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ABSTRACT

INDOOR MULTI-PERSON TRACKING VIA
ULTRA-WIDEBAND RADARS

Berk Gülmezoğlu

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Sinan Gezici

Co-Supervisor: Assist. Prof. Dr. Mehmet Burak Güldoğan

August 2014

Tracking multiple objects in indoor environments has various applications such

as patient monitoring and inventory tracking. In this thesis, the use of Gaus-

sian mixture probability hypothesis density (GM-PHD) filters is investigated for

multiple person tracking via ultra-wideband (UWB) radar sensors in an indoor

environment. An experimental setup consisting of a network of UWB radar sen-

sors and a high-speed computer is designed and a new detection algorithm is

proposed. The results of this experimental proof-of-concept study show that it is

possible to accurately track multiple targets using a UWB radar sensor network

in indoor environments based on the proposed approach.

Keywords: Multiple person detection, target tracking, PHD filter, ultra-

wideband, radar, passive localization.
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ÖZET

ULTRA GENİŞ BANTLI RADARLAR İLE BİNA İÇİ
ÇOKLU İNSAN TAKİBİ

Berk Gülmezoğlu

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Sinan Gezici

Eş Tez Yöneticisi: Assist. Prof. Dr. Mehmet Burak Güldoğan

Ağustos 2014

Bina içi ortamlarda çoklu nesne takibinin hasta izleme ve envanter takibi

gibi çeşitli uygulamaları bulunmaktadır. Bu tezde, bina içi ortamında ultra

geniş bantlı radar sensörleri ile çoklu insan takibi için Gauss karışımı olasılık

hipotez yoğunluğu filtrelerinin kullanımı incelenmektedir. Ultra geniş bantlı

radar sensörleri ve yüksek hızlı bir bilgisayardan oluşan deney düzeneği tasar-

lanmakta ve yeni bir tespit algoritması sunulmaktadır. Bu deneysel kavram

ispatı çalışmasının sonuçları, önerilen yaklaşıma dayanılarak ultra geniş bantlı

radar sensör ağı ile bina içi ortamlarda çoklu hedeflerin hassas takibinin mümkün

olduğunu göstermektedir.

Anahtar sözcükler : Çoklu insan bulma, hedef takibi, PHD filtre, ultra geniş bant,

radar, pasif yer bulma.
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Chapter 1

Introduction

Wireless sensor networks (WSN) have received tremendous attention in last

decade due to their critical importance in a wide variety of applications such

as surveillance, and the theoretical and practical challenges they introduce [3,4].

For indoor scenarios, ultra-wideband (UWB) sensors can be employed due to

their extraordinary resolution and localization precision [5]. There are also addi-

tional advantages of UWB signals such as low power consumption, low probability

of interception, and co-existence with a large number of devices [6]. For multi-

sensor multi-object tracking applications, UWB is a well-suited technology. Since

UWB signals are characterized by the transmission of a few nanosecond duration

pulses [1, 7–9], they have very high time resolution and localization precision,

which make UWB sensors an ideal equipment for short range radar sensor net-

work applications [10, 11]. In this study, UWB radar sensors are employed for

detecting and tracking multiple moving objects in an indoor environment in the

context of passive localization [12–17].

Multiple target tracking is a subfield of signal processing with applications

spanning many different engineering disciplines [18]. In this subfield of signal

processing, the random finite set (RFS) approach is the newest development that

provides a general systematic framework for multi-target systems by modeling

the multi-target state as an RFS [19, 20]. The RFS approach is considered to
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be a very promising alternative to handle the multi-target multi-detection asso-

ciation problem faced in multi-target tracking applications. The RFS approach

treats the collection of individual measurements and the individual targets as

a set-valued measurement and set-valued state, respectively. It is shown that

the sequential estimation of multiple targets buried in clutter with association

uncertainties can be formulized in a Bayesian filtering framework by modeling

set-valued measurements and set-valued states as RFSs [19]. The probability

hypothesis density (PHD) filter, an approximation of this theoretically optimal

approach to multi-target tracking, propagates the first-order statistical moment

of the RFS of states in time and avoids the combinatorial data association prob-

lem. The dimension of the PHD filtering is equal to the dimension of the single

target state. Despite its advantages, the recursions of the PHD filter involve mul-

tiple integrals having no closed form solutions. There are two implementations

of the PHD filter; one is using sequential Monte Carlo (SMC) method other one

is using Gaussian mixtures (GM). Each implementation method has its own pros

and cons [19]. GM implementation is very popular because it provides a closed

form analytic solution to PHD recursions under linear Gaussian target dynam-

ics and measurement models [19]. Moreover, contrary to SMC implementation,

GM implementation provides reliable state estimates extracted from the poste-

rior intensity in an easier and efficient way. Alternatively, SMC implementation

imposes no such restrictions and has the ability of handling nonlinear target dy-

namics and measurement models. It can be said that SMC implementation is a

more general framework for PHD recursions. On the other hand, its performance

is affected by different kind of problems in reality [21–23]. Therefore, in general,

