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Spatial Mutual Information and PageRank-Based
Contrast Enhancement and Quality-Aware

Relative Contrast Measure
Turgay Celik, Member, IEEE

Abstract— This paper proposes a novel algorithm for global
contrast enhancement using a new definition of spatial mutual
information (SMI) of gray levels of an input image and PageRank
algorithm. The gray levels are used to represent nodes in
PageRank algorithm, and the weights between the nodes are
computed according to their dependence and spatial spread over
the image, which is quantified by using SMI. The rank vector
of gray levels resulted from PageRank algorithm is used in
mapping input gray levels to output. The damping factor of the
PageRank algorithm is utilized to control the level of perceived
global contrast on the output image. Furthermore, a new metric is
proposed for image quality-aware relative contrast measurement
between input and output images. Experimental results show that
the proposed algorithm consistently produces good results.

Index Terms— Contrast enhancement, spatial mutual informa-
tion, PageRank, quality-aware relative contrast measure.

I. INTRODUCTION

IMAGE contrast enhancement is the process of transforming
gray-levels of an input image so that the corresponding

output image would be perceived as having higher contrast.
It is expected that the intensity differences of pixels in a local
neighborhood would be increased as result of a successful
contrast enhancement process. Since the perceived contrast
is highly subjective, one may need to alter the contrast of an
image according to its own perception. To address this need
contrast enhancement algorithms are proposed which can be
categorized into three major groups according to the type
of transformation (or mapping) applied to the gray-levels
(or intensities) of an image: 1) local contrast enhancement;
2) global contrast enhancement; and 3) hybrid contrast
enhancement.

Local contrast enhancement algorithms directly alter pixel
intensities based on their local properties. Usually transform-
domain representations are employed for the purpose of
intensity manipulation. First a forward transformation on the
input image is performed to modify the transform domain
coefficients followed by an inverse transformation (or recon-
struction) to achieve local contrast enhancement. For this kind
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of algorithms appropriate settings of the underlying parameters
is crucial to avoid the image degradation [1]. There is a wide
variety of transformations and among them discrete wavelet
transform [2] and discrete cosine transform (DCT) [3], [4] are
the most popular ones due to their computational efficiencies.

On the other hand, global contrast enhancement algorithms
usually employ a single mapping function to map input
gray-levels to output gray-levels. In general the histogram
of the input image and a desired histogram are employed
to build a mapping function. To this end, global histogram
equalization (GHE) is a well-known and widely used con-
trast enhancement algorithm. GHE achieves input-to-output
mapping of gray-levels by matching the cumulative histogram
of the input image to the desired cumulative histogram. The
desired histogram is assumed to be uniform histogram. This
entire process is called as histogram specification. GHE fails in
providing an efficient histogram specification which is solved
by exact histogram specification [5] which guarantees that
output image’s histogram is approximately same with the
desired one.

GHE efficiently utilizes available dynamic range, but will
over-enhance output image when there are large peaks in
the input histogram. Further, due to floating point operations
used in histogram specification it can not guarantee a one-
to-one mapping function which results in mapping of the
consecutive gray-levels onto the same output gray-level. How-
ever, because of its computational efficiency several methods
are proposed by modifying either or both the input and
desired histograms. Weighted thresholded histogram equaliza-
tion algorithm (WTHE) [6] clamps the input histogram at
an upper and lower thresholds and all the values between
these thresholds are transformed using a normalized power law
function. The algorithm’s performance depends on the thresh-
olds and the power value used. The desired histogram of the
brightness preserving histogram equalization with maximum
entropy algorithm (BPHEME) [7] has the maximum differen-
tial entropy obtained using a variational approach under the
mean brightness constraint. Although entropy maximization
corresponds to contrast stretching to some extent, it does not
always achieve contrast enhancement [8]. In flattest histogram
specification with accurate brightness preservation algorithm
(FHSABP) [8], convex optimization is used to transform the
input histogram into the flattest histogram, subject to a mean
brightness constraint. An exact histogram specification method
is used to preserve the image brightness. However, when the
gray-levels of the input image are uniformly distributed,
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FHSABP performs very similar to GHE. Furthermore, it
is designed to preserve the average brightness which may
produce low contrast results when the average brightness is
either too low or too high. Histogram modification framework
(HMF) [9] minimizes a parametrized cost function to com-
pute the desired histogram. The cost function is composed
of penalty terms of minimum histogram deviation from the
input and uniform histograms and histogram smoothness.
Furthermore, the edge information is also embedded into the
cost function to weight pixels around region boundaries to
address noise and black/white stretching. Similar to WTHE,
adaptive gamma correction with weighting distribution
algorithm (AGCWD) [10] modifies the input histogram by
weighting distribution and enhances image automatically by
using gamma correction. However, the algorithm may result
in the loss of details on bright regions of image if there
are high peaks in the input histogram. Further, in order
to achieve brightness preservation, the algorithm limits the
transformed image’s dynamic range to the largest gray-level
value of input image which results in limited contrast on the
output image. In [11], the discrete histogram of an image is
transformed to continuous distribution with Gaussian mixture
model (GMM) and the components of the final GMM is used
to obtain subregions of the input histogram. A non-linear
mapping is further applied to each subregion to find the final
transformation. This process may result in improved perceived
contrast, however, it is computationally demanding because of
parameter estimation process of GMM.

