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ABSTRACT

COMPRESSED SENSING TECHNIQUES FOR
ACCELERATED MAGNETIC RESONANCE IMAGING

Efe Ilıcak

M.S. in Electrical and Electronics Engineering

Advisor: Tolga Çukur

July 2017

Magnetic resonance imaging has seen a growing interest in the recent years due to

its non-invasive and non-ionizing nature. However, imaging speed remains a ma-

jor concern. Recently, compressed sensing theory has opened new doors for accel-

erated imaging applications. This dissertation studies compressed sensing based

reconstruction strategies for accelerated magnetic resonance imaging, specifically

for angiography and multiple-acquisition methods. For magnetic resonance an-

giography, we propose a novel approach that improves scan time efficiency while

suppressing background signals. In this study, we attain high-contrast angiograms

from undersampled data by utilizing a two-stage reconstruction strategy. Simula-

tions and in vivo experiments demonstrate that the developed strategy is able to

relax trade-offs between image contrast and scan efficiency without compromising

vessel depiction. For multiple-acquisition balanced steady state free precession

imaging, we develop a framework that jointly reconstructs undersampled phase-

cycled images. This approach is able to improve banding artifact suppression

while maintaining scan efficiency. Results show that the proposed method is able

to attain high-quality reconstructions even at high acceleration factors.

Overall, the findings presented in this thesis indicate that compressed sensing

reconstructions represent a promising future for rapid magnetic resonance imag-

ing. Consequently, compressed sensing reconstruction techniques hold a great

potential to change the time-consuming clinical imaging practices.

Keywords: Compressed sensing, magnetic resonance imaging, rapid imaging.
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ÖZET

HIZLANDIRILMIŞ MANYETİK REZONANS
GÖRÜNTÜLEME İÇİN SIKIŞTIRILMIŞ ALGILAMA

TEKNİKLERİ

Efe Ilıcak

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Çukur

Temmuz 2017

Manyetik rezonans görüntüleme, invazif ve iyonlaştırıcı olmamasından dolayı son

yıllarda artan bir ilgi görmektedir. Ancak görüntüleme hızı, temel bir problem

teşkil etmektedir. Yakın zamanda sıkıştırılmış algılama kuramı, hızlandırılmış

görüntüleme uygulamaları için yeni fırsatlar oluşturmuştur. Bu tez, özellikle an-

jiyografi ve çoklu çekim yöntemlerinde kullanılmak üzere geliştirilmiş, sıkıştırılmış

algılama kuramına dayalı geriçatım tekniklerini incelemektedir. Manyetik rezo-

nans anjiyografi için, görüntü süresi verimliliğini artırırken arkaplan sinyallerini

baskılayan yeni bir yöntem önerilmiştir. Bu çalışmada yüksek kontrastlı anjiyo-

gramlar, eksik örneklendirilmiş veriden iki aşamalı bir geriçatım tekniği ile elde

edilmektedir. Geliştirilen yöntemin görüntü kontrastı ile görüntüleme verimliliği

arasındaki dengeyi, damar görselliğini bozmadan gevşetebildiği, simusayon ve

in vivo deneyler ile gösterilmiştir. Çoklu çekim dengeli kararlı-durum serbest

devinim görüntüleme teknikleri için ise, eksik örneklendirilmiş faz döngülü

görüntüleri birlikte işleyen bir geriçatım tekniği geliştirilmiştir. Bu yöntem

görüntüleme verimliliğini korurken, bükülme artifaktlarının baskılanmasını iy-

ileştirebilmektedir. Elde edilen sonuçlar, bu yöntemin yüksek hızlandırma

değerlerinde bile yüksek kaliteli geriçatımlar elde edebildiğini göstermektedir.

Sonuç olarak bu tezdeki bulgular, sıkıştırılmış algılamaya bağlı geriçatım

yöntemlerinin, hızlı manyetik rezonans görüntüleme için umut vadeden bir

gelişme olduğunu göstermektedir. Buna bağlı olarak sıkıştırılmış algılama

geriçatma tekniklerinin, zaman alıcı klinik görüntüleme uygulamalarını

değiştirmek için büyük bir fırsat sunduğunu görülmektedir.

Anahtar sözcükler : Sıkıştırılmış algılama, manyetik rezonans görüntüleme, hızlı
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for all the help and motivation they provided me to write this thesis.

Last but not the least, I would like to thank my family, my mother Meltem,

my father Sinan and my brother Ege, for their endless love and unconditional

support. Words cannot describe how grateful I am. Without them, none of this

would be possible.

vi



Contents

1 Introduction 1

1.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Targeted vessel reconstruction for vessel preservation in non-

contrast-enhanced angiography 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Pulse Sequence . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Sampling Patterns . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Vasculature Mapping . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Targeted Compressed-Sensing Reconstructions . . . . . . . 14

2.2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



CONTENTS viii

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Profile encoding reconstruction for multiple-acquisition balanced

steady-state free precession imaging 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Undersampling Patterns for Multiple-Acquisition bSSFP

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Profile-Encoding Reconstruction . . . . . . . . . . . . . . . 42

3.2.3 Alternative Reconstructions . . . . . . . . . . . . . . . . . 47

3.2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5 In Vivo Experiments . . . . . . . . . . . . . . . . . . . . . 50

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Simulation Analyses . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 In Vivo Analyses . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Conclusion 67

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Contributions to the Literature . . . . . . . . . . . . . . . . . . . 68

4.2.1 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . 68



CONTENTS ix

4.2.2 Conference Papers . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Additional Contributions . . . . . . . . . . . . . . . . . . . 69



List of Figures

2.1 Proposed reconstruction strategy. Angiograms with variable-

density undersampling in k-space are density-compensated and

transformed to obtain Fourier reconstructions (ZF). A segmenta-

tion algorithm is then employed to trace vessel trees across the

volume. In conventional CS, penalty terms are weighted uniformly

across images. Here penalty weights are selected based on seg-

mented vasculature maps: smaller weights at vessel locations en-

abling targeted reconstructions. Note that data are not density

compensated during CS, but only to obtain ZF used for segmen-

tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Variable-density random sampling masks used at each acceleration

factor R=2-8. (a) Sampling masks (384×384) for phantom data.

(b) Sampling masks (240×110) for hand data. (c) Sampling masks

(128×128) for lower leg and foot data. . . . . . . . . . . . . . . . 12

2.3 Vasculature maps were segmented from undersampled angiograms

at acceleration factors R = 1-6. Vessel volumes for hand an-

giograms (a) and lower leg angiograms (b) are visualized with

maximum-intensity projections (MIPs). Segmentation results at

R = 1 (fully-sampled), 2 and 4 are visually similar to each other.

For higher R, losses in vessel volume are apparent particularly

small vessels. The percentage volume loss in each map is listed

with respect to the ideal map at R = 1. . . . . . . . . . . . . . . 13

x



LIST OF FIGURES xi

2.4 (a) A phantom with 25 blood vessels of sizes 0.33 to 2 mm en-

closed by muscle. Targeted CS (TCS) reconstructions were cal-

culated using r ∈ [1 20], λ1,2 = λ1o,2o, and R = 1-8. Results are

shown for R = 4, with magnified lower-right portions of images.

Higher r enhance blood/muscle contrast, but image distortions be-

come prominent for r ≥ 15. (b) TCS performance was taken as

the ratio of contrast improvement to dispersion level (mean±sem

across vessels). For all R, r = 10 and λ1,2 = λ1o,2o yield close

to optimal reconstruction performance (left and middle panels).

TCS using λ1,2 = λ1o,2o and r = 10 was repeated for 20 random

instances additive noise. Contrast improvement is plotted for each

vessel diameter (right panel; mean±sem across 20 images). The

improvement is greater for smaller vessels. (c) A separate phantom

with 13 blood vessels of sizes 1.25 to 3.75 mm. Fourier reconstruc-

tions (ZF), conventional CS, and TCS were calculated for R = 4.

The panel below each image shows a sample line profile (across the

red line). TCS improves blood/muscle contrast without significant

image distortions. (d) TCS reconstructions were obtained while

losses in segmented vessel maps were simulated by random erosions

of the ideal map. Contrast and vessel sizes were measured relative

to a TCS reconstruction based on the ideal map (mean±sem across

20 instances of erosion). . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Lower-leg angiograms reconstructed using conventional CS with

uniformly-weighted penalty terms (CSlow, CShigh), CS with

spatially-weighted penalty terms based on intensity of ZF recon-

structions (CSint), iteratively-reweighted CS (CSIR), and TCS.

Representative axial sections are shown for R = 4. CShigh,

CSint and CSIR suffer from signal losses, particularly in relatively

small or low intensity vessels. In contrast, TCS improved back-

ground suppression while preserving detailed depiction of vascula-

ture (marked with ellipses and arrows). . . . . . . . . . . . . . . . 25



LIST OF FIGURES xii

2.6 MIPs of hand angiograms reconstructed with ZF, CSIR and TCS,

for R = 1-6. CSIR suffers increasingly from loss of small vessels

for higher R. Furthermore, bright synovial fluid causes suboptimal

vessel contrast in ZF and CSIR. In contrast, TCS alleviates vessel

loss while improving suppression of background signals (marked

with arrows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 MIPs of lower leg angiograms reconstructed with ZF, CSIR and

TCS, for R = 1-6. There is visible loss of low-intensity and small

vessels in CSIR. TCS achieves improved blood/muscle contrast

with no visible vessel loss up to R = 4 (marked with ellipses). Due

to reduction of segmented volumes for R = 6 (Fig. 2.3), some small

vessels are depicted suboptimally. . . . . . . . . . . . . . . . . . 27

3.1 In the profile-encoding framework, each phase-cycled bSSFP im-

age (Sn) is modeled as the multiplication of an ideal image free of

banding artifacts (So) with a respective bSSFP sensitivity profile

(Cn). The value of the bSSFP profile at each location is a function

of total phase accrual over a single TR due to main field inho-

mogeneity and RF phase-cycling increment (∆φ). Locations of

near-zero phase shift (modulo 2π) lead to significantly diminished

sensitivity and thereby banding artifacts in bSSFP images. . . . 41



LIST OF FIGURES xiii

3.2 Flowchart of the profile-encoding bSSFP (PE-SSFP) reconstruc-

tion that recovers missing data in undersampled phase-cycled ac-

quisitions. PE-SSFP employs an alternating projection-onto-sets

scheme with four projection operators: calibration, joint-sparsity,

TV, and data-consistency projections. In the calibration projec-

tion, an interpolation kernel estimated from calibration data is

used to synthesize missing samples linearly from acquired data

across phase-cycles. In the joint-sparsity projection, wavelet coeffi-

cients of phase-cycled bSSFP images are thresholded with a Huber

function. In the TV projection, bSSFP images are denoised with

a fast iterative-clipping algorithm. In the data-consistency pro-

jection, reconstructed data in sampled locations are replaced with

their acquired values. These projections are successively repeated,

and the individual phase-cycled images are finally combined with

the p-norm method. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Phase-cycled bSSFP images of a numerical phantom were simu-

lated for N=2-8, α = 45o, TR/TE=5.0/2.5 ms, a field map of 0±62

Hz (mean±std). Phantom images were undersampled by a factor

of N via variable-density random sampling, disjointly across phase

cycles. Zero-filled Fourier (ZF, top row), individual compressed

sensing (iCS, middle row), and PE-SSFP (bottom row) reconstruc-

tions are shown. White boxes display a zoomed-in portion of the

images. ZF reconstructions suffer from elevated aliasing/noise in-

terference at high N due to the heavier undersampling factors used.

While iCS reconstructions employ regularization terms that limit

this interference, the heavy undersampling factors at high N cause

visible loss of spatial resolution. In contrast, PE-SSFP successfully

alleviates noise and aliasing interference while maintaining detailed

depiction of tissue boundaries. . . . . . . . . . . . . . . . . . . . 52



LIST OF FIGURES xiv

3.4 Representative bSSFP images of the numerical phantom for N=4

were reconstructed using ZF and PE-SSFP. Images from three vari-

ants of PE-SSFP are shown (top row). PEcalib only uses calibration

and data-consistency projections, PEhuber uses calibration, joint-

sparsity and data-consistency projections, and PE-SSFP addition-

ally uses TV projections. Reconstructions were compared against

a combination of fully-sampled images (for N=8). Squared-error

maps are shown in logarithmic scale (bottom row; see colorbar).

Each additional projection in PE-SSFP yields visibly reduced re-

construction error in bSSFP images. . . . . . . . . . . . . . . . . 54

3.5 The noise-amplification maps for ZF, iCS and PE-SSFP meth-

ods are displayed for N=2-8. Although the heavier undersampling

at high N increases noise amplification in ZF reconstructions, re-

constructions with penalty terms iCS and PE-SSFP maintain rel-

atively low noise amplification even at high N. The lower noise

amplification with iCS likely reflects a bias from excessive loss of

high-spatial-frequency information. In PE-SSFP, relatively higher

amplification is observed near tissue boundaries that are more sus-

ceptible to resolution loss due to variable-density undersampling. 55

3.6 Phase-cycled bSSFP reconstructions of the numerical phantom

(top row), and the squared-error maps with respect to the fully-

sampled combination image (bottom row) are displayed for N=8.

ZF has broadly distributed errors across the field-of-view due to

aliasing and noise interference. iCS reconstructions reduce this

interference via TV regularization at the expense of elevated er-

rors near tissue boundaries, due to significant loss of high-spatial-

frequency information. While ESPIRiT reconstructions alleviate

this loss via joint-sparsity penalties, the respective images still

show broadly distributed errors. In contrast, PE-SSFP using both

joint-sparsity and TV regularization further dampens the recon-

struction errors in phase-cycled bSSFP images. . . . . . . . . . . 57



LIST OF FIGURES xv

3.7 In vivo bSSFP acquisitions of the brain (a) and the knee (b) were

reconstructed using PE-SSFP. Squared-error maps are shown in

logarithmic scale (see colorbar). The error maps clearly suggest

that banding artifact suppression improves for higher N, while

PE-SSFP maintains detailed depiction of high-spatial-frequency

information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 In vivo phase-cycled bSSFP reconstructions of the brain (a) and

the knee (b) are displayed for N=8. ZF and ESPIRiT reconstruc-

tions suffer from broadly distributed reconstruction error across

the images. Meanwhile, iCS reconstructions show substantial loss

of high-spatial-frequency information and coherent low-frequency

interference. In contrast, PE-SSFP effectively reduces errors due

to aliasing and noise interference, while maintaining detailed tissue

depiction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Tables

2.1 Reconstruction Parameters . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Contrast and Resolution: Simulated data . . . . . . . . . . . . . . 24

2.3 Contrast: Representative Single-Subject Hand Data . . . . . . . . 28

2.4 Contrast: Representative Single-Subject Lower Leg Data . . . . . 29

2.5 Contrast: Population Lower Leg Data . . . . . . . . . . . . . . . . 30

2.6 Contrast: Population Foot Data . . . . . . . . . . . . . . . . . . . 31

2.7 Radiological Assessment of Image Quality . . . . . . . . . . . . . 32

3.1 Regularization Parameters . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Image Assessments for the Brain Phantom . . . . . . . . . . . . . 59

3.3 Image Assessments for In Vivo Datasets . . . . . . . . . . . . . . 63

xvi



Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a noninvasive imaging modality that does

not require the use of ionizing radiation. Thanks to its safety and unparalleled

soft tissue contrast properties, it has gained widespread usage in the clinical set-

tings [1, 2]. However, the incorporation of MRI techniques into clinical practice

has been hindered due to its relatively long examination times compared to other

imaging modalities such as computed tomography or ultrasound imaging [2, 3];

where this limitation arises from both physical and physiological constraints [4].