GM based approach is easier, effective and more intuitive.

Multiple target tracking via UWB sensors has been considered in some studies

in the literature. In [24], time of flight (ToF) information of the targets is used for

tracking using PHD filters. A single scenario with targets moving in a straight line

(no maneuvers) is considered, and directional horn antennas are used for powerful

signal reception. Each sensor is equipped with one transmitter and two receivers,

which are synchronized via a digital resonance oscillator. The blind zone problem

and its solution are explained in [25] and new approaches are developed for this
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problem in tracking. In [26], multiple person tracking via UWB radar sensors

is performed by utilizing time variations of the channel impulse response due to

the presence of people between the transmitter and the receiver. Background

subtraction and constant false alarm rate (CFAR) algorithms are employed for

person detection, and GM-PHD filter tracking is used for tracking. In a similar

study, [27] proposes an indoor UWB person detection and ranging technique that

does not require any information about the environment and exploits the temporal

variations in the received signal due to the presence of a person. Finally, in [28],

localization of a passive reflector based on backscattering range measurements is

studied, and theoretical performance bounds are presented.

In this study, a novel approach is developed for multi-target tracking via a

network of UWB radar sensors based on GM-PHD filtering. A novel detection

technique is proposed for removing a significant part of the clutters, which facil-

itates robust localization performance. The performance of the tracking method

shows that multiple targets can be tracked efficiently in an indoor environment.

Although the PHD filtering approach has been considered for multi-target track-

ing in [24], the considered system has high cost and complexity due to the use

of six experimantal systems sensors, each equipped with one transmitter and two

receivers, which employ directional horn antennas. Also, a single scenario is con-

sidered with targets moving in a straight line without any maneuvers [24]. In our

study, four small off-the-shelf UWB radar sensors produced by TimeDomain [2]

are employed, each sensor has a single transmitter and a receiver. Scenarios

containing multiple maneuvering targets are also investigated. In addition, the

proposed approach does not make any specific assumptions about the environ-

ment and positions of the targets. For multiple sensors, our method decreases the

amount of computation compared to similar studies such as [29–31]. To sum up,

the novelty of this work is twofold; firstly we propose a new detection technique

which effectively handles severe multipath. Secondly, the GM-PHD filter is suc-

cessfully used in tagless multi-person tracking problem using off-the-shelf UWB

radar sensor.

The remainder of the thesis is organized as follows: In Chapter II, multi-person

tracking via UWB radars is presented, and the proposed detection algorithm
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is explained. In Chapter III, the experimental results are examined. Finally,

Chapter IV concludes the thesis by highlighting the main contributions and listing

possible topics for future research.
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Chapter 2

Multi-Person Tracking via UWB

Radars

2.1 UWB Signals

Ultra-wideband (UWB) is an excellent signaling choice for high accuracy local-

ization in short to medium distances due to its high time resolution [1]. It is

also well-suited for short range and low data rate communications. Some of the

key applications for low rate UWB communication and localization systems are

summarized in Figure 2.1.

In general, a UWB signal is defined to be a signal with a fractional bandwidth

of larger than 20% and/or an absolute bandwidth of at least 500 MHz. The most

important feature of UWB signals is that they have a much wider frequency band

than conventional signals. Therefore, certain regulations are imposed on systems

transmitting UWB signals in the world and these regulations are strict for all

countries [1].

