i=1

∫
Qi (y)

∏

n �=i

(
1 − e

− |y|2
σ2

hn
+σ2

en

)

× 1

π(σ 2
hi

+ σ 2
ei
)
e
− |y|2

σ2
hi

+σ2
ei dy (26)

with

Qi (y) =
∫

|h|2 σ 2
hi

+ σ 2
ei

πσ 2
hi

σ 2
ei

× exp

( |y|2
σ 2

hi
+ σ 2

ei

− |y − h|2
σ 2

ei

− |h|2
σ 2

hi

)
dh.

Substituting (26) and E{|h(μi )|2} = σ 2
hi

in (22), we can
finally calculate the expected rate using F trained modes.

We note that (22) quantifies the trade-off between the esti-
mation/prediction performance and the resulting achievable
rate. For small F , one will use less resources for mode
training, however, due to the inferior prediction performance,
the selected mode μ∗ is more likely to be suboptimal, and
transmission with this mode will contribute less to the average
rate. On the other hand, for large F , more resources will be
employed for the training session which reduces prediction
errors, and thus improves the mode selection performance.
However, in this case, less resources will be employed for
transmission with the improved mode.

A numerical example for optimization of F based on (22)
is provided in Fig. 6. Here, (22) is evaluated via Monte-Carlo
integration techniques to calculate the average throughput gain
defined as 100

(
C(F)
C(1) −1

)
, i.e., the percentage gain with respect

to the case of F = 1 trained modes. We study two cases with
Lμ = 9 and Lμ = 20 available modes and for each case we
consider various Tc values corresponding to different levels
of mobility. It is seen that higher coherence time values of
Tc allows for larger F indicating that one can improve the
expected throughput by training more modes. On the other
hand, for lower Tc values, for example, when Tc = 18, 36 for
Lμ = 9 and Tc = 40, 80 for Lμ = 20 modes, it is seen that
the expected gains increase up to a certain point and then the
gains start to decrease with increasing F.

The mode selection criteria described above relies on the
average covariance matrices and thus the average MSE perfor-
mance. Thus, for selection of mode set and F in this manner,
we attempt to optimize the average estimation performance.
We note that this scheme can be further improved by mon-
itoring the channel gains for trained and nontrained modes,
and then using the intelligent mode update scheme described
in Section III-C where the modes with higher channel gains
(obtained from earlier estimation/prediction sessions) may be
selected for subsequent training. In this case, the trained modes
will provide improved estimation performance, and in return,
the channel prediction will be more reliable.

2) Estimation of Covariance Matrices: For realistic channel
estimation schemes used in practice, the covariance matri-
ces should also be estimated from the observations [42].
Here, we assume a sample covariance matrix estimation
method where the instantaneous observations and channel
estimates are obtained at each OFDM subframe transmis-
sion and averaged via an exponential filter over time. Let
us express the channel between the transmit antenna-m and
the receive antenna-n at symbol time l = 1, 2, . . ., for
the modes μ1, . . . , μF , as an F × 1 vector hn,m,l(μ, ν) =
[hn,m,l(μ1, ν), . . . , hn,m,l (μF , ν)]T . The sample covariance
matrix can be estimated via a first-order IIR filter [42]

¯̂Rhh(l + 1) = ζ
¯̂Rhh(l) + (1 − ζ )ĥn,m,l(μ, ν)ĥH

n,m,l (μ, ν)

(27)

where ζ is a constant determining the memory of the averaging
filter over time.

Temporal Smoothing via a Kalman Filter: The MMSE
estimation/prediction described above utilizes spatial domain
correlations to determine and/or smooth the channel estimates.
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Fig. 6. Average throughput gain, 100
(

C(F)
C(1) − 1

)
for β = 2, and (a) Lμ = 9 modes, (b) Lμ = 20 modes.