All the above algorithms employ one-dimensional (1D)
histogram in their process which is highly sensitive to the
peaks. In order to utilize contextual information around each
pixel to alleviate the drawbacks of 1D histograms, global con-
trast enhancement algorithms based on two-dimensional (2D)
histograms are proposed [12]–[14]. The two-dimensional his-
togram equalization algorithm (2DHE) [12] forms a 2D input
histogram from the weighted co-occurrences of gray-levels on
local neighborhoods of pixels. The diagonal elements of the
2D input histogram is mapped to the diagonal elements of
the 2D uniform histogram. Later, contextual and variational
contrast enhancement algorithm (CVC) [13] is proposed to
improve 2DHE. CVC computes a smooth 2D desired his-
togram by minimizing the parametrized sum of Forbenius
norms of the differences from the 2D input histogram and
the 2D uniform histogram. The diagonal elements of the
2D input histogram is mapped to the diagonal elements of
the 2D desired histogram to achieve contrast enhancement.
This method is further improved by minimizing a complex
objective function which considers different factors of the
image at the expense of higher computational cost [14].
Compared with the methods employing only 1D histogram,
2D histogram based methods [12]–[14] generally produce
outputs with less visual distortions on them. However, to
construct a 2D histogram is typically computationally demand-
ing, whose complexity will exponentially increase with an
increase of the size of neighborhood considered in forming
2D histogram [13].

The perceived contrast of an image is unified perception
of both local and global contrasts. To achieve this a hybrid

contrast enhancement algorithm [15] which combines both
local and global processes together is proposed. Spa-
tial entropy-based contrast enhancement (SECE) in DCT
(SECEDCT) algorithm [15] performs global contrast enhance-
ment (SECE) by mapping each input gray-level to an out-
put gray-level using a weight vector computed from a new
definition of spatial entropy of gray-levels. This weight for
each gray-level is calculated using spatial entropy normal-
ized by spatial entropies of other gray-levels. Because of
this normalization, the global contrast on output image has
slightly improved contrast with respect to the input image.
Furthermore, SECE does not consider the spatial relationships
of gray-levels, hence, most of the time output is simply linear
mapping of the input gray-levels. The global contrast enhanced
image is further processed by linearly weighing the transform
domain coefficients to achieve local contrast enhancement.
SECEDCT does not allow to change the level of global
contrast, but the level of local contrast. Later, residual spatial
entropy-based contrast enhancement (RSECE) is proposed to
improve SECE by learning a desired function utilizing both
spatial-relationships of gray-levels and controlling the level
of global contrast enhancement [16]. Similar to SECEDCT,
it is extended to DCT domain (RSECEDCT) to achieve
both global and local contrast enhancement. The algorithm
attempts to perform average brightness-preservation in DCT
domain which makes it computationally demanding. Because
of brightness-preservation and histogram specification process,
RSECE may not be able to utilize the entire dynamic range
which may result in contrast loss on the output image.

In order to address the above mentioned artifacts of
RSECE [16], a parametrized global contrast enhancement is
proposed in this paper. The gray-levels of the input image
are treated as nodes in PageRank algorithm [17]. A weight
between two nodes (or between two gray-levels) is com-
puted according to their dependence and spatial spread over
the image which is quantified using spatial mutual informa-
tion (SMI). The output of the PageRank algorithm is used
for mapping the input gray-levels to output. The damping
factor of the PageRank algorithm is utilized to linearly control
the perceived global contrast. SMI quantifies proximity and
spatial distribution of two gray-levels over image which is
used by PageRank algorithm to allocate larger gaps between
consecutive gray-levels with high SMI values which results in
higher perceived contrast on the output image. A method to
automatically select the control parameter is also introduced.
The proposed algorithm is named as Spatial Mutual Infor-
mation RANK (SMIRANK). One can extend SMIRANK to
perform both global and local contrast enhancement at the
same time using DCT domain coefficients manipulation as in
SECEDCT or RSECEDCT. In order to quantify the level of
contrast change between the original and processed images,
this paper also proposes a new quality-aware relative contrast
measure.

The remainder of the paper is organized as follows. The
proposed quality-aware relative contrast measure is intro-
duced in Section II. Section III presents the proposed con-
trast enhancement algorithm. Section IV presents qualitative
and quantitative comparisons of the proposed algorithm with
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state-of-the-art contrast enhancement algorithms. Section V
concludes the paper.

