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ABSTRACT 

 

IN SILICO ANALYSIS OF MUTANT p53(R249S) ONCOGENICITY IN 

HEPATOCELLULAR CARCINOMA 

 

Guvanchmurad Ovezmuradov 

M.S. in Molecular Biology and Genetics 

Supervisor: Assist. Prof. Dr. Rengül Çetin-Atalay 

September, 2007  

      

     Oncogenic properties of mutant p53 proteins still stand as an ill-known subject, 

and the mechanism responsible for this phenomenon remains to be uncovered. This 

thesis aims to uncover the effect of p53 codon R249S ((AGG→AGT, arginine to 

serine) mutation on the development of hepatocellular carcinoma (HCC) through high 

throughput transcriptomics analysis using oligonucleotide arrays. We compared the 

expression profiles of HepG2 cells carrying wt and mutant p53(R249S). Microarray 

data analysis revealed a molecular signature consisting of 84 differentially regulated 

genes, showing that the expression of mutant p53(R249S) in HepG2 cells resulted in a 

distinct expression profile. Furthermore, mapping these significant differentially-

expressed genes to the p53 interaction network revealed a putative interaction 

network representing functional outcomes of p53(R249S) expression in the context of 

diverse molecular interactions. Our results clearly demonstrated that several 

Hepatocyte Nuclear Factors (HNF1A, HNF4A and HNF6) could play an essential role 

in mediating mutant p53 oncogenic activity in HCC, as the key molecules of the gene 

network.  

 

Keywords:  p53, hepatocellular carcinoma, microarray, gene network, bioinformatics. 
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ÖZET 

 

HEPATOSELLÜLER KARSINOMADAKİ  

MUTANT p53(R249S) ONCOJENİSİTENİN İN SİLİCO ANALİZİ  

 

Guvanchmurad Ovezmuradov 

Moleküler Biyoloji ve Genetik, Yüksek Lisans 

Tez Yöneticisi: Yard. Doç. Dr. Rengül Çetin-Atalay 

Eylül, 2007 

 

     Mutant p53 proteinlerinin onkojenik özellikleri hala az bilinenen bir konudur ve bu 

olguyu sağlayan mekanizma hala çözülmüş değildir. Bu tezin amacı, oligonukleotid 

dizinlerinin kullanıldığı geniş ölçekli transkriptomik analizini yaparak, p53’ün 249. 

kodon (AGG→AGT, arjininden serine) mutasyonunun hepatosellüler karsinomaya 

(HCC) olan etkisini ortaya çıkarmak. Wild-type ve mutant p53(R249S) taşıyan 

HepG2 hücrelerinin ifade şekli karşılaştırıldı. Mikrodizin veri analizi sonucu ifadesi 

değişen 84 genden oluşan ve bir “moleküler imza” niteliğinı taşıyan bir ifade 

değişikliği açığa çıkarılarak, mutant p53(R249S) ifadesinin Hep G2 hücrelerinde 

tamamen ayrı bir gen ifade şekline sebep olduğu gösterildi. Ayrıca, bu 84 genin p53 

etkileşim ağına eşlestirilmesi sonucu p53(R249S) ifadesinin işlevsel sonuçlarını  

degişik moleküler etkileşimler bağlamında açıklayan varsayımlı bir etkileşim ağı 

ortaya cıkarıldı. Bu çalışmayla elde edilen sonuçlarla, birkaç Hepatocyte Nuclear 

Factor’ün  (HNF1A, HNF4A and HF6) ilgili gen ağının kilit molekülleri olarak 

mutant p53’ün HCC’deki onkojenik aktivitesinin sağlanmasında önemli roller 

üstleniyor olabildikleri gösterildi.  

 

Anahtar sözcükler: p53, hepatosellüler karsinoma, mikrodizin, gen ağı, 

biyoenformatik. 
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CHAPTER 1: INTRODUCTION 

 

1.1. p53: A Two-faced Cancer Gene 

1.1.1. p53 History      

     Tumor protein 53, hereafter to be referred as p53, is one of the most extensively studied 

genes in molecular biology. Since its discovery in 1979, there has been a remarkable change 

in depicting the role of p53 in tumorigenesis [1] [2] [Fig. 1.1]. Intriguingly, p53 was initially 

described as an oncogene because of its higher expression in tumor cells, profound 

promoting effect on immortalizing certain cell types and ability to assist cellular 

transformation [1]. Surprisingly, 10 years after the identification of p53, it was realized that 

previous studies unknowingly utilized mutant forms of p53, and therefore all corresponding 

findings were related to mutant protein [3]. Moreover subsequent intensive studies revealed 

that the actual wild-type p53 gene is a tumor-suppressor gene, making it one of the most 

intensively studied human cancer genes [1].  

 
Figure 1.1: Diagrammatic illustration of the history of p53 functions since its discovery in 1979. (Hussain SP 

and Harris CC, 2006) [2] 

     Despite the fact that the most studies on p53 have concentrated on addressing the tumor 

suppressor functions of wild-type p53, the research on mutant p53 as an oncogenic protein 

still goes on yielding significant results [1]. 
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1.1.2. p53 as a Guardian of the Genome 

     Recent advancements in molecular biology have revealed that close regulation of 

biological processes on cellular level is indispensable for life [4]. Any abnormal molecular 

condition is sensed by complex surveillance mechanisms and cell fate decision is made 

resulting in its rectification, to cell death, or to disease such as in cancer if this is not possible 

[4]. p53 plays an essential role as the master regulator of these events, and thus has been 

widely regarded as “the guardian of genome” [5]. Accordingly, TP53, the gene encoding 

p53, is considered to be one of the most essential genes in preventing cancer, and has been 

investigated intensively for more than twenty years [3]. These growing studies resulted in 

recognition of tumor suppressor p53 as a key element of the cell’s antiproliferation 

machinery, accomplishing its effect by inducing either cell cycle arrest or apoptosis in 

response to various stress conditions [3]. These observations underscore the importance of 

p53 in tumor suppression and explain why p53 is prominent as the most frequently mutated 

gene (observed in half of all cancers) among human cancer genes [3]. Such a high frequency 

of mutations suggests a strong selective pressure for disruption of normal p53 activity in the 

process of tumorigenesis [6]. Accordingly, it’s obvious that the disruption of wild-type p53 

activity is vitally important for tumorigenesis [7]. Interestingly, beside of being such 

common as somatic mutations in human malignancies, alterations of the TP53 gene are also 

prominent as germline mutations in some cancer-prone families with Li-Fraumeni syndrome 

[8].  

     On the other hand, recent findings in this area revealed a broad spectrum of wild-type p53 

activities including maintaining the genomic integrity (as a “Guardian of the genome”), 

transcription, cell cycle, apoptosis, senescence, DNA repair and development [2] [Fig. 1.1].  

These findings clearly indicate that wild-type p53 acts as a key cell-growth regulator and 

tumor suppressor protein [9] at the crossroads of multiple cell signalling pathways.  

1.1.3. Is Mutant p53 an Oncogenic Protein? 

     Efforts to decipher the oncogenic properties of mutant p53 proteins have yielded a 

considerable amount of elucidative results. The evidences supporting the idea of classifying 

mutant p53 as an oncogenic protein can be summarized in three parts: 

     1. High frequency of missense mutations: Overwhelming majority (74%) of p53 

mutations are missense mutations, resulting in full-length, though mutant, proteins [10]. This 
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frequency of missense mutations is noticeably much higher when compared to other tumor 

suppressor genes [10], as the mutations striking other tumor suppressor genes (like APC, 

ATM and BRACA) in the majority of cases are reading-frame shifts or nonsense mutations 

[11] [12] [Fig. 1.2]. As a consequence, while mutations of other tumor suppressor genes 

result in truncated proteins, often degraded rapidly in cell, p53 mutations result in slightly 

altered, albeit stable proteins [11] [12]. This striking observation led scientists to the 

inescapable conclusion that mutant p53 proteins contribute to tumorigenesis by conferring 

selective advantage to cells harbouring them [10], as these cells can benefit from the 

presence of a slightly altered p53 protein rather than from its complete absence [11]. 

