

MODEL-DRIVEN ARCHITECTURE BASED

TESTING USING SOFTWARE ARCHITECTURE

VIEWPOINTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

By

Burak Uzun

June, 2015

ii

MODEL-DRIVEN ARCHITECTURE BASED TESTING USING SOFTWARE

ARCHITECTURE VIEWPOINTS

By Burak Uzun

June, 2015

We certify that we have read this thesis and that in our opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Bedir Tekinerdoğan (Advisor)

Prof. Dr. Ali Hikmet Doğru

Assoc. Prof. Dr. Buğra Gedik

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural

Director of the Graduate School

iii

ABSTRACT

MODEL-DRIVEN ARCHITECTURE BASED TESTING

USING SOFTWARE ARCHITECTURE VIEWPOINTS

Burak Uzun

M.S. in Computer Engineering

Advisor: Assist. Prof. Dr. Bedir Tekinerdoğan

June, 2015

Software testing is the process of checking whether a system meets the specifications

and fulfills its intended purpose. Testing a system requires executing the test cases that

can detect the potential defects in the program. In general, exhaustive testing is not

possible or practical for most real programs due to the large number of possible inputs

and sequences of operations. Because of the large set of possible tests only a selected set

of tests can be executed within feasible time limits. As such, the key challenge of testing

is how to select the tests that are most likely to expose failures in the system. Model-

based testing (MBT) relies on models of system requirements and behavior to automate

the generation of the test cases and their execution. Model based testing can use

different representations of the system to generate testing procedures for different

aspects of the software systems. Example models include finite state machines (FSMs),

Petri Nets, I/O automata, and Markov Chains.

A recent particular trend in MBT is to adopt architecture models to identify the defects

related to systemic properties. These systemic properties are typically defined in

architecture views which represent the gross level structure of the system from particular

concern perspective. Assessing software system correctness with respect to architectural

specifications is called architecture based testing (ABT). Many studies have focused on

architecture based testing in which different models have been applied. However none

of these have so far explicitly focused on adopting architecture views for deriving the

test cases.

In this thesis, we first provide a systematic review on existing model-driven architecture

based testing. We define all the existing processes in the literature and discuss the

current limitations. Based on the result of the systematic review and our own analysis

we provide a novel model-driven architecture based testing approach using architecture

views. With the approach we focus on detecting the deviations in the code from the

architectural views. For this we use models of architecture views together with

executable transformation model to generate the test cases which are then executed on

the real code. Our approach has been evaluated within a real industrial context of The

Scientific and Technological Research Council of Turkey Software Technologies

iv

Institute (STRCT-STI). The results of the industrial case study showed that model-

driven architecture based testing can be effective for reducing the time to generate and

execute the test cases, and enhancing the reliability of the system.

Keywords: Systematic Literature Review, Software Architecture Viewpoints,

Architecture Based Testing, Model Based Testing.

v

ÖZET

YAZILIM MİMARİSİ BAKIŞ AÇILARI KULLANILARAK

MODEL GÜDÜMLÜ MİMARİ TABANLI TEST ETME

Burak Uzun

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Yrd. Doç. Dr. Bedir Tekinerdoğan

Haziran, 2015

Yazılım test etme bir sistemin amacını yerine getirip getirmediğini ve istenilen

özellikleri karşılayıp karşılamadığını denetleme sürecidir. Bir sistemi test etmek için

olası program hatalarını keşfedebilen test durumlarını çalıştırmak gerekir. Genelde

birçok gerçek program için olası girdi ve operasyon dizilerinin çok sayıda olması

sebebiyle ayrıntılı test etmek mümkün ve pratik değildir. Büyük test setlerinden sadece

seçilen olası test durumları kısıtlı bir zamanda koşturulabilir. Görüldüğü gibi, yazılım

test etmede ki esas sorun sistemdeki hataları ortaya çıkarabilen test durumlarını

seçebilmektir. Modele dayalı test etme (MDT) sistemin gereksinimlerinin ve

davranımlarının modellerine dayanarak test durumlarının oluşturulmasını ve

koşturulmasını otomatikleştirir. Modele dayalı test etme sistemin farklı temsillerini

kullanarak yazılım sistemin farklı yönleri için test prosedürleri oluşturur. Örnek

modeller içerisinde sonlu makineler, Petri Netler, otomatalar ve Markov zincirleri

bulunur.

Modele dayalı test etmede yazılım mimarisi kullanılarak sistemik özelliklerde bulunan

hataları ortaya çıkarmak yeni bir eğilim olarak görülmektedir. Bu sistemik özellikler

tipik olarak mimari bakışlarında tanımlanmıştır. Bir yazılım sisteminin belirtilen mimari

özelliklere göre doğruluğunu ölçmek mimari tabanlı yazılım testi (MBYT) olarak

adlandırılır. Birçok çalışma farklı modeller kullanarak mimari tabanlı test yöntemleri

üzerinde yoğunlaştı. Ancak bu çalışmaların hiç birisinde yazılım mimarisi bakış açıları

test durumlarını üretirken kullanılması benimsenmedi.

Bu tezde biz, öncellikle var olan model güdümlü mimari tabanlı test etme yöntemlerinin

sistematik incelemesini sunuyoruz. Literatürde var olan yöntemleri tanımlıyor ve

yöntemlerin sınırlarını tartışıyoruz. Sistematik incelememiz ve analizlerimiz sonucunda

yeni bir mimari bakış açılarını kullanan model güdümlü mimari tabanlı test yöntemi

geliştiriyoruz. Yöntemimizde mimari bakış açılarında belirtilen tanımlardan sapan

kodlar üzerinde yoğunlaşıyoruz. Bunun için mimari bakış açısı modellerini kullanan

dönüşüm modellerini koşturarak sistem üzerinde koşturulacak test durumlarını

üretiyoruz. Yöntemimiz Türkiye Bilimsel ve Teknolojik Araştırma Kurumu - Yazılım

vi

Teknolojileri Enstitüsü’ndeki (TÜBİTAK-YTE) bir proje üzerinde değerlendirildi. Bu

değerlendirmenin sonucu olarak model güdümlü mimari tabanlı test yöntemimiz test

durumları oluşturmak ve koşturmak ve sistemin güvenilirliğini arttırmak için etkili bir

yöntem olduğunu gördük.

Anahtar Kelimeler: Sistematik Literatür İnceleme, Yazılım Mimari Bakış Açıları,

Mimari Tabanlı Test, Model Tabanlı Test

vii

Acknowledgements

I would like to express my sincerest gratitude to my advisor Dr. Bedir Tekinerdoğan for

giving me the chance to research on my topic. He drove me forward with his

supervision, support, time and advises throughout my research.

I am thankful to Prof. Dr. Ali Hikmet Doğru and Assoc. Prof. Dr. Buğra Gedik for

kindly accepting to be in the committee and also for giving their precious time to review

and read this thesis.

I am grateful to The Scientific and Technological Research Council of Turkey Software

Technologies Institute (STRCT-STI) for the support and permission of evaluating my

approach on institute’s project. I would also like to thank my colleagues for their

support especially Mehmet, Ahmet and Ali.

I would like to thank to my soon to be wife Başak for her invaluable support and the joy

she brings in my life with her endless love.

Last but not least, I would like to thank my mother Fatma, my father Müjdat and my

brother Tekin Alp for being there for me when I need help and support me in every step

of my life with their love.

viii

Contents

Introduction ... 1

1.1. Background .. 1

1.2. Problem Statement ... 2

1.3. Contribution ... 3

1.4. Outline of the Thesis .. 4

Preliminaries ... 5

2.1. Software Architecture Modeling .. 5

2.2. Software Testing .. 8

2.2.1. Model Based Testing .. 9

2.2.2. Architecture Based Testing .. 10

Model-Driven Architecture Based Testing: A Systematic Literature Review 11

3.1. Background .. 12

3.1.1. Architecture Based Testing .. 12

3.1.2. Systematic Literature Review .. 14

3.2. Research Method .. 15

3.2.1. Review Protocol ... 15

3.2.2. Research Questions .. 16

3.2.3. Search Strategy ... 17

3.2.4. Study Selection Criteria ... 18

3.2.5. Study Quality Assessment .. 19

3.2.6. Data Extraction ... 19

3.2.7. Data Synthesis .. 20

3.3. Results .. 20

3.3.1. Overview of Reviewed Studies .. 20

3.3.2. Research Methods .. 21

3.3.3. Methodological Quality .. 22

3.3.4. Systems Investigated .. 24

3.4. Discussions ... 42

3.5. Conclusion .. 43

Model Driven Architecture Based Testing Using Architecture Viewpoints 44

4.1. Process .. 44

4.2. Implementation ... 46

ix

4.3. Architecture Viewpoints & Architecture View Criteria .. 48

4.3.1. Decomposition Viewpoint .. 49

4.3.2. Uses Viewpoint .. 49

4.3.3. Generalization Viewpoint .. 50

4.3.4. Layered Viewpoint ... 51

4.3.5. Shared Data Viewpoint .. 52

4.4. Transformation Model Construction and Concrete Test Case Generator 53

4.4.1. Decomposition Viewpoint .. 54

4.4.2. Uses Viewpoint .. 55

4.4.3. Generalization Viewpoint .. 58

4.4.4. Layered Viewpoint ... 60

4.4.5. Shared Data Viewpoint .. 61

4.5. Execution & Report .. 62

Case Study ... 64

5.1. Architecture Design of Case Study .. 65

5.1.1. Shared Data Viewpoint .. 65

5.1.2. Decomposition Viewpoint .. 65

5.1.3. Uses Viewpoint .. 66

5.1.4. Layered Viewpoint ... 67

5.1.5. Generalization Viewpoint .. 67

5.2. Validating the Test Execution Environment .. 69

5.2.1. Shared Data Viewpoint .. 70

5.2.2. Decomposition Viewpoint .. 71

5.2.3. Uses Viewpoint .. 72

5.2.4. Layered Viewpoint ... 73

5.2.5. Generalization Viewpoint .. 73

5.2.6. Summary .. 74

5.3. Test Execution Results ... 75

5.3.1. Shared Data Viewpoint .. 75

5.3.2. Decomposition Viewpoint .. 76

5.3.3. Uses Viewpoint .. 76

5.3.4. Layered Viewpoint ... 76

5.3.5. Generalization Viewpoint .. 76

5.4. Discussion .. 76

Related Work .. 78

Conclusion ... 80

Bibliography .. 82

x

Appendix A - Search Strings.. 85

Appendix B – List of Primary Studies .. 89

Appendix C - Study Quality Assessment .. 90

Appendix D - Data Extraction Form ... 91

Appendix E - Implementation Detail .. 92

xi

List of Figures

Figure 2.1. Context of software architecture .. 6

Figure 2.2. Core of software architecture description .. 7

Figure 2.3. Architecture framework ... 8

Figure 2.4. Process of model based testing ... 10

Figure 3.1. Process model of MDABT ... 13

Figure 3.2. Review protocol ... 16

Figure 3.3. Year wise distribution of the primary studies .. 20

Figure 3.4. Reporting quality distribution of the primary studies .. 22

Figure 3.5. Rigor quality distribution of the primary studies ... 23

Figure 3.6. Relevance quality distribution of the primary studies .. 23

Figure 3.7. Credibility quality distribution of the primary studies ... 24

Figure 3.8. Total quality distribution of the primary studies .. 24

Figure 3.9. Addressed concern distribution of the primary studies .. 25

Figure 3.10. Process model applied in study A .. 27

Figure 3.11. Process model applied in study B ... 28

Figure 3.12. Process model applied in study C ... 29

Figure 3.13. Process model applied in study D .. 30

Figure 3.14. Process model applied in study E ... 31

Figure 3.15. Process model applied in study F ... 32

Figure 3.16. Process model applied in study G .. 33

Figure 3.17. Process model applied in study I .. 34

Figure 3.18. Process model applied in study J .. 35

Figure 3.19. Process model applied in study K .. 36

Figure 3.20. Process model applied in study L ... 37

Figure 3.21. SA model type distribution over primary studies ... 38

Figure 3.22. Test model distribution over primary studies ... 38

Figure 3.23. Test criteria distribution over primary studies ... 39

Figure 3.24. Test case generation type distribution over primary studies 39

Figure 3.25. Test analysis type distribution over primary studies .. 40

Figure 4.1. Process model of MDABT using architecture viewpoint 45

Figure 4.2. Process model of our approach .. 47

Figure 4.3. Decomposition viewpoint metamodel .. 49

Figure 4.4. Uses viewpoint metamodel .. 50

Figure 4.5. Generalization viewpoint metamodel ... 51

Figure 4.6. Layered viewpoint metamodel ... 52

Figure 4.7. Shared data viewpoint metamodel ... 53

Figure 4.8. Decomposition viewpoint transformation model ... 54

Figure 4.9. Method for retrieving packages under given package name 54

Figure 4.10. Method for searching given package name in package list 55

Figure 4.11. Template test case method for decomposition viewpoint 55

xii

Figure 4.12. Uses viewpoint transformation model .. 56

Figure 4.13. Helper method for retrieving direct classes under given package 56

Figure 4.14. Helper method for retrieving direct classes under given package 56

Figure 4.15. Helper method for deciding uses relation ... 57

Figure 4.16. Template test case method for uses viewpoint ... 58

Figure 4.17. Generalization viewpoint transformation model .. 58

Figure 4.18. Helper method for retrieving every parent of given class 59

Figure 4.19. Template test method for generalization viewpoint ... 59

Figure 4.20. Layered viewpoint transformation model .. 60

Figure 4.21. Template test method for layered viewpoint .. 60

Figure 4.22. Shared data viewpoint transformation model ... 61

Figure 4.23. Helper method for method existence checking .. 61

Figure 4.24. Template test method for shared data viewpoint .. 62

Figure 4.25. Core classes of xUnit test framework architecture ... 62

Figure 5.1. Shared data view of Project X infrastructure ... 65

Figure 5.2. Decomposition view of Project X infrastructure .. 66

Figure 5.3. Uses view of Project X infrastructure .. 66

Figure 5.4. Layered view of Project X infrastructure ... 67

Figure 5.5. Generalization view of Project X infrastructure within package B 68

Figure 5.6. Generalization view of Project X infrastructure within package C 68

Figure 5.7. Generalization view of Project X infrastructure within package D 69

Figure 5.8. Generalization view of Project X infrastructure between package D and F 69

Figure 5.9. Generalization view of Project X infrastructure within package F 69

Figure 5.10. Shared data view representation of mutant implementation 71

Figure 5.11. Decomposition view representation of mutant implementation 71

Figure 5.12. Uses view representation of mutant implementation ... 72

Figure 5.13. Layered view representation of mutant implementation 73

Figure 5.14. Generalization view representation of mutant implementation 74

xiii

List of Tables

Table 1. Overview of search results and study selection .. 18

Table 2. Quality checklist ... 19

Table 3. Distribution of studies over publication source .. 21

Table 4. Distribution of studies over research methods .. 22

Table 5. Addressed concern and study map ... 25

Table 6. Fault-based testing results for each viewpoint .. 75

Table 7. Testing results for each viewpoint .. 75

1

Chapter 1

Introduction

1.1. Background

Software testing is a process of investigating a software product to identify

possible mismatches between expected and present requirements of the system

[24]. Identified mismatches are categorized as bugs, errors and defects. Software

bug is a static fault in the software system and activates a software error.

Software error is a faulty state of the software system which is activated by the

execution of software bug. Furthermore, software defect is a propagation of a

software error which causes external, observable and incorrect behavior of the

system. One of the main motivations of software testing is to ensure the

correctness of a software system. Software is correct if and only if each valid

input to the system produces an output according to system specifications.

Therefore, software must be verified and validated according to specifications

provided. Moreover, software testing requires executions of test cases which can

detect possible bugs, errors and defects. In most cases, exhaustive testing is not

possible due large number of possible operation sequences and inputs. As a

result, selecting set of test cases which can detect possible flaws of the system is

the key challenge in software testing. Model based testing addresses this

challenge by automating the generation and execution of test cases using models

based on system requirements and behavior. Recently, studies in model based

testing adopt software architecture models to identify the defects related to

systemic properties. Software architecture is a blueprint of the system which

enables communication between stakeholders of the system and clear

representation of abstract system model. Software representation of complex and

large domains grounds software architecture modeling and proper

documentation of software architecture to gain more importance [1].

2

International standards for software architecture are defined and adapted as the

software architecture concept attracts more attention ([2], [23]). In a software

system, software architecture provides high level specifications of the low level

implementations in which the mapping between levels can be performed.

Accordingly, one can use architecture specifications for verifying and validating

a software system to ensure correctness of the system. This idea emerged

architecture based testing concept for testing the architecture specifications in a

software system. In this thesis we will present current techniques adopted in

architecture based testing using systematic literature review protocol and novel

approach evaluated on real industrial case study.

1.2. Problem Statement

Architecture based testing is a developing and promising research area in

software testing. In architecture based testing software correctness is assessed

with respect to given architectural specifications which are actually models

representing software architecture of the system. Therefore, architecture based

testing is inherently model driven approach. Accordingly, we will infer

architecture based testing as model driven architecture based testing (MDABT)

in this thesis. Furthermore, systematic literature review we applied on this

domain enabled us to identify issues in current studies for MDABT. None of the

studies we examined explicitly used architecture viewpoints in the definition

software architecture models. Moreover, none of the studies presented in

architecture based testing presents a systematic literature review for MDABT

domain. At last, almost all studies evaluated suggested approaches on small

scale examples such as client server applications.

Architecture viewpoint notion takes an important part in software architecture

modeling. Software architecture defined by combination of different architecture

views governed by viewpoints each mapping to different stakeholder concern.

Therefore, in architecture based testing architecture view must be taken into

account when the test cases are generated. This way each separate concern of the

stakeholders can be tested as a specific architecture view.

As far as we know there is no study in which systematic literature review of the

domain is performed. It is important to have a study to analyze and identify the

studies in this domain so that new researchers can identify challenges and

suggest new research areas.

3

Current literature in architecture based testing present approaches for the

research area. In most of the studies the approach is evaluated on small scale

examples. Moreover, most of the examples are created along with the approach

to be performed on which implies to biased examples. It is critical to use

unbiased case study to evaluate newly presented technique.

1.3. Contribution

The contribution of this thesis can be listed as follows:

 A systematic review on current state of the art in model driven

architecture based testing approaches

We have carried out a systematic review on existing approaches for model

driven architecture based testing. We have found 158 studies and selected 12 of

these as primary studies which we analyzed in detail. The systematic review is

novel and has not been defined before. The systematic review provides

systematic overview of current state of the art and has resulted in important

lessons learned about MDABT. This can be used both by researchers to identify

the important challenges in MDABT and practitioners who can use the

guidelines of the identified approaches in setting up an MDABT approach.