II. QUALITY-AWARE RELATIVE CONTRAST MEASURE

Although it is not easy to quantitatively measure the level
of perceived contrast, several metrics [3], [15], [18] have
been proposed. In general, statistical measures collected from
functions of minimum and maximum signal levels within
image blocks [3], [15], [18] are used. Thus, one can measure
contrast levels of input (original) and processed (output)
images separately to quantitatively asses the level of contrast
change [15]. Although this may produce statistically relevant
results, results mainly depend on the size of image block used
for collecting statistics, and ignore the level of deformations
on the output image due to enhancement process. Recently,
brightness-aware relative contrast measurement (BRCM) is
proposed to asses the performance of contrast enhancement
process in terms of average brightness preservation and relative
contrast change [16]. However, BRCM is not able to assess the
level of visual deformations on the output image. It measures
the mean of projected gradient difference between original and
processed images which may produce incorrect measurement
results on images highly distorted due to enhancement process
for which relative contrast measure would be measured high
but not the visual quality.

In order to address these problems, a quality-aware relative
contrast measure (QRCM) is proposed in this paper. This mea-
sure considers both the level of relative contrast enhancement
between input and output images and distortions resulting from
the enhancement process. The measure produces a number
in the range [−1, 1] where -1 and 1 refer to full level of
contrast degradation and improvement, respectively. QRCM
employs the gradient magnitudes of original and processed
images to measure the relative contrast change and image
quality degradation.

Let GX =
√

X2
x + X2

y be the gradient magnitude map of
a 2D image X computed using the spatial derivative images
Xx and Xy along x- and y-spatial directions, respectively.
The derivative images along x- and y-spatial directions are
estimated by first average filtering with a 3 × 3 box kernel
followed by filtering with 3× 3 Prewitt kernels [19].

Let Go and Gp be the gradient magnitude maps of orig-
inal (Xo) and processed (Xp) images, respectively. The per-
ceived level of contrast is correlated to the magnitude of the
gradient. The relative gradient magnitude change between the
original and processed images is measured according to

Gp,o (i, j) = Gp (i, j)−Go (i, j)

Gp (i, j)+Go (i, j)+ ε
, (1)

where (i, j) is pixel spatial location, ε is an arbitrarily small
number to prevent division by zero. In the case of contrast
increase the difference between local pixel intensities increases
(so does the magnitude of the gradient), thus the relative gra-
dient magnitude change Gp,o becomes positive and approaches
to 1, and vice versa. The gradient magnitude is close to zero
on homogeneous image regions and becomes larger on the
boundaries. The same trend is valid for Gp,o. Thus using the

gradient magnitude map of original image, a weight map w1
is created according to

w1 (i, j) = Go (i, j)∑
∀k

∑
∀l

Go (k, l)
, (2)

which results in high responses around boundaries and
approaches to zero on homogeneous regions. Using the relative
gradient change map Gp,o and weight map w1, the relative
contrast measure (RCM ∈ [−1, 1]) is computed according to

RCM =
∑

∀i

∑

∀ j

Gp,o (i, j) w1 (i, j) . (3)

The metric RCM measures the relative contrast change. The
metric value approaches to “1” when there is full contrast
improvement on the processed image with respect to the
original image, and gets closer to “−1” when there is full
contrast degradation. If there is no relative contrast change
between two images the corresponding RCM value is “0”.

The contrast enhancement process may result in visual
distortions. In order to quantify the level of distortions we
employed gradient magnitude similarity map (GMS) [20]
between original and processed images computed according
to

GMS (i, j) = 2Go (i, j)Gp (i, j)+ T

Go (i, j)2 +Gp (i, j)2 + T
, (4)

where T = 255/
√

2 is a constant. The gradient magnitude
similarity is high when the gradient magnitude values of
original and processed images are similar to each other, and
vice versa. The image quality (Q ∈ [0, 1]) of enhancement
process is measured using average absolute deviation of gra-
dient magnitude similarity map, i.e.,

Q = 1− 1

|G|
∑

∀i

∑

∀ j

|GMS (i, j)− μ|w2 (i, j) , (5)

where |G| is the number of pixels, μ is the average of GMS,
and w2 is the weight map computed from Go according to

w2 (i, j) = 1

1+Go (i, j)
(6)

which is inversely correlated to the gradient magnitude.
In other words, the Q value quantifies gradient magnitude
changes over homogeneous image regions resulted from
enhancement process. The Q value is close to “1” when the
visual deteriorations on the processed image is low, and vice
versa. This metric is very similar to that of gradient magnitude
similarity deviation (GMSD) [21] where the standard deviation
of the gradient magnitude similarity map is used to assess the
quality between original and processed images.

Using the relative contrast measure (RCM) and the quality
measure (Q) between original and processed images, we
defined quality-aware relative contrast measure (QRCM ∈
[−1, 1]) according to

QRCM =
{

RCM× Q, RCM ≥ 0;
(1+ RCM)× Q− 1, RCM < 0,

(7)

which incorporates contrast measure and image quality
together as a final measure. QRCM penalizes the contrast
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changes when there is a significant difference between the
gradients of original and processed images. This, in general,
happens when there are visual distortions on the processed
image. Thus, QRCM does not only measure the relative change
of contrast but also takes the distortion introduced on the
processed image relative to the original image into account.

TID2013 image dataset [22] which offers natural images
with different types of distortions and corresponding mean
opinion scores (MOSs) collected from human subjects is used
to evaluate the performance of QRCM in measuring relative
contrast change. Thus distortion type of “contrast change” is
employed. The dataset offers 5 different levels of contrast
change for each of 25 reference images.