Consequently, it can be deduced that mutations in the p53 gene gain oncogenic functions to 

its protein products (oncogenic “Gain of function”, GOF), besides destroying the tumor 

suppressor function of the wild-type protein [13].    

 
Figure 1.2: High frequency of missense mutations affecting p53 compared to other tumor suppressors. 

(Weinberg RA, 2006) [11] 

     2. Accumulation in tumor cells: Mutations of p53 result to the accumulation of high levels 

of mutant p53 in tumor cells [12]. This happens because only mutant p53, but not its wild-

type form is stable in the nucleus of tumor cells [12] Observation that the levels of p53 

protein in tumour cells are significantly higher than p53 levels in normal cells [1] strongly 

suggests that these mutant proteins are selectively overexpressed because of their vital 

oncogenic role in tumor progression [13].    

     3. Oncogenic activity in tumor cells: Since its early discovery, the research on p53 has 

revealed a solid knowledge that mutant p53 proteins have oncogenic properties which 

contribute to the establishment of malignant phenotype [14]. Early studies identified that 

consequences of expressing mutant p53 is not equivalent to the simple loss of wild-type p53: 

mutant p53 expression is capable of immortalizing certain cell types and of cooperating with 
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other oncogenes in cellular transformation [1] [7]. In recent years, a growing number of 

studies have demonstrated both in-vitro [15] [16] and in-vivo [17] [18] that expression of a 

mutant p53 can generate a broad variety of new oncogenic functions which enhance 

oncogenic potential of cells that express these proteins [14] [7] [Fig. 1.3]. Most remarkable 

are in-vivo studies [17] [18] utilizing mouse models in which mutant p53 expression is 

strongly correlated with a change in tumor spectrum in addition to enhancement of metastatic 

potential compared to p53-null mice [7]. All of these sophisticated studies have provided a 

compelling evidence of mutant p53 oncogenic activity in tumor cells [15].     

     Taking in account all of the evidences provided above, it’s obvious that p53 doesn’t fully 

obey the Knudson’s two-hit model [19] of how tumor suppressor genes should operate [11]. 

Actually, since p53 is simultaneously both a tumor suppressor gene and an oncogene, it can 

truthfully be regarded as a two-faced cancer gene [14] [Fig. 1.3].  

 
Figure 1.3: p53: a two-faced cancer gene. (Kastan MB and Berkovich E, 2007) [14] 
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1.1.4. Hot Spot Mutations of p53 

     Noticeably, overwhelming majority (>90%) of missense mutations in p53 affect the 

sequence-specific DNA-binding domain (DBD) of the protein, whereas more than 40% of all 

missense mutations alter codons R175, G248, R248, R249, R273 and R282 located within 

this domain [20] [Fig. 1.3]. Mutations in these six codons are the subjects in the majority of 

p53 studies and are commonly referred as hot-spot p53 mutations [21].     

 
Figure 1.4: Distribution of p53 mutations. (Weinberg RA, 2006) [11] 

1.1.5. Role of p53 Mutations in Tumorigenesis 

     Though extensive studies in this area, the exact mechanism responsible for mutant p53 

contribution to tumorigenesis is not yet well defined [3]. The most promising model implies 

a paradigm of triple oncogenic effect caused by p53 mutations: (a) loss of function effect, 

where the tumor suppressor function of p53 is disrupted  (b);  dominant negative effect, 

where wild-type p53 function is inactivated as result of hetero-oligomeric complex formation 

between wild-type and mutant p53 proteins, and (c) gain of function (dominant-positive) 

effect, where mutant p53 acquires novel oncogenic functions not seen in wild-type p53 that 

are independent of complex formation with wild-type p53 and therefore may occur in the 

absence of second (wild-type) p53 allele [3] [13] [22] [Fig. 1.4].  
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Figure 1.5: Proposed mechanisms for the role of p53 mutations in tumorigenesis. 

(Cadwell C and Zambetti GP, 2001) [3] 

     The gain of function hypothesis for mutant p53 has been tested in cells devoid of 

endogenous p53 [18] [23]. Since there was no endogenous wild-type p53 activity for the 

mutant p53 to interfere with, it was concluded that mutant p53 must have been directly 

causing the stimulation of unregulated cell growth [13]. Last but not least, mutant p53 gain of 

function can also be linked to physical interaction of mutant p53 with other p53 family 

members, p73 and p63 [13]. Although wild-type p53 shows no obvious ability to bind p63 or 

p73, mutation can provide “gain of this ability” [7]. Indeed, recent studies have confirmed 

these interactions for a subset of p53 mutants and demonstrated subsequent functional 

outcomes: mutant p53 binding to its sibling proteins results in their inhibition [7] [21].     

1.1.6. Mechanisms of Transcriptional Regulation by Mutant p53 

     Ability to regulate gene expression and modulate the transcriptome of the mutant cell is 

considered as one of the major mechanisms underlying mutant p53 GOF [1] [24]. Indeed, the 

series of studies have demonstrated the ability of mutant p53 to turn on and off specific sets 

of genes through acting as a transcription factor [25]. Noticeably, these genes are not 

regulated by wild-type p53 and none of them contain wild-type p53 DNA biding consensus 

site [3] [26]. Moreover, the repertoire of mutant p53-responsive genes is significantly distinct 

from that of wild-type p53 [26]. This implies that the alteration in target gene specificity is 
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what really responsible for mutant p53 GOF [26]. Given this, the meaningful question arises: 

How the specificity of mutant p53-mediated transcriptional regulation is achieved? [26]. As a 

consequence, it remains a challenging task to elucidate at the molecular level the mode of 

this transcriptional regulation [1] [24].  

     Currently, it seems to be a consensus on two molecular scenarios explaining function of 

mutant p53 as an oncogenic transcription factor [25] [Fig. 1.5]. While the first model 

depends on altered protein-DNA interactions of p53, the second one relies on its altered 

protein-protein interactions.     

     First model, based on “direct binding” [27], presumes direct binding of mutant p53 to the 

target DNA sequences, through yet unknown mechanisms which involve intrinsic DNA 

binding activities of mutant p53 proteins themselves [25]. The issue of sequence-specific 

binding is still under debate: since different mutant p53-responsive promoters show no 

sequence homology, the linear DNA sequence motif serving as a mutant p53-specific binding 

site couldn’t have been defined so far [1] [26].  

     According to the second model, based on “passive targeting” [27], mutant p53 can be 

recruited to its promoters in a specific manner indirectly and independently from the 

presence of canonical p53 binding site [1] [28] [26] [25]. This targeting is possible through 

physical interaction of mutant p53 with other sequence-specific transcription factors, such as 

Ets-1, SP-1 and NF-Y [1] [28]. The fact that both mutant p53 and these transcription factors 

are direct transcriptional regulators of the set of common genes further supports this notion 

[26] [27]. Consequently, being a member of a transcriptional protein complex enables 

tethering of mutant p53 to its promoter regions [25].  

 
Figure 1.6: Models for mutant p53 transcriptional activity. (a) Mutant p53 binds the regulatory regions of its 

target genes through a specific and yet unknown DNA-binding consensus sequence; (b) mutant p53 interacts 

with a specific transcription factor that drives its gene target specificity. (Strano S et al, 2007) [25] 
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     From the structural view, the two models can be explained through “cause-result” 

relationship. The structural changes resulting as response to mutation, determine three 

important properties of mutant p53 protein: (i) its folding state; (ii) its affinity for a range of 

target promoters; (iii) its affinity to others proteins [29]. While the second one explains the 

alteration of target DNA selectivity, the third one sheds light on the variation in protein 

interactions. Therefore, it is apparent that while the change in p53’s affinity to DNA 

sequences can clarify the first model, the change in affinity to proteins may be responsible 

for the second.     