Over the last decades, many successful approaches have been proposed to improve

the scan efficiency, such as the development of fast switching magnetic field gra-

dients; implementation of rapid imaging sequences(e.g., gradient-echo, fast-spin

echo, or steady-state free precession sequences); development of multiple coil re-

ceiver arrays and parallel imaging techniques, and more recently by using sparsity

based compressed sensing applications [5, 3, 6, 4].

Originally emerged from information theory, compressed sensing aims to recon-

struct signals from relatively small number of samples compared to traditionally

required [7]. This is partly possible due to the compressibility of the underlying

signal in a known transform domain. Successful application of compressed sens-

ing can be summarized in three requirements: (a) The sampled signal should be

sparse or compressible in a known transform domain (e.g., wavelet domain), (b)
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the sampling should create incoherent aliasing artifacts in the compression trans-

form domain, (c) a nonlinear reconstruction algorithm should be used to enforce

sparsity and data consistency. When these three requirements are met, signals

can be recovered from significantly lower number of samples [4, 8, 9]. For MRI,

these conditions can be matched since MR images are known to be compressible,

incoherence can be achieved through random undersampling in k-space, and fi-

nally there are efficient algorithms for nonlinear reconstructions [7]. With MRI

being a natural fit and its potential to reduce scan time constraints, compressed

sensing has sparked a great interest in the MRI community with applications

including, but not limited to, anatomical imaging and angiography [4, 8].

Magnetic imaging methods that provide the visualization of blood vessels are

referred as magnetic resonance angiography (MRA) methods. These methods

can be categorized into two main groups, contrast-enhanced (CE-MRA) and non-

contrast-enhanced (NCE-MRA), with the prior utilizing intravenous injection of

contrast agents to visualize blood vessels and the later utilizing the intrinsic

properties of blood tissue. In the case of non-contrast-enhanced angiography

(NCE-MRA), time-of-flight and phase contrast methods rely on the motion of

the blood and steady-state method relies on the magnetic properties of blood to

generate contrast between vasculature and tissue [10]. Contrast-enhanced MRA

methods have gained popularity due to their ease of use, and their ability to

quickly produce high-quality diagnostic images of large vascular territories. Cur-

rently, Gadolinium-based contrast agents (GBCA) are the most commonly used

contrast materials. Since their approval in the 1980s, they have been an im-

portant tool for lesion detection and characterization [11]. Similar to computed

tomography angiography, CE-MRA provides reliable enhancement of the arte-

rial lumen during the arterial phase of the Gadolinium bolus injection, and can

rival digital subtraction angiography in image quality and diagnostic accuracy

[12]. However, the bolus timing requirements limit the temporal resolution, spa-

tial resolution, signal-to-noise ratio; the addition of contrast agent increases the

already expensive scan cost; and recent studies identified a connection between

the GBCAs and a fatal condition called nephrogenic systemic fibrosis in patients

with advanced renal diseases [13, 14, 15, 11]. Besides the financial and safety
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benefits, the NCE-MRA examinations can be repeated in case of patient motion

or technical errors, and can serve as backup examinations before the injection of

contrast agents [15].

As a consequence, the advantages has spurred a renewed interest in the NCE-

MRA methods [14]. This resurgence of interest ranges from imaging the renal

arteries in the abdomen to cerebral arteries, from thoracic aorta to distal vessels

[13, 16, 17, 18, 19]. The NCE-MRA methods can be categorized into two classes:

flow-dependent and flow-independent. The early non-contrast techniques such

as time-of-flight (TOF) and phase contrast (PC) methods generate the contrast

by using the fact that blood is flowing inside stationary tissue. However, these

methods suffer from reduced contrast in slow or retrograde flow regions, as seen in

the cases with stenosis [19]. In contrast, the flow-independent techniques such as

balanced steady-state free precession (bSSFP) depend on the magnetic properties

of blood tissue and can generate blood-background contrast even in the cases of

slow flow [14, 8]. While these methods have proven their usefulness in offering

sensitive assessments of vessel morphology, high spatial resolution is needed for

diagnostic quality [20]. Furthermore, given the fact that spatial resolution is

directly related to acquisition time, the image quality can be limited by the scan

time constraints. Therefore, acceleration strategies that improve scan efficiency

can greatly increase the clinical potential of NCE-MRA. As a result, many recent

studies have proposed various techniques to accelerate acquisitions, including

view-ordering [21], parallel imaging [22, 23, 20], and more recently compressed

sensing methods [8, 20, 24, 25].

Another important application of compressed sensing can be found in the usage

of bSSFP sequence for anatomical imaging. In recent year, bSSFP sequence has

gained popularity as it can provide high signal to noise ratio in short repetition

times; and found wide use in numerous MRI applications, such as musculoskele-

tal imaging, interventional imaging [26, 27, 28, 29, 30, 31]. However, the bSSFP

signal depends on the local resonant frequency and magnetization profile, which

yields increased sensitivity to magnetic field inhomogeneities. Therefore, bSSFP

sequence suffers from irrecoverable signal losses, called banding artifacts, in re-

gions with large off-resonant frequencies [29, 31, 32]. A common approach to
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mitigate the banding artifacts is to use multiple-acquisition bSSFP technique

[33, 32]. In this method, spatially non-overlapping banding artifacts are cre-

ated by acquiring the images by either changing the center frequency directly

or by altering the radio frequency pulse between repetition times. Afterwards,

the phase-cycled images can be combined to obtain artifact free image. Unfortu-

nately, the speed advantage of this sequence is diminished due to the prolonged

acquisition time with additional acquisitions. Thus, acceleration strategies that

improve the scan efficiency are of great interest.

1.1 Outline of the thesis

Chapter 2 focuses on a novel approach that improves scan efficiency while sup-

pressing background signals for accelerated MRA acquisitions. In this work, we

attain high-contrast angiograms from undersampled data by utilizing a two-stage

reconstruction strategy. In the first step, we generate 3D vessel maps using a

tractographic segmentation on Fourier reconstructions of undersampled data. In

the second step, targeted reconstructions are performed based on these maps

with spatially adaptive `1-norm and total-variation penalties to dampen back-

ground signals while preserving the depiction of vasculature. Simulations and in

vivo experiments demonstrates that the developed strategy is able to relax trade-

offs between image contrast, resolution and scan efficiency without compromising

vessel depiction. Radiological assessments also demonstrate that the proposed

method is able to outperform conventional compressed sensing reconstructions.

Chapter 3 introduces a novel approach for multiple-acquisition balanced

steady-state free precession imaging. In this framework, acquisitions are acceler-

ated to keep the total scan time equivalent to a single fully-sampled acquisition.

Similar to parallel imaging applications, we model each phase-cycled bSSFP im-

age as the product of banding artifact-free image with a respective bSSFP spatial

profile and jointly process these images to mitigate banding artifacts. During the

reconstructions, missing k-space samples are linearly synthesized from acquired

data. To alleviate the aliasing artifacts and noise interference, joint-sparsity and

4



total-variation penalties are utilized. Simulations and experiments show that

the proposed approach is able to achieve high-quality reconstructions with high-

spatial-frequency information, even at high acceleration factors.

Finally, Chapter 4 summarizes the contributions of this thesis and discusses

possible future research directions.
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Chapter 2

Targeted vessel reconstruction

for vessel preservation in

non-contrast-enhanced

angiography

This chapter is based on publication ‘Targeted vessel reconstruction in

noncontrast-enhanced steady-state free precession angiography’, Ilicak, E., Cetin,

S., Bulut, E., Oguz, K. K., Saritas, E. U., Unal, G., and Çukur, T., NMR Biomed.

29: 532544, 2016.
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List of Abbreviations

CE Contrast-enhanced

CS Compressed sensing

CScont Conventional CS reconstruction with matched contrast to TCS

CShigh Conventional CS reconstruction with heavier regularization weight

CSint Intensity-weighted CS reconstruction

CSIR Iteratively reweighted CS reconstruction

CSlow Conventional CS reconstruction with conservative regularization weight

DI Dispersion index

FIA Flow-independent angiography

FWHM Full-width at half-maximum

MIP Maximum intensity projection

MRA Magnetic resonance angiography

NCE Non-contrast-enhanced

R Acceleration factor

ROI Region-of-interest

SNR Signal-to-noise ratio

SSFP Steady-state free precession

TCS Targeted compressed sensing reconstruction

TCSn`1 TCS reconstruction with fixed `1 penalty

TCSnTV TCS reconstruction with fixed TV penalty

TE Echo time

TR Repetition time

TV Finite differences (total-variation)

Y Acquired data

ZF Zero-filled Fourier
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2.1 Introduction

Non-contrast-enhanced MR angiography (NCE MRA) offers great potential in

monitoring of atherosclerotic diseases, because it prevents complications due to

contrast agents leveraged in routine contrast-enhanced (CE) examinations [34].

Various successful approaches have been proposed to acquire NCE angiograms, in-

cluding time-of-flight angiography, phase-contrast angiography, fresh-blood imag-

ing and flow-independent angiography (FIA) [35]. While these methods offer sen-

sitive assessments of vessel morphology, image quality may be compromised due

to limitations on scan time.

In the case of FIA, blood is delineated based on intrinsic T1,2 and chemical

shift differences among tissues. FIA employs magnetization-prepared, segmented

steady-state free precession (SSFP) sequences to generate blood-background con-

trast [14, 36]. This preparation overhead reduces scan efficiency and limits the

achievable contrast and resolution [37], which is a concern for many other NCE

methods as well [35]. Note that limited contrast levels due to unwanted interfer-

ence from background tissues can severely degrade the quality of vessel depiction.

Therefore, acceleration strategies that improve scan efficiency while suppressing

background signals can greatly increase the clinical potential of NCE MRA.

Due to the inherent structural sparsity of angiograms, acceleration can be

achieved through undersampling followed by sparse reconstructions [4, 25, 8, 20,

38]. To suppress aliasing artifacts and noise, penalties are applied typically based

on `1-norm or spatial finite differences of reconstructed images [39, 4, 40, 8].

Relative weighting of penalties with respect to a data consistency term is a critical

determinant of image quality in these reconstructions [4]. Small weights can lead

to insufficient artifact suppression and elevated background signals, whereas large

weights can cause loss of relatively small or low-contrast vessel signals [8]. This

results in a fundamental compromise between blood-background contrast and

vessel preservation.

Several important approaches have been proposed to enhance angiographic
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reconstructions based on prior information [41, 42, 43]. Methods that require

high-quality prior acquisitions [41, 42] are not directly applicable to undersampled

NCE MRA, where data are readily corrupted by aliasing and noise interference.

Other methods exploiting temporal image correlations in dynamic acquisitions

[43] may be inadequate for static, high-spatial-resolution FIA targeted here.

Previous studies have also leveraged region-adaptive reconstructions to im-

prove quality of angiograms [44, 45, 46, 47, 48, 49]. A group of studies have

employed support detection for vascular masking in CE angiograms [44, 45].

Vascular masking relies on heavily-suppressed static tissue in CE MRA, whereas

blood-background contrast can be relatively impaired in NCE MRA. An alterna-

tive method is to utilize user-specified regions-of-interest (ROIs) for support de-

tection [46, 47, 48]. However, such manual ROIs can be broad and poorly localized

to individual vessels. A recent study further proposes 2D vessel segmentations

to apply a spatially-varying `1-penalty [49]. While this approach is promising, it

does not consider the full 3D structure of vessels and finite-differences penalties

that may be critical for interference suppression.

Here we propose to attain high-contrast angiograms from undersampled data

via a two-stage reconstruction. First, we generate 3D vessel maps using a tracto-

graphic segmentation on Fourier reconstructions of undersampled NCE data [50].

To dampen background signals, we then perform targeted reconstructions with

spatially-adaptive `1-norm and total-variation penalties based on these maps. As

demonstrated with simulations and in vivo experiments, the proposed strategy

yields higher levels of background suppression compared to regular reconstruc-

tions, without compromising vessel depiction.

2.2 Methods

In this work, we acquire peripheral angiograms in the extremities using a flow-

independent technique and variable-density random sampling across k-space. We

first obtain Fourier reconstructions of undersampled data following zero-filling
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Figure 2.1: Proposed reconstruction strategy. Angiograms with variable-density
undersampling in k-space are density-compensated and transformed to obtain
Fourier reconstructions (ZF). A segmentation algorithm is then employed to trace
vessel trees across the volume. In conventional CS, penalty terms are weighted
uniformly across images. Here penalty weights are selected based on segmented
vasculature maps: smaller weights at vessel locations enabling targeted recon-
structions. Note that data are not density compensated during CS, but only to
obtain ZF used for segmentation.

and density compensation in k-space. We then leverage a powerful segmenta-

tion algorithm that jointly models tubular sections and branching structures to

extract vasculature maps from these initial reconstructions. Finally, we perform

targeted reconstructions, where these vasculature maps guide the enforcement

of sparsity and total-variation constraints. The workflow of the proposed strat-

egy is illustrated in Fig. 2.1, and individual stages are described in detail in the

following sections.
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2.2.1 Pulse Sequence

FIA of the peripheral extremities were acquired with a three-dimensional (3D)

magnetization-prepared pulse sequence [14, 37]. T2-prepared magnetization was

captured with segmented, centric square-spiral phase-encode ordering [36]. Each

segment started with a linearly ramped series of RF excitations to minimize

signal oscillations [51]. Afterwards, fat-supressed data were acquired using an

alternating repetition time SSFP sequence kernel [14]. A recovery period was

inserted between consecutive segments for magnetization recovery.

2.2.2 Sampling Patterns

To accelerate acquisitions, random sampling patterns were generated with a vari-

able sampling density across k-space. Isotropic acceleration in two phase-encode

dimensions was generated based on a polynomial density [4, 8, 52],

P (kr) = a1(1− kr)d + a2 (2.1)

where kr is the k-space radius, d and a1,2 are constants that characterize the

polynomial. Full sampling was utilized in the central 2% of k-space. For a given d,

candidate sets of a1,2 that yield the target acceleration factor (R) were determined

using a binary search algorithm. The resulting density for each set was used to

generate 1000 random sampling patterns through a Monte Carlo simulation [4].