The common definitions for the bandwidths of UWB signals are as follows:

The difference between the upper frequency of−10dB emission point (fH) and the

lower frequency of −10dB emission point (fL) represents the absolute bandwidth
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Figure 2.1: Applications and business opportunities for low rate UWB
systems [1].

of the UWB signal:

B = fH − fL , (2.1)

which is also named as −10 dB bandwidth (Figure 2.2). On the other hand, the

Figure 2.2: Absolute bandwidth definition [1].

fractional bandwidth is expressed as

Bfrac =
B

fc
, (2.2)

where fc is the center frequency and is given by

fc =
fH + fL

2
. (2.3)
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From (2.1)-(2.3), the fractional bandwidth Bfrac can be written as

Bfrac =
2(fH − fL)

fH + fL
. (2.4)

According to the U.S. FCC [32], a UWB system with fc larger than 2.5 GHz must

have an absolute bandwidth larger than 500 MHz, and a UWB system with fc

smaller than 2.5 GHz must have a fractional bandwidth larger than 0.2.

UWB systems are defined by very short duration waveforms due to their

large bandwidths. Thanks to this property, UWB systems have very high time

resolution, which is very useful for localization and tracking applications that

require accurate position information. In this thesis, high time resolution of

UWB signals is utilized in indoor tracking applications.

2.2 Sensor and Measurement Model

Before describing the sensor and measurement models, the transmitted signal

model for the UWB system is given first:

s(t) =

Nf−1∑
j=0

Np∑
i=1

p(t− iTp − jTf ) (2.5)

where p(t) represents the UWB pulse, Tf is the duration of a frame, Tp is the du-

ration between UWB pulses in a frame (which is larger than the pulse duration),

Nf is the number of frames, and Np is the number of pulses in a frame. Signal

s(t) is produced by a UWB transmitter and the reflected signals are collected by

a UWB receiver to determine the distances between targets and sensors in an

indoor environment. In the process, time-of-arrival (ToA) parameters are esti-

mated from the incoming signal, and distances corresponding to arriving signal

paths are calculated based on ToA values [1].

In the measurement model, there are a number of (four in the experiments)

UWB radar sensors, which constantly transmit signals, and the reflected signals

from moving objects (in our case single/multiple people are walking in an indoor

environment) are collected by each of these sensors as depicted in Figure 2.3.
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Figure 2.3: Indoor environment with four radar sensors. Blue signals and red
signals represent transmitted and received signals, respectively.

The output of each sensor is the range measurements related to moving ob-

jects. It is assumed that the locations of the sensors are known to the fusion

center and each sensor sends its measurements to the fusion center. The state

vector of a target at time k is represented by xk = [xk, yk, ẋk, ẏk]
T , where [xk, yk]

is the position, [ẋk, ẏk] is the velocity of the target and T denotes transpose op-

eration. The target dynamic is modeled by the linear Gaussian constant velocity

model [33]:

xk = Fxk−1 + vk (2.6)

where F is the state transition matrix given as,

F =

[
I2 4I2

02 I2

]
(2.7)

and

Q = σ2
v

[
43

3
I2

42

2
I2

42

2
I2 4I2

]
(2.8)

where vk∼ N (v;0,Q) is the white Gaussian process noise, Q is the covariance

matrix of the process noise, 4 is the sampling interval, k is the discrete time
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index, σv is the standard deviation of the process noise, and In, and 0n denote

n× n identity and zero matrices, respectively.

Range measurements are collected by each sensor in the area. The measured

range value by the i-th sensor located at [xi, yi] is given by

hi(xk) =

√
(xk − xi)2 + (yk − yi)2 + εk,i (2.9)

for i = 1, . . . , Ns, where Ns is the number of sensors and εk,i is measurement noise

in sensor i, εk,i ∼ N (ε; 0, σ2
ε).

We also here provide the Jacobian of hi(xk), Hk,i, to be used in the filtering

equations as

Hk,i =
[

∂hi(xk)
∂xk

∂hi(xk)
∂yk

∂hi(xk)
∂ẋk

∂hi(xk)
∂ẏk

]
(2.10)

and each of its elements are

∂hi(xk)

∂xk
=

xk−xi√
(xk−xi)2+(yk−yi)2

(2.11)

∂hi(xk)

∂yk
=

yk−yi√
(xk−xi)2+(yk−yi)2

(2.12)

∂hi(xk)

∂ẋk
= 0 (2.13)

∂hi(yk)

∂ẏk
= 0 (2.14)

2.3 Random Finite Sets (RFS) Based Filtering

The RFS framework for multiple target tracking proposed by Mahler combines

the problems of combinatorial data association, detection, classification and tar-

get tracking within a unified compact Bayesian paradigm [19]. In the following
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subsections, basic RFS notation, multiple target generalization of the Bayes filter

and its first order approximation PHD filter are described.