1.2. p53 R249S Hot-spot Mutation and Hepatocellular Carcinoma 

     Hepatocellular carcinoma (HCC) is the most common liver cancer [30], accounting for an 

estimated 600 000 deaths annually [31]. Moreover, HCC is one of the most widespread 

malignancies worldwide [32], standing among the five leading causes of cancer death in the 

world [30]. Chronic infections with hepatitis B or C virus and consumption of dietary 

aflatoxin B1 (AFB1) or alcohol are recognized as the foremost risk factors [32] [Fig. 1.7].  

 
Figure 1.7: Multistage hepatocarcinogenesis. (Hussain SP et al, 2007) [32] 

     From clinical perspective, local surgical resection or liver transplantation constitute the 

only “curative treatment” [30] [33] for HCC patients. The fact that majority of patients have 
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already widespread HCC tumors at the time of diagnosis further complicates their surgery 

[30]. Moreover, recurrence is observed in the half of patients with localized HCC tumors 

who undergo surgical treatment [30]. Such a severity of HCC, inefficiency of treatment 

methods, and the absence of effective diagnostic markers have turned this disease into one of 

the most critical and challenging areas in cancer biology [31] [33].    

     The molecular pathogenesis of HCC, which involves multiple genetic and epigenetic 

changes, still remains largely unknown [32] [31] [34]. Current understanding of 

hepatocarcinogenesis identifies it as a multistage process accompanied by accumulation of 

abundant genetic alterations, like the mutation in p53 [32] [35] [Fig. 1.7]. Aflatoxin B1 

(AFB1) plays a causative role in the process of hepatocarcinogenesis as a major chemical 

carcinogen [35] [32].   
Table 1.1: Hypothesis: dietary AFB1 exposure can cause 249ser (AGG-AGT) TP53 mutations during human 

liver carcinogenesis. (Staib et al., 2003 and Hussain SP et al., 2007) [32] 

    

     AFB1 is a very potential mutagen inducing a hot-spot p53 mutation [Fig. 1.3] in the third 

position of 249th codon [32] [35] [Table 1.1]. The resultant G→T transversion leads to the 

amino-acid substitution R249S (arginine to serine), which is extremely specific to HCC [35] 

[36]. Accordingly, this hot-spot mutation predominantly occurs in patients with 

hepatocellular tumors from the region of eastern Asia and sub-Saharan Africa, where the 

AFB1 dietary intake occurs as a common food contaminant [29] [32]. 

     Because of its remarkable specificity to HCC, R249S mutation is considered as one of the 

tumor-specific, ‘signature’ mutations of p53 [36]. This significant molecular link between the 



 10

exposure to a particular carcinogen and a specific type of cancer (as well as mutation) 

provides an elegant example of how environmental carcinogens can be implicated in the 

etiology of human cancers [32]. This remarkable correlation between AFB1 exposure and 

R249S p53 mutation can be due to at least two reasons [32]. While first explanation relies on 

the potential high mutability of the third base at 249th codon to AFB1, another one suggests 

that these R249S mutants may confer a unique growth and/or survival advantage to these 

liver cells, resulting in their selection in a tissue-specific manner [32]. 

1.3. Microarray-based Cancer Research and Bioinformatics 

     Performing global gene expression analysis became possible after development of 

expression microarrays [24]. Combined with advent of supporting bioinformatics tools, this 

innovation enabled for the first time a comprehensive analysis of cell transcriptome on 

genome wide-scale [24]. This high-throughput technology has been commonly exploited in a 

wide range of biological areas, such as study of cancer and neuroscience [37].     

     Defining molecular differences between cancerous and healthy cell is one of the major 

tasks in cancer biology [38]. Since microarray analysis enables tracking relative transcript 

levels during comparing different biological classes, it has proven to be invaluable in 

translational cancer research [39] [37]. Monitoring simultaneously the expression levels of 

numerous genes on an unbiased manner is promising to unravel the complicated gene-

expression programs governing tumorigenesis [33] [40].    

     The goal of bioinformatics is to develop and present software programs for the use of 

biologists as an applicable tool in solving complicated biological problems. Since microarray 

technology is highly dependent on bioinformatics and biostatistics, a                

comprehensive understanding of the large-scale data derived from array-based experiments 

highly demands application of the relevant computational tools [41].  

1.4. Gene Networks Analysis 

     It proved applicable to represent various biological datasets as “gene networks”, 

composed of multiple nodes (corresponding to genes or proteins) and connections (matching 

to physical interactions between these entities) [42]. In reality, these gene networks are a 

simplification of the ultimate biochemical network, which unequivocally includes all three 

interaction levels equivalent to three types of biological molecules (mRNA, proteins and 

metabolites) [43] [Fig. 1.8]. Therefore, network of interaction can be constructed on several 
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levels and can depict various interaction types [43]. But when the research is restrained to 

surveying gene expression, such as in microarray experiments, it’s appropriate to limit 

interaction network with the representative gene network to explain the data [43].  

     Regulatory system of cell is a complex mechanism, involving various cell signaling 

mechanisms and regulatory machinery [38] [44]. Many signaling molecules are implicated in 

this process as participants of complicated signal transduction processes, commonly referred 

as cell signaling pathways [38]. Since signaling pathways never occur in isolation in cell, but 

function as members of large biomolecular networks [43], it became clear that signaling 

takes place through a regulatory network of interacting signaling pathways [38]. On the other 

hand, it’s widely recognized that a coordinate response of a combination of genes is what 

responsible for most of the cellular behavior and phenotypes [43]. All these findings suggest 

that studying the complex architecture of signaling networks is thought to demonstrate how 

these complex biological traits arise and propagate [43] [38]. For the same reason, 

deciphering complicated regulatory program of cell through gene networks is a promising 

approach for combating complex diseases such as cancer [43]. 

 
Fig. 1.8: An example of a biochemical network. Molecular constituents (nodes of the network) are organized in 

three levels (spaces): mRNAs, proteins, and metabolites. Solid arrows indicate interactions, the signs of which 

(activation or repression) are not specified in this diagram. Projections of these interactions into the ‘gene 

space’, indicated by dashed lines, constitute a corresponding gene network. (Brazhnik P et al, 2002) [43]. 
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1.5. Integrated Analysis of Genomic Data 

     Microarray experiments currently stand as the major source for genomic high-throughput 

information [45]. Ultimate goal behind these experiments is to find out both differentially 

expressed genes and genes with similar expression pattern. The rationale of searching for 

similar expression patterns using clustering algorithms is that co-clustering genes are 

supposed to be functionally related to each other [43]. As a consequence, their products 

should preferentially interact with each other in order to execute common molecular 

functions [38]. From researchers’ perspective, since genes of interacting proteins are 

predisposed to share similar expression patterns, it’s reasonable to integrate both information 

sources in solving complex biological problems [45]. Indeed, linking the transcription pattern 

similarities of co-expressed genes to corresponding molecular interactions between their 

products has become one of the most appealing concepts of systems biology [45] [Fig. 1.9].  