Only patterns with a total number of samples within 1% of the ideal number

(based on R) were accepted. The point spread function (PSF) of each pattern

was calculated by taking the inverse Fourier transform of the pattern, and thus

assuming an impulse object in the image domain. The level of aliasing energy was

then taken as the magnitude-sum of all pixels apart from the origin. The optimal

sampling pattern was selected to attain minimal aliasing energy (see Fig. 2.2).
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R = 4 R = 6 R = 8R = 2a

R = 4 R = 6 R = 8R = 2b

R = 4 R = 6 R = 8R = 2c

Figure 2.2: Variable-density random sampling masks used at each acceleration
factor R=2-8. (a) Sampling masks (384×384) for phantom data. (b) Sampling
masks (240×110) for hand data. (c) Sampling masks (128×128) for lower leg
and foot data.

2.2.3 Vasculature Mapping

Previous MRA studies have primarily employed vessel segmentations to enhance

arterial-venous separation [53, 54] and to extract morphological features such as

lumen size [55, 56, 57]. Here we propose to use segmented vessel maps to enhance

blood/background contrast in NCE MRA. We leverage a segmentation approach

that we have demonstrated thoroughly for synthetic, coronary and cerebral an-

giograms [58, 59, 50]. Our method jointly models branching structures with

tubular sections by leveraging a fourth-order tensor model [59, 50]. The tensor at

each voxel in the vessel tree is constructed via non-negative least-squares fitting

performed on measurements of image gradient at 64 different orientations. This

tensor is then decomposed into its singular vectors to identify major vessel tracts,
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including both tubular sections as well as a variety of n-furcations such as Y-,

T-, asymmetric- and crossing-junctions [50]. Starting from few seed points, this

segmentation method can extract entire vessel trees in the extremities in less than

3 minutes (see Fig. 2.3).

b R = 2 R = 4 R = 6R = 1

R = 2 R = 4 R = 6R = 1a

Figure 2.3: Vasculature maps were segmented from undersampled angiograms at
acceleration factors R = 1-6. Vessel volumes for hand angiograms (a) and lower
leg angiograms (b) are visualized with maximum-intensity projections (MIPs).
Segmentation results at R = 1 (fully-sampled), 2 and 4 are visually similar to
each other. For higher R, losses in vessel volume are apparent particularly small
vessels. The percentage volume loss in each map is listed with respect to the ideal
map at R = 1.

To extract vasculature maps, we first obtained zero-filled reconstructions of un-

dersampled data. Data were compensated for variable k-space sampling density,

and zero-padded in three dimensions to double the k-space extent and minimize

partial volume effects. To reduce noise levels, reconstructions were smoothed

with a Gaussian kernel of width 7 and full-width at half-maximum (FWHM) of

1. Afterwards, manual seed selection was performed to initiate the segmentation

procedure. The seed points were selected on tubular sections of major vessels to
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avoid vessel junctions. The seeds were placed in vessels of high signal intensity

located in superior or inferior cross-sections. The number of seeds prescribed for

each anatomy depended on the number of disconnected vessel trees that need to

be traced. Seven seeds for hand, five seeds for lower leg and foot angiograms were

selected inside major vessel branches. The seed points were identical across R.

2.2.4 Targeted Compressed-Sensing Reconstructions

Compressed-sensing (CS) can estimate missing samples in MRI acquisitions when

data have a compressible representation in a linear transform domain, and sam-

pling patterns yield incoherent aliasing in this domain [4]. Nonlinear algorithms

are then used during CS reconstructions to enforce compressibility and consis-

tency with the acquired data. MRA datasets contain bright blood vessels sur-

rounded by low-contrast background tissues. Therefore, CS is highly adept at

reconstructing heavily undersampled angiograms [8, 39, 40, 25, 20, 38].

2.2.4.1 Optimization framework

Here angiographic reconstructions are obtained via the following optimization

[4, 8, 52]:

min
m
‖Fum− Y ‖2

2 + ‖λ1 ◦m‖1 + ‖λ2 ◦∆m‖1 (2.2)

where m is the reconstructed image, and the first term enforces consistency by

minimizing the `2-norm difference between the Fourier transform of the recon-

struction (Fum) and the acquired data (Y ). Remaining are penalty terms,

‖λ1 ◦m‖1 =
∑
i,j

λ1 (i, j) |m (i, j)| (2.3)

‖λ2 ◦∆m‖1 =
∑
i,j

λ2 (i, j) {|m (i+ 1, j)−m (i, j)| (2.4)

+ |m (i, j + 1)−m (i, j)|}

where ◦ is the Schur product, ∆ is the summation of finite-differences transforms

across cardinal dimensions, and i, j are the row and column indices of the image
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matrix. The `1-norm penalty enforces sparse reconstructions in the image domain.

The finite differences penalty, TV (m) (i.e., total variation), enforces block-wise

image homogeneity for denoising.

The problem in Eq. 2.2 was solved using a nonlinear conjugate-gradient algo-

rithm, implemented in MATLAB (Mathworks, Inc.). To compute the conjugate

gradient of the `1-norm, a fixed smoothing parameter of 10−15 was added during

the absolute value calculation in all iterations. Stopping criteria was an improve-

ment in the objective below a 0.1% threshold, which was observed to yield high

quality reconstructions in previous studies [4, 8, 52].

2.2.4.2 Conventional weight selection

In conventional CS, λ1,2 are uniform scalars across the entire image. Recon-

structions were performed across a broad range of penalty weights, similar to

previously considered ranges [52, 60]. λ1 was varied in the range [0 0.800] with

a step size of 0.0005 in [0 0.040], and 0.020 in the remaining range. Meanwhile,

λ2 was varied with a step size of 0.0005 in the range [0 0.040]. λ2 values greater

than 0.040 caused undesirably high levels of block artifacts. The smallest pair of

weights yielding sufficient artifact/noise suppression, without causing distortions

or vessel loss were determined by visual inspection and denoted as λ1,2 = λ1o,2o

(see Table 2.1).

2.2.4.3 Targeted weight selection

In angiograms, vessels appear as bright, small ellipsoidal structures in axial cross-

sections, whereas background tissues appear as dark, broad regions [52]. Larger

λ1 values promoting background sparsity will cause inadvertent loss of vessel

signals. In addition, large λ2 values promoting effective background denoising

can yield suboptimal depiction of small vessels with limited contrast.

Here we propose to utilize spatially-adaptive `1-norm and TV penalties based
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Table 2.1: Reconstruction Parameters

Phantom In Vivo

R λ1o λ2o λ1o,cont λ1o λ2o

1 0.032 0.032 0.520 0.014 0.014

2 0.024 0.024 0.400 0.010 0.010

4 0.016 0.016 0.340 0.006 0.006

6 0.008 0.008 0.240 0.001 0.002

8 0.004 0.004 0.120 0.0005 0.001

Reconstruction parameters for phantom and in vivo data at various accelera-
tion factors (R). λ1 = 10λ1o for CShigh, λ1 = λ1o,cont for CScont, and λ1 = λ1o

for all remaining reconstructions. λ2 = λ2o for all reconstructions. With this
selection, TCS reconstructions scaled the `1-norm penalty from 10λ1o in back-
ground to λ1o in vessels, and the TV penalty from λ2o in background to λ2o/10
in vessels.

on a spatial weight map derived from vessel segmentations. The binary segmen-

tations indicate the location of vessels across the imaging volume. To improve

robustness against segmentation errors and partial volume effects near the vessel

boundaries, segmentations were dilated by one pixel in all dimensions and linearly

ramped down from 1 to 0 across the dilated region. The maps were subtracted

from 1 and normalized to calculate W (i, j) that decreased from r (r ≥ 1) to 1.

This spatial map was then used to modify the penalty weights as follows:

λ1 (i, j) → λ1W (i, j) (2.5)

λ2 (i, j) → λ2W (i, j)/r (2.6)

To improve background suppression, the `1-norm penalty weights were scaled

from rλ1 in background regions to λ1 in vessels. To minimize vessel loss, the TV

penalty weights were scaled from λ2 in background regions to λ2/r in vessels. The

value of r was selected to maximize image contrast without introducing significant

image distortions.
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2.2.4.4 Phantom and in vivo reconstructions

For each dataset, separate Fourier (ZF), conventional CS and targeted CS (TCS)

reconstructions were computed using parameters listed in Table 2.1. For ZF, data

were compensated for k-space sampling density and inverse Fourier transformed.

For CS, an identical λ2 = λ2o was prescribed but several different λ1 values were

used. First conservative CS was performed using λ1 = λ1o (CSlow). Second heav-

ier penalization was performed using λ1 = 10λ1o (CShigh). For phantom datasets,

a separate CS was calculated with an even larger λ1 = λ1o,cont (CScont), where

λcont was selected to attain identical blood/background contrast to TCS. Because

CScont caused severe image artifacts, it was omitted in subsequent analyses.

TCS was performed using λ1,2 = λ1o,2o and r ∈ [1 20]. For comparison, four

other spatially-adaptive CS methods were employed with the same parameters.

First an intensity-weighted reconstruction was performed using weight maps de-

rived from the intensity of ZF (CSint). ZF reconstructions were normalized to

a maximum amplitude of unity and then inverted to calculate W (i, j) similar

to TCS. Second, iteratively-reweighted CS (CSIR) was performed [61]. Weight

maps for CSIR were updated at each iteration based on the reconstruction at the

previous iteration. Unlike TCS or CSint, CSIR maps did not reflect the region

of signal support but rather the intensity of reconstructed images [61]. Finally,

two separate variants of the TCS method were implemented to assess the relative

importance of using spatially-adaptive weights on TV versus `1 penalties. The

first variant TCSnTV employed a spatially-weighted `1 and a fixed TV penalty,

whereas the second variant TCSn`1 employed a spatially-weighted TV and a fixed

`1 penalty.

2.2.5 Simulations

To evaluate TCS independently from segmentation, we created two numerical

phantoms that contained vessels immersed in a block of muscle tissue (Fig. 3.3a,c).
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Both tissues were modeled with circular cross-sections. The first phantom con-

tained 25 vessels of diameters ranging from 0.33 mm (1 pixel) to 2 mm (6 pixels).

The vessels were arranged on a 5×5 rectilinear grid within a muscle block of

diameter 100 mm (300 pixels). The second phantom contained 13 vessels of di-

ameters between 1.25 to 3.75 mm, arranged randomly within the muscle block.

Blood and muscle signals were simulated with the following parameters: α = 60o,

TRl,s = 3.45/1.15 ms, TE = 1.725 ms, T1/T2 = 1200/200 ms for blood [62] and

870/50 ms for muscle [5]. The phantom images were sampled with a 384×384

grid over a 128×128-mm2 field-of-view. Circular cross-sections were created with

a Fermi window using 1 pixel transition width. Finally, white Gaussian noise was

added to yield a blood SNR of 20.

To examine penalty parameters used in TCS, we undersampled images of the

first phantom with acceleration factors R = 1, 2, 4, 6 and 8. For each R, λ1,2

values were ranged between 0 to 2 times the λ1o,2o values listed in Table 2.1.

Meanwhile, the ratio (r) was varied in the range [1 20]. Larger TCS penalty

weights yield improved background suppression (i.e., blood/muscle contrast), but

cause distorted reconstructions of background signals. To assess reconstruction

quality, a performance metric was calculated as the proportion of relative contrast

difference to relative distortion level. Contrast improvement for each vessel was

taken as:

% difference =
ContTCS − ContZF

1
2
(ContTCS + ContZF )

× 100 (2.7)

Distortion level was taken as the normalized dispersion index of background tis-

sue,

∆D =
DITCS
DIZF

(2.8)

where DI = σ2/µ, and µ, σ denote the mean and standard deviation of the muscle

signal, respectively.

TCS performance was assessed as a function of r (Fig. 3.3b), when λ1,2 = λ1o,2o.

Performance increases rapidly as r is initially raised above 1, and it saturates for

relatively large r. Note that higher r enhances blood/background contrast at

the expense of increased image distortions. Thus, for all R, r = 10 was selected

that maintains more than 80% of the optimal performance. We then inspected
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the performance for r = 10, λ1 = nλ1o and λ2 = nλ2o with n varying in the

range [0 2]. Near optimal performance is attained for λ1,2 = λ1o,2o. Independent

optimizations of penalty weights indicate that λ1,2 = λ1o,2o and r = 10 yield close

to optimal performance for CSint,IR as well. Therefore, they were prescribed

for all reconstructions hereafter. To examine the effects of vessel size, TCS was

calculated for 20 independent instances of additive noise. As expected, smaller

vessels -more susceptible to signal loss– exhibit greater contrast improvement

with TCS.

Next, we assessed the benefits of TCS on the second phantom closely mimicking

vessel sizes in the extremities [63]. Blood/muscle contrast and spatial resolution

were compared across CS and TCS (Fig. 3.3c). Spatial resolution was taken as

the FWHM sizes of individual blood vessels normalized by the prescribed sizes

in the numerical phantom. Statistical differences were assessed with Wilcoxon

signed-rank tests.

To investigate robustness against segmentation errors, separate TCS re-

constructions were performed by simulating losses in segmented vessel maps

(Fig. 3.3d). The ideal vessel masks were eroded to yield a volumetric loss varying

between 0-30% of the total vessel volume. The erosion process used a random

voxel selection that maintained spatial contiguity for each vessel. TCS was calcu-

lated for 20 distinct instances of vessel erosion and additive noise. Blood/muscle

contrast and normalized vessel sizes were measured for each vessel individually

and then averaged across 13 vessels.
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Figure 2.4: (a) A phantom with 25 blood vessels of sizes 0.33 to 2 mm enclosed
by muscle. Targeted CS (TCS) reconstructions were calculated using r ∈ [1 20],
λ1,2 = λ1o,2o, and R = 1-8. Results are shown for R = 4, with magnified lower-
right portions of images. Higher r enhance blood/muscle contrast, but image
distortions become prominent for r ≥ 15. (b) TCS performance was taken as the
ratio of contrast improvement to dispersion level (mean±sem across vessels). For
all R, r = 10 and λ1,2 = λ1o,2o yield close to optimal reconstruction performance
(left and middle panels). TCS using λ1,2 = λ1o,2o and r = 10 was repeated for
20 random instances additive noise. Contrast improvement is plotted for each
vessel diameter (right panel; mean±sem across 20 images). The improvement
is greater for smaller vessels. (c) A separate phantom with 13 blood vessels
of sizes 1.25 to 3.75 mm. Fourier reconstructions (ZF), conventional CS, and
TCS were calculated for R = 4. The panel below each image shows a sample
line profile (across the red line). TCS improves blood/muscle contrast without
significant image distortions. (d) TCS reconstructions were obtained while losses
in segmented vessel maps were simulated by random erosions of the ideal map.
Contrast and vessel sizes were measured relative to a TCS reconstruction based
on the ideal map (mean±sem across 20 instances of erosion).
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2.2.6 Experiments

To demonstrate TCS, we first acquired in vivo hand and lower-leg angiograms

on a 1.5 T GE Signa EX scanner with CV/i gradients (maximum strength of

40 mT/m and slew rate of 150 T/m/s). High-resolution hand angiograms were

collected in a healthy subject (male, age 27) using an 8-channel receive-only knee

array, and with the following parameters: 0.5×0.5×0.5-mm3 spatial resolution,

320×240×120 encoding matrix, α = 60o, TRl,s = 3.6/1.2 ms, TE = 1.8 ms,

125-kHz readout bandwidth, 80-ms T2-preparation, 10-tip linear ramp catalyza-

tion, 10 k-space segments, 4-s intersegment recovery time, and a total scan time

of 3 min 40 s. Hand angiograms were retrospectively undersampled by accel-

eration factors of R = 1 (fully-sampled), 2, 4, 6 and 8. Data from each coil

were reconstructed individually and sum-of-squares combined [64]. Meanwhile,

prospectively undersampled lower-leg angiograms were collected in a healthy sub-

ject (female, age 28) using a transmit-receive quadrature extremity coil, and with

identical parameters to the hand protocol except for: 1×1×1-mm3 spatial reso-

lution, 192×128×128 encoding matrix, TRl,s = 3.45/1.15 ms, TE = 1.725 ms.