 A novel systematic approach for MDABT

After performing systematic literature review on architecture based testing

domain, we have seen that although the definition of the architecture evolved

none of the studies concentrated on architecture view. Software architecture is

not single perspective entity rather a set of perspectives mapping to different

stakeholder concerns. Each concern must be handled individually in testing so

that complete testing on system using architecture can be achieved.

 Tool support for MDABT

Eclipse Epsilon IDE and its integrated tools have been used in the development

of our approach implementation. Eclipse Epsilon offers a wide variety of tools,

languages and support of all model driven development issues and centralizes

these technologies in one framework. In our study we created an Eclipse Epsilon

environment to generate test cases for our approach.

 Evaluation of MDABT within a real industrial case context

4

Systematic literature review we performed pointed out that most of the studies

did not evaluate their suggested approaches on real industrial case contexts. In

fact small scale examples are created to evaluate suggested approaches which

are prone to be biased to suggested approach. Our approach has been

successfully tested on a software systems infrastructure that is being actively

used by 4500 users throughout the day since 2010.

1.4. Outline of the Thesis

The rest of thesis is organized as follows: Chapter 2 gives a preliminary about

software architecture, MDABT and model based testing concepts. Note that in

Chapter 3 more detailed information of MDABT will be delivered in which

systematic literature review is presented. The generic process model for

MDABT is obtained from the selected studies using Kitchenham’s guideline for

systematic literature review. Chapter 4 presents our approach on MDABT using

architecture viewpoints. The process model we created for our approach and

details of the implementation will be explained. Furthermore, Chapter 5 presents

our case study from STRCT-STI in which we evaluated our approach.

Evaluation results and result discussions of our approach are presented alongside

with our case study. Chapter 6 presents the related work and at last Chapter 7

presents the conclusions and discussions.

5

Chapter 2

Preliminaries

In this chapter software architecture and architecture views will be presented

alongside with model based testing (MBT) and architecture based testing (ABT).

Software architecture is presented using IEEE 1471 standard [23]. This standard

discusses that software architecture descriptions are inherently multi view

entities and single view description of architecture cannot completely express

stakeholders concerns. Additionally, architecture view definitions will be

presented using Clements et al. work in [1]. Furthermore, software testing

concept will be presented together with model based testing and architecture

based testing concepts.

2.1. Software Architecture Modeling

Software architecture became a fundamental subpart of software engineering [1].

According to IEEE 1471 standard software architecture is defined as main part

of a software intensive system expressed by set of components, components inter

and intra relations [23]. It can be inferred that architecture of a system is not a

monolithic concept rather it is complicated set of components and relations

which are evolving with the system itself. Therefore, each component and

component relation is very important from the different aspects of the system

stakeholders from which the concept of architecture view emerged. In this

section first we will give background information for software architecture and

then architecture view types of Views and Beyond framework will be presented.

Software architecture is an entity exhibited by a system and expressed by

architecture description. Figure 2.1 (adopted from [23]) shows the context of

software architecture concept with respect to system perspective. System is

situated in its environment and can be enterprise, system of systems, service or

6

software. System environment is explained as every interface that is interacting

and affecting system. For instance environment can be the domain which system

represents or it can be the server system resides. Moreover, stakeholders have

interests in the system which can be called as system concerns. Stakeholders are

any organization or people that have concerns and interests in system such as

user, consumer, supplier... System must be present for an architecture concept to

be provided. Systems have architecture or architectures which are expressed by

architecture descriptions. Architecture description explains the architecture of

the system utilizing different notation techniques and it is a "blueprint" between

architects and stakeholders.

expresses

situated in

System

Environment

Architecture

Architecture

Description

Stakeholder

1.. * 1.. *

has interests in

0.. *

1.. *

0.. * 0.. *

exhibits

0.. *

1.. *

Figure 2.1. Context of software architecture

In Figure 2.2 (adopted from [23]) core architecture descriptions concept and its

relations with other architecture concepts is shown. Architecture description

expresses an architecture belonging to some system of interest. Moreover, it

identifies system including system stakeholders and stakeholder concerns.

Architecture description consists of architecture views and viewpoints where

viewpoints are guidelines of mapped views. Architecture view is a perspective of

a system addressing a specific concern of a system stakeholder.

7

1..*

1..*

has

Architecture

Stakeholder

System

Architecture

Description
Concern

Architecture

Viewpoint

Architecture

View

1..*

1 1

governs

1

1

expresses

1

1..*

has interests in

1 1exhibits

1..*

1..* 1

identifies

1..*

1..*

addresses

frames

1..*

1..*

1..*

1

identifies

1..*

1

identifies

Figure 2.2. Core of software architecture description

In Figure 2.3 (adopted from [23]) architecture frameworks and its relations with

other components are presented. Architecture framework provides a typical

convention for presenting, analyzing and using architecture descriptions. There

are several frameworks already practiced today which are not limited to

MODAF, TOGAF, RM-ODP and Kruchten's 4+1 View Model. Architecture

frameworks have a set of architecture viewpoints defined in the framework and

identify stakeholder and their concerns.

8

Stakeholder
Architecture

Framework

Architecture

Viewpoint
Concern

1..*

1..* 1..*

1..*

1..*

1..* 1

1..*

1

frames

has

identifies

identifies

Figure 2.3. Architecture framework

Architecture is a complicated and large concept that cannot be explained from a

single perspective [1].Therefore notion of architecture view is introduced for

representing set of system components and inter and intra relations. An

architecture view is related to a particular concern of a stakeholder. Different

stakeholder yields different concern which yields set of views representing

architecture of the system. Architectures described by multiple views is easy to

understand, model, communicate with and analysis. Architecture modeling with

architecture views supports separation of concerns where the concerns are

identified by different stakeholders. Therefore, the notion of architecture view

becomes more important to clearly express the architecture using different

perspectives according to concern of the stakeholders. Architecture viewpoints

dictate architecture view in which architecture viewpoint specifies details of

architecture view and its structure. Moreover, viewpoint specifies what kind of

information to be held in the architecture view model. Several architectural

frameworks have been proposed in the current literature using architecture

viewpoints. In this study we are interested in architecture views and viewpoints

defined in Views and Beyond framework [1]. Views and Beyond framework

utilizes three types of views module views, component and connector views and

allocation views. In this thesis we will use the implementation of this framework

implemented in Demirli et al. work [3].

2.2. Software Testing

Software testing is a process of investigating a software product to identify

possible mismatches between expected and present requirements of the system

[24]. Software testing can be done dynamically by executing the test cases or

statistically by inspecting the system under test. Moreover, software testing

9

methods can be divided into two methods which are white box testing and black

box testing. White box testing refers to testing the internal content of the system

in which the tester must know the detail of the implementation. Black box

testing on the other hand refers to testing the functionality of the system without

knowing the internal structure. Software testing can be applied at different levels

such as unit testing, integration testing, component interface testing and system

testing. In unit testing the unit under test is isolated and the unit’s functionality is

tested. Integration tests verify the interaction between the units with respect to

functional and non-functional requirements of the system. Moreover, component

interface testing is applied for verifying the data transmission between the

architectural design elements which can be component, units or subsystems. At

last system testing is a typical acceptance testing of system in which the system

components are integrated and possible scenarios are executed on the system

under test.

2.2.1. Model Based Testing

According to Utting et al.[4] MBT is a type of testing that utilizes the

information in model which is the intended behavior of the system and its

environment. There are several motivations for to perform model based testing

such as easy test maintenance, automated test design and enhancing test quality.

In Figure 2.4 (adapted from [4]) process of model based testing is presented.

Model of the system under test is constructed from the requirements of the

system. Likewise, test selection criteria are formed by requirements, which is

used for selecting test cases that detects faults, errors and possibly failures. Test

case specifications are constructed from test selection criteria which are then

used with system model to generate actual test cases. Test cases are executed at

system under test and test results are analyzed by test verdict.

10

Requirements

1. Model

Construction

Model

4. Test Case

Construction

2. Test Selection

Criteria

Construction

Test Selection

Criteria

3. Test Case

Specification

Construction

Test Case

Specification

Test Cases

5. Test Case

Execution

Report

6. Test Report

Analysis

Figure 2.4. Process of model based testing

2.2.2. Architecture Based Testing

In architecture based testing system is test using the information presented in

architecture model of the system. Current literature performs architecture based

testing at two levels for different test concerns which are architecture and code

level testing. Architecture-level testing and code-level testing performed using

architectural relations and components specified in the architecture description.

Architecture level testing carried out by testing architectural properties of the

system. In this thesis we focus on architecture based testing at code level for

architecture to code conformance concern for different views of the system.

Different approaches for architecture based testing have been offered and these

approaches are analyzed by us using systematic literature review technique.

11

Chapter 3

Model-Driven Architecture Based

Testing: A Systematic Literature

Review

In general, exhaustive testing is not possible or practical for most real programs

due to the large number of possible inputs and sequences of operations. Because

of the large set of possible tests only a selected set of tests can be executed

within feasible time limits. As such, the key challenge of testing is how to select

the tests that are most likely to expose failures in the system. Moreover, after the

execution of each test, it must be decided whether the observed behavior of the

system was a failure or not (the oracle problem). In the traditional test process

the design of test cases and the oracles as well as the execution of the tests are

performed manually. This manual process is time consuming and less tractable

for the human tester. Model-based testing (MBT) relies on models of system

requirements and behavior to automate the generation of the test cases and their

execution. A model is usually an abstract, partial presentation of the desired

behavior of a system under test (SUT). A model act as an oracle for the SUT

since it defined the intended behavior. In addition the structure of the model can

be exploited for the generation of test cases. Test cases derived from such a

model are collectively known as an abstract test suite. Based on the abstract test

suite a concrete test suite needs to be derived that is suitable for execution.

Hereby, the elements in the abstract test suite are mapped to specific statements

or method calls in the software to create the concrete test suite. The generated

executable test cases often include an oracle component which assigns a pass/fail

decision to each test. Because test suites are derived from models and not from

12

source code, model-based testing is usually seen as one form of black-box

testing.

Model based testing can use different representations of the system to generate

testing procedures for different aspects of the software systems. Example models

include finite state machines (FSMs), Petri Nets, I/O automata, and Markov

Chains. A recent particular trend in MBT is to adopt architecture models to

provide automated support for the test process.

So far, many approaches have been introduced but no explicit effort has been

undertaken to provide a systematic overview on the existing literature. In this

study we adopt a systematic literature review (SLR) approach based on

Kitchenham’s guidelines.

The remainder of the chapter is organized as follows: Section 1 of the chapter

describes the overall background on architecture-based testing, architecture

modeling and systematic literature reviews. Section 2 discusses the overall

protocol of the adopted in SLR. Section 3 presents the results of the adopted

SLR protocols. Section 4 presents discussion over the SLR. At last section 5

presents the conclusion of this chapter.

3.1. Background

3.1.1. Architecture Based Testing

Software testing is process of verifying and validating software against its

expected requirements. Testing is continuous process in software development

life cycle and can be performed at different levels in the cycle. Software design

phase is one of the levels where testing can be applied due to various benefits.

Architecture based testing is a testing type exploiting the knowledge in the

design phase to test the software system within different abstraction levels. One

of the benefits using architecture based testing is to detect defects earlier at

software development life cycle. This prevents the propagation of defect to other

levels of software development life cycle such as implementation and integration

of the system. In architecture based testing the software architecture

implementation (SA) is validated and verified against the SA specifications

provided. Below process model of model driven architecture based testing

(MDABT) is given. This process model or "pattern" is extracted from the

thoroughly analyzed studies that are involved in this literature review.

13

KEY
artefactprocess step

dataflow controlflow

Architecture

1. Test Model

Construction

Test Criteria

Test Model

2. Abstract Test

Case Generator

Abstract Test

Suite

3. Concrete Test

Case Generator

Concrete Test

Suite

4. Test Execution

Report

5. Analyze Test

Results

Figure 3.1. Process model of MDABT

Based on Figure 3.1 we can identify the following issues that are present for

realizing MDABT:

 Description of the Architecture

In order to use the architecture for the purposes of MBT it should be properly

described using a well-defined representation mechanism or language. The

provided representation can be refined to other representations for purposes of

analysis.

 Description of Test Criteria

Testing is carried out based on predefined testing goals and testing criteria. For

example, the criteria might be based on coverage of graph paths. It is important

to specify these criteria.

14

 Generating Test Model based on Architecture

Based on the architecture and the provided test criteria the required test model

needs to be generated. The generation process can be carried out in different

ways and may depend on the provided representations.

 Test Case Generation based on Test Model

Based on the provided test model test cases need to be generated. Different

approaches might apply different generation approaches and adopt different

representations for the test cases. Furthermore, test case can be defined in

multiple steps and usually a distinction is made between abstract test cases and

concrete test cases.

 Test Execution

Once the test cases have been derived these are executed on the real code or on

the architecture of the system. The execution can be carried out in different

ways.

 Analysis of test results

The final step of the process is the analysis of the test results which might be

again represented in various ways. The analysis can be manual or automated.

Each approach will realize the MDABT process differently. Further some

approaches might not apply all the steps that are described above, but focus on

particular steps instead.

3.1.2. Systematic Literature Review

A systematic literature review is method of synthesis for identifying, evaluating

and clarifying all filtered research with respect to specific research questions or

research area [5]. Systematic literature review (SLR) is a secondary study taking

primary studies as input for a synthesis. There are many motivations for taking

on SLR approach such as summarizing the existent methods for research, finding

out gaps in current techniques and discovering new research areas [5].

Summarizing the existent methods or techniques for specified research area will

provide an overview and background of the domain. Overview and background

information extracted can reveal limitations, benefits and pre-required conditions

needed for methods in the research area. Moreover, SLR helps to find out the

gaps or holes in the current research studies indicating areas for further

examination. Furthermore, SLR studies can discover new research areas or

15

directions within the specified research areas. There are both advantages and

disadvantages of applying SLR method. The disadvantage is that it consumes too

much time. On the other hand, results of the SLR are more likely to be unbiased.

SLR provides knowledge across different configurations and methods.

Moreover, data in quantitative studies can be united by meta analytic techniques.

The SLR method first applied successfully in the field of medicine for the need

of evidence based research. Then it is adopted by other fields such as organic

chemistry, education and psychology. Similarly, evidence-based software

engineering emerged along with the guidelines for performing systematic

literature reviews [6]. The main motivation of the evidence-based software

engineering is to enhance the solutions for quality concerns as well as give

primary knowledge to different stakeholder groups. In this chapter we aimed at

identifying and evaluating the evidences and studies regarding the MDABT. As

a result, a systematic literature review was an applicable and satisfactory

research method for our research.

3.2. Research Method

As mentioned SLR is a method of synthesis identifying, clarifying and

evaluating whole set of research studies answering specific set of research

questions or related to a specific research area [5]. In this study we conducted

the SLR for identifying and evaluating the existing evidences and studies in the

MDABT area. Kitchenham and Charters [5] guideline of systematic literature

review in software engineering is accompanied in this study. The further

subsections of this section explain review protocol and steps directed in the

guideline [5].

3.2.1. Review Protocol

Firstly, we have created a review protocol before accompanying a systematic

literature review which can be seen in Figure 3.2. Review protocol identifies the

approaches which will be utilized to accompany systematic literature review.

Pre-defining review protocol will greatly reduce researcher bias.

To begin with research questions of the systematic literature review is identified.

Then scope and strategy of our research study searching is defined. Search scope

is a means of identifying platforms that studies are published and publication

dates to be considered while picking out a set of possible studies. Search strategy

on the other hand, is a means of identifying keywords for search queries which is

a fundamental part of process for applying full scan on the research area. After

16

the definition of search strategy, definition inclusion and exclusion criteria are

performed. In this study we have defined exclusion criteria to pick out studies

which are not actually in our research area. Next step in our protocol is the

definition of quality assessment where the criteria identification performed, in

the previous step is detailed by assessing studies over set of attributes and

picking the ones that are not satisfying the quality requirements. This step is then

followed by the design of data extraction form for extracting information from

studies answering the research questions. In order to design the data extraction

form, we apply data extraction on sample studies for singling out the properties

or attributes that will be extracted in data extraction form. At last, definition of

data synthesis method is introduced for managing the extraction of attributes or

properties from the studies.

Figure 3.2. Review protocol

3.2.2. Research Questions

The fundamental step of the SLR is identification of specific and valid research

questions. The selected studies after applying review protocol must answer all

research questions defined. Research question must be valid in order to be

answered by each study in the domain. We have identified the following

research question which should be answered by the selected set of studies. In this

study we are interested in conducting the following research questions which

are...:

17

RQ.1: What are the addressed concerns for applying model-driven software

architecture based testing?

RQ.2: What are the proposed solutions in architecture-based testing?

RQ.3: What are the existing research directions within architecture-based

testing?

3.2.3. Search Strategy

One of the main motivations of SLR is to identify primary studies answering the

specified research questions utilizing well-defined search strategy. In the

subsections we will provide search scope and method details which are two

subparts of our search strategy definition.

Scope

Our search scope includes two attributes which are publication date range and

publication platforms. We have selected the range of dates between period of

2000 and April 2014 for our publication date range attribute. We have selected

start date as 2000 because first paper having strong foundations on the topic with

a proper case study explaining overall method is published at this date. We

included reputable publication platforms which are listed below for identifying

journal papers, conference papers and workshop papers.

 IEEE Xplore

 ACM Digital Library

 Wiley Interscience

 ScienceDirect

 Springer

 ISI Web of Knowledge

Search Method

To search a database we used two search methods, automatic search and manual

search. Automatic search is performed by executing search strings on search

engines of electronic data sources. Manual search is conducted by manually

browsing journals, conference proceedings or other important sources. Since the

selected databases include thousands of published papers, manual search

becomes very time consuming. For this reason, we conducted automated search

by using search string.

18

Search String

We have identified a search string for each publication platforms listed in our

search scope for retrieving as much possibly related studies we can. Each

platform has different features, attributes to query for primary studies we are

interested in. We have defined queries for each platform using each platform

search language. Search strings for each platform is located in Appendix A of

the study. In Table 1 result of overall search process after querying for each

platform can be seen.

Table 1. Overview of search results and study selection

Source

Number Of

Included

Studies After

Applying

Search Query

Number Of

Included

Studies After

EC1-EC4

Applied

Number Of

Included

Studies After

EC5-EC8

Applied

IEEE Xplore 50 21 3

ACM Digital Library 8 8 2

Wiley Interscience 30 9 0

Science Direct 56 14 4

Springer 4 3 2

ISI Web of

Knowledge
10 6

1

Total 158 61 12

In the first column each platform listed in the search scope is shown. As can be

seen in the second column 158 studies are retrieved after executing the search

strings in the platforms. Third and fourth column of the table shows the filtered

studies after applying study selection criteria explained in the following section.

At the last step of the process 12 studies have been identified as the primary

study for SLR.