 
Fig. 1.9: Overview of integrated analysis of genomic data. (Troyanskaya OG, 2005) [49] 
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     Applications have already demonstrated that analysis of the experimental data in the 

context of molecular interactions leads to better elucidation of interrelations among the 

discovered differentially expressed genes [46]. Progress of bioinformatics gave rise to 

numerous knowledge databases and computational tools that enable integrating massive 

high-throughput expression data with accumulating molecular interaction data into the united 

conceptual framework [47] [48] [49] [Fig. 1.9]. In conclusion, this integrative approach 

might provide valuable clues and lead to new ideas for comprehensive elucidation of 

multiple molecular mechanisms that govern cell behaviour.  
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CHAPTER 2: AIM AND APPROACH 
 

     Mutations in p53 are considered among the major cancer-causing genetic alterations in the 

process of carcinogenesis. In addition to loss of function of the p53 tumor suppressor, the 

resulting mutant p53 proteins contribute to the malignancies by enhancing tumorigenic 

properties of cells. Currently, the oncogenic properties of mutant p53 proteins still stand as 

an ill-known subject, and the mechanism responsible for this phenomenon remains to be 

uncovered. Investigating the role and the underlying mechanism of mutant p53 oncogenicity 

in the course of hepatocellular carcinoma (HCC) was the main objective of this thesis. p53 

mutation is one of the most carcinogenic steps in development of HCC, but overall impact of 

this mutation on the gene regulatory networks of liver cells is not well understood. Since we 

were interested in what effect this mutation has on development of HCC, p53 249th codon 

(AGG→AGT, arginine to serine) mutation, which is specific to HCC, was selected for our 

research. The specific aim of the present study was to find out the list of differentially 

expressed genes and the associated gene network affected by the expression of p53(R249S) 

mutant proteins.  
     Searching for genes that change expression in response to mutant p53 expression was a 

promising approach to unravel the mechanism underlying mutant p53 oncogenicity in HCC. 

Remarkably, it was the first time when genome-wide gene expression profiling was chosen 

as a means to discover a set of genes involved in this process. “Comparative genomic 

approach” using two isogenic HCC cell lines (HepG2 and its counterpart stably expressing 

p53(R249S) named HepG2-249.1) was selected as the experimental approach in our 

microarray experiment. Analysis of the raw data derived from this experiment constitutes 

first part of this study.  

     There were different approaches until now to elucidate the nature of mutant p53 

oncogenicity, most of which included gene expression analyses. However, this phenomenon 

has not been investigated yet in terms of gene networks, which confers additional originality 

to our approach. Mapping our significant differentially-expressed genes to the p53 interaction 

network and subsequent computational analysis of the resultant network represents second 

part of this study. It was strongly anticipated that interpretation of microarray data in context 

of diverse molecular interactions would lead to better elucidation of the interrelations among 
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the discovered differentially expressed genes and aid comprehensive cross-validation of our 

findings with the existing knowledge about the related molecular mechanisms.  

 
Figure 2.1: The workflow of the thesis. (Adopted from Affymetrix web site) [50] 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1. Microarray Data Analysis 

3.1.1. Microarray Experiment     

     “Comparative genomic approach” using two isogenic HCC cell lines (HepG2 and its 

counterpart stably expressing codon 249 mutant p53 named HepG2-249.1) was exploited as a 

model for the microarray experiment. In order to achieve higher fidelity of the results, 

microarray analysis was performed using quadruplets of total RNA samples extracted from 

these cell lines. Affymetrix “HGU95Av2” Gene Chip (screening with 12.625 probe sets) [50] 

was exploited as the microarray platform of this expression analysis.  

3.1.2. Normalization of Raw Data      

     In silico analysis of acquired microarray data was made using R, which is a software 

environment for statistical computing and graphics. [51]. Quantile normalization [52] method 

was applied to normalize the raw expression data. 

3.1.3. Test of Differential Expression (Significance Testing)      

     We applied SAM (“Significance Analysis of Microarrays”), which is the most popular 

statistical method used for significance analysis [53], in order to test the differential 

expression and identify significant genes. SAMR package [54] for R was utilized for this 

purpose. 

3.1.4. Data Mining Using Functional Annotation Tools 

     Multiple annotation tools were used to interpret our microarray data results. NetAffx [55], 

WebGestalt [57], Onto-express [56] and Fatigo+ [58] were our top priority since these tools 

enable simultaneous input and analysis of multiple genes. List of our significant genes was 

given as an input for annotation analyses by these databases.  

3.1.5. Hierarchical Clustering      

     Gene expression patterns observed in microarray experiments can be interpreted as 

indications of the status of cellular processes and may provide a further insight to the 

coexpressed genes of unknown function [59]. Hierarchical clustering of significant genes 

according to their gene expressions was performed using Cluster [59] and Java Treeview [60] 

software. 
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3.2. Gene Network Analysis 

3.2.1. Mapping Significant Genes to Human BIND Network 

     Cytoscape [61] is open-source software for network visualization and analysis. 

Application of Cytoscape is most powerful when applied in combination with large databases 

of biomolecular interactions [61].  

     In order to analyse our findings on systems biology level, the list of significance genes 

was mapped onto BIND human protein interaction network [62] using Cytoscape software 

[61]. (BIND network is composed of experimentally proven biomolecular interactions 

(protein-protein and protein-DNA) [62]) Since we were interested in mutant p53 GOF, we 

also added p53 gene to the input list in order to discover the relationship between the 

significant genes and this gene. Consequently, the data set used for core network construction 

consisted of our significant genes, p53 and the molecules in the neighborhood. 

3.2.2. Integrating CXX1 and HNF4A to the Network 

     The resulting network was expanded by integrating CXX1 gene to the core network. 

Interaction data regarding CXX1 was retrieved from MINT database [63]. Moreover, 

additional direct interaction between HNF4A and p53 was adopted from String database [64] 

and added to the core network. 

3.2.3. Integrating Differential Expression with the Network 

     Cytoscape allows visual integration of biomolecular interaction networks with expression 

profiles derived from high-throughput expression data. Interactions of our resulting network 

were integrated with gene expression data obtained from microarray analysis. Visual Mapper 

feature of Cytoscape was used for this purpose, 

3.2.4. GO Annotation of the Network 

     The software “Core” of Cytoscape has been extensively extended through development of 

numerous plug-ins, allowing application of additional computational analyses and features 

[65]. Using such plug-ins may facilitate linking the network to databases of functional 

annotations.  

     Interactions of our resulting network were integrated with Gene Ontology (GO) 

Biological Process data [66] using GOlorize plug-in [67]. All nodes of the network were 

clustered and colored according to their corresponding GO category.  
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3.2.5. Alternative Layouts of the Network 

     Cerebral (Cell Region-Based Rendering And Layout) plug-in [68] for Cytoscape enables 

the visual integration of the network with subcellular localization data. This plug-in was used 

to generate an alternative layout of the interaction network according to the subcellular 

localization of the participating molecules. Related subcellular localization data was retrieved 

from Entrez Gene [8], UniProt [69] and MEP2SL [70] databases [Table A.4; Appendix]. 

Apart from this, the hierarchical layout of Cytoscape interface was used to determine 

hierarchical architecture of the network. 
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CHAPTER 4: RESULTS 

  

4.1. Microarray Data Analysis 

4.1.1. Microarray Experiment 

     Microarray experiment generated raw expression data, which was the starting point for the 

subsequent in silico analyses. 

4.1.2. Normalization of Raw Data 

     Raw expression data was normalized using Quantile normalization method [Fig. 4.1]. 
                            Before normalization                                               After normalization 

 
Figure 4.1: Normalization of raw expression values. 

4.1.3. Test of Differential Expression (Significance Testing) 

     Significance analysis of microarrays was used to identify significant probesets [Fig. 4.2]. 