Separate acquisitions were performed at R = (1,2,4,6,8) with number of mag-

netization preparations N = (4,16,22,24,26) respectively, and scan time for each

acquisition was 1 min 30 sec.

To validate TCS results in a broader population, we next collected lower-leg

angiograms from 4 healthy subjects (1 female, 3 males; ages 27-32) and foot

angiograms from 4 healthy subjects (2 females, 2 males; ages 27-30). Data were

acquired on a 1.5 T GE Signa EX scanner using a quadrature extremity coil, with

identical parameters to the lower-leg protocol listed above. The only exception

was a fixed number of magnetization preparations N = 4 for all accelerations.

Vasculature maps were extracted from ZF reconstructions of undersampled

data. CS and TCS reconstructions were then calculated on 2D cross sections.

Reconstruction parameters were selected by examining TCS performance as a

function of r and λ1,2. It was observed that near-optimal performance is obtained
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for r = 10 and λ1,2 = λ1o,2o. To minimize partial volume effects in maximum-

intensity projection (MIP) views, all reconstructed datasets were upsampled by

a factor of two in all dimensions by zero-padding in k-space.

To assess image contrast, average blood and muscle signals were measured in 13

coronal cross-sections spanning across the entire volume. Within a single section,

two separate regions-of-interest (ROIs) with homogeneous blood and muscle sig-

nal were selected. Signals were averaged within these ROIs, and ratio of blood to

muscle signal was taken as the contrast for each cross-section. ROIs were identical

across reconstructions of the same anatomy. In hand angiograms, blood signal

was measured on superficial to deep segments of digital radial and ulnar arteries

(569±142 voxels, mean±s.d. across 13 cross sections), muscle signal was mea-

sured in the palmar region (473±68 voxels). In lower-leg angiograms, blood signal

was measured on proximal to distal segments of the tibial and peroneal arteries

(73±20 voxels), muscle signal was measured across neighboring tissue (101±20).

In foot angiograms, blood signal was measured on dorsal metatarsal and plan-

tar arteries (52±34 voxels), and muscle signal was measured across neighboring

tissue (80±29).

To examine potential blurring artifacts, vessel thickness measurements were

performed in hand and lower leg datasets. For this analysis, vessels of various

sizes were selected across 10 different axial cross-sections. The thickness of each

vessel was taken as the diameter of the FWHM region, which ranged from 1 to 4

mm. The level of blurring in each reconstruction method was calculated as the

relative vessel diameter compared to a ZF reconstruction of fully-sampled data

(R = 1).

Two expert radiologists evaluated the diagnostic quality of reconstructed im-

ages by consensus. At each R, MIP views were used to compare images from

different reconstruction methods (without method identifiers). Image contrast,

vessel demarcation and distal-branch visualization in each image were separately

rated using a five point scale (5 excellent, 4 good, 3 moderate, 2 limited, 1 poor).

Statistical differences in quantitative measurements and rating scores were as-

sessed with Wilcoxon signed-rank tests.
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2.3 Results

Blood/muscle contrast and resolution on simulated phantom images are listed in

Table 2.2. At each R, TCS significantly improves contrast compared to all other

methods including TCSnTV and TCSn`1 (P < 0.05). We find an improvement

of 21.5±8.7% over CSlow (mean±s.d. across R) and 11.3±2.8% over CSIR, the

closest CS competitor to TCS. The contrast improvement is greater for lower R

values, where heavier sparsity penalties can be enforced due to increased acqui-

sition SNR. Furthermore, TCS maintains improved spatial resolution compared

to other CS methods and TCSn`1 at each R (P < 0.05). This improvement in

resolution is more prominent in higher R datasets that are more susceptible to

resolution loss.

To assess the reliability of TCS against segmentation errors, phantom images

were reconstructed for varying volumetric losses in vessel maps. TCS using ran-

domly eroded versions of the ideal vessel map was compared to TCS using the

ideal map (Fig. 3.3d). At all R values, contrast remains within 8% and vessel

size remains within 12% of their ideal values for up to 30% segmentation loss.

These results indicate that TCS shows considerable performance in the presence

of moderate segmentation errors.
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Table 2.2: Contrast and Resolution: Simulated data

Contrast

R = 1 R = 2 R = 4 R = 6 R = 8

ZF
Cont. 1.89 1.88 1.86 1.87 1.87

% diff. - - - - -

CSlow
Cont. 1.91 1.89 1.88 1.88 1.88

% diff. 0.9% 0.9% 1.1% 0.9% 0.5%

CShigh
Cont. 2.27 2.11 2.02 1.95 1.91

% diff. 18.2% 11.6% 8.1% 4.3% 2.4%

CSint
Cont. 2.18 2.04 2.00 1.94 1.90

% diff. 14.2% 8.5% 6.9% 3.7% 1.9%

CSIR
Cont. 2.36 2.25 2.06 1.94 1.90

% diff. 22.3% 18.1% 9.9% 3.7% 1.7%

TCSnTV
Cont. 2.67 2.40 2.30 2.18 2.08

% diff. 34.2% 24.2% 21.2% 15.4% 10.9%

TCSn`1
Cont. 2.29 2.13 2.04 1.97 1.93

% diff. 19.2% 12.4% 9.0% 5.3% 3.3%

TCS
Cont. 2.69 2.41 2.33 2.21 2.11

% diff. 35.0% 25.0% 22.5% 16.7% 12.4%

Resolution

R = 1 R = 2 R = 4 R = 6 R = 8

ZF 1.09±0.05 1.12±0.06 1.27±0.14 1.36±0.21 1.42±0.29

CSlow 1.05±0.04 1.08±0.05 1.09±0.06 1.08±0.06 1.17±0.09

CShigh 1.06±0.05 1.09±0.06 1.10±0.07 1.09±0.06 1.15±0.10

CSint 1.07±0.04 1.11±0.06 1.17±0.09 1.16±0.08 1.18±0.12

CSIR 1.07±0.04 1.06±0.05 1.16±0.08 1.18±0.08 1.20±0.12

TCSnTV 1.00±0.01 1.01±0.02 1.00±0.01 0.99±0.01 0.99±0.02

TCSn`1 1.05±0.04 1.08±0.05 1.09±0.05 1.06±0.05 1.12±0.08

TCS 1.00±0.01 1.01±0.01 1.00±0.01 0.98±0.02 0.98±0.02

Contrast: Average blood/muscle contrast on phantom data at various R. Raw
contrast values are listed together with the percentage difference in contrast
between each method and ZF. Resolution: Relative radius of blood vessels in
phantom images (mean±s.d. across 13 vessels) compared to the actual vessel
sizes.
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Representative reconstructions of in vivo hand and lower-leg angiograms are

shown in Figs. 2.5-2.7. TCS visibly improves blood/background contrast and

enhances vessel depiction via tailored penalty weights. Note that we find no sig-

nificant differences in vessel thickness across reconstructions methods and across

R (P > 0.125). Thus the prominent appearance of vessel trees in TCS reconstruc-

tions is due to improved angiographic contrast. While some small vessels are less

effectively visualized at R ≥ 6 due to reduction of segmented volumes (Fig. 2.3),

TCS reliably depicts major vessels including the digital-radial/ulnar arteries in

the hand, and popliteal/peroneal arteries in the lower leg. Blood/background con-

trast measurements in representative hand and lower-leg angiograms are listed in

Table 2.3 and Table 2.4. At each R, TCS yields significantly higher contrast than

all other methods including TCSnTV and TCSn`1 (P < 0.05). In the hand, the

improvement is 71.3±28.9% over CSlow and 33.0±6.6% over CSIR. In the lower

leg, the improvement is 38.5±8.5% over CSlow and 22.1±6.6% over CSIR.

CSlow CShigh CSint TCSCSIR

Figure 2.5: Lower-leg angiograms reconstructed using conventional CS with

uniformly-weighted penalty terms (CSlow, CShigh), CS with spatially-weighted

penalty terms based on intensity of ZF reconstructions (CSint), iteratively-

reweighted CS (CSIR), and TCS. Representative axial sections are shown for

R = 4. CShigh, CSint and CSIR suffer from signal losses, particularly in relatively

small or low intensity vessels. In contrast, TCS improved background suppres-

sion while preserving detailed depiction of vasculature (marked with ellipses and

arrows).
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Figure 2.6: MIPs of hand angiograms reconstructed with ZF, CSIR and TCS,

for R = 1-6. CSIR suffers increasingly from loss of small vessels for higher R.

Furthermore, bright synovial fluid causes suboptimal vessel contrast in ZF and

CSIR. In contrast, TCS alleviates vessel loss while improving suppression of

background signals (marked with arrows).
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Figure 2.7: MIPs of lower leg angiograms reconstructed with ZF, CSIR and TCS,

for R = 1-6. There is visible loss of low-intensity and small vessels in CSIR.

TCS achieves improved blood/muscle contrast with no visible vessel loss up to R

= 4 (marked with ellipses). Due to reduction of segmented volumes for R = 6

(Fig. 2.3), some small vessels are depicted suboptimally.

The contrast measurements in lower-leg and foot angiograms collected in a

population of 8 subjects are listed in Table 2.5 and Table 2.6. Across subjects,

TCS achieves higher contrast than all other reconstructions at each R (P <

0.05). In the lower leg, the improvement is 30.6±11.3% over CSlow, 13.8±2.7%

over CSIR, 3.0±1.4% over TCSnTV and 13.8±2.7% over TCSn`1 . In the foot,

the improvement is 28.1±7.0% over CSlow, 14.9±1.8% over CSIR, 3.0±1.5% over
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TCSnTV and 11.4±2.6% over TCSn`1 . Consistent with simulation results, contrast

improvement for in vivo data is greater for lower R.

Radiological assessments of image contrast, vessel demarcation, and distal-

branch visualization concur that the proposed method enhances image quality

(see Table 2.7). Across all subjects, TCS achieves higher image contrast and

vessel demarcation scores than all other CS reconstructions at each R (P < 0.05),

except for R = 1 where we find no significant difference. While comparisons are

less uniform for distal-branch visualization, the average visualization score across

R is higher for TCS compared to all other reconstructions (P < 0.05).

Table 2.3: Contrast: Representative Single-Subject Hand Data

R = 1 R = 2 R = 4 R = 6 R = 8

ZF
Cont. 2.32±0.10 2.25±0.10 2.06±0.12 2.02±0.13 2.01±0.12

% diff. - - - - -

CSlow
Cont. 2.35±0.11 2.23±0.11 2.04±0.09 1.97±0.10 2.00±0.08

% diff. 1.35% -1.14% -0.82% -2.86% -0.11%

CShigh
Cont. 6.92±0.87 3.55±0.29 2.62±0.14 2.08±0.12 2.11±0.09

% diff. 99.63% 44.83% 23.79% 2.96% 5.06%

CSint
Cont. 5.50±0.55 3.45±0.27 2.70±0.14 2.17±0.12 2.18±0.09

% diff. 81.51% 42.12% 26.97% 6.83% 8.58%

CSIR
Cont. 5.63±0.65 3.71±0.31 3.03±0.16 2.38±0.15 2.41±0.11

% diff. 83.38% 49.08% 38.00% 16.12% 18.28%

TCSnTV
Cont. 8.56±1.03 4.80±0.37 4.03±0.21 2.86±0.18 2.91±0.13

% diff. 114.79% 72.30% 64.72% 34.34% 36.69%

TCSn`1
Cont. 7.19±0.87 3.73±0.31 2.87±0.15 2.36±0.13 2.40±0.10

% diff. 102.56% 49.55% 32.73% 15.22% 17.92%

TCS
Cont. 8.70±1.04 4.99±0.38 4.30±0.22 3.16±0.21 3.22±0.15

% diff. 115.89% 75.64% 70.51% 44.05% 46.50%

Blood/muscle contrast (mean±s.d. across 13 sections) in hand angiograms
at various R. Raw contrast values are listed together with the percentage
difference in contrast between each method and ZF.
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Table 2.4: Contrast: Representative Single-Subject Lower Leg Data

R = 1 R = 2 R = 4 R = 6 R = 8

ZF
Cont. 1.82±0.24 2.11±0.27 2.24±0.14 2.61±0.18 2.74±0.20

% diff. - - - - -

CSlow
Cont. 1.84±0.27 2.13±0.32 2.31±0.20 2.66±0.20 2.72±0.32

% diff. 1.06% 1.08% 2.95% 2.06% -0.49%

CShigh
Cont. 2.52±0.59 2.68±0.57 2.71±0.31 2.79±0.24 2.81±0.41

% diff. 31.90% 23.83% 19.18% 6.67% 2.79%

CSint
Cont. 2.46±0.48 2.69±0.55 2.79±0.30 2.85±0.20 2.85±0.28

% diff. 29.66% 24.36% 22.05% 8.91% 4.19%

CSIR
Cont. 2.50±0.58 2.74±0.59 2.77±0.36 2.87±0.28 2.79±0.45

% diff. 31.24% 26.22% 21.29% 9.47% 1.80%

TCSnTV
Cont. 3.04±0.69 3.11±0.65 3.28±0.39 3.30±0.31 3.57±0.50

% diff. 50.03% 38.46% 37.84% 23.37% 26.51%

TCSn`1
Cont. 2.57±0.60 2.76±0.58 2.84±0.32 2.99±0.27 3.10±0.45

% diff. 34.11% 26.72% 23.70% 13.65% 12.58%

TCS
Cont. 3.11±0.70 3.17±0.65 3.42±0.40 3.52±0.34 3.88±0.54

% diff. 52.08% 40.28% 41.62% 29.76% 34.63%

Blood/muscle contrast (mean±s.d. across 13 sections) in lower leg angiograms
at various R. Raw contrast values are listed together with the percentage
difference in contrast between each method and ZF.
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Table 2.5: Contrast: Population Lower Leg Data

R = 1 R = 2 R = 4 R = 6 R = 8

ZF
Cont. 2.19±0.28 2.17±0.28 2.12±0.27 2.08±0.25 2.04±0.25

% diff. - - - - -

CSlow
Cont. 2.21±0.29 2.17±0.30 2.10±0.30 2.05±0.29 2.02±0.31

% diff. 1.2±0.8% -0.1±1.3% -1.1±2.0% -1.9±2.9% -1.4±4.1%

CShigh
Cont. 2.99±0.43 2.68±0.38 2.39±0.37 2.12±0.31 2.07±0.31

% diff. 30.8±6.2% 20.7±3.5% 11.6±3.2% 1.7±3.4% 1.3±3.9%

CSint
Cont. 3.00±0.58 2.71±0.44 2.41±0.41 2.13±0.32 2.08±0.32

% diff. 30.6±8.7% 21.5±4.5% 12.4±4.5% 2.0±3.6% 1.5±4.0%

CSIR
Cont. 3.02±0.48 2.76±0.42 2.50±0.43 2.14±0.32 2.08±0.32

% diff. 31.7±7.3% 23.6±5.3% 15.8±4.7% 2.7±3.9% 1.9±4.1%

TCSnTV
Cont. 3.41±0.45 3.10±0.38 2.87±0.36 2.37±0.30 2.34±0.29

% diff. 43.6±8.8% 35.2±5.9% 30.0±3.8% 12.9±3.4% 13.8±3.7%

TCSn`1
Cont. 3.03±0.44 2.73±0.37 2.48±0.37 2.21±0.30 2.17±0.30

% diff. 32.4±6.6% 22.8±4.3% 15.2±2.9% 6.0±3.0% 6.1±3.3%

TCS
Cont. 3.46±0.45 3.15±0.36 2.97±0.35 2.47±0.29 2.45±0.28

% diff. 45.0±8.1% 36.9±6.6% 33.4±4.6% 17.0±3.9% 18.5±4.2%

Blood/muscle contrast (mean±s.d. across 4 subjects) in lower-leg angiograms
at various R. Raw contrast values are listed together with the percentage
difference in contrast between each method and ZF.