3.2.4. Study Selection Criteria

Search query strings provide large range of primary studies over the domain so

that we will not miss any related studies. Study selection criteria are defined so

that studies that are not directly related to our domain are excluded. Defined

criteria are manually applied on the set of selected studies. In the following part

we provide exclusion criteria:

 EC 1: Papers in which the full text is unavailable.

 EC 2: Papers gathered as duplicate or similar at different platforms.

 EC 3: Papers are not written in English.

 EC 4: Papers do not relate to architecture based testing.

19

 EC 5: Papers do not explicitly discuss architecture based testing.

 EC 6: Papers which are experience and survey papers.

 EC 7: Papers don't validate the proposed study.

 EC 8: Papers that provide only a generals summary without a clear

contribution.

3.2.5. Study Quality Assessment

We have defined a method for study quality assessment method for giving

further detailed exclusion or inclusion criteria. The importance or validness of

the study is examined by quality assessment method we provide. Our defined

method is based on quality attributes which are checklist of properties that each

study assessed by [5]. The checklist created by taking in account the properties

that could bias study results. Defined quality assessment method maintains the

summary quality checklist for quantitative studies and qualitative studies which

is proposed on [5]. Table 2 provides our quality checklist for quality assessment

method. Our main motivation in adopting quality checklist is to assess a study by

an overall quality score. Therefore we utilized set of scores from three point

scale which are yes (1), somewhat (0.5) and no (0). Results for each primary

study filtered by study selection criteria are presented in Appendix B.

Table 2. Quality checklist

No Question

Q1 Are the aims of the study is clearly stated?

Q2 Are the scope and context of the study clearly defined?

Q3 Is the proposed solution clearly explained and validated by an

empirical study?

Q4 Are the variables used in the study likely to be valid and

reliable?

Q5 Is the research process documented adequately?

Q6 Are all the study questions answered?

Q7 Are the negative findings presented?

Q8 Are the main findings stated clearly in terms of creditability,

validity and reliability?

Q9 Do the conclusions relate to the aim of the purpose of study?

Q10 Does the report have implications in practice and results in

research area for model-driven software architecture testing?

3.2.6. Data Extraction

Data extraction is performed by reading all 12 selected primary studies for

answering each research question. Furthermore, data extraction form is designed

for retrieving all the information to answer research questions and all the

attributes for study quality assessment criteria. Data extraction form contains set

20

of attributes such as identification number of the study, date of data extraction

year, publication year, authors of the study, platform of the publication, and type

of the publication. Extraction of data purpose columns are inserted in to the form

as well by study description and evaluation parts which can be seen in Appendix

D.

3.2.7. Data Synthesis

Data synthesis is the most important part of the SLR process in which the

extracted data from the primary studies is summarized and research questions

are answered [5]. In this study we implemented both qualitative and quantitative

synthesis on the extracted data that enables us to result the foundation of both

perspectives. We examined if the qualitative results enable us to clarify any

quantitative results as well. The results of the synthesis are provided in the next

section for both perspectives of the selected studies.

3.3. Results

3.3.1. Overview of Reviewed Studies

This section of the study presents the publication year distribution and the

publication platforms of the 12 selected primary studies. Figure 3.3 shows the

publication year distribution of the selected primary studies.

Figure 3.3. Year wise distribution of the primary studies

In Table 3 publication sources and channels of the selected studies are presented.

This table also presents the publication type and distribution of studies over the

attributes. We can infer that selected primary studies are published at very

reputable publication sources such as IEEE, ScienceDirect, ACM and Springer.

0

1

2

3

2000 2001 2004 2005 2006 2009 2010 2013

N
u

m
b

er
 o

f
S

tu
d

ie
s

Year

21

Moreover, "Electronic Notes in Theoretical Computer Science" is one of the

reputable publication channels having remarkable studies published related to

theoretical computer science. Another reputable publication channel listed below

is "Information and Software Technology" which is highly reputable for

publication in the area of software engineering.

Table 3. Distribution of studies over publication source

Publication Channel

Publication

Source Type

Number

of

Studies

Information and Software Technology ScienceDirect Article 1

Formal Methods for Software

Architectures Springer Chapter 1

Fundamental Approaches to Software

Engineering Springer Chapter 1

Applying Formal Methods: Testing,

Performance, and M/E-Commerce Springer Article 1

Software Engineering, 2000.

Proceedings of the 2000 International

Conference ACM Article 1

Software Reliability Engineering, 2001.

ISSRE 2001. Proceedings. 12th

International Symposium IEEE Conference 1

Software Engineering, IEEE

Transactions on (Volume:30 , Issue: 3) IEEE Article 1

Proceeding ROSATEA '06 Proceedings

of the ISSTA 2006 workshop on Role of

software architecture for testing and

analysis ACM Article 1

Electronic Notes in Theoretical

Computer Science ScienceDirect Article 1

Information Technology: New

Generations (ITNG), 2010 Seventh

International Conference IEEE Conference 1

Information and Software Technology ScienceDirect Chapter 1

Journal of Systems and Software

Volume 91 ScienceDirect Article 1

3.3.2. Research Methods

Empirical studies having well-defined research methodologies are fundamental

part for relying and validating the findings of the studies. Selected primary

studies must state and utilize the research methodology. In Table 4 types of the

research method applied in the selected primary studies are presented. Three

types of research methods are identified during the review processes which are

case study, experiment and short example. It can be identified from table that

case study research method is widely used in the selected studies. Moreover,

experiment and short examples are used in the selected studies as well.

22

Table 4. Distribution of studies over research methods

Research Method Studies Number Percent

Case Study A, C, D, E, F, H, K 7 58

Experiment B, L 2 16

Short Example G, J 2 16

None I 1 10

3.3.3. Methodological Quality

This section provides quality results of the selected studies which are relevance,

quality of reporting, rigor and credibility. Quality results are calculated from the

quality checklist which was given in the previous sections and three point score

range. First three question of the quality checklist forms the attributes of

reporting quality. Moreover, last two questions are used for relevance quality.

Fourth, fifth and sixth questions are used in the calculation of rigor quality.

Seventh and eight questions are the assessment questions for credibility quality.

In Appendix C, the result of the quality checklist is presented.

Figure 3.4 shows the reporting quality of the studies according to the first three

questions of the quality checklist. It can be seen that 91% of the primary studies

are perfect and 9% percent of the primary studies is very good. In this case

perfect means that studies reporting quality calculated as three which is the full

point. Good on the other hand means that study lost points in one of the

questions and gathered two and half point.

Figure 3.4. Reporting quality distribution of the primary studies

Rigor quality of the study refers to the trustiness of findings of the study. Figure

3.5 shows that 75% of the studies are perfect in terms of rigor quality. Moreover,

16 % of the studies assessed as very good. However, 9% of the studies ranked as

good rigor quality.

0

2

4

6

8

10

12

2.5 3

N
u

m
b

er
 o

f
S

tu
d

ie
s

Reporting Quality

23

Figure 3.5. Rigor quality distribution of the primary studies

Another quality measure is the relevance quality of the primary studies. Figure

3.6 shows relevance quality scores calculated from ninth and tenth question of

the quality checklist. It can be seen that 33% percent of the studies is directly

relevant to MDABT. The rest of the studies are relevant to MDABT.

Figure 3.6. Relevance quality distribution of the primary studies

At last credibility quality of the studies are calculated by using the seventh and

eight questions. Figure 3.7 presents the credibility quality score and distribution

of the studies. It can be seen that 83 percent of the studies calculated as 1 point.

Remaining 17% of the studies calculated as 0.5 point. According to our

evaluation there is no primary study that has full credibility in terms of evidence.

All studies are missing the statement of counter example for their suggested

approaches.

0

2

4

6

8

10

2 2.5 3
N

u
m

b
er

 o
f

S
td

u
ie

s

Rigor Quality

0

1

2

3

4

5

6

1 1.5 2

N
u

m
b

er
 o

f
S

tu
d

ie
s

Relevance Quality

24

Figure 3.7. Credibility quality distribution of the primary studies

To sum up, summary of overall methodological quality scores of selected

primary studies are given in Figure 3.8. Total quality is calculated by adding up

reporting, relevance, rigor and credibility qualities. We consider 8.5-9 as high

quality, 7.5-8 very good quality and 7 as good quality. It can be seen that 41%

studies have high overall quality. Moreover, 41% of the studies have very good

overall quality and 18% of the studies have good overall quality.

Figure 3.8. Total quality distribution of the primary studies

3.3.4. Systems Investigated

This section provides the results that are extracted from selected primary studies

for answering the research question specified in the previous sections.

RQ1: What are the addressed concerns for applying model-driven software

architecture based testing?

Target domain analysis of the 12 selected primary studies is performed and the

results are shown in Figure 3.9. Figure presents addressed concerns over the

distribution of the primary studies. There are 2 main concerns that are addressed

which are functional concerns and code to architecture conformance. The

functional concerns are functional requirements that are tested on architecture or

code level. For instance architecture level functional requirement can be graph

0

2

4

6

8

10

12

0.5 1
N

u
m

b
er

 o
f

S
tu

d
ie

s

Credibility Quality

0.0

1.0

2.0

3.0

4.0

5.0

7 7.5 8 8.5 9

N
u

m
b

er
 o

f
S

tu
d

ie
s

Total Quality

25

representation of architecture cannot have tangling node whereas at the code

level this can be the validation of the functional requirement.

Figure 3.9. Addressed concern distribution of the primary studies

Furthermore, Table 5 shows the addressed concern of each study. As table

present studies B, F and J addresses function concerns and other studies

addresses code to architecture conformity concern.

Table 5. Addressed concern and study map

Addressed Concerns Studies

Code to architecture

conformity

A, C, D, E, G, H, I, K, L

Functional concern B, F, J

In study A, authors are explaining how to derive test plans from software

architecture (SA) specifications. Architecture based testing is performed for

conforming implemented system with the specified SA. The main motivation of

this paper is to use SA specifications for integration testing of the implemented

system.

Study C is the continuation of the study A in which concerns and motivations are

same A's. In this study authors explain how they fill the gap between the

abstraction of SA and implementation using architectural and code level

sequence diagrams.

In study B, authors define test criterion to use in SA based testing. The testing is

done at architectural level to test functional properties of SA. The main

motivation of this paper is to define formal testing criteria based on architectural

relations.

In study D, authors explain how they provide systematic way to perform the

refinement step. In this study specific architectural style is used which has

mapping between SA and code based test cases to delivery completely

systematic SA based approach. The testing is performed for code to architecture

0

2

4

6

8

10

Code to Architecture

Conformity

Functional Concern

N
u

m
b

er
 o

f
S

tu
d

ie
s

Adressed Concern

26

conformance. The main motivation of this study is to exploit architectural style

information to create mapping between component in SA and units in

implementation.

In study E, authors uses both model checking and SA based testing approaches.

The addressed concern of this study is code to architecture conformance and the

main motivation is to select architecture level test cases using the output

generated from model checking stage.

In study F, authors perform SA based testing at architectural level for testing

specifications against functional properties of SA. The main motivation of this

paper is to validate architectural units using object oriented models.

In study G, the addressed concern is code to architecture conformity. The main

motivation of the paper is to perform validation at different abstraction levels of

system under test using system goals.

In study H, authors used their previous works on architecture based testing for

regression testing of software system. The addressed concern of code to

architecture code conformity is regressively tested in this approach. The main

motivation of this paper is to use architecture based testing for regression testing

of systems.

In study I, both model checking of SA and architecture based testing approaches

are experimented. The addressed concern of the study is code to architecture

conformity. Moreover, the main motivation of this paper is to use Architecture

Analysis and Design Language (AADL) specifications in verification of

software system.

In study J, author addresses the concern of functional properties of SA. The

testing is performed at architectural level. The main motivation of this paper is to

use SA in model based testing to detect defects earlier in software lifecycle.

In study K, service oriented applications (SOA) are tested which is said to be

more challenging than monolithic applications. The main motivation of this

paper is to use SA based testing to solve observability and controllability

problems that are created by message exchanges between the services that are

hidden behind the front service of the system. The addressed concern of this

study is code to architecture conformity.

In study L, authors use SA based testing approaches to variant-rich software

systems. The main motivation of the study is to address the challenge of

ensuring correctness of component implementations and interactions with any

system variant. The addressed concern of this study is code to architecture

27

conformity. Transformation definition is executed by a transformation engine. It

reads source model and outputs the target model. The transformation can be

unidirectional or bidirectional based on the transformation definition.

RQ2: What are the existing solutions?

Study A

This study presents the adoption of chemical abstract machine (CHAM)

specifications to represent software architecture and derive test cases from these

specifications using coverage criteria. Test model is generated using CHAM

specifications and coverage criteria which is label transition system (LTS). From

this graph abstract labeled transition systems (ALTS) are obtained simply by

applying obs function. Obs functions are functions that exclude unnecessary

details for the selected view of the software architecture. Test cases are

generated using the paths from ALTS graph. Each path can correspond to

different concrete test cases. Test cases are generated manually by software

architect. Test execution and test analysis are handled manually by software

architect. In Figure 3.10 process model of this study can be seen.

Cham

Architecture Model

1. Test Model

Construction

Coverage

Criteria

LTS

Model

2. Abstract Test

Case Generator
ALTS Model

3. Concrete Test

Case Generator
ALTS Paths

4. Manual

Execution

5. Manual Test

Analysis

Report

Figure 3.10. Process model applied in study A

28

Study B

This study presents testing at architecture level for conformance of SA

properties which are pointed as test criterion they define. In this case SA is

specified using Wright ADL and six test criteria are defined based on data flow

reachability, control flow reachability, connectivity and concurrency. These

criteria are used as functional properties of SA to be tested and verified. In this

study test model is based on behavior graph (BG) and obtained by transforming

Wright ADL specifications into BG using coverage criteria as the test criteria.

From the BG test model test paths are generated using the tool they created

called ABaTT. Each test path is manually transformed into test cases. The test

cases and test case results are automatically handled. In Figure 3.11 process

model of this study can be seen.

Wright ADL

Specifications

1. Test Model

Construction

Coverage

Criteria

Behavior Graph

Model

2. Abstract Test

Case Generator
BG Model

3. Concrete Test

Case Generator
BG Paths

4. Automatic

Execution

5. Automatic Test

Analysis

Report

Figure 3.11. Process model applied in study B

29

Study C

This study presents the continuation work of previous authors in A by replacing

their SA specification of CHAM model to FSP (Finite State Process) model. The

reason to use FSP instead of CHAM model is stated as FSP algebra is easier to

map to LTS graph. In this study authors explains the work of the software

architect to generate test cases and execute them manually. This study presents

the use UML Stereotyped Sequence Diagrams for filling the abstraction gap

between the SA and implementation. For each architecture level sequence

diagram, software architect defines code level sequence diagrams. Global

sequence diagram is obtained by combining the code level sequence diagrams

where it represents code scenarios that is implementing SA path that is extracted

from ALTS graph. Software architect then runs the code to see if the created

sequence diagram is implemented by the system.

FSP

Architecture Model

1. Test Model

Construction

Coverage

Criteria

LTS

Model

2. Abstract Test

Case Generator
ALTS Model

3. Concrete Test

Case Generator
ALTS Paths

4. Manual

Execution

5. Manual Test

Analysis

Report

Figure 3.12. Process model applied in study C

30

Study D

This study presents the use of architecture specification for mapping the SA

model to implementation. Different from the study C authors added automatic

test case generation and analysis reporting. Figure 3.13 shows the process model

extracted for study D.

FSP

Architecture Model

1. Test Model

Construction

Coverage

Criteria

LTS

Model

2. Abstract Test

Case Generator
ALTS Model

3. Concrete Test

Case Generator
ALTS Paths

4.Automatic

Execution

5.Automatic Test

Analysis

Report

Figure 3.13. Process model applied in study D

Study E

This study uses the same methodology explained in study D. Moreover, they

present model checking for software architecture using SPIN and CHARMY

framework. SA is specified using CHARMY specifications rather than FSP

model. Testing criteria chosen as coverage criteria which is selected as

subsystem identification in CHARMY framework. The test model that was LTS

now consists of Promela model, LTL Formulae and Buchi Automata models.

Test cases that were ALTS paths are chosen as OK and NOK results that are

obtained from model checking stage. OK and NOK results stands for successful

and unsuccessful verifications obtained after applying model checking on SA.

The results are used by test generator engine to create test cases automatically at

31

the SA level. The test execution and test analysis is handled manually. Figure

3.14 shows the process model for this study.

CHARMY Specification

1. Test Model

Construction

Subsystem

Identifications

Promela Model, Buchi

Automata, LTL Formulae

2. Abstract Test

Case Generator

OK and NOK results

from model checking

3. Concrete Test

Case Generator

Concrete Test Cases

based on OK and NOK

results

4. Manual

Execution

5. Manual Test

Analysis

Report

Figure 3.14. Process model applied in study E

Study F

This study presents SA specifications in UML state diagrams, UML sequence

diagrams and UML component diagrams for transforming into test model based

on LTS called Basic LOTOS (Language of Temporal Ordering Specifications).

Basic LOTOS model is combined with test purposes to generate IOLTS model

where test cases are generated using TGV tool. Figure 3.15 shows how this study

maps to our process model.

32

UML state, sequence

and component

diagrams

1. Test Model

Construction

IOLTS Purposes

IOLTS Model

2. Abstract Test

Case Generator
Test Graph

3. Concrete Test

Case Generator
TTCN Test Cases

4. Automatic

Execution

5. Automatic Test

Analysis

Report

Figure 3.15. Process model applied in study F

Study G

System behavior is implemented by system level plan where system level plan

consists of sequence of goals each describing the interactions between the

components. Moreover, component level plan shows the sequence that

component must achieve in that scenario. Together system level plan and

component level plan provide specifications for SA. Test criteria is the scenario

that is executed on the system described the interactions in system level plan and

component level plan. System level plan and component level plan is used by

JESS tool to annotate the implementation code. Then by the pre-compiler the

annotations are transformed into codes. Test model is the annotated code itself.

There is no test case generation the scenario is given in plans which consists of

goals where assertions are defined. As the program executes the goals are

emitted using rule based recognizer and plans are tried to be matched. Test

execution is automated as the tests are executed during scenario running on the

program. Test analysis details are automated as the program executes it matches

the component level plan and if all the component level plans are matched

33

system level plan matches. If the system level plan matches in the executed

program then the program passes the test. Figure 3.16 presents the process model

of study G.

System and

Component Level

Plans

1. Test Model

Construction

Goals

Annotated

Implementation

2. Automatic

Execution

3. Automatic Test

Analysis

Report

Figure 3.16. Process model applied in study G

Study H

This study uses the same process model in Figure 3.13 of study D.

Study I

This study presents the use of Architecture Analysis and Design Language

(AADL) to specify SA which is transformed into Uppaal Model (timed

automata) using the coverage criteria as the test criteria. Using the set of

automata paths, consistency and completeness check is performed by applying

model checking on the model. Moreover, automata paths are translated into

concrete test cases using a mapping between architecture specification and

implementation. At last, test execution and analysis is automatically handled.