Calculated delta table [Table A.1; Appendix] was used to generate the list of significant 

probesets and FDR equal to 0.049 was chosen as the significance level. As result 

differentially expressed 110 probesets (FDR<0.05) were selected for further analysis [Table 

A.2-3; Appendix]. 
                                                  SAMR plot                                Delta vs. Median false positives plot 

 
Figure 4.2: Significance Analysis of Microarrays. 
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4.1.4. Data Mining Using Functional Annotation Tools 

     Functional annotation of 110 significant probesets using NetAffx, WebGestalt and 

Babelomics databases showed that they correspond to 84 known genes (63 up- and 21 

downregulated) of various functions and properties [Table 4.1 and 4.2]. 
Table 4.1: List of upregulated significant genes. 

Order Symbol Gene Name   Fold Change 

1 CXX1 CAAX box 1 23.22800715

2 CD9 CD9 molecule 10.66870392

3 TRIB2 tribbles homolog 2 (Drosophila) 10.73610878

4 SPINK1 serine peptidase inhibitor, Kazal type 1 6.836368805

5 FGL1 fibrinogen-like 1 6.910175987

6 SCGN secretagogin, EF-hand calcium binding protein 7.394791124

7 TUBB2B tubulin, beta 2B 6.631740161

8 IGFBP2 insulin-like growth factor binding protein 2, 36kDa 5.618615288

9 CDH2 cadherin 2, type 1, N-cadherin (neuronal) 5.566360188

10 TRIB2 tribbles homolog 2 (Drosophila) 8.830691762

11 GAS7 growth arrest-specific 7 7.459127617

12 GPC3 glypican 3 4.385885356

13 CRIP1 cysteine-rich protein 1 (intestinal) 5.06460286

14 TFF3 trefoil factor 3 (intestinal) 5.646708948

15 CYP7A1 cytochrome P450, family 7, subfamily A, polypeptide 1 4.75273648

16 NT5E 5'-nucleotidase, ecto (CD73) 4.821628984

17 SEPT6 septin 6 3.892380553

18 IGFBP2 insulin-like growth factor binding protein 2, 36kDa 4.975579655

19 VTN vitronectin 3.497558863

20 ATP9A ATPase, Class II, type 9A 3.657102437

21 SALL1 sal-like 1 (Drosophila) 3.509610598

22 NFE2 nuclear factor (erythroid-derived 2), 45kDa 4.418474567

23 CDH2 cadherin 2, type 1, N-cadherin (neuronal) 4.044187193

24 CDKL5 cyclin-dependent kinase-like 5 3.056986098

25 CD24 CD24 molecule 3.528537463

26 EMP2 epithelial membrane protein 2 3.292796742

27 DIP2C DIP2 disco-interacting protein 2 homolog C (Drosophila) 3.680506015

28 TIMP2 TIMP metallopeptidase inhibitor 2 3.791424047

29 IGSF4 immunoglobulin superfamily, member 4 3.126117522

30 DPH4 DPH4 homolog (JJJ3, S. cerevisiae) 3.145138992
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31 DIP2C DIP2 disco-interacting protein 2 homolog C (Drosophila) 2.814455399

32 RASSF2 Ras association (RalGDS/AF-6) domain family 2 3.483605186

33 CAMK2G calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma 3.20015185

34 MYO10 myosin X 6.26521794

35 GNMT glycine N-methyltransferase 2.833020285

36 PLA2G1B phospholipase A2, group IB (pancreas) 2.674845104

37 PDGFA platelet-derived growth factor alpha polypeptide 4.366942565

38 LY6E lymphocyte antigen 6 complex, locus E 2.812146331

39 ZNF185 zinc finger protein 185 (LIM domain) 3.302367067

40 ICAM2 intercellular adhesion molecule 2 3.290637749

41 GC group-specific component (vitamin D binding protein) 3.457322198

42 ST6GAL1 ST6 beta-galactosamide alpha-2,6-sialyltranferase 1 2.574092795

43 OPHN1 oligophrenin 1 2.67282291

44 COMP cartilage oligomeric matrix protein 3.24477113

45 AFM afamin 4.403802207

46 FUT8 fucosyltransferase 8 (alpha (1,6) fucosyltransferase) 3.699118026

47 KNG1 kininogen 1 3.280106829

48 SP110 SP110 nuclear body protein 3.236990624

49 PGC progastricsin (pepsinogen C) 2.410266847

50 ARMC8 armadillo repeat containing 8 2.645574822

51 SH3BGRL SH3 domain binding glutamic acid-rich protein like 3.178723258

52 CITED2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 2.447360881

53 LRP3 low density lipoprotein receptor-related protein 3 4.569480394

54 ALDH3A1 aldehyde dehydrogenase 3 family, memberA1 2.987214461

55 TSPAN7 tetraspanin 7 2.315269713

56 AADAC arylacetamide deacetylase (esterase) 2.531105015

57 CTSL2 cathepsin L2 3.491246648

58 PBXIP1 pre-B-cell leukemia transcription factor interacting protein 1 2.562377452

59 TNNI3 troponin I type 3 (cardiac) 3.109776838

60 FGA fibrinogen alpha chain 2.486721324

61 RBP1 retinol binding protein 1, cellular 3.438083597

62 FRK fyn-related kinase 3.62128114

63 PHYH phytanoyl-CoA 2-hydroxylase 2.503697831

64 PVRL3 poliovirus receptor-related 3 2.363370451

65 AGTR1 angiotensin II receptor, type 1 2.97706393

66 KIAA0649 KIAA0649 2.935727094

67 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 2.840251507
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Table 4.2: List of downregulated significant genes. 
Order Symbol Gene Name   Fold Change 

1 MYL9 myosin, light chain 9, regulatory 0.06911942

2 PLP2 proteolipid protein 2 (colonic epithelium-enriched) 0.12872334

3 PRAME preferentially expressed antigen in melanoma 0.15274071

4 PLA2G2A phospholipase A2, group IIA (platelets, synovial fluid) 0.16698822

5 GLT25D2 glycosyltransferase 25 domain containing 2 0.16702497

6 APOL1 apolipoprotein L, 1 0.18826925

7 PLA2G2A phospholipase A2, group IIA (platelets, synovial fluid) 0.19549314

8 MFNG manic fringe homolog (Drosophila) 0.20099952

9 DLK1 delta-like 1 homolog (Drosophila) 0.2233338

10 CYP24A1 cytochrome P450, family 24, subfamily A, polypeptide 1 0.17863134

11 CPVL carboxypeptidase, vitellogenic-like 0.2460938

12 ASNS asparagine synthetase 0.24480766

13 ECGF1 endothelial cell growth factor 1 (platelet-derived) 0.24343787

14 ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin) 0.27102712

15 ST3GAL5 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 0.24614508

16 CD22 CD22 molecule 0.27344226

17 ABLIM3 actin binding LIM protein family, member 3 0.32283383

18 EREG epiregulin 0.26010424

19 IL18 interleukin 18 (interferon-gamma-inducing factor) 0.25988872

20 BICC1 bicaudal C homolog 1 (Drosophila) 0.30711096

21 MCC mutated in colorectal cancers 0.28560867

22 MCC mutated in colorectal cancers 0.34042488

23 TNFSF4 

tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally 

activated glycoprotein 1, 34kDa) 0.29873043

 

It was remarkable that 78 out of 84 significant genes were specific to liver which could be 

due to the anticipated tissue specificity of p53 R249S mutation to HCC [Fig. 4.3].  
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Figure 4.3: Bar chart of the tissue expression pattern. Each tissue is represented by a bar in the chart. The height 

of the bar represents the number of genes that are expressed in the tissue (from WebGestalt). 

     Significant genes were equally distributed in terms of chromosomal location. 

 
Figure 4.4: Chromosome distribution chart. Each chromosome is represented by a bar in the chart. Each gene is 

represented by a red cross symbol and located on the chromosome based on its location (from WebGestalt). 

     Classification of our significant genes according to molecular function demonstrated a 

noticeable high prevalence of “binding proteins” among them [Fig. 4.5 and 4.8]. This finding 

may reflect the possible role of these proteins in a signal transduction resulting from mutant 

p53 expression.   
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Figure 4.5: GO Molecular Function distribution chart (from Fatigo +). 