From Fig. 5, it is clearly seen that the time between two
successive training periods for a given antenna mode may
get larger if the number of modes used for training increases.
In this case, the temporal correlations for the channel samples
during this period may be optimally estimated via an aug-
mented Kalman filter where the temporal correlations and the
channel values for those subframes during which no training
signal is transmitted are estimated. To that end, we consider
a first-order state-space representation for the temporal varia-
tions of the channel, namely,

hn,m,l+1(μ, ν) = T (l + 1, l)hn,m,l(μ, ν) + υ1(l) (28)

where T (l+1, l) denotes the channel state transmission matrix
from one symbol time to the next, and υ1(l) denotes the state
estimation error arising from modeling. The channel estimates
are smoothed temporally over time using the received signals

rn,l(μ, ν) = hn,m,l(μ, ν)pm,l + zn,l , (29)

l = l0, l0 + �, l0 + 2�, . . . , where � denotes the time
interval between two successive training for a given mode
μ ∈ {μ1, . . . , μF }.

Note that the Kalman filter update is an iterative approach
to reach MMSE solution. Hence, its application in the pro-
posed mode estimation/prediction scheme can be imagined
as obtaining an improved MMSE solution to the channel
estimation/prediction scheme by utilizing the temporal corre-
lations. With the Kalman filter updates, the estimates of the
channel state information for all the modes are obtained and
the best mode is selected at the end of each training session.
The selected mode is employed during the following data
transmission period.

IV. TRANSMISSION WITH MRAS

A. Signaling With OFDM Modulation

Due its widespread use in state-of-the art wireless tech-
nologies [43]–[45], we consider an OFDM based MIMO
transmission in our simulations [46]. Assuming a cyclic

prefix (TCP) of sufficient duration, i.e., TCP ≥ max j,i τ j,i , and
perfect time and frequency synchronization, we can express
the input-output signal relation from antenna-m to antenna-n,
at time t = i Ts , i = 1, 2, . . ., and at subcarrier fc + k� f ,
k = −N f /2, . . . , N f /2 − 1, as

rn,i,k (μ, νn) = ∑M
m=1 hn,m,i,k (μm, νn)sm,i,k + zn,i,k (30)

where Ts = 1
� f + TCP is the total OFDM symbol duration

including the cyclic prefix, fc is the carrier frequency, � f is
the subcarrier spacing, and N f is the DFT size of the OFDM
signal. Here, z denotes the additive circularly symmetric zero-
mean complex Gaussian noise with variance σ 2/2 per dimen-
sion, and sm,i,k is the signal transmitted from the mth antenna
at symbol i and subcarrier k. The transmit symbol energies
are normalized to unity so that the transmit SNR is defined as
TxSNR = 1

σ 2 .
The MRA in all of the examples below has a

3 × 3 parasitic pixel surface with 12 interconnecting switches
(see Fig. 1.b in Section II-A). The principles on the design and
optimization of a similar MRA is available in [24]. A uniform
linear array of M = N = 2 MRAs with λ/2 interelement
spacing is assumed for the MR-MIMO system created by
these MRAs.1 For each MRA, several modes of operation are
generated using the Genetic Algorithm as described in [5].
The full-wave analysis tool HFSS [47] is employed to generate
3D complex radiation patterns.

B. Performance With MRAs

In this section, we analyze the channel estimation algo-
rithms proposed so far via simulations. We consider the frame
numerology from 3GPP LTE-A where the minimum resource
block (subframe) for scheduling contains 12 subcarriers and
14 OFDM symbols [48]. We set the subcarrier spacing as
� f = 15 kHz. With TCP = 4.7 μs cyclic prefix length, we
have a symbol time of 71 μs. Thus each subframe is 1 ms.

1We note that the analysis that follows is not limited to this specific MIMO
antenna geometry, and the arguments can be generalized with ease.
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Fig. 7. User speed = 1 km/h. (a) Theoretical and realistic channel estimation error comparison for narrowband transmission, (b) Shannon capacities with
ideal and realistic CSI estimation, (c) outage probabilities as number of antenna modes is varied, (d) channel capacities with narrowband and wideband based
mode selection.

We assume that a periodic pilot signal is transmitted every
7 symbols over time and every 6 subcarrier over frequency
which amounts to 4 pilot symbols per subframe. For the double
directional channel model, we assume the spatial channel
model from Winner+ B1 channel [35] with 16 taps, each
with 20 non-resolvable subpaths. Since we assume spatially
orthogonal pilots, we focus on a single channel from the
transmit antenna-m to the receive antenna-n.