Figure 3.17 shows the process model for this study.

34

AADL SA

specification

1. Test Model

Construction

Coverage

Criteria

Uppaal

Model

2. Abstract Test

Case Generator

Abstract Uppaal

Model

3. Concrete Test

Case Generator
Uppaal Paths

4. Automatic

Execution

5. Automatic Test

Analysis

Report

Figure 3.17. Process model applied in study I

Study J

This study presents the use of HPrTNs (a Petri Net) model to explain the

behaviors of SA obtained by transforming Acme ADL specifications with

coverage criteria as the test criteria. The HPrTNs model is divided into sub

graphs which are abstract models depending on the model. Later using sub

graphs architecturally significant path are extracted and test cases are generated

from the extracted paths. Figure 3.18 shows the process model for this study.

35

Acme ADL SA

Specification

1. Test Model

Construction

Coverage

Criteria

HPrTNs

Model

2. Abstract Test

Case Generator

HPrTNs

subgraphs

3. Concrete Test

Case Generator
HPrTNs Paths

4. Automatic

Execution

5. Automatic Test

Analysis

Report

Figure 3.18. Process model applied in study J

Study K

This study presents the application of SA based testing methodology to service

oriented applications in distributed systems. The service composition which is

our architecture in this case is expressed using BPEL (Business Process

Execution Language). In the SA specifications architecture topology and

message exchange knowledge are included. The extended control flow graph

(ECFG) test model is used to generate test cases by transforming BPEL

specifications with coverage criteria into the test model. ECFG consists of

control flow graphs (CFG) and from each CFG test paths are derived. Test cases

are executed and results are analyzed automatically. Figure 3.19 shows the

process model for this study.

36

BPEL SA

specification

1. Test Model

Construction

Coverage

Criteria

ECFG

Model

2. Abstract Test

Case Generator
CFG

3. Concrete Test

Case Generator
CFG Paths

4. Automatic

Execution

5. Automatic Test

Analysis

Report

Figure 3.19. Process model applied in study K

Study L

This study presents specification of SA is using UML state, sequence and

component diagrams. UML state machines are used for representing component

behaviors of SA. UML message sequence diagrams are used for representing

component interactions of SA. UML component diagrams are used for

representing topological view of SA. All UML models are combined into one

test model consists of state machine test model, message sequence chart test

model and component test model. In this test model different views are obtained

using signals as reducing function for state explosion problem. Test cases are

generated from state machine test model are executed on those components

which means that testing is done at architectural level. Test cases generated from

the message sequence chart are executed in the system which implies that test

cases are executed at code level system. Delta SM tool is used for constructing

component state machine. DeltARX tool is used for constructing class diagram

model. Moreover, IBM Rational Rhapsody ATG (Automatic Test Generation)

tool is used for test case generation. Generated tests are based on test execution

and analysis is automatically handled.

37

UML state,

sequence and

component

diagrams

1. Test Model

Construction

Coverage Criteria

eDelta Model

2. Concrete Test

Case Generator
ATG Test Cases

3. Automatic

Execution

4. Automatic Test

Analysis

Report

Figure 3.20. Process model applied in study L

Summary

As a conclusion, different studies yields different methodologies to apply

architecture based testing on software system under test. As far as now, we have

explained how each study maps to our reference process model. At each step of

the process model we have seen different techniques applied by authors. Firstly,

SA specification is important part of our process model and one needs to

represent SA under test in some syntax for ongoing testing procedures. In Figure

3.21 the distribution of the SA specification models over primary studies can be

seen. As seen from this graph FSP model and UML diagrams are most chosen

SA specification type. FSP model is chosen in three different studies belonging

to same author and each work is based on the previous work of the author. On

the other hand UML diagrams, which are industry standard for modeling, are

chosen by three different studies which belongs to different authors.

38

Figure 3.21. SA model type distribution over primary studies

Secondly, as in our process model and studies investigated every SA

specification is transformed into a test model where test cases are generated

from. In Figure 3.22 test model distribution over studies can be seen. Most of the

studies use graph or automata based test models where test cases are generated

from extracted paths. In one of the studies explicit test model is not used

whereas annotated implementation can be considered as test model. From the

following graph, we can infer that LTS is mostly used test model due to same

author having four different studies on the subject. Other than that studies

adopted different test models for their approaches.

Figure 3.22. Test model distribution over primary studies

Thirdly, the test criteria are important property in refining the test model from

SA specifications. In Figure 3.23 distribution of test criteria over studies can be

seen. As the test models are based on graphs most of the studies used coverage

criteria when generating test cases. Three of the studies used test purposes where

test purposes are properties that are refined to be tested. For instance, in study G

0

1

2

3

4

AADL Acme

ADL

BPEL CHAM FSP Model GoalML Wright

ADL

UML

Diagrams

N
u

m
b

er
 o

f
S

tu
d

ie
s

Software Architecture Specification Language

0

1

2

3

4

5

B
G

E
C

F
G

eD
el

ta
M

o
d

el
s

H
P

rT
N

S

IO
L

T
S

L
T

S

U
p

p
aa

l

N
A

P
ro

m
el

a,

L
T

L
 F

o
rm

u
la

e,

B
u
ch

i
A

u
to

m
at

aN
u

m
b

er
 o

f
S

tu
d

ie
s

Test Model

39

test criteria is to match the component and system level plans of the executed

system under test.

Figure 3.23. Test criteria distribution over primary studies

Moreover, test case generation type is another important property in model

driven SA based testing. In order to have fully automated approach test case

generation should be handled automatically. Manual test case generation is both

time consuming and irrational in the context of model driven approaches. In

Figure 3.24 test case generation type distributions over the studies can be seen.

Most of the studies use automated test case generation where important aspect in

these studies is that testing is carried in SA level rather than code level. In

manual test case generated studies there are both SA level and code level testing

is performed. Moreover, study that applied successfully using automated test

case generation at SA level performed manual when testing at code level without

using architecture style. However using the architecture style properties this

stage can be automated as done in study D.

Figure 3.24. Test case generation type distribution over primary studies

At last, test analysis is the last part of our model where the results of the tests

that are executed are analyzed whether the test passed or failed. In Figure 3.25

distribution of test analysis types over studies can be seen. In order to have fully

automated approach, studies must adopt automated test analysis process. As in

0

2

4

6

8

10

Coverage Criteria Test Purpose Matching

N
u

m
b

er
 o

f
S

tu
d

ie
s

Test Criteria

0

2

4

6

8

Manual Automated

N
u

m
b

er
 o

f
th

e
st

u
d

ie
s

Test Case Generation Type

40

test case generation, having automated test analysis process will save time and

easy maintenance of test cases. From the following figure we can infer that most

of the studies used automated analysis where the result of failing or passing is

automatically determined. On the other hand, one third of the studies used

manual test analysis processes.

Figure 3.25. Test analysis type distribution over primary studies

RQ3: What are the existing research directions within model-driven software

architecture based testing?

Need for executable models for representing architecture

For supporting model-based testing several authors have indicated the need for

precise models that can be processed by model compilers. Most of the research

in this domain is adopted from the developments in model-driven development

in which software language engineering plays an important role. Different

studies used different representation techniques for SA specifications. In the

current literature authors states that a common SA model needs to be created to

represent SA specifications.

Abstraction difference between architecture and code

The adoption of architecture models for supporting model-based testing provides

both an abstract view of the system and the actual implementation of the system.

Creating tests at SA level is simpler than creating tests at code level from SA

specifications. There is a need for filling the gap between the SA and

implemented system. One of the studies has proposed to use architecture style

for filling the gap between the SA level and implementation level. Still there is a

need to exploit architecture definitions at implementation level to generate test

cases.

0

2

4

6

8

10

Manual Automated

N
u

m
b

er
 o

f
S

tu
d

ie
s

Test Analysis Type

41

State explosion problem

In testing and model-based testing the generation of test cases easily leads to a

combinatorial explosion and becomes less tractable for the human engineer. This

appears also to be the case for model-driven architecture-based testing. Although

the adoption of model-driven approaches supports the automated generation of

test artifacts this intractability problem has also been pointed out by several

authors. For example, when generating test cases from test model that is based

on graph or automata full path coverage criteria causes numerous test cases.

Moreover, some works have used model checking integrated with SA based

testing where results from model checking are used for generating test cases.

There is still more work needs to be done on this issue as we need to find more

effective criteria while generating test cases.

Architecture views

As discussed in the background architecture needs to be modeled using multiple

architecture views to represent the various stakeholder concerns. The approaches

that we have considered however tend to focus on a single view of the

architecture which is usually represented using graph formalisms. A few authors

have indicated the need for representing views on the graphs which are more like

queries on a single representation format. Yet, existing architecture viewpoints

aim to provide a different perspective on the system including, for example, the

module views, component-connector views and allocation views. Integrating

architecture views, as such, will be a necessary enhancement to the existing

architecture-based testing approaches.

Need for automating the process by tools and cost-benefit analysis

When using model driven techniques in some context it is important to automate

processes and assessing methods performance by some metrics defined from the

context. The automation of the several stages has been studied by different

authors in their works. However, none of the work above has the complete

autonomous system for MDABT based on our reference process model. Another

important issue seems to be present in the current literature is not showing the

cost-benefit analysis of the MDABT. There is exciting progress on this topic

however none of the studies have systematic way to define benefits of the

MDABT according to the cost of the methodology presented. Some authors have

stated to work on this issue in their future works.

42

Need for applying MDABT on complex real system

It is very important to use empirical validations while assessing your

methodology. In most of the studies proposed methodologies are assessed on

simple case studies such as simple client server applications. On the other hand

some studies used industry cases to apply their methodology which are more

complex and already in use. Nevertheless, there is still need for applying

MDABT on more complex industry cases.

3.4. Discussions

One of the primary dangers to legitimacy of SLR is the publication bias.

Publication bias can be explained by researcher’s trend to publish positive

results than negative results of their studies. It is proposed in [5] to perform

research protocol with research question to manage publication bias as we have

done in our SLR. Later in the SLR, we identified search scope, search method

and constructed search string for different publication platforms to query on the

MDABT area. Important aspect of this step is that incompleteness caused by

search keywords is another danger for legitimacy of SLR. We have constructed

keyword list in a repeated manner by pre-performing sample searches in the

domain. The construction of the keyword list is handled manually by adding new

keywords if we cannot retrieve related studies to our field. As stated previously

search strings constructed for different platforms is located in Appendix-A. Even

though having the perfect set of search queries we can still not find related

studies such as technical report, theses and company journals. In our study these

neglected studies can have importance in terms of completeness and validation

by strong case study. In our SLR we did not include such studies. Yet another

danger to legitimacy of SLR can be seen the limited functional operations of

publication platforms. Publication platforms have limited ability to perform

complex queries on the database such as the length of the query and retrieving

unrelated studies. As a result of this, study inclusion and exclusion criteria are

defined and studies are filtered manually with respect to created criteria. After

filtering and selecting the final set of primary studies we extracted data from the

primary studies. We have constructed data extraction form to systematically

extract data from the studies by reading each study according qualitative and

quantitative properties.

43

3.5. Conclusion

In this study methodological details and results of the systematic literature

review on model-driven architecture based testing is presented. As far as we

know and investigate systematic literature review is not performed on this

research field. Identification of the studies is performed for this field and further

on analysis and synthesis of the studies since 2000 are performed. We first

identified 158 studies from our query from various publication platforms. We

then filtered 12 primary studies related to MDABT which are deeply examined

and studied. In this SLR we analyzed the current techniques in MDABT and

present the result of the synthesis performed on the selected studies. Moreover,

we have discussed on the current literature inadequacy and further research

directions for MDABT. As one of our research question is about the addressed

concerns for studies in MDABT, we presented each concerns addressed by each

study. Moreover, we have explained each study according to our process model

and details of the selected studies are given. Current literature for MDABT has

remarkable impact and ongoing advances on software testing. However,

solutions proposed by current literature have limitations as well. Firstly,

proposed solutions do not take architecture views into account in architecture

model specification which makes it hard to test concerns of different

stakeholders. Another limitation is that most of the studies use different models

both for representing SA and test model. This makes it impossible to find and

industry standard model such as UML or another common used model to be

used by the other works influenced by the current studies. Additionally, most of

the proposed solutions have low performance in terms of test case generation

methods. The abstraction gap between the SA level and implementation level

makes it very hard to test SA conformance to implementation level without

human effort. As a result, the main argument is that can we provide a MDABT

approach which removes or decreases these problems.

To sum up with this study can be seen as guideline for examining the current

literature in the fields of MDABT. Results of this study can boost the

improvement of MDABT approaches and can be utilized by new researchers

developing new MDABT approaches.

44

Chapter 4

Model Driven Architecture Based

Testing Using Architecture

Viewpoints

In the previous chapter we have presented and deeply analyzed current

suggested approaches for MDABT using SLR protocol. In this chapter, we

present our approach MDABT using architecture viewpoints. First, we will

present the generic process model for our approach in section one. Then the

technology dependent process model which reflects our implemented approach

will be presented in section two. Afterwards, software architecture views and

test criteria for each architecture view will be explained in section three. Test

model and transformation model will examine in section four for each

viewpoint. At last in section five test results and execution will be explained.

4.1. Process

In Figure 4.1 process model for MDABT using architecture viewpoint is

presented. In the following parts details of the process model will be explained

thoroughly.

45

Architecture View

1. Transformation

Model Construction

Transformation

Model

View Criteria Based

Abstract Test Model

2. Concrete Test

Case Generation
View Test Cases

3. Test Execution

4. Test Analysis

Report

Figure 4.1. Process model of MDABT using architecture viewpoint

 Architecture View

Architecture view is the model representing the view of the architecture desired

to generate test cases from. Architecture view models can be selected differently

for testing purposes such as module views, component and connector views and

allocation views. Different architecture views yields different concerns of

stakeholders to be tested.

 View Criteria Based Abstract Test Model

View criteria based abstract test model is a static model based upon the selected

criteria of architecture view for testing. Specific criteria will be defined for each

architecture viewpoint and abstract test model will be constructed accordingly.

Architecture view and abstract test model will be transformed into concrete test

cases using transformation rules declared.

 Transformation Model Construction

Transformation model construction process is a static process where

transformation model which contains the information of transformation rule to

be applied for each architecture view. The construction is performed once for

each architecture view. The output of this process is the transformation model

46

and the inputs are the architecture view and view criteria based abstract test

model.

 Transformation Model

Transformation model is a rule model based on architecture view and view

criteria based abstract test case model. Transformation model is static model

created for each view once. Transformation model holds the transformation rule

to be applied on inputs given. This model is executed for concrete test case

generation.

 Concrete Test Case Generation

Concrete test case generation is a dynamic process where the transformation rule

stated in transformation model is executed and concrete test cases are generated.

 View Test Cases

View Test Cases are concrete test cases based on the view under test. These test

cases can be generated on different abstraction levels such as architecture level

for testing architecture functional properties or code level for testing the

conformance of implementation to architecture model.

 Test Execution

Test execution process is a dynamic process where the generated test cases are

executed on component under test. The component in this process can be

architecture of the system as well as implementation of the system. The result of

this process is the test report.

 Report

Report is the output of the test execution process and is the input for the test

analysis step. Test report contains the information about the result of test case

executions (fail/pass).

 Test Analysis

Test analysis is the process where test execution report is taken as input results

analysis is performed on. This process is responsible for the processes of test

oracle.

4.2. Implementation

In the previous section we have provided a generic process for MDABT which is

agnostic to the adopted tools. In principle the process can be defined using

47

different tool implementations. In this section we describe the MDABT

environment that we have implemented for the generic process. The

implementation is based on the Eclipse Epsilon environment that contains

languages and tools for code generation, model to model transformation, model

validation, comparison, migration and refactoring [7]. In the Eclipse Epsilon

environment the creation of models is based on the Human-Usable Textual

Notation (HUTN) each of which needs to conform to predefined metamodels. In

Figure 4.2 the implemented process model based on the testing environment that

we have defined is shown. In the following we describe each step in detail.

Architecture View

1. Transformation

Model Construction

EGX Based

Transformation

Model

View Criteria Based

EGL Template

2. Concrete Test

Case Generator
JUnit Test Cases

3. Automatic

Execution

4. Automatic

 Test Analysis

Report

Figure 4.2. Process model of our approach

 Save-Bench Architecture View Model

Implemented system is using the metamodels of the software architecture views

implemented at the work of Model Driven Engineering of Software Architecture

Viewpoints [3]. The details of the view metamodels will be given in section

four. HUTN is used to generate the view models that are used in test

transformation model construction. Implemented view model in HUTN can be

easily converted to view model using the integrated HUTN tool in Eclipse

Epsilon environment.

48

 View Criteria Based EGL Template

View criteria based EGL templates are created for each architecture view under

test. View criteria are defined for each view and used in the construction of EGL

templates. These criteria decide what is to be tested in the test case for specific

view. Details of the criteria definition will be presented in section three.

Moreover, constructed templates are used when generating JUnit test cases.

Basically transformation rule in the transformation model is applied on the

template using the architecture view model.

 EGX Based Transformation Model

Transformation rule is embedded in this model. Transformation model is created

for each architecture view used for once. Transformation model is executed and

test cases for view under test are generated.

 JUnit Test Cases

Test case for each view is generated consisting of multiple test methods. The

generated test cases depends on reflections library which is an open source java

library scans classpaths, indexes the metadata, and allows you to query on your

project [8]. Moreover, generated test cases depend on built-in JUnit and

reflections libraries of Java.

4.3. Architecture Viewpoints & Architecture View
Criteria

Clements et al. [1] define three different basic architectural styles including

module, component-and-connector and allocation styles. Architectural styles are

reoccurring forms across different systems implemented which deserves

recognition [1]. Architecture views emerge when architecture styles are applied

to a system. We have considered module and component and connector

architecture styles in our work. Our main concern in testing which is architecture

to code conformance is the main reason behind this decision. Other styles are not

fully representing abstractions about the implementation. As a result of this

decomposition, uses, generalization, layered and shared data views are selected.

Furthermore, for each selected viewpoint the required architecture view criteria

need to be defined as well. View criteria are specific for each viewpoint

metamodel. In the following subsections we discuss the architecture viewpoint

metamodel structure and possible view criteria for the viewpoints.

49

4.3.1. Decomposition Viewpoint

Decomposition viewpoint deals with concerns of partition of system

responsibilities into modules and modules into submodules. It is a containment

relation among modules and submodules. The implemented metamodel [3] for

this viewpoint can be seen in Figure 4.3.

Figure 4.3. Decomposition viewpoint metamodel

 Model consists of elements.

 Element can be either Module or Subsystem.

 Element have properties which consists of name and value which enables

to add necessary properties.

 Elements have subelements.