 

 
Figure 4.6: GO Biological Process distribution chart (from Fatigo +). 
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Figure 4.7: GO Cellular Component distribution chart (from Fatigo +). 

 
Figure 4.8: GO Molecular Function distribution flat pie chart (from Onto-express). 

 

 
Figure 4.9: GO Biological Function distribution flat pie chart (from Onto-express). 
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Figure 4.10: GO Cellular Component distribution flat pie chart (from Onto-express). 

4.1.5. Hierarchical Clustering 

     Hierarchical clustering of significant genes according to their gene expressions was 

demonstrated using Dendogram (Tree view) image of clustering genes. This analysis 

revealed that the expression of our significant genes was significantly correlated with p53 

status [Fig. 4.11]. 
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Figure 4.11: Dendogram demonstrating hierarchical clustering of significant genes. 
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4.2. Gene Network Analysis 

4.2.1. Mapping Significant Genes to Human BIND Network 

     22 of the genes given in the input were observed to be tightly related to each other and to 

TP53 with specific DNA-DNA or DNA-protein interactions, thus forming a putative 

interaction network with TP53 at the centre. While remaining genes were discarded, the 

genes contributing to the network were selected for future analysis.  
Table 4.3: Schematic representation of gene network analysis. 

 
 

4.2.2. Integrating CXX1 and HNF4A to the Network 

     The resulting network was expanded by integrating CXX1 gene to the core network. 

Moreover, additional direct interaction between HNF4A and p53 was also included in the 

core network [Fig. 4.12]. 

4.2.3. Integrating Differential Expression with the Network 

     Our resulting network data was integrated with corresponding gene expression data. 

Significant genes were colored according to their expression changes [Fig. 4.12].  
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Figure 4.12: Putative interaction network showing relationship between p53 and our significant genes.  

Visual style (the legend) of the network graphics is as below: 
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4.2.4. GO Annotation of the Network 

     Interactions of the resulting network were integrated with GO Biological Process data 

using GOlorize plug-in. All nodes of the network were clustered and colored according to 

their corresponding GO category. GO annotation of the obtained interaction network showed 

that the network was highly enriched with genes involved in cancer-related biological 

processes such as apoptosis, cell cycle, cell communication, and regulation of angiogenesis. 

Furthermore, the network was found to be overrepresented with the genes playing role in 

development and regulation of nucleobase metabolism [Fig. 4.13]. 

 
Figure 4.13: GO annotation of the network. 
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4.2.5. Alternative Layouts of the Network 

     Cerebral plug-in for Cytoscape was used to generate a layout of the network based on the 

subcellular localization of the participating molecules. This analysis revealed the distribution 

pattern of significant genes across the network. Noticeably, most of the direct neighbors of 

p53 were localized to nucleus and/or cytoplasm. The localization and interactions of HNF 

transcription factors in nucleus were also apparent [Fig. 1.14].  

 
Figure 4.14: Subcellular localization layout of the network. 

In addition, Hierarchical layout was used to determine the hierarchy of the network. This 

alternative layout of the network clearly demonstrated the significance and centrality of both 

p53 and HNF4A in the network [Fig. 1.15]. 
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Figure 4.15: Hierarchical layout of the network. 
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CHAPTER 5: DISCUSSION 
 

5.1. Discussion of the Results from Microarray Data Analysis 

     Microarray data analysis revealed a molecular signature consisting of 84 differentially 

regulated genes that could be segregated into two clusters of transcripts induced (n=63) and 

repressed (n=21) by mutant p53 expression [Table 4.1-4.2]. 

     Since quantitative value sets gained from microarray data don’t necessarily answer the 

research question, translation of this expression data to biologically meaningful information, 

known as data mining, is achieved using functional annotation tools which enable further 

analysis of significant genes for biological significance in the light of all the existing 

knowledge. Functional annotation tools helped us to accurately interpret our microarray data 

by analyzing our microarray results in the context of other biological information.  

Annotation showed that the translated proteins of our significant genes possessed diverse 

properties and were involved in various processes [Fig. 4.3-4.10].  

     To our surprise, for the most of our significant genes, there was no solid evidence in 

literature and databases about their functional involvement in cancer. Since molecular basis 

of mutant p53(R249S) oncogenicity is a poorly-known, these genes may constitute to a novel 

mechanism responsible for this process, and thus contribute to tumorigenesis.       

     Classification of our significant genes according to molecular function demonstrated a 

noticeable high prevalence of “binding proteins” among them [Fig. 4.5 and 4.8]. This finding 

may reflect the possible role of these proteins in a signal transduction resulting from mutant 

p53 expression.   

     It was remarkable that 78 out of 84 significant genes were specific to liver which could be 

due to the anticipated tissue specificity of p53 R249S mutation to HCC [Fig. 4.3].  

     Hierarchical clustering of significant genes according to their gene expressions revealed 

that the expression of our significant genes was significantly correlated with p53 status [Fig. 

4.11].  

     Interestingly, CXX1 (CAAX box protein 1) was the most extraordinary and prominent 

differentially expressed transcript among our significant genes. Besides being the most 

overexpressed one, very little is known about its translated protein, which makes this gene 

one of our target candidate genes for further study. This putatively prenylated protein of 
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unknown function is ubiquitously expressed in tissues and localized to cell membrane in cells 

[69]. In our interaction network, CXX1 was found to be in interaction with HBP1 (HMG-box 

transcription factor 1), which is a transcription factor playing a role in the regulation of the 

cell cycle [69] [71] [Fig. 4.12].  One significant finding is that HBP1 maintains a 

proliferation barrier in differentiated liver tissue [72]. Noticeably, HBP1 is also a common 

transcriptional target of HNF4A and HNF6 transcription factors, which are highly functional 

in liver [73] [Fig. 4.12]. Taken together, this intriguing background makes CXX1, together 

with HBP1, worth further investigation for elucidation of their potential role in HCC.    

     Among our significant genes, Insulin-like growth factor-binding protein-2 (IGFBP2) and 

glypican-3 (GPC3) were proposed by earlier studies to be valuable as potential diagnostic 

biomarkers of HCC [74] [75]. Consistent with that, both of these genes were found to be 

significantly overexpressed in our microarray experiment.   

     Finally, it was remarkable that two components of fibrinogen complex (FGL1 and FGA) 

mapped p53 network as the significantly overexpressed genes. Interestingly, they were both 

possessing molecular function annotated as “cell communication”. This could be 

representing a novel type of signalling mediated by fibrinogen components and contributing 

to mutant p53(R249S) oncogenicity in HCC. 

     Validation of significant genes by both semi-quantitative and real-time RT-PCR is among 

our future goals. Furthermore, we aim to use a list of different cell lines in order to 

demonstrate that differential expression of our significant genes is not cell line specific but 

rather a common feature. 

5.2. Discussion of the Results from Gene Network Analysis 

     Comprehensive network analysis of significant genes using Cytoscape and additional 

plug-ins provided a further insight into the investigated molecular mechanism. To our 

surprise, significant genes had no interaction between them, but were in close relation with 

direct neighbours of p53. This resulted in accumulation of significant genes around p53 

molecule in our network, clearly demonstrating their relationship to p53 [Fig. 4.12]. This was 

highly in concordance with our expectations since we were anticipating this relationship 

between our significant genes and p53. GO annotation of the obtained interaction network 

showed that the network was highly enriched with genes involved in cancer-related 

biological processes such as apoptosis, cell cycle, cell communication and angiogenesis [Fig. 
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4.13]. Noticeably, interacting genes were usually sharing the same GO category, which 

clearly demonstrates the significance of interactions in understanding gene function [Fig. 