The performance of QRCM is evaluated on three aspects of
its prediction power [21]: 1) prediction accuracy; 2) prediction
monotonicity; and 3) prediction consistency. Let Cm, Cp and
Cs respectively be the column vectors of measured relative
contrast, predicted relative contrast and subjective relative con-
trast (MOS) on the test image dataset. The logistic regression
function of the following form [21] is employed for nonlinear
regression

Cp = β1

(
1

2
− 1

1+ exp (β2 (Cm − β3))

)
+ β4Cm + β5,

(8)

where βks are fitting parameters. Using the set of {Cm, Cs}
the parameters of the nonlinear regression is learned. The
prediction accuracy of Cp on Cs is calculated using Pearson
linear correlation coefficient (PLCC), i.e.,

PLCC
(
Cp, Cs

) = ĈT
p Ĉs√

ĈT
p ĈpĈT

s Ĉs

, (9)

where the operator (·)T takes transpose, and Ĉp and Ĉs
are respectively mean removed vectors of Cp and Cs. The
Spearman rank order correlation coefficient (SROCC) is used
to measure the prediction monotonicity between Cm and Cs
as follows

SROCC (Cm, Cs) = 1− 6DT D

|D| (|D|2 − 1
) , (10)

where D is the rank difference vector between the rank vectors
of Cm and Cs, and |D| is the number of elements of D. Lastly,
the prediction consistency is evaluated using root mean square
error (RMSE) between Cp and Cs as follows

RMSE =
√√√√

(
Cp − Cs

)T (
Cp − Cs

)

|Cp| . (11)

The performance of the QRCM is compared with that
of GMSD [21], Q (Eq. (5)) and BRCM. The results are
shown in Table I. GMSD is a general purpose image quality
assessment metric, and on the average it performs well on
different types of distortions [21]. It depends on the gradient
magnitude similarity, and contrast changes on the dataset are
global which makes it difficult for GMSD to capture them.
It is worth to mention that Q performs better than GMSD on
assessing contrast changes. On the other hand, QRCM and

TABLE I

PERFORMANCE COMPARISONS OF DIFFERENT METRICS IN MEASURING
RELATIVE CONTRAST CHANGE ON TID2013 IMAGE DATASET

BRCM are highly correlated to human subject assessment of
contrast change. Meanwhile, QRCM outperforms all metrics
by achieving highest PLCC and SROCC and lowest RMSE.
Thus QRCM is used for assessment of contrast enhancement
process.

III. SMIRANK ALGORITHM

A. Gray-Scale Global Contrast Enhancement

1) Problem Definition: Consider an input image as a two-
dimensional array of gray-levels, X = {X (i, j)

∣∣ 0 ≤ i ≤
H−1, 0 ≤ j ≤ W−1}, of size H×W pixels, where X (i, j) ∈[
0, Z
+]

is gray-level (or intensity) of pixel (i, j) and assume
that X has a dynamic range of [xd , xu] where X (i, j) ∈
[xd , xu] ,∀ (i, j). The objective of a contrast enhancement
algorithm is to generate a naturally looking enhanced image,
Y = {Y (i, j)

∣∣ 0 ≤ i ≤ H − 1, 0 ≤ j ≤ W − 1}, which
has a better perceived contrast quality than that of X. The
dynamic range of Y can be stretched or compressed into the
interval [yd , yu], where Y (i, j) ∈ [yd , yu], yd < yu and
{yd , yu} ∈

[
0, Z
+]

. In this work, the enhanced image utilizes
the entire dynamic range, e.g., for an 8-bit image yd = 0, and
yu = 28 − 1 = 255.

Let X = {x1, x2, . . . , xK } be the sorted set of all gray-levels
that exist in an input image X, where x1 < x2 < . . . < xK

and K is the number of the distinct gray-levels. After contrast
enhancement, each input gray-level xk is mapped to an output
gray-level yk to produce a sorted list of output gray-levels
Y = {y1, y2, . . . , yK } where y1 ≤ y2 ≤ . . . ≤ yK . Ideally
mapping from xk to yk is expected to be one-to-one, however,
because of limits of the allowed dynamic range and floating
point operations on the discrete set, it usually is not one-to-
one. Thus, the entropy of output gray-levels is usually lower
than that of input gray-levels.

2) 2D Joint-Spatial Histogram: The 2D spatial histogram
of the gray-level xk on the spatial grid of X is computed
as [15]

hk =
{
hk (m, n)

∣∣ 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1
}
, (12)

where m, n ∈ [
0, Z
+]

, hk (m, n) ∈ [
0, Z
+]

is the number of
occurrences of the gray-level xk in the spatial grid located
on the image region

[
m H

M , (m + 1) H
M

] × [
n W

N , (n + 1) W
N

]
.