In the decomposition viewpoint we can identify the following view criteria:

1. Does every element in the view model appear in the code?

2. Does every subelement in the view model appear in the code?

3. Does every subelement exits under corresponding element in the code?

4.3.2. Uses Viewpoint

Uses viewpoint governs specialized depends-on relation (use relation) between

modules. Use relation yields when module correctness depends on other

50

modules correctness. The implemented metamodel [3] for uses viewpoint can be

seen in Figure 4.4.

Figure 4.4. Uses viewpoint metamodel

 Model consists of relations and elements.

 Element can be either module or subsystem.

 Element have properties to bind dynamic properties to element.

 Relation have source and target element whereas source element uses

target element.

In the uses viewpoint we can identify the following view criteria:

1. Does every uses relation in the view model appear in the code?

2. Does every source element appear in the code?

3. Does every target element appear in the code?

4.3.3. Generalization Viewpoint

Generalization viewpoint deals with is-a relation where an element generalizes

another element either by implementation or inheritance. In the generalization

relation parent element is more general element with respect to child element.

Figure 4.5 shows the implemented metamodel [3] of generalization viewpoint.

51

Figure 4.5. Generalization viewpoint metamodel

 Generalization model consists of modules and relation.

 Relation can be either implementation or inheritance relation.

 Modules have set of properties for dynamically adding information.

 Any relation has child module and parent module. Parent module is the

module being generalized and child module is the module that

generalizes.

In the generalization viewpoint we can identify the following view criteria:

1. Does each implementation or inheritance relation exist in the code?

2. Does each relation child and parent element is same in the code?

3. Does each relation child and parent element exist in the code?

4.3.4. Layered Viewpoint

Layered viewpoint reflects the division of modules into units where units are

called layers. Each layers offers group of services that other layers uses. The

uses relation in this viewpoint is either with restriction or without restriction.

Uses relation with restriction forbids the use of higher level layers by lower level

layers. On the other hand uses relation without restriction allows lower levels

layers to use the service of higher level layers. Figure 4.6 shows the implemented

metamodel [3] for layered viewpoint.

52

Figure 4.6. Layered viewpoint metamodel

 Model consists of layers and relations.

 Relation can be either allowed to use below or allowed to use relation.

 Layers have layer segments and layer relations.

 Relations have source layer and target layer where source layer is the

layer using the target layer services.

 Layers have set of definable properties for attaching dynamic

characteristic to layers.

In the layered viewpoint we can identify the following view criteria:

1. Does each allowed to use below relation in given model exists in the

code?

2. Does each layer in the relation given in model exist in the code?

4.3.5. Shared Data Viewpoint

Shared data viewpoint stresses out the transmission of persistent data by the

interaction of data accessors. The data or the repository has multiple accessors

with different access right as read, write, or read and write. Figure 4.7 shows the

implemented metamodel [3] of shared data viewpoint.

53

Figure 4.7. Shared data viewpoint metamodel

 Model consists of elements and attachments

 Elements can be either repository or data accessor

 Attachment can be either DataWrite or DataRead attachment

In the layered viewpoint we can identify the following view criteria:

1. Does each data accessor exist in the code?

2. Does each attachment of data accessor exist in the code?

4.4. Transformation Model Construction and Concrete
Test Case Generator

In this section transformation model and view criteria based abstract test model

of the implemented MDABT environment will be explained thoroughly for each

architecture viewpoint. View criteria based abstract test model and

transformation model is manually implemented for each architecture view for

once. The view model and the view criteria based abstract test model are taken

as inputs to the transformation model for generating concrete test cases which

are JUnit test cases. Generated viewpoint test cases have one or more test

methods depending on the architecture view model provided. Moreover,

generated test cases can have helper methods if needed which are functions or

operations that help the execution of another method. Rest of this section will

present the implementation details for each architecture viewpoint. The full

54

implementation of the environment for each viewpoint is given in Appendix-E

of this thesis.

4.4.1. Decomposition Viewpoint

Decomposition viewpoint test case is generated using abstract test model and

decomposition view by executing corresponding transformation model.

Decomposition viewpoint transformation model is presented in Figure 4.8. This

model takes two inputs which are decomposition view model and decomposition

abstract test model to generate a single test case file called

‘TestDecomposition.java’. Generated test case consists of multiple test methods

and helper methods.

rule Decomposition2JUnit

 transform decomposition : Model {

 // The EGL template to be invoked

 template : "Decomposition2JUnit.egl"

 // Output file

 target : "gen/TestDecomposition.java"

}

Figure 4.8. Decomposition viewpoint transformation model

In Figure 4.9 helper method for retrieving packages under given package name

is presented. Method first finds all existing classes under given package name

using reflections library. Then packages of the classes are extracted and returned

to the caller method.

private List<Package> getSubPackages(String packageName) {

 List<Package> packageList = new ArrayList<Package>();

 List<ClassLoader> classLoadersList = Arrays.asList(ClasspathHelper.

 contextClassLoader(),ClasspathHelper.staticClassLoader());

 Reflections reflections = new Reflections(new ConfigurationBuilder()

 .setScanners(new SubTypesScanner(false),new ResourcesScanner ())

 .setUrls(ClasspathHelper.forClassLoader(classLoadersList

 .toArray(new ClassLoader[0]))).filterInputsBy(new FilterBuilder().

 include(FilterBuilder.prefix(packageName))));

Set<Class<? extends Object>> allClasses= reflections.getSubTypesOf

 (Object.class);

 for (Class<? extends Object> clazz : allClasses) {

 if (!packageList.contains(clazz.getPackage())) {

 packageList.add(clazz.getPackage());

 }

 }

 return packageList;

}

Figure 4.9. Method for retrieving packages under given package name

Following helper method in Figure 4.10 searches the given package list for given

package name and returns true if package exists in the package list. Otherwise,

the method returns false.

55

private boolean isPackageExistsInGivenList(List<Package> packageList,

 String packageName) {

 for (Package pack : packageList) {

 if (pack.getName().equals(packageName)) {

 return true;

 }

 if (pack.getName().length() > packageName.length()) {

 if (pack.getName().substring(0, packageName.length())

 .equals(packageName)) {

 return true;

 }

 }

 }

 return false;

}

Figure 4.10. Method for searching given package name in package list

Figure 4.11 presents template test case method for decomposition viewpoint. In

the first assertion the existence of package that is decomposed is verified.

Second assertion verifies the existence of sub package of decomposed package.

In the final assertion the existence of sub package positioned under decomposed

package is verified. By performing all the stated verifications for each element

and its subelement in decomposition view model we perform a complete testing

with respect our previously defined view criteria. The EGL operation called

‘testName’ returns test method name according to Java coding conventions.

[%for (element in decomposition.elements){%]

 [%for (subelement in element.subelements){%]

@Test

public void test[%="".testName(element.name,subelement.name)%]() {

 String decomposedPackageName = "[%=element.name%]";

 String subPackageName = "[%=subelement.name%]";

 Assert.assertTrue(isPackageExistsInGivenList(

 getSubPackages(decomposedPackageName), decomposedPackageName));

 Assert.assertTrue(isPackageExistsInGivenList(

 getSubPackages(subPackageName), subPackageName));

 Assert.assertTrue(isPackageExistsInGivenList(

 getSubPackages(decomposedPackageName), subPackageName));

 }

 [%}%]

[%}%]

}

[%

function String testName(a:String, b:String):String{

 var a1:String=a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

 toUpperCase();

 var a2:String=a.substring(a.lastIndexOf('.')+2);

 var b1:String=b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

 toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+"DecomposedOf"+b1+b2;

}

%]

Figure 4.11. Template test case method for decomposition viewpoint

4.4.2. Uses Viewpoint

Uses viewpoint test case is generated by executing uses viewpoint

transformation model which takes abstract test model and uses view model as

56

inputs. Figure 4.12 shows the transformation model for uses viewpoint. By

executing presented transformation model we generate ‘TestUses.java’ test case

for uses viewpoint.

rule Use2JUnit

 transform uses : Model {

 // The EGL template to be invoked

 template : "Use2JUnit.egl"

 // Output file

 target : "gen/TestUses.java"

}

Figure 4.12. Uses viewpoint transformation model

Figure 4.13 presents the helper methods for retrieving classes that are directly in

situated under given package name. This means that classes under subpackages

of given package is not taken into consideration.

private Set<Class<? extends Object>> getClassesUnderPackage(String packageName

){

 List<ClassLoader> classLoadersList = new LinkedList<ClassLoader>();

 classLoadersList.add(ClasspathHelper.contextClassLoader());

 classLoadersList.add(ClasspathHelper.staticClassLoader());

 Reflections reflections = new Reflections(new ConfigurationBuilder()

 .setScanners(new SubTypesScanner(false),new ResourcesScanner())

 .setUrls(ClasspathHelper.forClassLoader(classLoadersList.toArray(new

 ClassLoader[0]))).filterInputsBy(new FilterBuilder().include

 (FilterBuilder.prefix(packageName))));

 Set<Class<Object>> allClasses=reflections.getSubTypesOf(Object.class);

 removeClassesThatAreNotDirectlyUnderGivenPackage(packageName,allClasses);

 return allClasses;

}

Figure 4.13. Helper method for retrieving direct classes under given package

Figure 4.14 presents a method to filter list of classes which are under given

package and subpackages of package. Method filters out classes that are located

under subpackage of package and returns only the direct classes located under

given package.

 private void removeClassesThatAreNotDirectlyUnderGivenPackage(String

 packageName ,Set<Class<? extends Object>> allClasses) {

 List<Class<?>> notDirectSubClasses = new ArrayList<Class<?>>();

 for (Class<?> clazz : allClasses) {

 if (!clazz.getPackage().getName().equals(packageName)) {

 notDirectSubClasses.add(clazz);

 }

 }

 allClasses.removeAll(notDirectSubClasses);

 }

Figure 4.14. Helper method for retrieving direct classes under given package

Figure 4.15 presents a helper method for deciding the uses relation between

packages. Uses relation is defined as specialized version of depends-on relation

in by Clements et al. In this thesis we detected uses relation of class A to class B

57

by checking whether class A holds the property of class B in form of either 1-1

or 1-many. Following helper method checks whether any class in source package

uses any class in target package by iterating over each target package and source

package classes and detecting uses relation. This method returns a map which

contains the information of use relation to give meaningful failure messages for

test execution. If the returned map is empty then it indicates source package

classes does not use target package classes.

protected Map<String, String> doesSourceUseTarget(String sourcePackage,

String targetPackage) {

 HashMap<String, String> usesMap = new HashMap<String, String>();

 Set<Class<? extends Object>> allUserClasses = getClassesUnderPackage

(sourcePackage);

 Set<Class<? extends Object>> allUsedClasses = getClassesUnderPackage

(targetPackage);

 for (Class<? extends Object> userClazz : allUserClasses) {

 for (Class<? extends Object> usedClazz : allUsedClasses) {

 Field[] fields = userClazz.getDeclaredFields();

 for (Field field : fields) {

 if (field.getType().equals(usedClazz)) {

 usesMap.put(userClazz.getName(), usedClazz.getName());

 return usesMap;

 }else if(field.getGenericType() instanceof ParameterizedType){

 Type[] actualTypeArguments = ((ParameterizedType)

 (field.getGenericType())).getActualTypeArguments();

 for (Type type : actualTypeArguments) {

 if (type.equals(usedClazz)) {

 usesMap.put(userClazz.getName(),usedClazz.getName());

 return usesMap;

 }

 }

 }else if(field.getGenericType() instanceof GenericArrayType){

 Type type = ((GenericArrayType) (field.getGenericType())).

 getGenericComponentType();

 if (type.equals(usedClazz)) {

 usesMap.put(userClazz.getName(),usedClazz.getName());

 return usesMap;

 }

 } else if (field.getType().isArray()) {

 Class<?> array = field.getType();

 if (array.getComponentType().equals(usedClazz)) {

 usesMap.put(userClazz.getName(),usedClazz.getName());

 return usesMap;

 }

 }

 }

 }

 }

 return usesMap;

}

Figure 4.15. Helper method for deciding uses relation

Figure 4.16 shows the template test case method for uses viewpoint. This method

is generated for each uses relation specified in uses view model. First assertion

of the method verifies the existence of user package. Second assertion verifies

the existence of used package. Last assertion verifies the existence of uses

relation between two packages by checking whether the map returned from

helper method is empty or not. By performing stated three assertions we have

successfully covered our uses viewpoint criteria stated in the previous section.

58

[% for (relation in uses.relations) { %]

@Test

public void test[%="".testName(relation.source.name, relation.target.name)%]()

{

 String source = "[%=relation.source.name%]";

 String target = "[%=relation.target.name%]";

 String errorMessage = source + " invalidates use relation to "+ target;

 assertTrue(isPackageExistsInGivenList(getSubPackages(source),source));

 assertTrue(isPackageExistsInGivenList(getSubPackages(target),target));

 Map<String, String> usesMap = doesSourceUseTarget(source, target);

 assertFalse(errorMessage, usesMap.isEmpty());

 }

[%}%]

}

[%

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

 toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

 toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

return a1+a2+"2"+b1+b2;

}

%]

Figure 4.16. Template test case method for uses viewpoint

4.4.3. Generalization Viewpoint

Generalization viewpoint test case is generated by executing generalization

transformation model which is using generalization abstract model and

generalization view model. Figure 4.17 shows transformation model for

generalization viewpoint. Transformation model takes two inputs which are

generalization view model and abstract test model and generates a JUnit test case

file “TestGeneralization.java”. Test case file can contain multiple test methods

depending on given generalization view model. Moreover, a helper method is

used in test case as well.

rule Generalization2JUnit

 transform generalization : GeneralizationModel {

 // The EGL template to be invoked

 template : "Generalization2JUnit.egl"

 // Output file

 target : "gen/TestGeneralization.java"

}

Figure 4.17. Generalization viewpoint transformation model

Figure 4.18 shows the method for recursively retrieving every parent of the given

class. All implemented classes are found and returned by this method at every

inheritance level. Inheritance level for given class can change as it can be

directly the parent of the class or the parent of the parents. Method finds all

existing parent for inheritance by interface implementation or extension of

another class.

59

private List<Class<?>> getGeneralizations(Class<?> classObject) {

 if (classObject == null) {

 return Arrays.asList();

 }

 List<Class<?>> generalizations = new ArrayList<Class<?>>();

 generalizations.add(classObject);

 generalizations.addAll(getGeneralizations(classObject.getSuperclass()));

 Class<?>[] superInterfaces = classObject.getInterfaces();

 for (int i = 0; i < superInterfaces.length; i++) {

 generalizations.addAll(getGeneralizations(superInterfaces[i]));

 }

 return generalizations;

 }

Figure 4.18. Helper method for retrieving every parent of given class

Figure 4.19 shows the template test method for generalization viewpoint. This

test method created for each generalization relation in the model. Regarding to

the type of the generalization where it can exist by extending a class or

implementing an interface, test methods and failure messages are set. First

assertion of the template test method verifies the existence of class that

generalizes another component. Second assertion verifies the existence of class

that is generalized by another class. Last assertion checks whether the given

class extends or implements the parent class. By performing the stated assertions

we cover all the generalization viewpoint criteria stated previously.

[%for (declaration in generalization.decl){%]

@Test

public void

test[%="".testName(declaration.child.name,declaration.parent.name)%]()

 throws ClassNotFoundException {

 String className = "[%=declaration.child.name%]";

 String inheritsFrom = "";

 String implementz = "";

 [%if(declaration.type().name== "Inheritance"){%]

 inheritsFrom = "[%=declaration.parent.name%]";

 [%}else{%]

 implementz = "[%=declaration.parent.name%]";

 [%}%]

 Class<?> clazz = Class.forName(className);

 List<Class<?>> allGeneralizations = getGeneralizations(clazz);

 assertNotNull(clazz);

 if(inheritsFrom != ""){

 Class<?> inheritsFromClazz = Class.forName(inheritsFrom);

 String errorMessageExtension = clazz.getName()+ "does not extend"+

 inheritsFromClazz.getName();

 assertNotNull(inheritsFromClazz);

 assertTrue(errorMessageExtension,allGeneralizations.contains

 (inheritsFromClazz));

 }if(implementz != ""){

 Class<?> implementsClazz = Class.forName(implementz);

 String errorMessageImplements = clazz.getName()

 + " does not implement " + implementsClazz.getName();

 assertNotNull(implementsClazz);

 assertTrue(errorMessageImplements,

 allGeneralizations.contains(implementsClazz));

 }

 }

 [%}%]

 }

Figure 4.19. Template test method for generalization viewpoint

60

4.4.4. Layered Viewpoint

Layered viewpoint test case is generated using layered viewpoint transformation

model. This model takes two inputs abstract test model and layered view model

which is presented in Figure 4.20. Single JUnit test case file “TestLayered.java”

is generated which can contain multiple test methods depending on the layered

view model used.

rule Layered2JUnit

 transform layeredModel : Model {

 // The EGL template to be invoked

 template : "Layered2JUnit.egl"

 // Output file

 target : "gen/TestLayered.java"

}

Figure 4.20. Layered viewpoint transformation model

Figure 4.21 shows a template test method for the layered viewpoint. Same helper

methods in uses viewpoint is used in the test case. Test method is generated for

each allowed to use below relation. In the test method existence of source and

target packages are verified. Then violation of layered property existence is

checked by using the helper method in Figure 4.15. When calling this method

source package and target package parameters are reversed for finding a uses

relation from target package to source package.

[% for (relation in layeredModel.relations) { %]

 [%if(relation.type().name== "Allowed_To_Use_Below"){%]

@Test

public void test[%="".testName(relation.sourceLayer.name,relation.targetLayer.

 name)%](){

 String sourceLayer ="[%=relation.sourceLayer.name%]" ;

 String targetLayer = "[%=relation.targetLayer.name%]";

 Map<String,String> usesMap=doesSourceUseTarget(targetLayer,sourceLayer);

 Iterator<Entry<String, String>> iterator=usesMap.entrySet().iterator();

 String errorMessage = "";

 while (iterator.hasNext()) {

 Entry<String, String> entry = iterator.next();

 errorMessage += entry.getKey() +" breaks layered relation using " +

 entry.getValue();

 }

 assertTrue(isPackageExistsInGivenList(getSubPackages(sourceLayer),

 sourceLayer));

 assertTrue(isPackageExistsInGivenList(getSubPackages(targetLayer),

 targetLayer));

 assertTrue(errorMessage, usesMap.isEmpty());

 }

 [%}%]

 [%}%]

}

[%

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+"2"+b1+b2;

}

%]

Figure 4.21. Template test method for layered viewpoint

61

4.4.5. Shared Data Viewpoint

Shared data viewpoint test case is generated by executing shared data viewpoint

transformation model which takes shared data view model and abstract test

model. Figure 4.22 shows the transformation model for shared data viewpoint.