30



Table 2.6: Contrast: Population Foot Data

R = 1 R = 2 R = 4 R = 6 R = 8

ZF
Cont. 2.45±0.23 2.41±0.20 2.31±0.19 2.21±0.16 2.08±0.15

% diff. - - - - -

CSlow
Cont. 2.49±0.23 2.44±0.24 2.35±0.26 2.27±0.26 2.18±0.27

% diff. 1.7±0.2% 1.1±1.5% 1.6±4.3% 2.2±5.1% 4.7±6.8%

CShigh
Cont. 3.21±0.28 2.98±0.21 2.71±0.27 2.39±0.27 2.29±0.29

% diff. 27.2±3.3% 21.0±3.7% 15.9±5.4% 7.2±5.6% 9.3±7.2%

CSint
Cont. 3.25±0.22 3.06±0.17 2.79±0.17 2.44±0.21 2.34±0.22

% diff. 28.4±4.6% 23.8±5.2% 19.1±5.1% 9.7±4.8% 12.0±5.2%

CSIR
Cont. 3.41±0.19 3.14±0.17 2.83±0.18 2.45±0.21 2.34±0.25

% diff. 33.1±5.0% 26.3±6.7% 20.6±5.8% 10.1±5.0% 11.6±6.3%

TCSnTV
Cont. 3.49±0.29 3.30±0.18 3.18±0.17 2.65±0.23 2.58±0.27

% diff. 35.2±4.6% 31.1±6.7% 31.9±6.5% 17.9±6.4% 21.3±7.3%

TCSn`1
Cont. 3.25±0.28 3.03±0.20 2.79±0.25 2.49±0.25 2.40±0.27

% diff. 28.1±3.9% 22.8±4.2% 18.9±5.5% 11.6±5.7% 14.4±6.8%

TCS
Cont. 3.54±0.30 3.37±0.17 3.26±0.16 2.76±0.23 2.71±0.26

% diff. 36.6±5.1% 33.1±6.6% 34.4±7.4% 22.0±7.4% 26.3±8.0%

Blood/muscle contrast (mean±s.d. across 4 subjects) in foot angiograms at
various R. Raw contrast values are listed together with the percentage differ-
ence in contrast between each method and ZF.
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Table 2.7: Radiological Assessment of Image Quality

Image Contrast

R = 1 R = 2 R = 4 R = 6 R = 8

ZF 4.1±0.1 4.1±0.1 3.5±0.2 2.7±0.2 2.1±0.2

CSlow 4.1±0.1 4.1±0.1 3.9±0.1 3.4±0.2 3.1±0.2

CShigh 4.5±0.2 4.1±0.2 3.6±0.2 3.4±0.2 3.1±0.2

CSint 4.4±0.2 3.9±0.2 3.2±0.3 3.0±0.3 2.8±0.3

CSIR 4.4±0.2 3.9±0.2 3.4±0.3 3.3±0.2 3.1±0.2

TCS 4.8±0.1 4.8±0.2 4.7±0.2 4.2±0.2 4.1±0.2

Vessel Demarcation

R = 1 R = 2 R = 4 R = 6 R = 8

ZF 4.6±0.2 4.3±0.3 3.5±0.3 3.2±0.3 2.5±0.4

CSlow 4.6±0.2 4.4±0.2 3.7±0.2 3.3±0.3 2.5±0.2

CShigh 4.7±0.2 4.5±0.2 3.8±0.2 3.3±0.3 2.6±0.2

CSint 4.6±0.2 4.4±0.2 3.7±0.2 3.2±0.3 2.4±0.3

CSIR 4.6±0.2 4.5±0.2 3.8±0.2 3.2±0.3 2.5±0.2

TCS 5.0±0.0 5.0±0.0 4.9±0.1 4.4±0.2 3.9±0.2

Distal-Branch Visualization

R = 1 R = 2 R = 4 R = 6 R = 8

ZF 4.6±0.2 4.5±0.2 3.7±0.2 2.9±0.3 2.2±0.3

CSlow 4.6±0.2 4.6±0.2 3.9±0.2 3.6±0.3 3.0±0.2

CShigh 4.3±0.2 4.4±0.2 3.5±0.2 3.6±0.3 3.0±0.2

CSint 4.3±0.2 4.3±0.2 3.3±0.2 3.4±0.3 2.9±0.2

CSIR 3.9±0.3 3.8±0.2 3.2±0.2 3.6±0.3 3.1±0.2

TCS 4.5±0.2 4.6±0.2 4.3±0.2 4.0±0.2 3.9±0.2

Rating scores for image contrast, vessel demarcation, and distal-branch visu-
alization (mean±s.e.m. across 10 subjects).

32



2.4 Discussion

Here we propose a reconstruction strategy (TCS) for NCE angiograms that lever-

ages vasculature maps extracted from undersampled data, without relying on

prior information. The morphological information in these maps is used to apply

order-of-magnitude heavier sparsity and TV penalties across background tissues

compared to vessels. As such, TCS enhances blood/background contrast com-

pared to conventional CS without degrading vessel depiction.

A recent study has used 2D segmentations to apply a spatially-varying `1-

penalty [49]. While this previous approach has similar motivations to TCS, our

study differs in several important aspects. First, we use a tractographic segmenta-

tion to exploit 3D structure and leverage vessel contiguity in the superior-inferior

direction. Second, we utilize concurrent spatial-weighting on both `1-norm and

TV penalties to minimize vessel signal loss. Our results show that concurrent

weighting in TCS enhances image quality over weighting either term alone. Lastly

apart from noise/aliasing reduction aimed previously, here we demonstrate con-

trast enhancement that significantly improves vessel depiction in contrast-limited

NCE MRA.

Practical benefits of TCS depend on the coverage of the segmented vasculature

maps. Our simulations suggest that TCS maintains considerable performance

with up to 30% volume loss in segmented maps. However with increased alias-

ing at high R, small vessels with low contrast may be missed and thereby incur

heavy penalties during TCS. Here some small, low-contrast branches were not

segmented at R = 6 and 8; and loss of high-spatial-frequency information in TCS

became prominent at R = 8 (not shown). Such losses may mimic stenoses in mi-

nor vessel branches. To minimize misassessment, segmented maps can be more

broadly dilated and reconstruction penalties may be limited at higher R. Alterna-

tively, segmentation and reconstruction stages can be cast as a joint optimization

problem [65], with iterative refinement across both stages. These demanding op-

timizations can be completed in practical run times using graphical processing

units [66, 67].
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With heavier undersampling, it will become challenging to distinguish vessel

signals from aliasing/noise interference. Higher R can be attained for TCS by im-

proving SNR, blood/background contrast and spatial resolution of angiographic

acquisitions. These improvements will boost both segmentation and reconstruc-

tion performances. Furthermore, increased spatial resolution can also enhance

the delineation of vessel boundaries during segmentation. Here we prescribed

relatively high spatial resolution (e.g. 0.5 mm for hand), and used a segmenta-

tion that can detect a minimum lumen size equal to this resolution. However,

delineation of small, distal vessels might be impaired at more limited spatial res-

olutions. In such cases, parallel imaging and CS techniques can be combined to

alleviate resolution limitations [9, 68].

TCS applies first-order finite difference operators to incur a TV penalty.

Penalty weights were kept low here to minimize block artifacts, and no signif-

icant distortions were observed around vessels. However, higher-order TV terms

may enable better denoising in piece-wise smooth regions while preserving edge

information near vessel boundaries [69]. Another improvement for TCS concerns

the sparsity penalties applied in the image domain. While angiographic images

are natively sparse, spatially-weighted penalties in relevant sparsifying transform

domains (e.g. wavelet domain) might be needed for other applications. Adaptive

wavelet-domain penalties have been previously designed based on manual ROI

specifications [46] or dependencies between wavelet coefficients [70]. Similarly,

TCS with spatially-weighted wavelet penalties may be useful in applications such

as coronary imaging.

Residual signals from several background tissues are evident in FIA datasets.

First, synovial fluid in the joints with relatively high T2/T1 ratio yields compa-

rable bSSFP signal to vessels. While our segmentations correctly classify syn-

ovial fluid as background, excessive reconstruction penalties are required to fully

dampen these bright signals. If further suppression is desired, synovial fluid maps

can be manually segmented to apply higher penalty weights compared to other

background tissues. Second, the vessel maps presented here contain both arte-

rial and venous streams in the peripheral extremities. Because the two streams

may be located closely, segmentation algorithms can assign venous voxels onto
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arterial vessels [71]. For improved separation, segmentation maps can be manu-

ally corrected to exclude residual venous tissue. Alternatively, the segmentation

method can be modified to leverage smoothness of surface curvature and fuzzy

connectedness to delineate arterial and venous trees [72, 71, 54].

In conclusion, the two-step TCS method outperforms regular CS methods in

angiographic reconstructions consistently across subjects. While the proposed

method was successfully demonstrated for peripheral FIA, it can easily be ex-

tended to other angiographic acquisitions. These promising results warrant fu-

ture studies on a clinical population that examine pathological cases including

abrupt occlusions and small stenotic vessels.
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Chapter 3

Profile encoding reconstruction

for multiple-acquisition balanced

steady-state free precession

imaging

This chapter is based on publication ‘Profile-encoding reconstruction for multiple-

acquisition balanced steady-state free precession imaging.’, Ilicak, E., Senel, L.

K., Biyik, E. and and Çukur, T., Magn. Reson. Med., 2016.
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List of Abbreviations

Cn bSSFP profile

Sn Phase-cycled image

So Artifact-free image

ycalib Calibration data (fully-sampled part of central k-space)

yn Phase-cycled data for nth acquisition

bSSFP Balanced steady-state free precession

CS Compressed sensing

ESPIRiT Eigenvalue Approach to Autocalibrating Parallel MRI

FOV Field-of-view

iCS Individual-CS reconstruction

N Number of phase-cycles

PE-SSFP Profile-Encoding SSFP reconstruction

PEcalib PE reconstruction with calibration and data-consistency projections

PEhuber PE reconstruction with Huber thresholding in addition to PEcalib

PEsoft−TV PE reconstruction with soft thresholding in addition to PEcalib

PSNR Peak SNR

R Acceleration factor

SNR Signal-to-noise ratio

SPIRiT Iterative self-consistent parallel imaging

SSIM Structural similarity index

TE Echo time

TR Repetition time

TV Total-variation

VD Variable-density

ZF Zero-filled Fourier
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3.1 Introduction

Balanced steady-state free precession (bSSFP) sequences provide relatively high

magnetization levels for repetition times (TR) on the order of several milliseconds

[73]. As such, they have found use in rapid imaging involving both dynamic

[74, 75, 76, 77, 78] and high-spatial-resolution static acquisitions [28, 30, 31,

79, 37]. One critical concern, however, is that the bSSFP magnetization profile

yields increased sensitivity to magnetic field inhomogeneities and signal voids at

particular off-resonance frequencies [73]. In turn, this profile can lead to excessive

banding artifacts at high field strengths, with long TRs, and in complex tissue

geometries.

Several innovative methods were previously proposed to alleviate bSSFP band-

ing artifacts. These methods include modified pulse sequences that reshape

magnetization profiles [80, 81, 82, 83], advanced shimming procedures that limit

field inhomogeneity [84], physical signal models to remove frequency sensitivity

[85, 86], and the commonly used multiple-acquisition methods that combine sev-

eral phase-cycled images with nonoverlapping banding artifacts to improve signal

homogeneity [87, 88, 89, 29, 90, 91]. These approaches typically compromise

between artifact reduction and scan efficiency. For instance, residual banding ar-

tifacts in multiple-acquisition methods can be reduced by increasing the number

of phase cycles (N). However, with higher N, the overall scan time is considerably

prolonged.

To mitigate banding artifacts while maintaining scan efficiency, two recent

studies proposed to accelerate phase-cycled bSSFP acquisitions [32, 92]. In the

first study [32], we leveraged individual compressed-sensing (CS) reconstructions

to recover nonacquired bSSFP data for each phase cycle separately [39, 4, 8].

In the second study [92], individual acquisitions were instead accelerated via si-

multaneous multi-slice imaging. While high image quality was demonstrated for

low acceleration factors (around 2-4), data from separate phase-cycles were re-

constructed independently in both studies. Because independent reconstructions

38



ignore structural information that is inherently correlated across multiple acqui-

sitions [68, 9, 93], image quality can be degraded at high acceleration factors that

are critically needed with increasing N.

Here, we propose an improved framework for accelerating phase-cycled bSSFP

imaging that jointly reconstructs undersampled data across multiple acquisitions.

Analogous to parallel imaging that takes each coil image as the product of the

tissue image with a respective coil sensitivity [94], this framework models each

phase-cycled bSSFP image as the product of the banding-artifact-free image with

a respective bSSFP spatial profile [95, 96]. Thus, inspired by recent approaches

for multi-coil imaging [93], the joint reconstruction is cast as a profile-encoding

problem (PE-SSFP) where nonacquired k-space samples are linearly synthesized

from acquired data. To further alleviate aliasing and noise interference, PE-SSFP

leverages joint-sparsity and total-variation penalties. Comprehensive simulations

are presented to demonstrate the reliability of PE-SSFP against variations in

sequence and tissue parameters, noise, and field inhomogeneity. Phantom and in

vivo results clearly indicate that the proposed framework yields improved image

quality over conventional reconstructions.