Figs. 7 and 8 illustrate performance of an MRA at a
user speed of 1 km/h. To obtain these results, Lμ = 9
candidate modes out of the 25 are selected, which reflects
a snapshot of the intelligent mode update based solution
described in Section III. During the initial training period of
450 subframes, all 9 modes are trained periodically such that in
each subframe, one of the modes is used during transmission.
Thus, each mode is trained with 50 subframes separated
by 9 subframes. During this period, the sample covariance
matrices of channels among different modes are obtained using

the approaches in III-C.1 and III-D. After the initial training
period, F = 3 modes are selected for the following training
periods, while the remaining Lμ − F = 6 modes are predicted
using the MMSE approach along with the temporal smoothing
based on the Kalman filtering procedure described in the
previous section. The selection of modes to be trained within
the 9 modes is performed using (21). The periodic training
session parameters, e.g., the number of OFDM symbols for
training session (L p) and data transmission (Tc − L p), are
varied to find the values with the best system performance,
which turns out to be L p = 18 (9 subframes) and Tc−L p = 54
(27 subframes), respectively, for this example.

The mean square error values in Fig. 7.a for estimation
and prediction are averaged over the 3 training modes and
6 prediction modes, respectively, to indicate an average per-
formance. Clearly, the performance for both ideal and realistic
CSI estimation is superior to the performance for prediction
modes as expected since the channel prediction is based only
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Fig. 8. Symbol error rate (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed using (21).

Fig. 9. Out of 25 antenna modes, 20 modes are selected randomly for transmission. Fixed receive mode. For realistic CSI estimation/prediction, after an
initial training period of all 20 modes, 4 of them are randomly selected for further training while other 16 modes are predicted using MMSE approach.
1 km/h user speed. (a) Mean square error results for CSI estimation and prediction, (b) Shannon capacity results for CSI estimation and prediction.

on the trained modes and the available correlations resulting
from the modes of operation. However, as shown from the
achievable rate performance results illustrated in Fig. 7.b,
the theoretical SNR gains from the ideal mode selection
are around 3 dB and the practical mode selection based on
the proposed estimation/prediction process is around 2 dB
compared to a random mode selection scheme. Using the
symbol error rates for uncoded transmission with 16-QAM
(see Figs. 8.a and 8.b), it is also seen that the MRA with
mode selection achieves up to 3 dB SNR gains. Note that these
gains are obtained with identical overhead for both MRA and
fixed antenna systems. The curves marked as random mode
selection in Figs. 7.b and 7.d indicate the performance of a
link with an (arbitrarily picked) fixed antenna mode.

In order to evaluate the impact of the number of modes on
the system performance, we depict the outage probabilities
for various scenarios in Fig. 7.c. Here, for each SNR and
for each curve at a given SNR, the outage probabilities are

calculated for F modes, F = 1, . . . , 25, and for each F ,
the outage probability is averaged over 1000 realizations of
S = {μ1, . . . , μF }. Hence, the results indicate an average
performance obtained by employing an MRA with F active
modes of operation. It is clearly seen that significant gains
can be achieved using MRAs. For example, 10% outage rate
improves by 125% and 85% at SNR = 0 dB and 5 dB,
respectively, with 25 antenna modes. It is also seen, as one
would expect, that only diminishing returns are available as
the number of modes is increased. This implies that one may
get most of the gains out of an MRA system using a proper
mode subset selection.

In Fig. 7.d, a comparison between performance for two
different mode selection mechanisms is provided. In the single
subcarrier based mode selection scheme, the gain of the chan-
nel at a single subcarrier is employed, while in the wideband
capacity based selection, the antenna mode with the highest
wideband capacity averaged over all pilot tones is used at any
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Fig. 10. Shannon rate comparisons for (a) 5 km/h (b) 20 km/h. For both cases, mode selection based on a single subcarrier is performed using (21).

Fig. 11. Symbol error rate for 5 km/h (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed
using (21).

time. The results are obtained for two different MRAs with
9 and 20 modes. From Fig. 7.d, we observe only a slight
degradation (of less than 1 dB) with the suboptimal mode
selection based on a single subcarrier for both cases.