4.13]. On the other hand, an alternative layout generated by Cerebral plug-in demonstrated 

the distribution of molecules involved in the network according to their subcellular 

localization. Our significant genes, together with neighbor molecules, were found to be 

equally distributed throughout the cell [Fig. 4.14]. 

     Taking in account that most of our significant genes in the network were the direct 

transcriptional downstream targets of HNF transcription factors, the functional relationship 

between HNF factors and mutant p53 oncogenicity in HCC becomes apparent [Fig. 4.12]. 

Hierarchical layout of Cytoscape interface, used to obtain an alternative image of the 

network, clearly demonstrated the significance and centrality of both p53 and HNF4A in the 

network [Fig. 4.15].   

     It’s widely recognized by the scientific community that the transcription factors HNF1A, 

HNF4A and HNF6, which function coordinately in a connected network in hepatocytes, 

regulate the development and function of liver, [73] [76] [Fig. 5.1].  

 
Figure 5.1: Control of liver gene expression by HNF transcription factors. A. Interactions among HNFs in a 

hepatocyte. B. HNF1A, HNF6, and HNF4A are at the center of tissue-specific transcriptional regulatory 

networks. In these examples selected for illustration, regulatory proteins and their gene targets are represented 

as blue circles and red boxes, respectively. Solid arrows indicate protein-DNA interactions, and genes encoding 

regulators are linked to their protein products by dashed lines. (Kulkarni RN and Kahn CR, 2004; Odom DT et 

al., 2004) [73] [76].                                                                         

     Interestingly, genome-scale chromatin immunoprecipitation (ChIP) assays performed by 

Odom DT and his colleagues revealed that the number of genes transcriptionally regulated by 

HNF4A in hepatocytes was much larger than observed with other transcription factors [73]. 
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The observation that HNF4A is binding to an unusual large number (almost half) of active 

promoters suggests that HNF4A has a broad activity in liver and explains why HNF4A is so 

crucial in development and activity of this organ [73] [76]. This observation is also in 

consistence with our results obtained from network analysis, since most of our differentially 

regulated significant genes were found to be interacting partners and transcriptional targets of 

HNF4A [Fig. 4.12 and 4.15]. 

     Evidence from the literature that wild-type p53 can bind to HNF4A protein and inhibit its 

transcriptional function is shedding some light on our findings [77] [Fig 4.12]. Since this 

repression of HNF4A has been shown with wild-type form of p53, it is difficult to speculate 

about the relation of this repression with mutant forms. But when this observation is 

interpreted in the light of our findings, especially those coming from the network analysis, it 

is possible to drive an appropriate conclusion about the role of HNF4A in mutant p53 

oncogenicity in HCC. According to one of the models describing mutant p53 transcriptional 

activity, mutant p53 interacts with a specific transcription factor that drives its gene target 

specificity by recruiting it to target genes’ promoters [Fig. 1.5]. Consistent with this, our 

findings strongly suggests that mutant p53 interacts with HNF4A in order to achieve 

transcriptional regulation of its target genes (which correspond to our significant genes) and 

promote its oncogenic effect in HCC. Specificity of both HNF4A transcription factors and 

p53 R249S mutant proteins to HCC, further increases significance of this hypothesis and 

emphasizes the tissue specificity of these molecular mechanisms to HCC. We aim to perform 

a series of biochemical analysis to test the proposed functional relationship between HNFA 

and p53 R249S mutant proteins.  

5.3. Conclusion and Future Perspectives 

     The aim of the present study was to find out the list of differentially expressed genes and 

the associated gene network affected by the expression of p53(R249S) mutant proteins. 

Searching for genes that change expression in response to p53 mutation may provide a clue 

to the mechanism underlying mutant p53 oncogenicity in HCC. Thus, genome-wide gene 

expression profiling was used to discover a set of genes involved in this process. 

“Comparative genomic approach” using two isogenic HCC cell lines was exploited as a 

model for our microarray experiment.  
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     Microarray data analysis revealed a molecular signature consisting of 84 differentially 

regulated genes (FDR<0.05) that could be segregated into two clusters of transcripts induced 

(n=63) and repressed (n=21) by mutant p53 expression, showing that the expression of 

mutant p53 proteins resulted in overall distinct expression profile.  

     Analyzing our microarray data in the light of the relevant biological data obtained from 

the curated databases (such as annotation and interaction data) provided a more reliable 

interpretation of our experimental findings, which led to more comprehensive understanding 

of the investigated molecular mechanisms. Functional annotation and network analysis 

resulted in a better elucidation of the interrelations among the discovered differentially 

expressed genes and aided comprehensive cross-validation of our findings with the existing 

knowledge about the related molecular mechanisms. We demonstrated that several 

Hepatocyte Nuclear Factors (HNF1A, HNF4A and HF6) could play an essential role in 

mediating mutant p53 oncogenic activity, as the key molecules of the gene network. 

Deregulation of the transcriptional control mediated by these transcription factors appears to 

be the major mechanism underlying mutant p53 oncogenicity in HCC. Remarkably, CXX1, 

which is a gene of unknown function, was prominent as the most upregulated transcript 

among our differentially expressed genes. Further functional analysis of these and other 

candidate genes of the gene network shall clarify their potential relation to mutant p53 and 

elucidate their presumptive contribution to the development of HCC.   
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APPENDIX 

 
Table A.1: Delta table. 
         delta     # med false pos      90th perc false pos  # called   median FDR   90th perc FDR 

0 8911.524277 9046.506931 11957 0.74529767 0.75658668 

0.000470238 8882.163644 9025.153743 11926 0.74477307 0.756762849 

0.001880953 8815.053624 8962.619406 11864 0.74300857 0.75544668 

0.004232143 8688.078416 8853.565624 11755 0.73909642 0.753174447 

0.007523811 8518.778139 8714.388594 11603 0.73418755 0.75104616 

0.011755954 8317.066772 8543.563089 11431 0.72758873 0.747402947 

0.016928574 7703.162614 8065.404198 10853 0.70977265 0.743149746 

0.02304167 6991.262574 7488.105505 10170 0.68743978 0.73629356 

0.030095242 6132.559366 6790.695129 9305 0.65906065 0.729789912 

0.038089291 5220.854495 6034.563485 8349 0.62532692 0.722788775 

0.047023816 4419.347327 5333.34004 7508 0.58861845 0.710354294 

0.056898817 3601.44396 4599.324198 6626 0.54353214 0.69413284 

0.067714295 2719.862337 3738.333149 5519 0.49281796 0.677356976 

0.079470249 1875.648792 2848.362772 4339 0.43227674 0.656456043 

0.092166679 1348.301307 2236.746455 3503 0.38489903 0.63852311 

0.105803585 920.4749307 1675.84396 2704 0.34041233 0.619764778 

0.120380968 640.2143366 1257.550257 2117 0.30241584 0.594024685 

0.135898827 415.2432475 885.3946931 1543 0.26911422 0.5738138 

0.152357163 271.8718416 626.1059802 1141 0.23827506 0.548734426 

0.169755975 162.4367525 416.0058614 775 0.20959581 0.536781757 

0.188095263 113.2481584 301.9950891 601 0.18843288 0.502487669 

0.207375027 64.44087129 196.7543762 414 0.15565428 0.475252117 

0.227595268 38.512 142.990099 317 0.12148896 0.451072868 

0.248755985 25.92887129 109.0537822 249 0.10413201 0.437966997 

0.270857178 13.7270495 72.82962376 167 0.0821979 0.436105532 

0.293898848 7.626138614 55.67081188 138 0.05526187 0.40341168 

0.317880994 5.33829703 41.18114851 110 0.04852997 0.374374077 

0.342803616 2.287841584 29.74194059 86 0.02660281 0.345836519 

0.368666715 1.906534653 24.7849505 79 0.02413335 0.313733551 

0.39547029 1.143920792 20.20926733 69 0.01657856 0.292887932 

0.423214341 0.762613861 15.63358416 42 0.01815747 0.372228194 

0.451898869 0 13.34574257 36 0 0.370715072 

0.481523873 0 12.58312871 34 0 0.370092021 

0.512089353 0 10.67659406 30 0 0.355886469 

0.543595309 0 10.29528713 29 0 0.355009901 

0.576041742 0 9.913980198 28 0 0.354070721 

0.609428651 0 8.388752475 27 0 0.310694536 

0.643756037 0 7.626138614 24 0 0.317755776 

0.679023899 0 6.100910891 18 0 0.338939494 

0.715232237 0 3.050455446 10 0 0.305045545 

0.752381051 0 2.287841584 9 0 0.25420462 
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0.790470342 0 2.287841584 8 0 0.285980198 