The total number of the grids on 2D histogram is M N
which is dynamically estimated using the number of distinct
gray-levels K and the aspect ratio r = H

W ≈ M
N , i.e.,

N = �
(

K

r

)1/2

	, M = �(Kr)1/2	, (13)

where the operator �·	 rounds its argument toward the nearest
integer. In forming 2D spatial histogram hk of gray-level xk ,
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the aspect ratio of the original image is preserved on spatial
grid. In this way, spatial characteristics of pixels are preserved
in forming of 2D spatial histogram.

The 2D histogram entries are further normalized according
to

hk (m, n)← hk (m, n)/H W , (14)

so that
K∑

k=1

M∑

m=1

N∑

n=1

hk (m, n) = 1. (15)

3) Spatial Mutual Information: The joint spatial 2D his-
togram hk,l =

{
hk,l (m, n)

}
of gray-levels xk and xl ,

which represents the proportion of occurrences of the gray-
levels xk and xl on the image region

[
m H

M , (m + 1) H
M

] ×[
n W

N , (n + 1) W
N

]
, is computed as follows [16]

hk,l (m, n) = min (hk (m, n) , hl (m, n)) . (16)

This new definition of joint spatial 2D histogram allows to
compute joint spatial statistics of gray-levels in a computa-
tionally efficient way.

In order to measure the dependence of gray-levels xk and xl

and their spatial spread over the image domain, mutual spatial
information Ik,l is computed according to

Ik,l =
M−1∑

m=0

N−1∑

n=0

hk,l (m, n) log

(
hk,l (m, n)

hk (m, n) hl (m, n)

)
, (17)

where log is natural logarithm and log (0) = log (0/0) = 0.
The mutual spatial information Ik,l will be high when gray-
levels xk and xl occur jointly on close spatial regions and
spread over the image domain. Thus, one can allocate higher
gap between gray-levels yk and yl so that the perceived
contrast will be high as well.

4) PageRank Algorithm for Ranking: The spatial mutual
information between gray-levels xk and xl can be employed
to measure the dependence of gray-level xk to all other
gray-levels xl,∀l. This will result in a symmetric 2D matrix
representing all dependences between pair-wise gray-levels.
This matrix can be used to assign a rank value for each gray-
level according to its joint relation with other gray-levels and
spread over the spatial domain. In order to find a rank value for
each gray-level, we employed the PageRank algorithm [17].

The PageRank algorithm assigns a PageRank score to each
one of webpages available on the Internet [17]. The PageRank
score of a webpage represents the probability that a random
user chooses to view the webpage. The algorithm computes
ranking of webpages using PageRank scores. For each pair
of different webpages the algorithm places a PageRank score
on the corresponding element of a square matrix if there
exists a link in between, otherwise it places a zero. The
rows and columns of this square matrix represent indexed
webpages on the Internet. Then, this square matrix is used
to rank the webpages. We adopted the PageRank algorithm to
create ranking vector for the gray-levels of the original image.
The gray-levels of an input image represent webpages and
PageScores (or GrayLevelScores) between different pairs of
gray-levels are calculated using mutual spatial information.

The ranking vector is later used for mapping input gray-levels
to output. In the following, we describe how we adopt the
PageRank algorithm.

Let H = {H (k, l)
∣∣ 1 ≤ k ≤ K , 1 ≤ l ≤ K } be K × K

“hyperlink matrix” [17] where K represents the number of
gray-levels of the input image and H (k, l) is GrayLevelScore
(or PageScore) between gray-levels (or webpages) xk

and xl . The GrayLevelScore H (k, l) is computed according
to joint spatial spread of the corresponding gray-levels which
is measured using mutual spatial information, i.e.,

H (k, l) = Ik,l . (18)

The GrayLevelScore (or mutual spatial information) H (k, l)
of gray-levels xk and xl is high when both gray-levels occur on
the same spatial-grids and their joint occurrence is uniformly
distributed on spatial domain of the input image. It is worth to
note that for each gray-level xk there exists at least one gray-
level xl for which H (k, l) �= 0. Thus there will be no need
to fix dangling nodes (or dangling gray-levels) problem [17].
A dangling gray-level xk is identified as the one for which
H (k, l) = 0,∀l, l �= k.

Let S be column normalized matrix derived from H accord-
ing to

S (k, l) = H (k, l)
K∑

k̂=1

H
(

k̂, l
) . (19)

The G matrix is defined according to

G = αS + (1− α) 1vT , (20)

where 1 ∈ R
K×1 is the column vector of ones and v ∈ R

K×1

is a vector called the “personalization vector”, and α ∈ [0, 1)
is “damping factor”. In this work we set the personalization
vector as uniform vector, i.e., 1T v = 1.

Using G matrix, the gray-level rank vector r ∈ R
K×1 of

gray-levels is computed using eigen analysis. λ = 1 is the
unique and largest eigenvalue of G [17]. Thus, the eigensystem

Gr = r (21)

has a unique solution, where r is a column rank vector. One
can solve Eq. (21) in two different ways: 1) by an iterative
algorithm using the power method [17]

r(t) = Gr(t−1), (22)

where r(0) = v and iterations are continued until a convergence
criterion is met, e.g., ||r(t) − r(t−1)|| ≤ ε; and 2) by solving
the linear system of the form

(I − αS) r = (1− α) v, (23)

where I is K × K identity matrix, (I − αS) is non-singular,
hence Eq. (23) has a unique solution

r = (1− α) (I− αS)−1 v, (24)

where (I − αS)−1 is the matrix inverse of (I− αS), and
1T r = 1.
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Fig. 1. Sample contrast enhancement results on a test image with “Level 5” contrast degradation from TID2013 image dataset.