3.2 Methods

The goal of the current study is to implement robust, artifact-free multiple-

acquisition bSSFP imaging within a total scan time equivalent to a single acqui-

sition. Starting with an overview of phase-cycled bSSFP imaging, the following

sections discuss the sampling and reconstruction strategies proposed towards this

goal.
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Multiple-Acquisition Phase-Cycled bSSFP Imaging

In multiple-acquisition bSSFP, several images with different phase-cycling are

acquired such that banding artifacts are spatially non-overlapping across acqui-

sitions. Assuming TE=TR/2, the fully-sampled images at each phase cycle can

be expressed as [97]:

Sn(r) = M(r)
ei(φ(r)+∆φn)/2

(
1− A(r)e−i(φ(r)+∆φn)

)
1−B(r) cos(φ(r) + ∆φn)

(3.1)

where r denotes spatial location, φ(r) is phase accrued in a single TR due to field

inhomogeneity, and ∆φn is the phase-cycling value used for the nth acquisition

where n ∈ [1 N]. The remaining terms M , A, B depend on sequence and tissue

parameters. Tailored image combination techniques are then used to minimize

the dependence of the bSSFP signal on φ(r) [88, 29]. An artifact-free image (So)

could be obtained under the condition that φ(r) + ∆φn = π, which in turn would

yield:

So(r) = iM(r)
1 + A(r)

1 +B(r)
(3.2)

Thus, each phase-cycled image Sn can be modeled as the multiplication of So

with a respective bSSFP profile, Cn as illustrated in Fig. 3.1:

Cn(r) =
Sn(r)

So(r)
=
ei(φ+∆φn−π)/2 (1 +B)

(
1− Ae−i(φ+∆φn)

)
(1 + A)(1−B cos(φ+ ∆φn))

(3.3)

Combination techniques for multiple-acquisition bSSFP typically assume that

data are either fully-sampled [88, 89, 29] or else adequately reconstructed [32].

Estimation of bSSFP profiles has therefore not been of particular interest, apart

from cases where signal-to-noise ratio (SNR) optimization or fat-water separation

is aimed [95, 90]. Nonetheless, the bSSFP profiles can be interpreted as a means to

perform spatial encoding [96], similar to that implemented by the coil sensitivities

in parallel imaging [94]. With this interpretation, we cast the joint reconstruction

of undersampled phase-cycled acquisitions as a profile-encoding problem:

yn(k) = Fn {Cn(r) · So(r)} (3.4)

Here k indicates k-space location, yn are the k-space data for the nth acquisition,

and F is a Fourier-transform operator. For simplicity, we did not consider the
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effects of coil sensitivities on the joint reconstruction. Thus, assuming that bSSFP

spatial profiles can be estimated based on fully-sampled central k-space data

[98, 99], they can be used to solve an inverse problem that recovers the artifact-

free bSSFP image So(r) given a collection of phase-cycled data yn(k).

0 π 2π 0 1

∆φ = π/2

∆φ = 3π/2

Phase-cycled
images

Phase-shift
maps

bSSFP
pro�les

Ideal 
bSSFP image

(a.u.)

Figure 3.1: In the profile-encoding framework, each phase-cycled bSSFP image

(Sn) is modeled as the multiplication of an ideal image free of banding artifacts

(So) with a respective bSSFP sensitivity profile (Cn). The value of the bSSFP

profile at each location is a function of total phase accrual over a single TR due

to main field inhomogeneity and RF phase-cycling increment (∆φ). Locations of

near-zero phase shift (modulo 2π) lead to significantly diminished sensitivity and

thereby banding artifacts in bSSFP images.
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3.2.1 Undersampling Patterns for Multiple-Acquisition

bSSFP Data

Each of N separate phase-cycled acquisitions were undersampled by a factor of

R=N. Sampling patterns for phase-cycled acquisitions can be selected indepen-

dently. A common pattern for all acquisitions can better enforce consistency in

the sampling matrix across phase-cycles, and reduce interpolation errors. On the

other hand, disjoint patterns across acquisitions can expand k-space coverage, and

reduce aliasing artifacts [32]. To optimize sampling strategy, we compared recon-

structions of data undersampled with common versus disjoint patterns. Patterns

were generated using uniform-density deterministic [94, 96], variable-density ran-

dom [4], and Poisson-disc sampling [93]. In all cases, isotropic acceleration was

performed in two dimensions, and a central k-space region spanning up to 10% of

the maximum spatial frequency in each axis was fully sampled. In uniform-density

sampling, the full sampling matrix was linearly ordered and then undersampled

by holding every Nth sample (e.g., 1, N+1,...). Disjoint patterns were generated

by incrementing the starting index by 1 sample [96]. In variable-density sampling,

random patterns were generated based on a polynomial probability density func-

tion (PDF), and sampling patterns were selected among 2000 candidate patterns

to minimize aliasing energy [52]. Disjoint patterns were selected by minimizing

both the aliasing energy for each pattern and the pair-wise correlation among

patterns [32]. In Poisson sampling, a polynomial PDF was used to generate a

random sampling pattern that maintains locally-uniform inter-sample distances.

Disjoint patterns were generated by using a distinct starting seed for the sampling

algorithm [93].

3.2.2 Profile-Encoding Reconstruction

In a recent study, we proposed to alleviate banding artifacts by combining sepa-

rate CS reconstructions of individual phase-cycled bSSFP acquisitions [32]. The
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individual-CS reconstruction (iCS) was implemented via a Lagrangian formula-

tion:

min
mn

‖yn −FPn {mn}‖2
2 + λ1‖ψ {mn}‖1 + λ2‖∇{mn}‖1 (3.5)

This formulation comprised a data-consistency term (where yn is the acquired

data, FPn is the partial Fourier operator, and mn is the reconstructed image

for the nth phase cycle), a sparsity term (where ψ is a wavelet-transform opera-

tor), and a total-variation term (TV; where ∇ is the finite difference operator).

While iCS was shown to maintain good reconstruction quality for small N, loss

of high-spatial-frequency information became prominent for N≥4 due to increas-

ingly heavier undersampling factors [32].

To address this limitation, we propose a profile-encoding bSSFP (PE-SSFP)

reconstruction that solves the problem in Eq. 3.4 by synthesizing missing k-space

samples from acquired data. First, an interpolation operator estimated from

calibration data is used to iteratively synthesize nonacquired data across phase-

cycles. Inspired by the SPIRiT model (iterative self-consistent parallel imaging)

[93], the iterative estimation procedure enforces the consistency of reconstructed

data with both the acquired and the calibration data. Lastly, PE-SSFP leverages

joint sparsity [68, 9, 66] and TV penalties [4] to dampen aliasing and noise inter-

ference. Here PE-SSFP was implemented as a constrained optimization problem:

min
m

λ1

∥∥∥∥∥∥
√∑

n

|ψ{mn}|2
∥∥∥∥∥∥

1

+ λ2

∑
n

‖∇{mn}‖1 (3.6)

subj. to ‖(G − I) {m}‖2
2 = 0∑

n

‖yn −FPn {mn}‖2
2 = 0

where m is the aggregate vector containing mn across all phase-cycles. The objec-

tive comprises a joint sparsity term and a cumulative TV term across phase cycles.

The first constraint enforces consistency of reconstructed data with the calibra-

tion data (where G is the aggregate interpolation operator, I is the identity op-

erator). Meanwhile, the second constraint enforces cumulative data-consistency

across phase cycles.

To efficiently solve the constrained optimization formulated in Eq. 3.6, we

43



leveraged an alternating projection-onto-sets scheme with the aim to produce a

quasi-optimal solution at the intersection of multiple sets [66]. The optimization

was split into four projection operators, namely calibration consistency, joint spar-

sity, TV, and data consistency projections. These projections were successively

repeated to enforce relevant properties in the reconstructed data (see Fig. 3.2).

Acquired data

Initial images

Reconstructed
imagesky

kz

y

z

Calibration
data

Fourier
reconstruction

P-Norm
combination

Train
 interpolator

Replace
acquired data

Calibration
projection

Joint-sparsity
projection

TV
projection

Data consistency
projection

 m{ } TVproj m{ } 
1

( ){m}+y{ }Shuber( {m}){ }1

Figure 3.2: Flowchart of the profile-encoding bSSFP (PE-SSFP) reconstruction
that recovers missing data in undersampled phase-cycled acquisitions. PE-SSFP
employs an alternating projection-onto-sets scheme with four projection opera-
tors: calibration, joint-sparsity, TV, and data-consistency projections. In the
calibration projection, an interpolation kernel estimated from calibration data
is used to synthesize missing samples linearly from acquired data across phase-
cycles. In the joint-sparsity projection, wavelet coefficients of phase-cycled bSSFP
images are thresholded with a Huber function. In the TV projection, bSSFP im-
ages are denoised with a fast iterative-clipping algorithm. In the data-consistency
projection, reconstructed data in sampled locations are replaced with their ac-
quired values. These projections are successively repeated, and the individual
phase-cycled images are finally combined with the p-norm method.

Calibration consistency: Prior to reconstruction, an interpolation kernel for

profile encoding (K) was obtained from aggregate calibration data ycalib (desig-

nated as the fully-sampled part of central k-space). Kernel weights that capture

linear relationships among 11×11 neighborhoods of k-space samples were esti-

mated based on the calibration constraint (K − I).ycalib = 0. A 13×13 kernel

was used at N=2 to leverage the relatively higher sampling density in central
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k-space. The solution of this inverse problem was obtained via Tikhonov regular-

ization (with weight α = 0.01) to enhance noise resilience and conditioning [66].

Finally, an image-space operator G equivalent to the trained k-space kernel K
was computed. During reconstruction, calibration-consistency projections were

implemented by applying G on the image reconstructed in the previous iteration,

m(k) = G
{
m(k−1)

}
.

Joint sparsity: Assuming insignificant motion between separate acquisitions,

tissue boundaries and sparsity patterns are expected to appear in identical loca-

tions across phase-cycled images. To leverage this correlated structural informa-

tion, we utilized a joint-sparsity model that has been shown to offer benefits in

other MR applications [68, 9, 93, 25, 100]. During PE-SSFP, the joint-sparsity

term in Eq. 3.6 based on the Daubechies 4 wavelet can offer increased detection

sensitivity for relatively small coefficients shared across phase cycles.

Wavelet-domain sparsity is conventionally enforced via shrinkage methods

based on hard- Sh(x) = x
|x|−λ .max(0, |x| − λ) or soft-thresholding Ss(x) =

x
|x| .max(0, |x|−λ), where λ is the threshold [101]. Both functions null wavelet co-

efficients below λ, potentially reducing detection sensitivity for small coefficients.

To alleviate this issue, here we used a modified Huber function [102] :

Shuber(x) =

{
x2/(2λ) , |x| < λ

|x| − λ/2 , otherwise
(3.7)

This function behaves similarly to soft-thresholding above λ, but it applies

squared-weighting on small coefficients to increase detection sensitivity. Note

that iterative thresholding based on this function provides a quasi-proximal map-

ping for the `1-norm, thus λ was set to λ1 in Eq. 3.6. During PE-SSFP, the

following joint-sparsity projections were applied: m(k̇) = ψ−1
{
Shuber(ψ{m(k)})

}
.

TV: Total-variation projections were employed to reduce aliasing interference

and noise. The projections were implemented by minimizing the objective J(x) =

‖mn − x‖2
2 + λ2‖∇x‖1 using a fast iterative-clipping algorithm:

x(i) = m(k̇)
n −∇tz(i−1)

z(i) = Sclip
(
z(i−1) +∇x(i)/α

)
(3.8)
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where ∇t is the adjoint finite-difference operator, z(1) = 0 and the update rate

parameter α = 8 [103]. The clipping function was modified to handle complex

values:

Sclip(z) =

{
z , |z| < λ2/2

(λ2/2) · exp(j∠(z)) , otherwise
(3.9)

where ∠(z) is the phase of z. This algorithm converges rapidly, and the per-

centage change in the objective fell to 0.01% within 5 iterations during each TV

projection: m(k̈) = TVproj

{
m(k̇)

}
.

Data consistency: To ensure consistency of reconstructed and ac-

quired k-space data, reconstructed data were projected onto the constraint∑
n

‖yn −FPn {mn}‖2
2 = 0. This projection was implemented by replacing re-

constructed data with the acquired data in sampled locations [66]: m(
...
k ) =

F−1
{

(F − FP){m(k̈)}+ y
}

.

The successive projections listed above were repeated until the percentage dif-

ference between the reconstructed images in consecutive iterations fell to 0.001%.

Convergence was achieved within 15 iterations for the datasets considered here.

The penalty weights λ1,2 were varied separately in the range [0 10] × 10−3 with

a step size of 10−3 for phantom data, and in the range [0 15]× 10−3 with a step

size of 0.05×10−3 for in vivo data [52]. To minimize potential block artifacts and

resolution losses, the smallest set of λ1,2 that yielded satisfactory artifact/noise

suppression were selected via visual inspection (see Table 3.1). To obtain a fi-

nal bSSFP image, reconstructions for each phase-cycle were combined with the

p-norm method (p=4), which was selected for its computational simplicity and

favorable performance in artifact suppression and SNR efficiency [95].

Table 3.1: Regularization Parameters

N = 2 N = 4 N = 6 N = 8

Brain (phantom) 8.0, 2.0 8.0, 2.0 8.0, 2.0 8.0, 2.0

Brain (in vivo) 1.5, 15 1.5, 15 0.75, 7.5 0.75, 7.5

Knee (in vivo) 0.15, 1.5 0.15, 1.5 0.075, 0.75 0.075, 0.75

Regularization parameters λ1,2(×10−3) prescribed for PE-SSFP reconstruc-
tions are listed for each dataset and each N.
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3.2.3 Alternative Reconstructions

To comparatively demonstrate PE-SSFP, zero-filled Fourier (ZF), individual CS

(iCS) and ESPIRiT [104] reconstructions were also implemented. All methods

reconstructed individual phase-cycled images that were then p-norm combined

(p=4).

ZF: Nonacquired k-space data were filled with zeros. Data for each phase-cycle

were compensated for the sampling density across k-space. An inverse Fourier

transformation was then performed to reconstruct each phase-cycled image.

iCS: Individual CS reconstructions of phase-cycled acquisitions were imple-

mented as described in Eq. 3.5. The sparsifying transform was selected as

the Daubechies 4 wavelet. The optimization was performed using an iterative

conjugate-gradient algorithm [4]. Iterations were repeated until the percentage

difference between the reconstructed images in consecutive iterations fell to 0.01%.

Convergence was achieved within 30 iterations for the datasets considered here.