0.829500109 0 0.381306931 4 0 0.095326733 

0.869470352 0 0.381306931 3 0 0.12710231 

0.910381072 0 0 2 0 0 

0.952232268 0 0 2 0 0 

 
Table A.2: Upregulated significant probesets. 
  Order Affy ID              Fold Change       Order Affy ID          Fold Change 

1 33856_at 23.22800715 44 35540_at 3.6593011 

2 39389_at 10.66870392 45 35599_at 2.8330203 

3 717_at 10.73610878 46 912_s_at 2.6748451 

4 38582_at 6.836368805 47 35703_at 4.3669426 

5 40567_at 10.78087903 48 37360_at 2.8121463 

6 41416_at 6.910175987 49 37538_at 3.8505759 

7 37478_at 7.394791124 50 32139_at 3.3023671 

8 39332_at 6.631740161 51 38454_g_at 3.2906377 

9 1741_s_at 5.618615288 52 32771_at 3.4573222 

10 38396_at 5.099639465 53 41352_at 2.5740928 

11 2053_at 5.566360188 54 1089_i_at 11.995563 

12 40113_at 8.830691762 55 39413_at 2.6728229 

13 33387_at 7.459127617 56 39959_at 3.1956445 

14 39350_at 4.385885356 57 40162_s_at 3.2447711 

15 33232_at 5.06460286 58 33564_at 4.4038022 

16 31477_at 5.646708948 59 444_g_at 2.4560301 

17 31926_at 4.75273648 60 41628_at 3.699118 

18 31886_at 4.821628984 61 37235_g_at 3.2801068 

19 38826_at 3.892380553 62 35718_at 3.2369906 

20 40422_at 4.975579655 63 33699_at 2.4102668 

21 33377_at 3.497558863 64 443_at 2.9843342 

22 35831_at 3.657102437 65 38645_at 2.6455748 

23 32985_at 3.509610598 66 39714_at 3.1787233 

24 37179_at 4.418474567 67 33113_at 2.4473609 

25 36757_at 4.224963097 68 31814_i_at 4.5694804 

26 35127_at 4.062052119 69 40031_at 2.9872145 

27 2054_g_at 4.044187193 70 38408_at 2.3152697 

28 36707_s_at 3.056986098 71 36512_at 2.531105 

29 266_s_at 3.528537463 72 37203_at 2.7636325 

30 39631_at 3.292796742 73 38576_at 3.2969438 

31 33408_at 3.680506015 74 40717_at 3.4912466 

32 1375_s_at 3.791424047 75 38063_at 2.5623775 

33 37929_at 3.126117522 76 36477_at 3.1097768 

34 38294_at 3.09622336 77 35829_at 2.3612818 

35 39282_at 3.145138992 78 38825_at 2.4867213 
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36 1090_f_at 4.446741526 79 38634_at 3.4380836 

37 32609_at 3.880073136 80 35023_at 3.6212811 

38 33407_at 2.814455399 81 32724_at 2.5036978 

39 36727_at 4.36872055 82 34202_at 2.3633705 

40 37598_at 3.483605186 83 37983_at 2.9770639 

41 36983_f_at 3.15185107 84 39580_at 2.9357271 

42 32105_f_at 3.20015185 85 1715_at 2.8402515 

43 35362_at 6.26521794    

 
Table A.3: Downregulated significant probesets. 
Order Affy ID       Fold Change 

1 39145_at 0.069119421 

2 37326_at 0.128723343 

3 33541_s_at 0.136525709 

4 157_at 0.15274071 

5 37017_at 0.166988218 

6 39550_at 0.167024973 

7 35099_at 0.188269253 

8 614_at 0.195493145 

9 41522_at 0.200999525 

10 32648_at 0.223333805 

11 660_at 0.17863134 

12 38323_at 0.246093797 

13 39470_at 0.254135678 

14 36671_at 0.244807658 

15 1665_s_at 0.243437875 

16 41123_s_at 0.271027122 

17 34256_at 0.246145082 

18 38522_s_at 0.273442262 

19 39597_at 0.322833829 

20 34476_r_at 0.260104239 

21 1165_at 0.25988872 

22 39506_at 0.307110964 

23 35561_at 0.285608674 

24 1832_at 0.340424877 

25 32319_at 0.298730427 
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Table A.4: Input data of subcellular localization labels for Cerebral plug-in. 
Localization 

Fibrinogen_Beta_Chain = Secreted protein 

Ca2+ = Secreted protein 

OAP = Unknown 

NFKBIB = Secreted protein 

Fibrin_Gamma_Chain = Secreted protein  

PRAME = Cytoplasm/Nucleus 

HNF6 = Nucleus 

BHP = Unknown 

ITGA3 = Cell membrane 

BARD1 = Cytoplasm/Nucleus 

HNF4-alpha =Nucleus 

PPP1CA = Cytoplasm 

EP300 = Nucleus 

SPINK1 = Secreted protein 

Fibrin = Secreted protein 

XRCC6 = Nucleus 

ITGB1 = Cell membrane 

PLA2G2A = Cell membrane 

STK19 = Nucleus 

SUMO-1 = Cytoplasm/Nucleus 

TNNC1 = Cytoplasm 

EPB41L3 = Cell membrane 

CD9 = Cell membrane 

Htt = Cell membrane 

GEL = Cytoplasm/Nucleus 

AGTR1 = Cell membrane 

FRK = Cytoplasm 

ITGA5 = Cell membrane 

SALL1 = Nucleus 

TNNT2 = Cytoplasm 

AADAC = Cytoplasm 

Fibrin_Beta_Chain = Secreted protein 

CD_155 = Cell membrane 

SH3BGRL = Cytoplasm/Nucleus 

TIMP2 = Secreted protein 

INB = Unknown 

FGA = Secreted protein 

CXX1 = Cell membrane 

NAG-(4-1)NAG = Unknown 

Fibrinogen = Secreted protein 

MMP14 = Cell membrane 

CITED2 = Nucleus 

TNFRSF10B = Cell membrane 

Fibrinogen_Gamma_Chain = Secreted protein 
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IEX-1 = Cell membrane 

Zn2+ = Cytoplasm/Nucleus 

HNF1-alpha = Nucleus 

ITGA2 = Cell membrane 

KIAA0649 = Cytoplasm/Nucleus 

UBE2I = Nucleus 

ALDH3A1 = Cytoplasm 

TNFSF10 = Cell membrane 

FGL1 = Secreted protein 

BAT2 = Cytoplasm/Nucleus 

MMP2 = Secreted protein 

GNMT = Cytoplasm 

NAG = Cytoplasm/Nucleus 

LY6E = Cell membrane 

HBP1 = Nucleus 

MCC = Cytoplasm/Nucleus 

VTN = Secreted protein 

TP53 = Cytoplasm/Nucleus 

TNNI3 = Cytoplasm 
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