5) Mapping Function: Using the rank vector r the following
mapping function is defined to map input gray-levels to output

yk = yk−1 +�k−1,k (yu − yd) , ∀k ≥ 2 (25)

where y1 = yd , and �k−1,k ∈ [0, 1] is defined according to

�k−1,k = r (k − 1)+ r (k)

2
+ r (1)+ r (K )

2 (K − 1)
, (26)

where
∑K

k=2 �k−1,k = 1 (see appendix for proof). The term[
�k−1,k (yu − yd)

]
in Eq. (25) is the gap between consecu-

tive output gray-levels yk−1 and yk . This gap is determined
according to joint contribution of consecutive gray-levels
which is defined as average of their ranks plus the constant
(r (1)+ r (K ))/(2 (K − 1)) to ensure that

∑K
k=2 �k−1,k = 1.

Note that all output gray-levels are rounded to the nearest
integer.

The mapping always guarantees that the minimum and
maximum values of output gray-levels are the minimum and
maximum values of the allowed dynamic range, i.e., yd and yu

respectively. Thus, it efficiently utilizes the allowed dynamic
range. It is also worth to mention that when α = 0, SMIRANK
is equivalent to linear stretching.

6) Controlling the Level of Perceived Global Contrast: The
proposed algorithm employs α, damping factor, to control
the level of perceived global contrast. To demonstrate, a test
image with “Level 5” contrast degradation from TID2013
image dataset is selected. The results for different values
of α are shown in Fig. 1. Setting α = 0.0 is equivalent to
linear stretching of gray-levels of the original image which
results in minimum level of contrast enhancement. Increasing
the value of α also increases the perceived contrast, so does
the corresponding QRCM. This is mainly due to the reason
that, as can be seen from �k,k−1 plots for different values
of α, the larger values of α increases the gap from �k,k−1
for α = 0.0. Meanwhile, contrast increase with larger values
of α produces minor distortions on the output image. It is
also evident from the histograms of original and processed
images that the proposed algorithm preserves the structure
of the input histogram. Thus, SMIRANK provides minimum
level of information loss.

For an automated process the value of α can be fixed to a
default value, e.g. α = 0.99 for maximum level of contrast
enhancement, or it can be automatically set according to
available contrast margin. Here we also propose a method for
automatically setting the value of α. The gradient magnitude
map GX of the input image X is employed to calculate α
according to

α =
∑

∀i

∑

∀ j

(Gm −GX (i, j))

Gm
w1 (i, j) , (27)

where Gm = 255
√

2 is the maximum gradient magnitude, and
w1 is weight matrix for GX as defined in Eq. (2).

B. Color Image Enhancement

The proposed method is designed for gray-scale images,
however, it can be easily extended to color images using the
following approach [15]. A color image in RGB color space
is transformed to HSV color space [19] and the proposed
algorithm is only applied on the intensity (or luminance) (V)
channel of the transformed image. In order to protect the
chrominance information, hue (H) and saturation (S) channels
are kept unaltered. This process is followed by an inverse color
transformation to reconstruct contrast enhanced color image in
RGB color space.

IV. EXPERIMENTAL RESULTS

A. Datasets and Algorithms

We use standard natural test images from TID2013
dataset [22], RGB-NIR dataset [23], and CSIQ dataset [24] for
quantitative and qualitative evaluations. The TID2013 image
dataset [22] offers 25 reference images of which 24 are natural
and 1 is synthetic. Contrast of each reference image is altered
at 5 different levels to produce 5 images: “Level 1” corre-
sponds to a small contrast decreasing; “Level 2” corresponds
to a small contrast increasing; “Level 3” corresponds to a
larger contrast decreasing; “Level 4” corresponds to a larger
contrast increasing; and “Level 5” corresponds to the largest
contrast decreasing [22]. The RGB-NIR image dataset [23]
consists of 477 images in 9 categories captured in RGB and
near-infrared (NIR) [23]. RGB images are employed in tests.
Similar to TID2013, CSIQ image dataset [24] offers 30 refer-
ence images. Contrast of each reference image is degraded at
5 consecutive levels for which “Level 5” corresponds to the
largest contrast degrading.

SMIRANK1 is compared, both quantitatively and qual-
itatively, with our implementations of GHE, WTHE [6],
BPHEME [7], FHSABP [8], HMF [9], CVC [13],
2DHE [12], AGCWD [10], SECE [15], and RSECE [16].
Default parameter settings for all algorithms are used.