This transformation model generates single JUnit test case file called

“TestSharedData.java”. This test case class can contain multiple test methods

depending on the provided shared data view model. Moreover, this test case

contains helper method for test method to execute.

rule SharedData2JUnit

 transform sharedDataModel : Model {

 // The EGL template to be invoked

 template : "sharedData2JUnit.egl"

 // Output file

 target : "gen/TestSharedData.java"

}

Figure 4.22. Shared data viewpoint transformation model

Figure 4.23 shows a helper method for shared data viewpoint test case. This

method returns whether the given method name exists in the given array of

methods. This helper method is used for deciding if the given class structure

contains a method given by its name.

private boolean isMethodExists(Method[] methods, String name) {

 for (Method method : methods) {

 if (method.getName().equals(name)) {

 return true;

 }

 }

 return false;

 }

Figure 4.23. Helper method for method existence checking

Figure 4.24 shows the detail of the template test method for shared data

viewpoint. Method verifies the view criteria for shared data viewpoint for each

attachment in share data model. According to the type of the attachment either

data read or data write method name is extracted. Test first verifies the existence

of the accessor class. Then it verifies if the given method name exists on the

given data accessor class.

62

[% for (attachment in sharedDataModel.attachments) { %]

@Test

public void test[%if(attachment.type().name== "DataRead"){%][%="".testName(

attachment.da.name,attachment.dataRead)%][%}else{%][%="".testName(attachment.d

a.name,attachment.dataWrite)%][%}%]()throws ClassNotFoundException {

 String dataAccessorClassName = "[%=attachment.da.name%]";

 Class<?> accessorClass = Class.forName(dataAccessorClassName);

 assertNotNull(accessorClass);

 String readMethodName = "[%if(attachment.type().name== "DataRead")%]

 [%=attachment.dataRead%]";

 String writeMethodName ="[%if(attachment.type().name == "DataWrite")%]

 [%=attachment.dataWrite%]";

 String failureMessage = accessorClass.getName();

 if (!readMethodName.equals("")) {

 failureMessage += "'s data read property is not satisfied";

 assertTrue(failureMessage,isMethodExists(accessorClass.getMethods(),

 readMethodName));

 }

 if (!writeMethodName.equals("")) {

 failureMessage += "'s data write read property is not satisfied";

 assertTrue(failureMessage, isMethodExists(accessorClass.getMethods(),

 writeMethodName));

 }

 }

[% } %]

}

[%

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

 toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

 toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+b1+b2;

}%]

Figure 4.24. Template test method for shared data viewpoint

4.5. Execution & Report

Test execution is performed using JUnit framework. JUnit is a framework based

on xUnit architecture to write repeatable tests. Figure 4.25(adopted from [9])

shows the core classes of the xUnit test framework architecture.

extends

Test

TestRunner

TestResult TestFixture

TestSuite TestCase

extends extends

runs

collects

results

Figure 4.25. Core classes of xUnit test framework architecture

63

 Test

Test is an interface that contains the run method that takes TestResult instance as

a parameter for running tests and collecting tests results.

 TestResult

Main purposes of running tests are obtaining test results where TestResult class

serves for this purpose. When a tests run method executed the test result instance

is passed to the method as a parameter for collecting the results. This class has

several methods which are addError, addFailure, errorCount, failureCount and

runCount.

 TestCase

Test case is the fundamental class of the xUnit architecture and parent of all unit

tests. Class implements the run method in Test class which is the parent of the

class.

 TestRunner

TestRunner is the class for reporting the details of the test executed and results.

It has two methods run and main where run takes a Test instance as a parameter

and main method indicates that the class is a runnable class.

 TestFixture

TestFixture is more complex test structure where test isolation is achieved. Test

cannot run on manipulated object of the previously executed tests. As a result of

this, TestFixture concept is introduced. Isolation is achieved by using setUp and

tearDown methods running before each test in the test set.

 TestSuite

TestSuite is a class that holds the collection of TestCase instances. TestSuite has

addTest interface where TestCase instance are inserted in TestSuite.

In our case we have generated five test cases for each viewpoint as explained in

the previous section. Each generated test case has multiple test methods inside

for verifying and validating the criteria we defined for each viewpoint. Concrete

test cases generated that are in form of JUnit files which are java files indeed are

executed by java virtual machine (JVM) using JUnit framework.

Jenkins CI is used for reporting of the test execution results. Jenkins CI is a

continuous integration application implemented in Java. Jenkins provides

automated test execution and reporting. Test reporting is handled by generating

HTML reports are which are then sent to the specified user. Test reports present

the result of the JUnit test case.

64

Chapter 5

Case Study

Case study used for our approach is e-government system within STRCT-STI

Institute. The end users of the system are social assistance and solidarity

foundations, general directorate of social assistance and citizens of the nation by

using e-government portal. Different services are provided by the system such as

conditional cash transfer, social assistance and solidarity foundation's service,

general health insurance income test, decision support, widow assistance and

etc... There are 31 million citizens registered to the system. Through the work

hours in weekdays there are 4500 online users, 1001 social assistance and

solidarity foundations that are interacting with the system. Averages of

4,833,341 database transactions are executed per day. Total of 732,430 lines of

code are written in the client and server side of the system. It is a system

integrated with seventeen other institutions communicating with 68 web

services. As a result, we can infer that project X is a large scale software

intensive system. During the development of the system, test driven

development (TDD) technique is adopted. Unit tests and integration tests run

after each new commit to the code base and the results are reported back to

developers. Client side tests also run on nightly builds of the system and report

back the results to developers as well. The system has three main structure the

batch processes, client side and server side implementations. Both client and

server side implementation depends on infrastructure packages. Our approach is

applied on the infrastructure of the server side implementation on five

viewpoints: decomposition, generalization, shared data, uses and layered. Each

viewpoint model is generated based on the save bench viewpoints metamodels.

The server infrastructure of the Project X consists of six thousand lines of codes.

65

The models are used by our testing environment and five test cases are generated

each containing multiple test methods on the given viewpoint.

5.1. Architecture Design of Case Study

Real names of the components will not be given for confidentiality issues. In the

following parts Project X infrastructure architecture will be explained using

architecture views. Each architecture view details will be presented using the

graphical representation of the view.

5.1.1. Shared Data Viewpoint

Project X has two database accessors named PM and QM where each can

perform different operations. Moreover, one repository is present which is

named DB. PM can perform both data read and data write operation on DB.

However, QM can only perform data read operations on DB. Figure 5.1 shows

the shared data view of the project.

Figure 5.1. Shared data view of Project X infrastructure

5.1.2. Decomposition Viewpoint

Project X composed of one main package namely A. A is divided into subparts

as B, C, D, E, G and F. Furthermore, B is decomposed into B1, B2 and B3.

Likewise C is decomposed into C1 and C2. On the other hand, D is decomposed

into three parts D1, D2 and D3 where D1 is decomposed into one more part

called D11. Figure 5.2 shows the decomposition view of the Project X. Each

label represents a package in project X. The hierarchy of the packages is shown

via containment relation.

66

Figure 5.2. Decomposition view of Project X infrastructure

5.1.3. Uses Viewpoint

Diagram representing uses view of project x can be seen in Figure 5.3. B1

package uses itself, B2, B3 and D3 packages. B2 and B3 packages use itself and

F package. Moreover, B package only uses D3 package. D3 package uses itself,

E and D2 packages. E package uses D2 and D3 packages. As can be seen from

the figure C uses F, C1 and C2 packages. On the other hand, F, C1 and C2

packages does not have any uses relation. D uses D11 where D11 uses D and

itself. D2 package uses itself and D2 package. At last G package uses D3 and G

package.

Figure 5.3. Uses view of Project X infrastructure

67

5.1.4. Layered Viewpoint

Project X has three main layered views as shown in Figure 5.4. B1 package is

allowed to use B2 and B3 where B2 and B3 cannot use B1. D3 package is

allowed to use E package and reverse cannot be applied. Moreover, package F is

allowed to C where C is allowed to C1 and C2. C1 and C2 cannot use C as well

as C cannot use F, which directly implies F cannot be used C1 and C2.

Figure 5.4. Layered view of Project X infrastructure

5.1.5. Generalization Viewpoint

In Figure 5.5 generalization view of package B is given in detail. Blue rounded

squares are interfaces and black rounded squares are classes. In the figure, three

types of generalization viewpoint are shown which are interface extensions,

class extension and interface implementation. Class can extend another class and

class can implement an interface. However, interface can only extend another

interface. In the given view model all combinations of such relations are given.

Moreover, in Figure 5.6 generalization view within C package can be seen.

Various generalization relations can be seen in this model as well. Figure 5.7

shows the generalization view within D package. Differently, in Figure 5.8 and

Figure 5.9 generalization relation between packages and within packages can be

seen.

68

Figure 5.5. Generalization view of Project X infrastructure within package B

Figure 5.6. Generalization view of Project X infrastructure within package C

69

Figure 5.7. Generalization view of Project X infrastructure within package D

Figure 5.8. Generalization view of Project X infrastructure between package D and F

Figure 5.9. Generalization view of Project X infrastructure within package F

5.2. Validating the Test Execution Environment

We have applied fault-based testing techniques in order to validate our suggested

approach before we evaluate our approach on presented case study. Software

70

testing is labeled as fault-based testing when it aims to demonstrate of absence

of pre-defined faults [28]. Our motivation for applying fault based testing is to

measure effectiveness of our generated test cases. In order to assess our test

cases we created a mutant copy of our case study with injected faults. Given the

implementation of the case study, we will introduce the following categories of

faults:

 Absence relations

 Divergence relations

As we have discussed in section 5.1 each viewpoint includes its own set of

criteria. As such absence and divergence relations will be based on these defined

criteria. In the next sections we will present our fault injections for each

viewpoint.

5.2.1. Shared Data Viewpoint

In shared data viewpoint we injected the following faults to the implementation

of the case study:

 PM_WRITE and PM_READ relations are removed from the

implementation of the case study. In this injection we expect to find the

absence of relations given that these relations exist in our shared data

view model.

 QM component is removed from the implementation. In this injection we

expect to find the absence of QM component given that this component

is present in our shared data view model.

Figure 5.10 presents the shared data view representation of mutant

implementation. As can be seen there are four absences from the model

presented in Figure 5.1 which are the absence of QM, QM_READ, PM_READ

and PM_WRITE. We expect to find each absence in the test case we generated

using model presented in Figure 5.1.

71

Figure 5.10. Shared data view representation of mutant implementation

5.2.2. Decomposition Viewpoint

In decomposition viewpoint we injected following faults to the implementation

of the case study:

 Package F is removed from the content of package A. In this injection we

expect to find the divergence of package hierarchy given that package F

is located under package A in decomposition view model.

 Package E is removed from the case study. In this injection we expect to

detect the absence of package E given that package E is presented in

decomposition view model.

Figure 5.11 presents the decomposition view representation of mutant

implementation. Packages F and E are removed from implementation. We

expect to detect faults injected using the test case generated from the model

presented in Figure 5.2.

Figure 5.11. Decomposition view representation of mutant implementation

72

5.2.3. Uses Viewpoint

In uses viewpoint we injected the following faults to the implementation of the

case study:

 Package C is removed from the case study implementation. In this fault

injection we expect to find the absence of package C given that package

C is presented in uses view model. The subpackages of C package are

moved out of this package to under package A.

 Uses relation of B3 to F is removed from the case study implementation.

In this fault injection we expect to find the absence of B3 to F uses

relation given that removed relation is presented in uses view model.

 Uses relation of B to D3 is altered to B to D in the case study

implementation. In this fault injection we expect to find the divergence of

B's package relation from D3 to D given that uses view model contains

the use relation of B to D3.

Figure 5.12 presents the uses view representation of mutant implementation.

Stated faults are injected to the implementation and we expect to detect the

absence of C, absence of relation B3 to F and divergence of relation B to D3.

Figure 5.12. Uses view representation of mutant implementation

73

5.2.4. Layered Viewpoint

In layered viewpoint we injected the following faults to the implementation of

the case study:

 Uses relation from package C to package F is introduced to the

implementation of the case study. In this fault injection we expect to

detect divergence in violation of layered property in allowed to use

below relation of F to C.

 Package C1 is removed from the implementation of the case study. In

this fault injection we expect to find the absence of package C1 given

that layered view model contains the package C1.

Figure 5.13 presents the layered view of mutant implementation. We expect to

detect layered property violation and absence of C1 package.

Figure 5.13. Layered view representation of mutant implementation

5.2.5. Generalization Viewpoint

In generalization viewpoint we injected the following faults to the

implementation of the case study:

 F_2 component is removed from the implementation of the case study in

order to detect the absence of the component given that generalization

view model contains component F_2.

74

 Inheritance by extension relation between F_1 and F1_1 is removed from

the implementation of the case study in order to detect the absence of

generalization relation given that generalization view model contains

such relation.

 Inheritance by implementation relation between F_1 and F_2 is removed

from the implementation of the case study in order to detect the absence

of the generalization relation given that generalization view model

contains such relation.

 Inheritance by implementation relation between PM and F_4 altered to

PM and F_3 in order to detect the divergence of the generalization

relation given that generalization view model contains PM and F_4

generalization relation.

 Inheritance by extension relation between F1_1 and F_1 altered to F1_1

and C1_2 in order to detect the divergence of the generalization relation

given that generalization view model contains F1_1 and F_1

generalization relation.

Figure 5.14 presents the generalization view of mutant implementation. We

expect to detect all the faults injected with the case generated using

generalization view model from Figure 5.9.

Figure 5.14. Generalization view representation of mutant implementation

5.2.6. Summary

As presented in previous sections we have injected faults to the implementation

of the case study for each viewpoint with respect to defined view criteria. Our

mutant copy of case study contained 15 faults injected. We have injected every

possible fault with respect to architecture view criteria defined in section 5.1.

Therefore, we ensure that our approach will detect every possible bug we expect

75

to detect. In this section we present the results of detected faults within the

injected faults. Table 6 shows the fault-based testing results for each viewpoint.

As can be seen from the table all the injected faults are detected successfully by

our MDABT approach using architecture viewpoints.

Table 6. Fault-based testing results for each viewpoint

Viewpoint/Fault Detection # of Faults Detected # of Faults Not

Detected

Shared Data Viewpoint 3 0

Decomposition Viewpoint 2 0

Uses Viewpoint 3 0

Layered Viewpoint 2 0

Generalization Viewpoint 5 0

5.3. Test Execution Results

In the following sections test execution results will be presented for each

viewpoint. The results will be discussed and the meaning of the test cases results

will be explained. Table 7 shows the summary of the test execution result for

each viewpoint. It can be seen that tests for shared data, decomposition and

generalization viewpoints have executed successfully. However, we found

inconsistencies between implementation and architecture for uses and layered

viewpoints. Further details will be given in following subsections for each

viewpoint.

Table 7. Testing results for each viewpoint

Viewpoint/Test Result # of Test Passed # of Test Failed

Shared Data Viewpoint 3 0

Decomposition Viewpoint 15 0

Uses Viewpoint 21 1

Layered Viewpoint 5 1

Generalization Viewpoint 82 0

5.3.1. Shared Data Viewpoint

In shared data viewpoint all the tests within created file executed successfully.

This result implies that two data accessors specified in our shared data view

model exists in our code. The operation rights given in the model that they can

perform on repositories conforms to our implementation. This test shows that

code did not drift away from the architecture in shared data viewpoint.

76

5.3.2. Decomposition Viewpoint

All the tests in the created file for decomposition viewpoint test case executed

successfully. This result implies that decomposition view implemented in code

level conforms to our architecture model. Simply, code level implementation did

not drift away from our architecture in terms of decomposition of the system.

5.3.3. Uses Viewpoint

In uses viewpoint one of the tests created within test case file failed while other

tests executed successfully. In the failed test none of the classes within C

package uses any of the classes in C2 package whereas uses view model shows

use relation between C and C2 packages. This result shows the code has drifted

away from architecture mainly on C package and its uses relations.

5.3.4. Layered Viewpoint

In layered viewpoint one of the tests created within test case file failed while

other tests executed successfully. The reason for the failure of the single test

within the test case is the allowed to use below relation between C and C1

packages where some class of C1 package breaks layered relation by using some

class of C package. This result implies that code level implementation has

drifted away from architecture of the system in for layered style in C.

5.3.5. Generalization Viewpoint

In generalization viewpoint all the tests created within test case file executed

successfully. This result implies that all the generalization relation given in the

generalization view model is implemented in the code level. Moreover, code

level implementation did not drift away from architecture specified.

5.4. Discussion

Our MDABT approach for architecture to code conformance applied on huge

industrial systems infrastructure. Details of the case study are given in the

previous sections with statistical facts obtained from the system. Likewise, test

execution results and test execution result meanings explained in previous

section. Our approach show both the implementation drifting away from the

given architecture model and code conformance to given architecture model. It is

important to see that conformance relation is unidirectional where only

components specified in the architecture view models are validated and verified

77

against the implementation level. Our approach cannot find conformance of

components specified in the implementation level to architecture level. For

instance, if we have an extra component in the implementation level that does

not exist in architecture level our approach cannot decide the conformance of the

specified component. Therefore, we assume that our architecture model which is

our reference point for testing is both complete and correct.

78

Chapter 6

Related Work

Several systematic literature reviews have been published on model based

testing. Arilo et al. [25] published a SLR on suggested model based testing

approaches in 2007. Moreover, in [26] SLR on tool support for model based

testing have been published. However, to our best knowledge no SLR on model

driven architecture based testing have been proposed by any author. In this thesis

we have presented a SLR on MDABT with 12 filtered primary studies.

Moreover, as we have shown in the SLR in section 2 most MDABT approaches

do not explicitly use architecture views. Two of the studies which use obs-

functions to reduce the complexity of abstract test model use the view keyword.

However, these studies do not address the architecture view definition in their

suggested approaches.

Architecture based testing first presented at workshop of ISAW '96 Joint

Proceedings of the Second International Software Architecture Workshop in

1996 by Bertolino et al [10] and Richardson et al. [11]. Since then many studies

are presented on this domain by different researchers. In 2000 Bertolino et al.

published a study [12] in which software architecture is specified by CHAM and

transformed into a test model based on ALTS. Later Muccini et al. changed the

architecture specifications from CHAM to FSP and used the same test model

[14]. Jin et al. [13] defined test criteria for architecture based testing and

performed testing at architectural level using Wright ADL as architecture

specification and behavior graph as test model. This study presented generic test

criteria for architecture based testing at architecture level. Moreover, in [15] and

[16] authors exploited architecture style and model-checking results for using in

architecture based testing respectively. For the first time the unified modeling

language (UML) is used as architecture specification for architecture based

79

testing [17]. Test model for this study was the IOLTS and TGV tool is used for

test case generation. Furthermore, different type of architecture based testing

was applied in [18]. There is no explicit architecture specification or test model

but testing was carried using event based technique. Simply the assertions are

performed on the expected fired event and actual emitted event. Later Muccini et

al. introduced the concept of architecture based regression testing [19] to the

literature using previous work setup of architecture based testing process. In [20]

authors use AADL to specify the architecture and automata as test model of the

architecture based testing process model given in systematic literature review.