2.3.1 RFS Formulation

The RFS approach treats the collection of the individual targets and individual

measurements as a set-valued state and set-valued measurement, respectively, as

Xk = {xk,1, ...,xk,M(k)} ∈ F(X ) (2.15)

Zk = {zk,1, ..., zk,N(k)} ∈ F(Z) (2.16)

where M(k) is the number of targets at time k, N(k) is the number of measure-

ments at time k, F(X ) and F(Z) are the set of all possible finite subsets of state

space X and measurement space Z, respectively. An RFS model for the time

evolution of a multi-target state Xk−1 at time k − 1 to the multi-target state Xk

at time k is defined as

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1(ζ)

 ∪ Γk , (2.17)

where Sk|k−1(ζ) is the RFS of surviving targets from previous state ζ at time k

and Γk is the RFS of spontaneous target births at time k. The RFS measurement

model for a multi-target state Xk at time k can be written as

Zk = Kk ∪

[ ⋃
x∈Xk

Θk(x)

]
(2.18)

where Kk is the RFS of clutter or false measurements, Θk(x) is the RFS of multi-

target state originated measurements, which can take values either zk if target is

detected, or ∅ if target is not detected.

2.3.2 Multi-target Filtering

Having very briefly summarized some key points of the RFS framework, we can

define the RFS based multi-target Bayes filter. The optimal multi-target Bayes
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filter propagates the multi-target posterior density pk(·|Z1:k) conditioned on the

sets of measurements up to time k, Z1:k, in time with the following recursion

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)pk−1(X|Z1:k−1)δX , (2.19)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)pk|k−1(X|Z1:k−1)δX

, (2.20)

where fk|k−1 is the multi-target transition density, gk(Zk|Xk) is the multi-target

likelihood and integrals are set integrals defined in [19]. The multi-target Bayes

recursion involves multiple integrals and the complexity of computing it grows ex-

ponentially with the number of targets. Therefore, it is not practical for scenarios

where there exist more than a few targets.

2.3.3 The Probability Hypothesis Density (PHD) Filter

To alleviate the computational burden in calculating the optimal filter given

above, the PHD filter was proposed as a practical suboptimal alternative [19]. The

PHD filter propagates the first-order statistical moment of the posterior multi-

target state, instead of propagating the multi-target posterior density. Consider

that, intensities associated with the multi-target posterior density pk and the

multitarget predicted density pk|k−1 in the optimal multi-target Bayes recursion

are represented with vk and vk|k−1 respectively. The PHD recursion is defined as

vk|k−1(x) =

∫
psfk|k−1(x|ζ)vk−1(ζ)dζ + γk(x) , (2.21)

vk(x) = (1− pD)vk|k−1(x) (2.22)

+
∑
z∈Zk

pD gk(z|x) vk|k−1(x)

κk(z) +
∫
pD gk(z|ξ)vk|k−1(ξ)dξ

, (2.23)

where ps is the probability of target survival, γk(x) is the intensity of spontaneous

birth RFS at time k, pD is the probability of target detection and κk(z) is the

intensity of clutter RFS at time k.

11



As we mentioned before, PHD filters can be implemented either by using

GM [34] or SMC [35–37] based methods. In the next section, we describe main

steps of the GM implementation.

2.4 The Gaussian Mixture PHD (GM-PHD)

Filter

Vo et al. derived a closed-form solution to the PHD filter, called as the GM-

PHD under linear Gaussian multi-target models in [34]. The GM-PHD filter

has been successfully used in many different applications [38–44]. Here, it is

important to note that, in these applications target models are nonlinear. In order

to accommodate nonlinear Gaussian models, an adaptation of the GM-PHD filter

(called as EK-PHD) is provided based on the idea of extended Kalman (EKF)

filter, where local linearizations of the nonlinear measurement function h(x) (i.e.

Hk defined in (2.10)) is used [34]. In this work, we used the mentioned adaptation

to handle nonlinearities in measurement model in (2.9).