B. Quantitative Assessment

The sets of QRCM values
{
QRCMA

i

}
∀i computed using

all processed images
{
YA

i

}
∀i and corresponding original

images {Xi }∀i are used to statistically determine if contrast
enhancement algorithm A satisfies an expected measurement
criterion. Two hypotheses are proposed for each criterion:

1The MATLAB implementations of SMIRANK and QRCM can be asked
from celikturgay@gmail.com with the subject “SMIRANK and QRCM”.
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TABLE II

THE p-VALUES RESULTING FROM EQ. (29)

null hypothesis H0 and alternative hypothesis H1. In order to
quantify logical relation “>” between two sets of values {Ti }∀i
and {Ci }∀i representing test and control sets, respectively,
a p value is calculated according

p =
∑
∀i δ (Ti , Ci )∑
∀i 1

, (28)

where δ (Ti , Ci ) = 1 if Ti > Ci , 0 otherwise. The p-value
represents the percentage of data points satisfying the logical
relation. Using the p-value with the significance level of
p = 0.5, H0 is rejected in favor of H1 if p-value < 0.5.

To test if an algorithm A enhances the contrast of test
images, the following hypotheses are tested

H0 : A enhances contrast of test images;
H1 : A does not enhance contrast of test images, (29)

where the null hypothesis H0 proposes that algorithm A
enhances contrast of test images, i.e.,

{
QRCMA

i > 0
}

where
QRCMA

i is the QRCM value resulted from algorithm A for the
input image Xi . The resulting p-values are shown in Table II.
On the average, all algorithms manage to satisfy the null
hypothesis H0 of Eq. (29) on all image datasets. However,
AGCWD provided the minimum level of enhancement. The
results also show that the highest p-values are achieved by
SMIRANK. This is mainly due to the reason that, even it
is a slight improvement, SMIRANK manages to improve the
contrast of all test images regardless the level of contrast
margin available on them.

In order to test the relative contrast improvement of an
algorithm with respect to other algorithms the following
hypotheses are tested

H0 : A produces higher contrast wrt B;
H1 : A does not produce higher contrast wrt B, (30)

where the null hypothesis H0 proposes that algorithm A
produces higher contrast image than that of the algorithm B,
i.e.,

{
QRCMA

i > QRCMB
i

}
∀i , where QRCMA

i and QRCMB
i

are, respectively, QRCM values resulted from algorithm A
and algorithm B for the input image Xi . The resulting
p-values are shown in Table III. The results show that
AGCWD consistently produces the lowest contrast improve-
ment with respect to the other algorithms. Meanwhile,
SMIRANK always produces higher contrast outputs with
respect to the other algorithms.

TABLE III

THE p-VALUES RESULTING FROM EQ. (30) ON IMAGE DATASETS WHERE
A1 = GHE, A2 = WTHE, A3 = BPHEME, A4 = FHSABP, A5 =

HMF, A6 = CVC, A7 = 2DHE, A8 = AGCWD, A9 = SECE,
A10 = RSECE AND A11 = SMIRANK

C. Qualitative Assessment

In this section, a qualitative analysis on color images
selected from image datasets enhanced by different algorithms
is performed.

The first test image, “Roping”, is from CSIQ image
dataset [24] which has “Level 1” contrast degradation with
respect to the reference image. Contrast enhancement results
with corresponding QRCM values and histograms are shown
in Fig. 2. The input image has a high dynamic range composed
of low- and high-intensity pixels. It is a difficult image for a
contrast enhancement algorithm to process. The input image’s
normalized histogram shows a high peak on a low gray-
value. Because GHE performs gray-level mapping between the
input and output images by matching cumulative normalized
histograms of the input and uniform histograms, the low
gray-level is mapped onto a higher gray-level on the out-
put image. This resulted in over-brightening of low-intensity
image regions. HMF’s weighted average of input and uniform
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Fig. 2. Visual and QRCM (in parenthesis) results on “Roping” image with
“Level 1” contrast degradation [24].

histograms is not able to remove the effect of sharp peak.
Hence, the output image is similar to that of GHE. AGCWD’s
output is similar to that of GHE and HMF with reduced level
of over-brightening. Both BPHEME and FHSABP produce
output images with lower contrast level than that of the input
image. WTHE, CVC and 2DHE slightly improve the con-
trast without significant visual distortions. Similar to WTHE,
CVC, and 2DHE, a slight contrast improvement achieved
by SECE and RSECE. Among the contrast enhancement
algorithms, SMIRANK achieves the best performance. The
output image from SMIRANK has improved visual quality
with respect to the input which is also supported by the highest
QRCM value.

The second test image, “Family”, is from CSIQ image
dataset [24] with “Level 2” contrast degradation with respect to
the reference image, hence it has a higher margin for contrast
improvement with respect to “Level 1” contrast degradation.
Contrast enhancement results are shown in Fig. 3. GHE and
HMF over-brighten the output image, thus, their contrast
improvements are not high. AGCWD has a slight contrast
improvement. WTHE, CVC, SECE and RSECE perform well
in terms contrast improvement. BPHEME and FHSABP are
not able to improve the contrast at all. Indeed FHSABP
slightly degrades the contrast on the output image as can be
verified by the corresponding negative QRCM value. The best
performances among the algorithms are provided by 2DHE
and SMIRANK as output image has higher contrast with
respect to the input image with no visual distortions and the
corresponding QRCM values are highest.