Further iterations were avoided because they were observed to cause undesirable

blurring in the reconstructions. The regularization weights were scaled propor-

tionately to those in PE-SSFP. Specifically, λ1 was set to maintain the same ratio

of sparsity to data-consistency terms (
√
N ×λ1,PE−SSFP ), λ2 was set to maintain

the same ratio of TV to data-consistency terms (λ2,PE−SSFP ).

ESPIRiT: A soft-SENSE reconstruction [94] based on multiple sets of bSSFP

profiles was implemented using the `1-ESPIRiT framework [104]. Profile esti-

mates were obtained via eigenvector decomposition of G in the image domain.

Separate sets of profile estimates were obtained for each phase cycle (Ĉj
n for the

jth set, j ∈ [1 J ]), by selecting eigenvalues above a fixed threshold of 0.9 with

a null-space cut-off σ2

cutoff=0.02. This yielded two sets of bSSFP profiles esti-

mates for the datasets reported here. Individual phase-cycled images mn were

then reconstructed via the following optimization:

min
m

∑
n

‖yn −FPn {mn}‖2
2 + λ1

∥∥∥∥∥∥
√∑

n

|ψ{mn}|2
∥∥∥∥∥∥

1

(3.10)
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where mn =
∑
j

Ĉj
nm

j
n. Variable splitting with a splitting parameter of 0.4 was

implemented to decompose the optimization into two subproblems that minimize

the profile-encoding cost (first term in the objective) and the joint-sparsity cost

(second term) respectively [105]. The profile-encoding subproblem was solved via

a conjugate gradient algorithm with 20 iterations [66]. Remaining reconstruction

parameters including the number of outer iterations were kept identical to PE-

SSFP.

3.2.4 Simulations

Simulations were performed based on a realistic brain phantom at 0.5 mm

isotropic resolution (http://www.bic.mni.mcgill.ca/brainweb). Phase-cycled

bSSFP signals for each tissue were calculated based on Eq. 3.1, assuming the

following T1/T2: 3000/1000 ms for cerebro-spinal fluid (CSF), 1200/250 ms for

blood, 1000/80 ms for white matter, 1300/110 ms for gray matter, 1400/30 ms for

muscle, and 370/130 ms for fat. Meanwhile, three-dimensional (3D) acquisitions

were simulated using α = 45o (flip angle), TR = 5.0 ms, TE = 2.5 ms, 10 axial

cross-sections equispaced to cover the whole brain in the superior-inferior direc-

tion, and ∆φ = 2π [0:1:(N−1)]
N

. The simulations used a realistic field-inhomogeneity

distribution corresponding to an off-resonance shift of 0±62 Hz (mean±std; see

Fig. 3.1).

To demonstrate the auto-calibration approach used in PE-SSFP, we examined

how well the acquired data can be represented via the bSSFP profiles estimated

from calibration data. Using the profiles extracted by the ESPIRiT method

[104], each phase-cycled image was projected onto the subspace spanned by the

bSSFP profiles. A difference map was then calculated between each image and

its projection onto this subspace. An aggregate error map was finally formed via

sum-of-squares combination of difference maps across phase cycles. Error maps

were generated for varying kernel sizes (5, 7, 9, 11, 13, 15, 17), calibration area

sizes (6%, 8%, 10%, 12%, 14% of the maximum spatial frequency), and null-space

cut-offs (σ2

cutoff=2x10−1,−2,−3,−4,−5).
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Next, simulated brain images were undersampled by a factor of N in two phase-

encode dimensions using patterns generated for uniform-density, variable-density,

and Poisson disc sampling. Separate acquisitions were obtained for common

and disjoint sampling patterns across phase cycles. PE-SSFP and alternative

reconstructions were performed.

Reconstruction quality was assessed by several different metrics measured on

combined bSSFP images. For a given cross-section, a mean-squared error (MSE)

was first measured between the image reconstructed from N undersampled ac-

quisitions and a reference image Fourier reconstructed from N=8 fully-sampled

acquisitions. Because N=8 is typically sufficient for artifact suppression, MSE

assessed the reconstruction performance in reducing banding artifacts in addi-

tion to aliasing/noise interference. The peak signal-to-noise (PSNR) metric was

then derived from this MSE measurement to summarize the overall image qual-

ity. Lastly, a mean structural similarity index (SSIM) was measured between

the reconstructed image and the reference image for N=8, following histogram

matching to account for large-scale intensity variations [32]. SSIM assessed the

degree of visual similarity in tissue structure to the reference image. To assess

the reliability of PE-SSFP against field inhomogeneity, residual banding artifacts

were evaluated on combined bSSFP images. CSF, white matter and gray matter

signals were segregated via tissue masks. The level of residual artifact for each

tissue was then characterized based on a percentage ripple metric. Ripple was

taken as the ratio of the range of signal intensity to the mean intensity level. All

metrics were pooled across 10 cross-sections in the phantom.

Several variants of PE-SSFP were implemented to assess the relative impor-

tance of the individual projection stages of the proposed method: PEcalib with

only calibration and data-consistency projections; PEhuber with calibration, spar-

sity (based on Huber thresholding) and data-consistency projections; PEsoft−TV

with calibration, sparsity (based on soft thresholding), TV and data-consistency

projections. Each additional projection included in PE-SSFP significantly im-

proved the PSNR and SSIM values (p<0.005, signed-rank test). Furthermore,

PE-SSFP outperformed that PEsoft−TV for all N>2 (p<0.005). Thus, Huber

thresholding was prescribed for all PE-SSFP reconstructions thereafter.
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To examine the effect of tissue and sequence parameters on reconstruction per-

formance, additional simulations were performed based on varying T1/T2 ratios,

flip angles, TRs (with TE = TR/2), SNR levels, and acceleration factors (R). The

following parameters were considered: (-40%, -20%, 0%, 20%, 40%) deviation in

T1/T2 ratios, α = (15o, 30o, 45o, 60o, 75o), TR = (5 ms, 10 ms, 15 ms), SNR levels

ranging in [10 30] for CSF. To examine performance when R exceeds number of

acquisitions (N), the following cases were simulated (N=2, R=4), (N=4, R=6),

(N=4, R=8), and (N=6, R=8).

To evaluate noise performance, the SNR levels in the reconstructed images

were compared against those in fully-sampled images. For this analysis, 30 sepa-

rate noise instances with a bivariate Gaussian distribution were added to phase-

cycled bSSFP images to attain acquisition SNR=20 for CSF. Each dataset was

reconstructed to yield 30 separate combined bSSFP images. The SNR of each

voxel was taken as the ratio of the mean to standard deviation of signal intensity

across 30 images. A noise amplification map was then computed as the SNR

ratio between the fully-sampled reference and reconstructed images. Significance

of differences among reconstruction methods were assessed with nonparametric

Wilcoxon signed-rank tests.

3.2.5 In Vivo Experiments

In vivo phase-cycled bSSFP images of the brain and the knee were collected on a 3

T Siemens Magnetom scanner (maximum gradient strength of 45 mT/m and slew

rate of 200 T/m/s) with a 3D Cartesian sequence. The brain imaging protocol

comprised a flip angle of 30o, a TR/TE of 5.1/2.65 ms, a field-of-view (FOV) of

218 mm, an isotropic resolution of 0.85 mm, superior/inferior readout direction,

N=8 separate acquisitions with phase-cycling values (∆φ) spanning [0, 2π) in

equispaced intervals, and a 32-channel receive-only head coil. The knee imaging

protocol comprised a flip angle of 30o, a TR/TE of 5.0/2.5 ms, an FOV of 192

mm, an isotropic resolution of 1 mm, left/right readout direction, N=8, and a

15-channel receive-only knee coil. Fully-sampled images were combined across
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coils to obtain single-channel multiple acquisition datasets. All participants gave

written informed consent, and the imaging protocols were approved by the local

ethics committee.

The brain and knee acquisitions were variable-density undersampled in the

phase-encode dimensions to yield acceleration factors of 2-8, and profile-encoding

reconstructions were performed. The following phase-cycling values were selected

for reconstruction: ∆φ = 2π [0:1:(N−1)]
N

for N = 2, 4 and 8. The phase cycles for N

= 6 were selected as a subset of those for N =8 (0, π/2, 3π/4, π, 5π/4, 7π/4) to

reduce overall scan time and minimize potential motion artifacts.

To examine the quality of reconstructed images, PSNR and SSIM metrics

were measured across 10 equispaced cross-sections. For brain images, axial cross-

sections were used that spanned across the entire volume in the superior-inferior

direction. For knee images, sagittal cross-sections in the left-right direction were

used. The reference image was taken as the combined Fourier reconstruction of

N=8 fully-sampled acquisitions.

3.3 Results

3.3.1 Simulation Analyses

PE-SSFP was first demonstrated on bSSFP images of a numerical brain phan-

tom. Figure 3.3 shows the combination bSSFP images reconstructed via ZF,

iCS and PE-SSFP. As expected, heavier undersampling applied at higher N val-

ues increases aliasing interference in ZF images. Meanwhile iCS reconstructions,

which process phase cycles independently, suffer from prominent losses in spatial

resolution. In contrast, PE-SSFP successfully reduces aliasing interference while

maintaining detailed tissue depiction even at N = 8.
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Figure 3.3: Phase-cycled bSSFP images of a numerical phantom were simulated

for N=2-8, α = 45o, TR/TE=5.0/2.5 ms, a field map of 0±62 Hz (mean±std).

Phantom images were undersampled by a factor of N via variable-density ran-

dom sampling, disjointly across phase cycles. Zero-filled Fourier (ZF, top row),

individual compressed sensing (iCS, middle row), and PE-SSFP (bottom row)

reconstructions are shown. White boxes display a zoomed-in portion of the im-

ages. ZF reconstructions suffer from elevated aliasing/noise interference at high

N due to the heavier undersampling factors used. While iCS reconstructions em-

ploy regularization terms that limit this interference, the heavy undersampling

factors at high N cause visible loss of spatial resolution. In contrast, PE-SSFP

successfully alleviates noise and aliasing interference while maintaining detailed

depiction of tissue boundaries.
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Several complementary analyses were performed to elucidate factors contribut-

ing to reconstruction performance. To demonstrate the auto-calibration approach

in PE-SSFP, errors were examined in representing acquired data in terms of the

bSSFP profiles estimated from calibration data. For the kernel size, calibration

area and null-space cutoff prescribed in PE-SSFP, residual high-spatial-frequency

errors occur near banding artifacts for each phase cycle. When combined across

phase-cycles, the auto-calibration errors appear near tissue boundaries rather

uniformly across the FOV. The average auto-calibration error relative to the

maximum signal intensity is 3.2±0.6% (mean±s.e. across N). The percentage

improvement that can be attained by advancing the kernel size, calibration area

or null-space cutoff to their optimal values in the tested range is merely 1.0±0.3%.

Thus, the selected PE-SSFP parameters yield near-optimal results with relatively

low error levels. To determine the effects of individual projection operators in

PE-SSFP, several variant reconstructions and respective squared-error maps rel-

ative to a fully-sampled image were computed (Fig. 3.4). The inclusion of each

projection visibly reduces error across the image. To examine noise statistics of

the reconstructions, noise amplification factors were calculated across the images

(Fig. 3.5). Although the heavier undersampling at high N increases noise in ZF,

penalty terms in iCS and PE-SSFP help maintain lower noise. In PE-SSFP,

relatively higher amplification is observed near tissue boundaries that are more

susceptible to resolution loss due to variable-density undersampling.
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Figure 3.4: Representative bSSFP images of the numerical phantom for N=4 were

reconstructed using ZF and PE-SSFP. Images from three variants of PE-SSFP are

shown (top row). PEcalib only uses calibration and data-consistency projections,

PEhuber uses calibration, joint-sparsity and data-consistency projections, and PE-

SSFP additionally uses TV projections. Reconstructions were compared against

a combination of fully-sampled images (for N=8). Squared-error maps are shown

in logarithmic scale (bottom row; see colorbar). Each additional projection in

PE-SSFP yields visibly reduced reconstruction error in bSSFP images.
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Figure 3.5: The noise-amplification maps for ZF, iCS and PE-SSFP methods are

displayed for N=2-8. Although the heavier undersampling at high N increases

noise amplification in ZF reconstructions, reconstructions with penalty terms

iCS and PE-SSFP maintain relatively low noise amplification even at high N.

The lower noise amplification with iCS likely reflects a bias from excessive loss of

high-spatial-frequency information. In PE-SSFP, relatively higher amplification

is observed near tissue boundaries that are more susceptible to resolution loss

due to variable-density undersampling.

To determine the effect of the sampling strategy on PE-SSFP, uniform-density,
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variable-density and Poisson disc undersampling patterns were tested. Each type

of pattern was applied both commonly and disjointly across phase cycles. While

all sampling strategies yield similar PSNR and SSIM values at N=2, variable-

density (VD) disjoint sampling outperforms all other methods for N>2 (p<0.005).

VD disjoint sampling improves PSNR by 4.0±1.9 dB (mean±s.e. across N) and

SSIM by 0.8±0.5% over VD common sampling, and PSNR by 3.2±1.6 dB and

SSIM by 0.4±0.2% over Poisson-disc disjoint sampling. Thus VD disjoint sam-

pling was used for all reconstructions reported here.

Finally, PE-SSFP was comparatively evaluated against ZF, iCS and ESPIRiT.

Representative images for N=8 are shown in Fig. 3.6 along with the squared-error

maps in reference to a fully-sampled image. While ZF shows broadly distributed

errors across the field-of-view, iCS reduces noise and aliasing interference at the

expense of losses in high-spatial-frequency information. While ESPIRiT recon-

structions alleviate this loss via joint-sparsity penalties, the respective images

still show distributed errors. In contrast, PE-SSFP using both joint-sparsity and

TV regularization effectively dampens the reconstruction errors in phase-cycled

bSSFP images.
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Figure 3.6: Phase-cycled bSSFP reconstructions of the numerical phantom (top

row), and the squared-error maps with respect to the fully-sampled combination

image (bottom row) are displayed for N=8. ZF has broadly distributed errors

across the field-of-view due to aliasing and noise interference. iCS reconstruc-

tions reduce this interference via TV regularization at the expense of elevated

errors near tissue boundaries, due to significant loss of high-spatial-frequency in-

formation. While ESPIRiT reconstructions alleviate this loss via joint-sparsity

penalties, the respective images still show broadly distributed errors. In contrast,

PE-SSFP using both joint-sparsity and TV regularization further dampens the

reconstruction errors in phase-cycled bSSFP images.

The observations regarding PE-SSFP’s superior image quality are supported

by the quantitative assessments listed in Table 3.2. For each N, PE-SSFP yields

significantly higher PSNR and SSIM values compared to all other reconstructions

(p<0.005), with the exception of N=2 where iCS and PE-SSFP yield similar val-

ues. PE-SSFP improves PSNR by 13.1±5.0 dB and SSIM by 4.8±2.5% over iCS,
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and PSNR by 14.5±3.2 dB and SSIM by 3.4±0.6% over ESPIRiT. The percent-

age ripple measurements listed in Table 3.2 indicate that PE-SSFP yields more

homogeneous tissue signals compared to alternative methods for all N (p<0.005).