Another different approach is adapted by [21] where ACME was used as

architecture specification language and PetriNet was used as test model. At last

in [22] again UML is utilized for describing the system architecture and test

model they defined used for generating the concrete test cases. In this study

different from other studies service oriented architecture was tested by the

approach they suggested. Most of the studies described above used small scale

examples for empirical evaluation of their approaches. In this thesis as we have

shown in chapter 5 we have tested our approach on an ongoing complex industry

project.

80

Chapter 7

Conclusion

As software architecture become more substantial standards have been defined

for description of the software architecture. Using software architecture in

software testing is a developing research area. Current literature offers greatly

varying techniques for architecture based testing. Some of the studies test the

validness of the architecture by defining architectural properties. Others exploit

the information embedded in architecture to perform testing at the code level.

Different approaches yields for different concerns for testing. In this work we

presented model driven architecture based testing using architecture viewpoint.

We have defined our architecture model in terms of architecture views that maps

to different stakeholder concerns. By defining such architecture model we were

able to systematically test each specific concern of the stakeholder separately at

the code level. We generated a test case for each architecture view and executed

tests and generated test results of the test cases. Moreover, current literature uses

small scale examples for evaluating their approaches. However, we applied our

approach on ongoing actively used industry project having 4500 active users

throughout the day and millions of database transaction executions per day.

Having applied our approach on such big scale system we have found

architecture to code differences. Moreover, studies in the current literature all

used different technologies for model development of their approach. In this

thesis, we have used Eclipse Epsilon framework for implementing our approach.

Eclipse Epsilon framework offers a great variety of tools, languages and plug-ins

for implementing model based solutions.

At last we hope that our study paves the way for new research activities and

contributes to the work of other researchers in this domain. We have

81

successfully implemented model driven architecture based testing using

architecture viewpoints approach for architecture to code conformance concern.

When analyzing the architecture with respect to the code we can distinguish

among divergence and absence relations. In the current work we have focused

on the absence relations that define the missing concerns in the code which are

imposed by the architecture. The divergent properties, that are elements in the

code not reflected in the architecture, have not been considered within the

context of this thesis. We consider this as our future work. Another future work

direction is the focus on the architecture based testing for testing the systemic

properties at the architecture design level itself.

82

Bibliography

[1] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson,

R. Nord, J. Stafford. Documenting Software Architectures: Views and

Beyond. Second Edition. Addison-Wesley, 2010.

[2] [ISO/IEC 42010:2007] Recommended practice for architectural description

of software-intensive systems (ISO/IEC 42010). (Identical to ANSI/IEEE

Std1471–2000), July, 2014.

[3] B. Tekinerdogan, E. Demirli. "Evaluation Framework for Software

Architecture Viewpoint Languages". in Proc. of Ninth International ACM

Sigsoft Conference on the Quality of Software Architectures Conference

(QoSA 2013), Vancouver, Canada, pp. 89-98,June 17-21, 2013.

[4] M. Utting, A. Pretschner, B. Legeard. A taxonomy of model-based testing

approaches. Software Testing, Verification and Reliability, 2011.

[5] B. Kitchenham, S. Charters. Guidelines for performing Systematic Literature

Reviews in Software Engineering. (E. T. Report, Ed.)Engineering, 2(EBSE

2007-001), 1051, 2007 doi:10.1145/1134285.1134500

[6] B. Kitchenham, D. Budgen, O. P. Brereton, M. Turner, J. Bailey, S.

Linkman, Systematic literature reviews in software engineering - A

systematic literature review. Inf. Softw. Technol. 51, 1 (January 2009), 7-15.

DOI=10.1016/j.infsof.2008.09.009

[7] Epsilon – model driven development IDE, http://eclipse.org/epsilon, last

accessed on April, 2015.

[8] Reflections- reflections library built by Google in Java,

https://code.google.com/p/reflections, last accessed on April, 2015.

[9] P. Hamill. Unit Test Frameworks. First Edition. O’Reilly, January, 2015.

[10] A. Bertolino,P. Inverardi."Architecture-based Software Testing". ISAW.

Joint Proceedings of the Second International Software Architecture

Workshop, 1996. pp.62-64.

[11] D.J. Richardson,A.L. Wolf."Software testing at the architectural level".

ISAW. Joint Proceedings of the Second International Software Architecture

Workshop, 1996. pp.68-71.

http://eclipse.org/epsilon
https://code.google.com/p/reflections

83

[12] A. Bertolino,F. Corradini,P. Inverardi,H. Muccini."Deriving Test Plans

from Architectural Descriptions". Software Engineering.Proceedings of the

2000 International Conference, 2000. pp. 220-229.

[13] Z. Jin, J. Offutt."Deriving Tests From Software Architectures". Software

Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th International

Symposium. pp. 160-171.

[14] H.Muccini,P. Inverardi, A. Bertolino. "Using software architecture for code

testing", Software Engineering, IEEE Transactions on, vol.30, no.3, pp.160-

171, March 2004.

[15] H. Muccini, M. Dias, D. J. Richardson. "Systematic Testing of Software

Architectures in the C2 Style",Lecture Notes in Computer Science. pp. 295-

309.2004.

[16] A. Bucchiarone, H. Muccini, P. Pelliccione, P. Pierini. "Model-Checking

plus Testing from Software Architecture Analysis to Code Testing",Lecture

Notes in Computer Science. pp. 351-365.2004.

[17] G. Scollo, S. Zecchini. "Architectural Unit Testing", Electronic Notes in

Theoretical Computer Science, Volume 111, 1 January,pp. 27-52. 2005.

[18] K. Winbladh, A. T. Alspaugh,H. Ziv, D. J. Richardson."Architecture Based

Testing Using Goals and Plans",Proceedings of the ISSTA 2006 workshop

on Role of software architecture for testing and analysis. pp. 64-68.2006.

[19] H. Muccini, M. Dias, D. J. Richardson."Software Architecture-Based

Regression Testing",JSS, Special Edition on Architecting Dependable

Systems. pp.1-18. 2006.

[20] A. Johnsen,P. Pettersson,K. Lundqvist. "An Architecture-Based

Verification Technique for AADL Specifications",Lecture Notes in

Computer Science. pp. 105-113.2009.

[21] H. Reza, S. Lande. "Model Based Testing Using Software

Architecture",Information Technology: New Generations (ITNG), 2010

Seventh International Conference. pp. 188-193.

[22] C. Keum, S Kang, M. Kim."Architecture-Based Testing of Service-

Oriented Applications In Distributed Systems",Information and Software

Technology, Volume 55, Issue 7,pp. 1212-1223. July 2013.

84

[23] [ISO/IEC/IEEE 42010:2011] Systems and software engineering —

Architecture description is an international standard for architecture

descriptions of systems and software (ISO/IEC/IEEE 42010), May 2014.

[24] [ANSI/IEEE 1059:1993] Software Verification and Validation Plan

(ANSI/IEEE 1059), May 2014.

[25] C. Arilo, N. Dias, S. Rajesh, V. Marlon, H. T. Guilherme. 2007. "A survey

on model-based testing approaches: a systematic review". In Proceedings of

the 1st ACM international workshop on Empirical assessment of software

engineering languages and technologies: held in conjunction with the 22nd

IEEE/ACM International Conference on Automated Software Engineering

(ASE). pp. 31-16. 2007.

[26] M. Shafique, Y,Labiche. "A systematic review of model based testing tool

support". Carleton University, Canada, Tech. Rep. Technical Report SCE-

10-04, 2010.

[27] M. Lochau, S. Lity, R. Lachmann, I. Schaefer, U. Goltz. "Delta-oriented

Model-Based Integration Testing of Large-Scale Systems". Journal of

Systems and Software. pp. 63-84.2014.

[28] L. J. Morell. A theory of fault-based testing. IEEE Transactions on

Software Engineering, 16 (8): 844–857, 1990.

85

Appendix A - Search Strings

Electronic

Database

Search String

IEEE Xplore

(("Document Title":"model based testing" OR "Document Title":"model

based software testing" OR

"Document Title":"model-based testing" OR "Document Title":"model-

based software testing" OR

"Document Title":"model driven testing" OR "Document Title":"model

driven software testing" OR

"Document Title":"model-driven testing" OR "Document Title":"model-

driven software testing" OR

"Document Title":"model based test" OR "Document Title":"model based

software test" OR

"Document Title":"model-based test" OR "Document Title":"model-

based software test" OR

"Document Title":"model driven test" OR "Document Title":"model

driven software test" OR

"Document Title":"model-driven test" OR "Document Title":"model-

driven software test"

) AND ("Document Title":"architecture")) OR ("Document

Title":"architecture based testing" OR "Document Title":"architecture based

software testing" OR

"Document Title":"architecture-based testing" OR "Document

Title":"architecture-based software testing" OR

"Document Title":"architecture driven testing" OR "Document

Title":"architecture driven software testing" OR

"Document Title":"architecture-driven testing" OR "Document

Title":"architecture-driven software testing" OR

"Document Title":"architecture based test" OR "Document

Title":"architecture based software test" OR

"Document Title":"architecture-based test" OR "Document

Title":"architecture-based software test" OR

"Document Title":"architecture driven test" OR "Document

Title":"architecture driven software test" OR

"Document Title":"architecture-driven test" OR "Document

Title":"architecture-driven software test"

) OR

(("Abstract":"model based testing" OR "Abstract":"model based software

testing" OR

"Abstract":"model-based testing" OR "Abstract":"model-based software

testing" OR

"Abstract":"model driven testing" OR "Abstract":"model driven software

testing" OR

"Abstract":"model-driven testing" OR "Abstract":"model-driven software

testing" OR

"Abstract":"model based test" OR "Abstract":"model based software test"

OR

"Abstract":"model-based test" OR "Abstract":"model-based software test"

OR

"Abstract":"model driven test" OR "Abstract":"model driven software

test" OR

"Abstract":"model-driven test" OR "Abstract":"model-driven software

test"

) AND ("Abstract":"architecture")) OR ("Abstract":"architecture based

testing" OR "Abstract":"architecture based software testing" OR

"Abstract":"architecture-based testing" OR "Abstract":"architecture-based

software testing" OR

"Abstract":"architecture driven testing" OR "Abstract":"architecture

86

driven software testing" OR

"Abstract":"architecture-driven testing" OR "Abstract":"architecture-

driven software testing" OR

"Abstract":"architecture based test" OR "Abstract":"architecture based

software test" OR

"Abstract":"architecture-based test" OR "Abstract":"architecture-based

software test" OR

"Abstract":"architecture driven test" OR "Abstract":"architecture driven

software test" OR

"Abstract":"architecture-driven test" OR "Abstract":"architecture-driven

software test"

ACM Digital

Library

((Title:"model based testing" OR Title:"model based software testing"

OR

Title:"model-based testing" OR Title:"model-based software testing" OR

Title:"model driven testing" OR Title:"model driven software testing"

OR

Title:"model-driven testing" OR Title:"model-driven software testing"

OR

Title:"model based test" OR Title:"model based software test" OR

Title:"model-based test" OR Title:"model-based software test" OR

Title:"model driven test" OR Title:"model driven software test" OR

Title:"model-driven test" OR Title:"model-driven software test"

) AND (Title:"architecture")) OR (Title:"architecture based testing" OR

Title:"architecture based software testing" OR

Title:"architecture-based testing" OR Title:"architecture-based software

testing" OR

Title:"architecture driven testing" OR Title:"architecture driven software

testing" OR

Title:"architecture-driven testing" OR Title:"architecture-driven software

testing" OR

Title:"architecture based test" OR Title:"architecture based software test"

OR

Title:"architecture-based test" OR Title:"architecture-based software test"

OR

Title:"architecture driven test" OR Title:"architecture driven software

test" OR

Title:"architecture-driven test" OR Title:"architecture-driven software

test"

) OR

((Abstract:"model based testing" OR Abstract:"model based software

testing" OR

Abstract:"model-based testing" OR Abstract:"model-based software

testing" OR

Abstract:"model driven testing" OR Abstract:"model driven software

testing" OR

Abstract:"model-driven testing" OR Abstract:"model-driven software

testing" OR

Abstract:"model based test" OR Abstract:"model based software test" OR

Abstract:"model-based test" OR Abstract:"model-based software test" OR

Abstract:"model driven test" OR Abstract:"model driven software test"

OR

Abstract:"model-driven test" OR Abstract:"model-driven software test"

) AND (Abstract:"architecture")) OR (Abstract:"architecture based

testing" OR Abstract:"architecture based software testing" OR

Abstract:"architecture-based testing" OR Abstract:"architecture-based

software testing" OR

Abstract:"architecture driven testing" OR Abstract:"architecture driven

software testing" OR

Abstract:"architecture-driven testing" OR Abstract:"architecture-driven

87

software testing" OR

Abstract:"architecture based test" OR Abstract:"architecture based

software test" OR

Abstract:"architecture-based test" OR Abstract:"architecture-based

software test" OR

Abstract:"architecture driven test" OR Abstract:"architecture driven

software test" OR

Abstract:"architecture-driven test" OR Abstract:"architecture-driven

software test")

Wiley

Interscience

("model based testing" OR "model based software testing" OR "model-

based testing" OR "model-based software testing" OR "model driven

testing" OR "model driven software testing" OR "model-driven testing" OR

"model-driven software testing" OR "model based test" OR "model based

software test" OR "model-based test" OR "model-based software test" OR

"model driven test" OR "model driven software test" OR "model-driven test"

OR "model-driven software test") AND ("architecture based testing" OR

"architecture based software testing" OR "architecture-based testing" OR

"architecture-based software testing" OR "architecture driven testing" OR

"architecture driven software testing" OR "architecture-driven testing" OR

"architecture-driven software testing" OR "architecture based test" OR

"architecture based soft-ware test" OR "architecture-based test" OR

"architecture-based software test" OR "architecture driven test" OR

"architecture driven software test" OR "architecture-driven test" OR

"architecture-driven software test")

Science Direct

(((Title(model based testing) OR Title(model based software testing) OR

Title(model-based testing) OR Title(model-based software testing) OR

Title(model driven testing) OR Title(model driven software testing) OR

Title(model-driven testing) OR Title(model-driven software testing) OR

Title(model based test) OR Title(model based software test) OR

Title(model driven test) OR Title(model driven software test) OR

Title(model-driven test) OR Title(model-driven software test)) AND

(Title(architecture)))

OR (

Title(architecture based testing) OR Title(architecture based software

testing) OR

Title(architecture-based testing) OR Title(architecture-based software

testing) OR

Title(architecture driven testing) OR Title(architecture driven software

testing) OR

Title(architecture-driven testing) OR Title(architecture-driven software

testing) OR

Title(architecture based test) OR Title(architecture based software test)

OR

Title(architecture-based test) OR Title(architecture-based software test)

OR

Title(architecture driven test) OR Title(architecture driven software test)

OR

Title(architecture-driven test) OR Title(architecture-driven software

test)))

OR

(((Abstract(model based testing) OR Abstract(model based software

testing) OR

Abstract(model-based testing) OR Abstract(model-based software

testing) OR

Abstract(model driven testing) OR Abstract(model driven software

testing) OR

Abstract(model-driven testing) OR Abstract(model-driven software

testing) OR

Abstract(model based test) OR Abstract(model based software test) OR

Abstract(model driven test) OR Abstract(model driven software test) OR

88

Abstract(model-driven test) OR Abstract(model-driven software test))

AND

(Abstract(architecture)))

OR (

Abstract(architecture based testing) OR Abstract(architecture based

software testing) OR

Abstract(architecture-based testing) OR Abstract(architecture-based

software testing) OR

Abstract(architecture driven testing) OR Abstract(architecture driven

software testing) OR

Abstract(architecture-driven testing) OR Abstract(architecture-driven

software testing) OR

Abstract(architecture based test) OR Abstract(architecture based software

test) OR

Abstract(architecture-based test) OR Abstract(architecture-based

software test) OR

Abstract(architecture driven test) OR Abstract(architecture driven

software test) OR

Abstract(architecture-driven test) OR Abstract(architecture-driven

software test)))

Springer

("model based testing" OR "model based software testing" OR "model-

based testing" OR "model-based software testing" OR "model driven

testing" OR "model driven software testing" OR "model-driven testing" OR

"model-driven software testing" OR "model based test" OR "model based

software test" OR "model-based test" OR "model-based software test" OR

"model driven test" OR "model driven software test" OR "model-driven test"

OR "model-driven software test") AND ("architecture based testing" OR

"architecture based software testing" OR "architecture-based testing" OR

"architecture-based software testing" OR "architecture driven testing" OR

"architecture driven software testing" OR "architecture-driven testing" OR

"architecture-driven software testing" OR "architecture based test" OR

"architecture based soft-ware test" OR "architecture-based test" OR

"architecture-based software test" OR "architecture driven test" OR

"architecture driven software test" OR "architecture-driven test" OR

"architecture-driven software test")

ISI Web of

Knowledge

(((TS="model based testing" OR TS="model based software testing" OR

TS="model-based testing" OR TS="model-based software testing" OR

TS="model driven testing" OR TS="model driven software testing" OR

TS="model-driven testing" OR TS="model-driven software testing" OR

TS="model based test" OR TS="model based software test" OR

TS="model driven test" OR TS="model driven software test" OR

TS="model-driven test" OR TS="model-driven software test") AND

(TS="architecture"))

OR (

TS="architecture based testing" OR TS="architecture based software

testing" OR

TS="architecture-based testing" OR TS="architecture-based software

testing" OR

TS="architecture driven testing" OR TS="architecture driven software

testing" OR

TS="architecture-driven testing" OR TS="architecture-driven software

testing" OR

TS="architecture based test" OR TS="architecture based software test"

OR

TS="architecture-based test" OR TS="architecture-based software test"

OR

TS="architecture driven test" OR TS="architecture driven software test"

OR

TS="architecture-driven test" OR TS="architecture-driven software

test"))

89

Appendix B – List of Primary

Studies
A. A. Bertolino,F. Corradini,P. Inverardi,H. Muccini. "Deriving Test Plans from

Architectural Descriptions". Software Engineering.Proceedings of the 2000

International Conference, 2000. pp. 220-229.

B. Z. Jin, J. Offutt."Deriving Tests From Software Architectures". Software

Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th International

Symposium. pp. 160-171.

C. H. Muccini, P. Inverardi, A. Bertolino. "Using software architecture for code

testing", Software Engineering, IEEE Transactions on , vol.30, no.3,

pp.160,171, March 2004.

D. H. Muccini, M. Dias, D. J. Richardson. "Systematic Testing of Software

Architectures in the C2 Style",Lecture Notes in Computer Science. pp. 295-

309.2004.

E. A. Bucchiarone, H. Muccini, P. Pelliccione, P. Pierini. "Model-Checking

plus Testing from Software Architecture Analysis to Code Testing",Lecture

Notes in Computer Science. pp. 351-365. 2004.