In Fig. 8, we also illustrate the impact of feedback delay
for reporting the selected mode to the transmitter. We assume
a 4 ms (e.g., 4 subframes) feedback delay [48] correspond-
ing to 4 subframes in the simulations. In this case, out of
the 27 subframes used for data transmission, the transmitter
employs the best mode from the previous data transmission
session during the first 4 subframes, and then shifts to the best
selected mode for this session for the remaining 23 subframes.
We see that there is a negligible loss of less than 0.2 dB
for narrow-band transmission, and around 0.4 dB loss for
wide-band transmission, due to the feedback delay, hence the
proposed scheme remains effective.

In order to study the impact of time lags in the presence of a
larger number of antenna modes, we repeat the experiments for
an MRA system with 20 active modes with 4 of them selected

for training. We again use 500 subframes for initial training,
implying that each mode is trained for only 25 times. After the
initial training, 4 modes are selected for further training. Fig. 9
indicates the resulting MSE and ergodic Shannon capacity.
It is again observed that the proposed CSI estimation/
prediction and mode selection methods can obtain most of
the gains available with MRA systems, i.e., the performance is
within 1 dB of the best attainable performance, and it provides
around 4.5 dB SNR gain compared to the system using an
arbitrarily picked mode.

C. Impact of Mobility

We next investigate the impact of user speed on the MRA
system performance with the proposed channel estimation
scheme (Figs. 10–12). As the user speeds increase, since the
channel variations become more rapid, the periodic training
parameters need to be reselected. For 5 km/h, suitable number
of training and data symbols are found to be 12 and 36,
respectively, while for 20 km/h, 6 and 18 symbols provide the
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Fig. 12. Symbol error rate for 20 km/h (a) narrowband (b) wideband transmission. For both cases, mode selection based on a single subcarrier is performed
using (21).

best results. We observe that with the faster mode selection,
the proposed scheme can track the best mode of operation and
achieve a better performance compared to non-MRA systems.
The channel capacity results are summarized in Fig. 10, and
the resulting symbol error rates are depicted in Figs. 11 and 12.
The symbol error rates with feedback delay of 4 subframes are
also included in the figures. It is observed that at 5 km/h, the
SNR loss is only about 0.5 dB, while for the higher speed of 20
km /h, the SER is only slightly better than that for the system
with a fixed antenna mode. Therefore, for channels with low
coherence times, we suggest the use of MRAs for long-term
performance improvements rather than extracting short-term
gains.

V. DISCUSSION AND CONCLUDING REMARKS

We investigate the feasibility of pilot assisted channel esti-
mation procedure for systems using MRAs. Exploiting the
channel correlations resulting from different MRA modes, we
propose a low-overhead CSI estimation procedure where only
a subset of the modes of operation are employed for training.
With the proposed approach, even with the presence of many
antenna modes, the system can learn the modes of operation
with a much smaller training subset. Using the developed
techniques, one can approach within 1 dB of the achievable
rates of MRA system with ideal CSI. In addition, the resulting
symbol error rates indicate that one can achieve up to 3 dB
SNR improvements compared to case assuming the availability
of ideal CSI.

We develop a simple but realistic framework to show that
with practical channel estimation approaches, one can achieve
significant gains with MRAs, hence we argue that the use of
MRAs in practical systems is promising as a future antenna
candidate for 5G and beyond. In this work, we focus on
a block MMSE based channel estimation/prediction procedure.
Noting that the channel estimation for MRA antenna systems
fits very well to the compressive sensing problem since we
attempt to predict the channel for many different antenna
modes using only a small subset of trained modes, a possible

research direction is to develop compressed sensing based
channel estimation and sparse Bayesian learning solutions for
the mode selection scheme. An analytic framework associating
the sparsity of multipath channel and radiation pattern space
with the spatial correlations may be investigated towards that
end. In addition, the relation between the configuration modes
and the wireless channel can be further explored to implement
MRAs that can create modes that are matched to the statistics
of the scattering environment allowing for improved channel
estimation along with superior performance.
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