Taken together, these results suggest that PE-SSFP reliably enhances image qual-

ity and artifact suppression compared to conventional reconstructions.
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Table 3.2: Image Assessments for the Brain Phantom

Peak SNR and Structural Similarity

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 51.8±0.1 50.0±0.2 47.2±0.1 45.9±0.1
SSIM 72.8±0.6 65.4±0.8 62.4±0.8 61.2±0.8

iCS
PSNR 57.5±0.5 61.3±0.3 52.3±0.4 49.0±0.3
SSIM 97.9±0.1 97.0±0.0 91.4±0.3 88.2±0.3

ESPIRiT
PSNR 48.0±0.1 56.3±0.1 56.1±0.3 54.1±0.3
SSIM 93.5±0.1 95.8±0.1 95.6±0.1 95.1±0.1

PE-SSFP
PSNR 57.9±0.4 78.2±0.3 71.5±0.4 64.9±0.3
SSIM 98.4±0.1 98.8±0.0 98.4±0.0 98.0±0.0

Percentage Ripple

N=2 N=4 N=6 N=8

ZF
CSF 38.8±2.1 29.7±1.6 31.9±2.1 32.5±2.1
White 72.9±4.0 94.7±6.4 94.0±5.3 97.2±6.5
Gray 53.8±2.1 73.2±5.1 76.3±3.2 77.8±5.5

iCS
CSF 23.2±0.8 8.9±1.1 17.9±1.4 23.9±2.6
White 8.5±1.1 21.4±3.0 40.9±5.9 48.8±4.3
Gray 9.7±1.1 17.7±1.4 30.8±4.6 36.7±6.2

ESPIRiT
CSF 43.9±1.1 17.5±2.1 18.8±1.5 19.7±1.4
White 43.7±5.8 41.3±7.9 47.2±6.3 51.4±8.7
Gray 39.0±3.8 28.7±2.7 34.5±3.8 36.1±5.0

PE-SSFP
CSF 22.5±0.2 2.1±0.2 3.4±0.5 3.1±0.5
White 5.4±0.4 5.9±0.5 6.3±0.7 6.6±0.7
Gray 8.3±0.3 6.9±0.4 6.8±0.4 7.4±1.1

Image assessment metrics measured in reconstructed bSSFP images of the nu-
merical brain phantom. Metrics are reported separately for each reconstruc-
tion method as mean±std across 10 cross-sections. The top panel lists the
peak SNR (PSNR) and structural similarity (SSIM) measurements obtained
for α = 45o, TR = 5 ms, fixed T1/T2 values, and a realistic off-resonance
frequency map (0±62 Hz). The bottom panel lists the percentage ripple mea-
surements for CSF, white matter and gray matter separately.
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3.3.2 In Vivo Analyses

PE-SSFP was demonstrated on bSSFP acquisitions of the brain and the knee.

Similar to phantom results, the auto-calibration error was relatively low with

6.1±1.3% error (mean±s.e. across N) in the brain, and 3.7±0.7% error in the

knee. Figure 3.7 shows the combined PE-SSFP images and the squared-error

maps for N=2-8. As expected, prominent errors due to residual banding are

visible for lower N values. These errors are alleviated towards high N, while

maintaining high-quality tissue depiction. Representative images from ZF, iCS,

ESPIRiT and PE-SSFP are displayed in Fig. 3.8. While iCS incurs losses at high

spatial frequencies and coherent interference at low frequencies, ESPIRiT suffers

from broadly distributed reconstruction errors across the images. In contrast, PE-

SSFP visibly reduces reconstruction errors and preserves high-spatial-frequency

information.

Quantitative assessments of in vivo reconstructions are listed in Table 3.3.

In both the brain and the knee, PE-SSFP yields significantly higher PSNR and

SSIM values compared to iCS for N>2 (p<0.05). PE-SSFP also improves PSNR

and SSIM compared to all other alternative reconstructions for all N (p<0.05),

with the exception of knee images at N=8 where PE-SSFP and ESPIRiT yield

similar PSNR. In the brain, PE-SSFP improves PSNR by 3.0±2.6 dB and SSIM

by 1.4±1.2% over iCS, and PSNR by 8.5±0.8 dB and SSIM by 7.1±0.5% over

ESPIRiT. In the knee, PE-SSFP improves PSNR by 4.7±3.5 dB and SSIM by

1.8±0.6% over iCS, and PSNR by 2.8±1.2 dB and SSIM by 8.3±0.4% over ES-

PIRiT. Taken together, these results strongly suggest that the proposed method

enables scan-efficient suppression of banding artifacts at high N values, while

maintaining detailed tissue structure via the joint reconstruction.
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Figure 3.7: In vivo bSSFP acquisitions of the brain (a) and the knee (b) were re-

constructed using PE-SSFP. Squared-error maps are shown in logarithmic scale

(see colorbar). The error maps clearly suggest that banding artifact suppres-

sion improves for higher N, while PE-SSFP maintains detailed depiction of high-

spatial-frequency information.
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Figure 3.8: In vivo phase-cycled bSSFP reconstructions of the brain (a) and

the knee (b) are displayed for N=8. ZF and ESPIRiT reconstructions suffer

from broadly distributed reconstruction error across the images. Meanwhile, iCS

reconstructions show substantial loss of high-spatial-frequency information and

coherent low-frequency interference. In contrast, PE-SSFP effectively reduces

errors due to aliasing and noise interference, while maintaining detailed tissue

depiction.
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Table 3.3: Image Assessments for In Vivo Datasets

Brain Images

N=2 N=4 N=6 N=8

ZF
PSNR 48.6±0.2 44.1±0.4 41.4±0.4 40.3±0.4
SSIM 73.5±0.6 56.4±0.8 50.6±0.7 48.9±0.8

iCS
PSNR 58.4±1.0 60.7±0.4 56.8±0.9 53.2±0.9
SSIM 93.0±1.0 93.2±0.8 91.2±0.8 88.9±0.9

ESPIRiT
PSNR 49.5±0.5 53.4±0.4 51.8±0.6 52.5±0.5
SSIM 84.2±0.7 87.6±0.8 84.7±0.5 86.7±0.7

PE-SSFP
PSNR 56.0±0.7 62.5±0.5 61.0±0.8 61.5±0.7
SSIM 92.0±0.5 94.0±0.4 92.7±0.4 93.0±0.3

Knee Images

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 59.6±0.3 57.8±0.5 55.7±0.3 54.4±0.4
SSIM 86.2±0.6 77.2±0.9 72.8±1.1 69.2±1.1

iCS
PSNR 65.2±0.7 72.8±0.4 65.3±0.9 63.0±1.2
SSIM 94.7±0.5 95.5±0.4 92.0±0.4 90.5±0.2

ESPIRiT
PSNR 60.5±0.4 68.3±0.4 70.7±0.6 74.6±0.6
SSIM 84.5±1.2 87.2±2.4 87.2±2.4 87.8±2.3

PE-SSFP
PSNR 63.9±0.5 73.3±0.4 73.4±0.7 74.5±0.6
SSIM 93.5±0.4 95.8±0.2 95.2±0.3 95.4±0.3

Image assessment metrics measured in reconstructed bSSFP images of in vivo
brain and knee data. Metrics are reported separately for each reconstruction
method as mean±std across 10 cross-sections. The top panel lists PSNR
and SSIM measurements for brain images, and the bottom panel lists the
measurements for knee images.
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3.4 Discussion

Here we evaluted an improved acceleration framework for multiple-acquisition

3D bSSFP based on variable-density random undersampling in two phase-encode

dimensions. In this framework, nonacquired data across phase-cycles are simul-

taneously synthesized using a profile-encoding reconstruction that enforces joint

sparsity and TV penalties. A p-norm combination of individual phase-cycled

images yields a final artifact-suppressed bSSFP image.

Several alternative approaches were previously proposed for reducing banding

artifacts. One strategy is to increase the tolerable range of field inhomogeneity

by modifying the bSSFP magnetization profile [80, 81, 82, 83]. Alternatively,

advanced shimming procedures can be performed to directly limit field inhomo-

geneity [84]. While both strategies aim to reduce banding artifacts during ac-

quisition, they require complex pulse-sequence modifications and prolonged scan

times. In contrast, our proposed framework can be implemented via standard

bSSFP sequences without separate calibration procedures.

Improvements in scan efficiency of multiple-acquisition bSSFP have been con-

sidered in several previous reports. Recently, we proposed to undersample and

individually reconstruct phase-cycled acquisitions using CS [32]. The CS frame-

work yielded high quality reconstructions up to an acceleration factor of N=4.

Another study employed simultaneous multislice imaging to accelerate each ac-

quisition separately, and similarly considered N≤4 [92]. While these previous

studies disregarded image features shared across phase-cycles, here we used a

joint-sparsity model to enhance recovery of wavelet coefficients, and TV regular-

ization to reduce aliasing and noise interference. Due to these advances, PE-SSFP

maintains high-quality reconstructions up to N=8. Spatial encoding by coil ar-

rays was not leveraged in the reconstructions reported here. However, if more

effective artifact suppression is needed (e.g., while imaging at 7T or near air-

tissue interfaces), a higher N value and a respectively higher acceleration factor

might be maintained by also leveraging coil sensitivity information. Note, how-

ever, that each phase-cycled acquisition involves a fixed-duration overhead due
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to the preparatory RF pulses employed to reach steady state. This overhead will

become more prominent for larger N values, reducing the overall scan efficiency.

With similar motivations to PE-SSFP, one earlier study proposed a SENSE-

type reconstruction performed jointly across phase-cycled acquisitions, each accel-

erated via uniform-density undersampling [96]. Sensitivity estimates were taken

as the ratio of low resolution phase-cycled images to a maximum-intensity combi-

nation of these images. In contrast, here we used variable-density sampling, and

we did not assume any combination model while calibrating the interpolation ker-

nel. Our results clearly indicate that variable-density sampling offers improved

performance compared to uniform sampling.

PE-SSFP can be potentially improved by addressing several limitations. First,

if significant motion occurs in between separate acquisitions, image structure can

be displaced across phase-cycles. These displacements may in turn violate the

joint-sparsity model and yield suboptimal reconstructions. A motion-correction

operator could be incorporated to alleviate motion-induced performance loss.

Second, the auto-calibration approach in PE-SSFP relies on the assumption that

bSSFP spatial profiles vary gradually. Rapid profile variations near tissue bound-

aries or bSSFP nulls can yield suboptimal interpolation operators, increasing

reconstruction errors. This issue may be of particular concern with high field

strengths, long TRs, and certain combinations of T1/T2 and flip angles. In such

cases, the k-space calibration area could be expanded and interpolation kernels

of variable widths across k-space could be used to improve accuracy of the inter-

polation operator [106, 107]. Third, while a p-norm combination was observed

to yield good artifact suppression in this study, it could be replaced with so-

phisticated techniques that leverage analytical signal models to further improve

artifact suppression [85, 86]. Lastly, optimization with the projection-onto-sets

method does not guarantee convergence onto a fixed solution in the absence of

overlap between the projection sets. While we observed good convergence behav-

ior here, reconstruction stability can be improved by modern approaches such as

the alternating direction method of multipliers [108].
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In conclusion, the proposed PE-SSFP framework jointly reconstructs multiple-

acquisition bSSFP data by leveraging shared sparsity patterns across phase-

cycles. PE-SSFP was primarily demonstrated for brain and knee imaging in

the current study. Nonetheless, the scan-efficient acquisitions and high-quality

reconstructions enabled by PE-SSFP could improve other multiple-acquisition

bSSFP applications such as peripheral angiography [14], coronary imaging [109],

and fat/water separation [110, 90].
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Chapter 4

Conclusion

In this chapter, we provide a summary of the work presented in the thesis, and

discuss the future research. This thesis deals with the development and applica-

tion of two image reconstruction frameworks for accelerated acquisitions. These

frameworks are based on compressed sensing reconstructions of magnetic reso-

nance angiography and balanced steady-state free precession imaging. In Chap-

ter 2, we demonstrated that a two-step reconstruction strategy with adaptive

regularization weights can improve the performance of compressed sensing recon-

structions compared to conventional methods. Our results indicate that adaptive

reconstruction scheme can increase the clinical potential of both compressed sens-

ing reconstructions and non-contrast enhanced angiography methods. In Chapter

3, we demonstrated an improved framework for multiple-acquisition bSSFP ac-

quisitions. By leveraging shared sparsity patterns across phase-cycles, we were

able to obtain an artifact-free images within the total scan time equivalent to a

single acquisition. Extensive simulations and in vivo experiments demonstrated

the improvements achieved with the developed framework, further increasing the

potential usefulness of bSSFP sequences in clinical and research applications.
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4.1 Future Work

Based on these results, there are a number of interesting research directions to

be targeted in the future. One of the critical limitations of compressed sensing

reconstructions for the clinical implementation is selecting appropriate regular-

ization parameters in the reconstruction. For the best diagnostic image quality,

compressed sensing algorithms usually require hand-tuning of these regulariza-

tion parameters, which is tedious task and impractical for clinical utilization

[2, 111]. Using low regularization parameters may result in insufficient suppres-

sion of aliasing artifacts and noise interference, whereas using excessive terms can

lead to removal of important image features for clinical evaluation [3]. Although

recent works have tried to address this problem, the accuracy and radiological

assessments of these methods remains an open problem [112, 113, 114, 115].

Another critical requirement for the clinical implementation of compressed

sensing reconstructions is the computation time. Delays between the acquisition

and visualization of data represents a great challenge for the clinical use of CS

[2]. Many researchers have focused their attention on parallel implementations on

graphics hardware [69, 66, 116] and web-based cloud computational systems [117]

for faster reconstruction times. However, the increase of receiver coil channels and

demand for higher resolution images require further speed-ups in computation

time and this gives rise to an important direction for future studies.

4.2 Contributions to the Literature

4.2.1 Journal Papers

[1] E. Ilicak, S. Cetin, E. Bulut, K. Oguz, E. Saritas, G. Unal, and T. Çukur, ‘Tar-

geted vessel reconstruction in non-contrast-enhanced steady-state free precession

angiography.,’ NMR in biomedicine, vol. 29, no. 5, pp. 53244, 2016.
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[2] E. Ilicak, L. Senel, E. Biyik, and T. Çukur, ‘Profile-encoding reconstruction

for multiple-acquisition balanced steady-state free precession imaging.,’ Magnetic

resonance in medicine, 2016.

4.2.2 Conference Papers

[1] E. Ilicak, S. Cetin, E. U. Saritas, G. Unal and T. Çukur, ‘Adaptive reconstruc-

tion for vessel preservation in unenhanced MR angiography,’ 2016 24th Signal

Processing and Communication Application Conference (SIU), Zonguldak, 2016,

pp. 577-580.
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for Multiple-Acquisition BSSFP Imaging,’ In Proceedings of the 25th Annual
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[3] T. Kilic, E. Ilicak, T. Çukur, and E. Saritas ‘Improved SPIRiT Operator for
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