F. G. Scollo, S. Zecchini. "Architectural Unit Testing", Electronic Notes in

Theoretical Computer Science, Volume 111, 1 January,pp. 27-52. 2005.

G. K. Winbladh, A. T. Alspaugh, H. Ziv, D. J. Richardson."Architecture Based

Testing Using Goals and Plans",Proceedings of the ISSTA 2006 workshop

on Role of software architecture for testing and analysis. pp. 64-68.2006.

H. H. Muccini, M. Dias, D. J. Richardson."Software Architecture-Based

Regression Testing",JSS, Special Edition on Architecting Dependable

Systems. pp.1-18. 2006.

İ. A. Johnsen, P. Pettersson, K. Lundqvist. "An Architecture-Based

Verification Technique for AADL Specifications",Lecture Notes in

Computer Science. pp. 105-113.2009.

J. H. Reza, S. Lande. "Model Based Testing Using Software

Architecture",Information Technology: New Generations (ITNG), 2010

Seventh International Conference. pp. 188-193.

K. C. Keum, S Kang, M. Kim."Architecture-Based Testing of Service-Oriented

Applications In Distributed Systems",Information and Software Technology,

Volume 55, Issue 7,pp. 1212-1223. July 2013.

L. M.Lochau, S.Lity, R. Lachmann, I. Schaefer,U. Goltz. "Delta-oriented

Model-Based Integration Testing of Large-Scale Systems". Journal of

Systems and Software. pp. 63-84.2014.

90

Appendix C - Study Quality

Assessment

Quality of

Reporting
Rigor Credibility Relevance

Primary

study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

A 1 1 1 1 1 1 0 1 0.5 0.5 8

B 1 1 1 0,5 0,5 1 0 1 0,5 0,5 7

C 1 1 1 1 1 1 0 1 1 1 9

D 1 1 1 1 1 1 0 1 0,5 0,5 8

E 1 1 1 1 1 1 0 1 1 0,5 8,5

F 1 1 1 1 1 1 0 1 1 1 9

G 1 1 1 1 1 1 0 0,5 0,5 0,5 7,5

H 1 1 1 1 1 1 0 0,5 1 0,5 8

İ 1 1 1 1 1 1 0 1 1 1 9

J 1 0,5 1 0,5 1 1 0 1 0,5 0,5 7

K 1 1 1 1 1 0,5 0 1 1 0,5 8

L 1 1 1 1 1 1 0 1 1 1 9

91

Appendix D - Data Extraction Form

Study

description
Extraction element Contents

General Information

1 ID Unique id for the study

2 SLR Category Include Exclude

3 Title Full title of the article

4 Date of Extraction The date it is added into repository

5 Year The publication year

6 Authors

7 Repository ACM, IEEE, ISI Web of Knowledge,

Science Direct, Springer, Wiley Interscience

8 Type Journal Article Book Chapter

Study Description

9 Addressed Concern Code to Architecture Conformity

 Functional Concern

10 Test Criteria Coverage Criteria Test Purpose Matching

11 Software Architecture

Description Language

CHAM, Wright ADL, FSP Model, UML

State, Sequence, Component Diagrams,

GoalML, AADL, Acme ADL, BPEL

12 Test Model LTS , BG, Promela, LTL Formulae, Buchi

Automata, IOLTS, Uppaal, HPrTNS, ECFG,

eDeltaModels

13 Test Case Execution Automatic Manual

14 Test Case Generation Automatic Manual

15 Test Oracle Automatic Manual

16 Assessment Approach Case Study Experiment Small

Example

17 Findings

18 Constraints / Limitations

Evaluation

19 Personal note The opinions of the reviewer about the study

20 Additional note Publication details

21 Quality Assessment Detailed quality scores

92

Appendix E - Implementation Detail

GENERALIZATION VIEWPOINT

ABSTRACT TEST MODEL
package test;

import static org.junit.Assert.assertTrue;

import static org.junit.Assert.assertNotNull;

import java.util.ArrayList;

import java.util.List;

import org.junit.Test;

public class TestGeneralization {

private List<Class<?>> getGeneralizations(Class<?>classObject) {

 if (classObject == null) {

 returnArrays.asList();

 }

 List<Class<?>> generalizations = new ArrayList<Class<?>>();

 generalizations.add(classObject);

 generalizations.addAll(getGeneralizations(classObject.getSuperclass()));

 Class<?>[] superInterfaces = classObject.getInterfaces();

 for (int i = 0; i<superInterfaces.length; i++) {

 generalizations.addAll(getGeneralizations(superInterfaces[i]));

 }

 return generalizations;

}

[%for (declaration in generalization.decl){%]

@Test

public void test[%="".testName(declaration.child.name,declaration.parent.name)

 %]()throws ClassNotFoundException {

 String className = "[%=declaration.child.name%]";

 String inheritsFrom = "";

 String implementz = "";

 [%if(declaration.type().name== "Inheritance"){%]

 inheritsFrom = "[%=declaration.parent.name%]";

 [%}else{%]

 implementz = "[%=declaration.parent.name%]";

 [%}%]

 Class<?> clazz = Class.forName(className);

 List<Class<?>> allGeneralizations = getGeneralizations(clazz);

 assertNotNull(clazz);

 if(inheritsFrom != ""){

 Class<?> inheritsFromClazz = Class.forName(inheritsFrom);

 String errorMessageExtension = clazz.getName() + "does not extend "

 + inheritsFromClazz.getName();

 assertNotNull(inheritsFromClazz);

 assertTrue(errorMessageExtension,allGeneralizations.contains

 (inheritsFromClazz));

 }

 if(implementz != ""){

 Class<?> implementsClazz = Class.forName(implementz);

 String errorMessageImplements = clazz.getName()+ " does not implement " +

 implementsClazz.getName();

 assertNotNull(implementsClazz);

 assertTrue(errorMessageImplements,

 allGeneralizations.contains(implementsClazz));

 }

 }

 [%}%]

 }

[%

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2)

 .toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2)

 .toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+"Of"+b1+b2;

}%]

93

TRANSFORMATION TEST MODEL
rule Generalization2JUnit

 transform generalization : GeneralizationModel {

 // The EGL template to be invoked

 template :"Generalization2JUnit.egl"

 // Output file

 target :"gen/TestGeneralization.java"

}

DECOMPOSITION VIEWPOINT

ABSTRACT TEST MODEL

package test;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.List;

import java.util.Set;

import org.junit.Assert;

import org.junit.Test;

import org.reflections.Reflections;

import org.reflections.scanners.ResourcesScanner;

import org.reflections.scanners.SubTypesScanner;

import org.reflections.util.ClasspathHelper;

import org.reflections.util.ConfigurationBuilder;

import org.reflections.util.FilterBuilder;

public class TestDecomposition {

 private List<Package> getSubPackages(String packageName) {

 List<Package>packageList = new ArrayList<Package>();

 List<ClassLoader>classLoadersList = new LinkedList<ClassLoader>();

 classLoadersList.add(ClasspathHelper.contextClassLoader());

 classLoadersList.add(ClasspathHelper.staticClassLoader());

 Reflections reflections = new Reflections(new ConfigurationBuilder()

 .setScanners(new SubTypesScanner(false),new ResourcesScanner())

 .setUrls(ClasspathHelper.forClassLoader(classLoadersList

 .toArray(new ClassLoader[0]))).filterInputsBy(new

 FilterBuilder().include(FilterBuilder.prefix(packageName))));

 Set<Class<? extends Object>>allClasses = reflections.getSubTypesOf

 (Object.class);

 for (Class<? extends Object>clazz : allClasses) {

 if (!packageList.contains(clazz.getPackage())) {

 packageList.add(clazz.getPackage());

 }

 }

 return packageList;

 }

private Boolean isPackageExistsInGivenList(List<Package> packageList,

 String packageName) {

 for (Package pack : packageList) {

 if (pack.getName().equals(packageName)) {

 return true;

 }

 if (pack.getName().length() >packageName.length()) {

 if (pack.getName().substring(0, packageName.length()).equals(packageName))

 {

 return true;

 }

 }

 }

 return false;

 }

 [%for (element in decomposition.elements){%]

 [%for (subelement in element.subelements){%]

@Test

public void test[%="".testName(element.name,subelement.name)%]() {

 String decomposedPackageName = "[%=element.name%]";

 String subPackageName = "[%=subelement.name%]";

 Assert.assertTrue(isPackageExistsInGivenList(

 getSubPackages(decomposedPackageName),decomposedPackageName));

 Assert.assertTrue(isPackageExistsInGivenList(

94

 getSubPackages(subPackageName), subPackageName));

 Assert.assertTrue(isPackageExistsInGivenList(

 getSubPackages(decomposedPackageName), subPackageName));

 }

 [%}%]

[%}%]

}

[%

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

 toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

 toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+"DecomposedOf"+b1+b2;

}

%]

TRANSFORMATION TEST MODEL
rule Decomposition2JUnit

 transform decomposition : Model {

 // The EGL template to be invoked

 template :"Decomposition2JUnit.egl"

 // Output file

 target :"gen/TestDecomposition.java"

}

SHARED DATA VIEWPOINT

package test;

import static org.junit.Assert.assertTrue;

import static org.junit.Assert.assertNotNull;

import java.lang.reflect.Method;

import org.junit.Test;

public class TestSharedData {

private Boolean isMethodExists(Method[] methods, String name) {

 for (Method method : methods) {

 if (method.getName().equals(name)) {

 return true;

 }

 }

 return false;

}

[% for (attachment in sharedDataModel.attachments) { %]

@Test

public void test[%if(attachment.type().name== "DataRead"){%][%="".testName(

attachment.da.name,attachment.dataRead)%][%}else{%][%="".testName(attachment.da

.name,attachment.dataWrite)%][%}%]()throws ClassNotFoundException {

 String dataAccessorClassName = "[%=attachment.da.name%]";

 Class<?> accessorClass = Class.forName(dataAccessorClassName);

 assertNotNull(accessorClass);

 String readMethodName = "[%if(attachment.type().name== "DataRead")%]

 [%=attachment.dataRead%]";

 String writeMethodName ="[%if(attachment.type().name == "DataWrite")%]

 [%=attachment.dataWrite%]";

 String failureMessage = accessorClass.getName();

 if (!readMethodName.equals("")) {

 failureMessage += "'s data read property is not satisfied";

 assertTrue(failureMessage,isMethodExists(accessorClass.getMethods(),

 readMethodName));

 }

 if (!writeMethodName.equals("")) {

 failureMessage += "'s data write read property is not satisfied";

 assertTrue(failureMessage, isMethodExists(accessorClass.getMethods(),

 writeMethodName));

 }

 }

[% } %]

}

[%

95

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

 toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

 toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+b1+b2;

}

%]

TRANSFORMATION TEST MODEL
rule SharedData2JUnit

 transform sharedDataModel : Model {

 // The EGL template to be invoked

 template :"sharedData2JUnit.egl"

 // Output file

 target :"gen/TestSharedData.java"

}

USES VIEWPOINT

ABSTRACT TEST MODEL

package test;

import static org.junit.Assert.assertFalse;

import static org.junit.Assert.assertTrue;

import java.util.Map;

import org.junit.Test;

public class TestUses extends AbstractTestUseRelation {

[% for (relation in uses.relations) { %]

@Test

public void test[%="".testName(relation.source.name, relation.target.name)%]()

{

 String source = "[%=relation.source.name%]";

 String target = "[%=relation.target.name%]";

 String errorMessage = source + " invalidates use relation to "+ target;

 assertTrue(isPackageExistsInGivenList(getSubPackages(source),source));

 assertTrue(isPackageExistsInGivenList(getSubPackages(target),target));

 Map<String, String> usesMap = doesSourceUseTarget(source, target);

 assertFalse(errorMessage, usesMap.isEmpty());

}

[%}%]

}

[%

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

 toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

 toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+"2"+b1+b2;

}

%]

TRANSFORMATION TEST MODEL
rule Use2JUnit

 transform uses : Model {

 // The EGL template to be invoked

 template :"Use2JUnit.egl"

 // Output file

 target :"gen/TestUses.java"

}

LAYERED VIEWPOINT

ABSTRACT TEST MODEL
package test;

import static org.junit.Assert.assertTrue;

import java.util.Iterator;

96

import java.util.Map;

import java.util.Map.Entry;

import org.junit.Test;

public class TestLayered extends AbstractTestUseRelation {

[% for (relation in layeredModel.relations) { %]

 [%if(relation.type().name== "Allowed_To_Use_Below"){%]

@Test

public void test[%="".testName(relation.sourceLayer.name,relation.targetLayer

 .name)%]() {

 String sourceLayer ="[%=relation.sourceLayer.name%]" ;

 String targetLayer = "[%=relation.targetLayer.name%]";

 Map<String, String> usesMap = doesSourceUseTarget(targetLayer,sourceLayer);

 Iterator<Entry<String, String>> iterator = usesMap.entrySet().iterator();

 String errorMessage = "";

 while (iterator.hasNext()) {

 Entry<String, String> entry = iterator.next();

 errorMessage += entry.getKey() + " breaks layered relation using "

 + entry.getValue();

 }

 assertTrue(isPackageExistsInGivenList(getSubPackages(sourceLayer),

 sourceLayer));

 assertTrue(isPackageExistsInGivenList(getSubPackages(targetLayer),

 targetLayer));

 assertTrue(errorMessage, usesMap.isEmpty());

 }

 [%}%]

[%}%]

}

[%

function String testName(a:String, b:String):String{

 var a1:String = a.substring(a.lastIndexOf('.')+1,a.lastIndexOf('.')+2).

 toUpperCase();

 var a2:String = a.substring(a.lastIndexOf('.')+2);

 var b1:String = b.substring(b.lastIndexOf('.')+1,b.lastIndexOf('.')+2).

 toUpperCase();

 var b2:String = b.substring(b.lastIndexOf('.')+2);

 return a1+a2+"2"+b1+b2;

}

%]

TRANSFORMATION TEST MODEL
rule Layered2JUnit

 transform layeredModel : Model {

 // The EGL template to be invoked

 template :"Layered2JUnit.egl"

 // Output file

 target :"gen/TestLayered.java"

}

AbstractTestUseRelation
package test;

import java.lang.reflect.Field;

import java.lang.reflect.GenericArrayType;

import java.lang.reflect.ParameterizedType;

import java.lang.reflect.Type;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.Set;

import org.reflections.Reflections;

import org.reflections.scanners.ResourcesScanner;

import org.reflections.scanners.SubTypesScanner;

import org.reflections.util.ClasspathHelper;

import org.reflections.util.ConfigurationBuilder;

import org.reflections.util.FilterBuilder;

public abstract class AbstractTestUseRelation {

 protected List<Package>getSubPackages(String packageName) {

 List<Package> packageList = new ArrayList<Package>();

 List<ClassLoader> classLoadersList = new LinkedList<ClassLoader>();

 classLoadersList.add(ClasspathHelper.contextClassLoader());

97

 classLoadersList.add(ClasspathHelper.staticClassLoader());

 Reflections reflections = new Reflections(new ConfigurationBuilder()

 .setScanners(new SubTypesScanner(false),new ResourcesScanner())

 .setUrls(ClasspathHelper.forClassLoader(classLoadersList

 .toArray(new ClassLoader[0]))).filterInputsBy(new FilterBuilder()

 .include(FilterBuilder.prefix(packageName))));

 Set<Class<? extends Object>>allClasses = reflections.getSubTypesOf

 (Object.class);

 for (Class<? extends Object> clazz : allClasses) {

 if (!packageList.contains(clazz.getPackage())) {

 packageList.add(clazz.getPackage());

 }

 }

 return packageList;

}

protected boolean isPackageExistsInGivenList(List<Package> packageList,

 String packageName) {

 for (Package pack : packageList) {

 if (pack.getName().equals(packageName)) {

 return true;

 }

 }

 return false;

 }

protected Map<String, String> doesSourceUseTarget(String sourcePackage,

 String targetPackage) {

 HashMap<String, String> usesMap = new HashMap<String, String>();

 Set<Class<? extends Object>> allUserClasses = getClassesUnderPackage

 (sourcePackage);

 Set<Class<? extends Object>>allUsedClasses = getClassesUnderPackage

 (targetPackage);

 for (Class<? extends Object>userClazz : allUserClasses) {

 for (Class<? extends Object>usedClazz : allUsedClasses) {

 Field[] fields = userClazz.getDeclaredFields();

 for (Field field : fields) {

 if (field.getType().equals(usedClazz)) {

 usesMap.put(userClazz.getName(), usedClazz.getName());

 return usesMap;

 } else if (field.getGenericType() instanceof ParameterizedType) {

 Type[] actualTypeArguments = ((ParameterizedType) (field

 .getGenericType())).getActualTypeArguments();

 for (Type type : actualTypeArguments) {

 if (type.equals(usedClazz)) {

 usesMap.put(userClazz.getName(),usedClazz.getName());

 return usesMap;

 }

 }

 } else if (field.getGenericType() instanceof GenericArrayType) {

 Type type = ((GenericArrayType) (field.getGenericType()))

 .getGenericComponentType();

 if (type.equals(usedClazz)) {

 usesMap.put(userClazz.getName(),usedClazz.getName());

 return usesMap;

 }

 } else if (field.getType().isArray()) {

 Class<?>array = field.getType();

 if (array.getComponentType().equals(usedClazz)) {

 usesMap.put(userClazz.getName(), usedClazz.getName());

 return usesMap;

 }

 }

 }

 }

 }

 return usesMap;

}

private Set<Class<? extends Object>> getClassesUnderPackage(String packageName)

{

 List<ClassLoader>classLoadersList = newLinkedList<ClassLoader>();

 classLoadersList.add(ClasspathHelper.contextClassLoader());

 classLoadersList.add(ClasspathHelper.staticClassLoader());

 Reflections reflections = new Reflections(new ConfigurationBuilder().

 setScanners(new SubTypesScanner(false),new ResourcesScanner()).

 setUrls(ClasspathHelper.forClassLoader(classLoadersList

 toArray(new ClassLoader[0]))).filterInputsBy(new FilterBuilder()

98

 .include(FilterBuilder.prefix(packageName))));

 Set<Class<? extends Object>> allClasses = reflections.getSubTypesOf

 (Object.class);

 removeClassesThatAreNotDirectlyUnderGivenPackage(packageName,allClasses);

 return allClasses;

}

private void removeClassesThatAreNotDirectlyUnderGivenPackage(String

 packageName, Set<Class<? extends Object>>allClasses) {

 List<Class<?>> notDirectSubClasses = new ArrayList<Class<?>>();

 for (Class<?> clazz : allClasses) {

 if (!clazz.getPackage().getName().equals(packageName)) {

 notDirectSubClasses.add(clazz);

 }

 }

 allClasses.removeAll(notDirectSubClasses);

 }

}