The image “Lake” shown in Fig. 4 has “Level 3” contrast
degradation [24]. The histogram of the image shows that pixel
intensities are cumulated around mid point of the dynamic
range. All algorithms are able to improve the contrast of
the input image. However, AGCWD is not able to use the
entire dynamic range simply because of the mapping function
which maps the maximum value of output gray-levels to the
maximum gray-level value in the input image which is 153

Fig. 3. Visual and QRCM (in parenthesis) results on “Family” image with
“Level 2” contrast degradation [24].

Fig. 4. Visual and QRCM (in parenthesis) results on “Lake” image with
“Level 3” contrast degradation [24].

for the image “Lake”. It is also clear from the histograms
of output images, due to its mapping function SMIRANK
efficiently utilizes the entire dynamic range which results in
the highest QRCM value. The last test image from CSIQ
image dataset [24] is the image “1600” shown in Fig. 5.
Its normalized histogram is cumulated around mid-range of
the input dynamic range with multiple peaks. All algorithms,
except AGCWD, manage to improve the contrast of the input
image significantly.

The test image “Water” [23] has fairly uniform normalized
histogram stretching over the entire dynamic range as can
be seen in Fig. 6. The image has high contrast, and the
margin for contrast enhancement is very low. All algorithms
manage to produce output images even with slight contrast
improvements. One can also notice slight over-brightening
over cloud regions on the images from 2DHE and AGCWD.
Amongst the algorithms SMIRANK produces the highest
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Fig. 5. Visual and QRCM (in parenthesis) results on “1600” image with
“Level 4” contrast degradation [24].

Fig. 6. Visual and QRCM (in parenthesis) results on “Water” image [23].

QRCM value, and a close inspection on the output images
also reveals that its output image has slightly higher contrast
than that of the other algorithms.

A high contrast image “Urban” [23] is shown in Fig. 7.
It has a high-dynamic range comprised of shadow, wall and
sky image regions, i.e., gray-levels of the image cumulate
around low and high gray-levels. The outputs from GHE,
BPHEME, FHSABP, HMF, CVC, 2DHE and AGCWD are
over-brightened on shadow regions, which resulted in over-
all visual quality and contrast loss. WTHE and SECE pro-
duce outputs with minor contrast improvements. RSECE and
SMIRANK produced the highest contrast enhancement
amongst all algorithms.

A low contrast image “Forest” [23] is shown in Fig. 8.
Majority of pixel intensities are cumulated around low gray-
levels and there are few of them cumulated around high gray-
levels. All algorithms except FHSABP significantly improve
contrast. It is clear from FHSABP’s output that it has lower
contrast with respect to the input image which can be verified
by negative QRCM value. Highest contrast improvements
are achieved by WTHE, HMF and SMIRANK. Meanwhile,
HMF’s output is slightly over-brightened around center of
the image which is not the case for WTHE and SMIRANK.

Fig. 7. Visual and QRCM (in parenthesis) results on “Urban” image [23].

Fig. 8. Visual and QRCM (in parenthesis) results on “Forest” image [23].

Fig. 9. Visual and QRCM (in parenthesis) results on “Building” image [23].

The last image “Building” [23] is shown in Fig. 9 for which
all algorithms except AGCWD perform equally well.

The qualitative and quantitative results show that
SMIRANK outperforms all algorithms. Amongst the
algorithms performing their operations on spatial histograms,
SECE outperformed by RSECE and RSECE is outperformed
by SMIRANK. The reason for this is SECE produces outputs
very similar to that of linear stretching of gray-levels of the
input image. Meanwhile, RSECE produces outputs while tries
to preserve average intensity which may result in contrast
loss. On the other hand, SMIRANK increases the gap between
consecutive gray-levels relatively more if they are spread over
the image more than other consecutive gray-level pairs. This
process results in increase in perceived level of contrast.
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V. CONCLUSIONS

A new global contrast enhancement algorithm based on a
new definition of spatial mutual information and PageRank
algorithm is introduced. The damping factor of the PageRank
algorithm is used as parameter to control the level of perceived
contrast. It is observed that a linear change of the damping
factor value results in a linear change on measured contrast
from the output image. Thus, one can linearly control the
levels of global contrast changes without significant visual
distortions. A method to automatically select the damping
factor value is also proposed. Extensive qualitative and quan-
titative experiments show that the proposed algorithm can
achieve contrast improvement on wide-variety of images and
produces better or comparable results with respect to existing
algorithms. Besides, it can achieve both contrast improvement
and image quality preservation at the same time. This makes
the proposed algorithm applicable for general purpose contrast
enhancement tasks.

In order to measure the relative contrast improvement with
respect to a reference image, a quality-aware full-reference
contrast metric is also introduced. The metric inherently
measures distortions introduced by the contrast enhancement
process. It can also measure both contrast improvements and
degradations. This new metric highly correlates with mean
opinion scores of human subjects.

APPENDIX
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