There are several assumptions used in the GM-PHD recursions. The first one

is that each target follows a linear Gaussian dynamical and measurement model:

fk|k−1(x|ζ) = N (x;Fζ,Qk−1) , (2.24)

gk(z|x) = N (z;Hkx, σ
2
ε) . (2.25)

Secondly, the detection and survival probabilities are state and time independent:

pD,k(x) = pD and pS(x) = pS. Lastly, the intensity of the birth RFSs is Gaussian

mixtures of the form

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN (x;m

(i)
γ,k,P

(i)
γ,k) , (2.26)

where Jγ,k, w
(i)
γ,k, m

(i)
γ,k and P

(i)
γ,k are given model parameters that determine the

birth intensity. Posterior intensity at time k − 1 can be written as a sum of

12



Gaussian components with different weights, means and covariances as

vk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x;m

(i)
k−1,P

(i)
k−1) (2.27)

and an identifying label `ik−1 is assigned to each created Gaussian component. A

label table, Lk−1, is formed as

Lk−1 = {`(1)k−1, ..., `
(Jk−1)
k−1 } . (2.28)

At time k, the predicted intensity is also a Gaussian mixture:

vk|k−1(x) = vS,k|k−1(x) + γk(x) , (2.29)

where

vS,k|k−1(x)=pS

Jk−1∑
j=1

w
(j)
k−1N (x;m

(j)
S,k|k−1,P

(j)
S,k|k−1) (2.30)

m
(j)
S,k|k−1 = Fm

(j)
k−1 (2.31)

P
(j)
S,k|k−1 =Qk−1 + FP

(j)
k−1F

T (2.32)

Each birth component is assigned a new label and concatenated with the previous

time labels,

Lk|k−1 = Lk−1 ∪ Lγ,k−1 . (2.33)

The posterior intensity at time k is also a Gaussian mixture and can be written

as

vk(x) = (1− pD,k)vk|k−1(x) +
∑
z∈Zk

vD,k(x; z) , (2.34)

where

vD,k(x; z) =

Jk|k−1∑
j=1

w
(j)
k (z)N (x;m

(j)
k|k(z),P

(j)
k|k) (2.35)

w
(j)
k (z) =

pD w
(j)
k|k−1q

(j)
k (z)

κk(z) + pD
∑Jk|k−1

l=1 w
(l)
k|k−1q

l
k(z)

(2.36)

qjk(z) = N (z;Hkm
(j)
k|k−1, σ

2
ε+HkP

(j)
k|k−1H

T
k ) (2.37)

m
(j)
k|k(z) = m

(j)
k|k−1 + K

(j)
k (z −Hkm

(j)
k|k−1) (2.38)

P
(j)
k|k = [I−K

(j)
k Hk]P

(j)
k|k−1 (2.39)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k + σ2

ε)
−1 (2.40)
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There will be |Zk| + 1 Gaussian components for each predicted term, where | · |
is the cardinality of a set. Then, identifying label at time k is

Lk = Lvk|k−1

k|k−1 ∪ L
z1
k|k−1 ∪ ... ∪ L

z|Zk|
k|k−1 . (2.41)

As time progresses, the number of Gaussian components increases and com-

putational problems occur. To alleviate this problem, a simple pruning and merg-

ing can be used to decrease the number of Gaussian components propagated [34].

Firstly, weights below a predefined threshold are eliminated. Then, closely spaced

Gaussian components are merged into a single Gaussian component. Starting

with the strongest weighted component, wjk, components are merged in a set

W
(j)
k by

W
(j)
k :=

{
i : (m

(i)
k −m

(j)
k )T (P

(i)
k )−1(m

(i)
k −m

(j)
k ) ≤ ρ

}
(2.42)

and the resulting merged component parameters are

w̃
(l)
k =

∑
i∈W

w
(i)
k (2.43)

m̃
(l)
k =

1

w̃
(l)
k

∑
i∈W

w
(i)
k x

(i)
k (2.44)

P̃
(l)
k =

1

w̃
(l)
k

∑
i∈W

w
(i)
k (P

(i)
k + (m̃

(l)
k −m

(i)
k )(m̃

(l)
k −m

(i)
k )T ) (2.45)

In order to extract multi-target states, means of the Gaussian components, that

have weights greater than some predefined threshold, are selected:

L̂k =
{
L(i)
k : w

(i)
k > ρ

}
, (2.46)

and the estimated target states set is

X̂k =
{

(m
(i)
k ,P

(i)
k ) : L(i)

k ∈ L̂k
}

. (2.47)

2.5 UWB Radar Sensors

In this part, some technical details of the Pulson 410 Monostatic Radar Module

(P410 MRM) are presented [2]. P410 MRM is a monostatic radar platform that
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employs UWB signals. Based on the operator instruction, the MRM Service

can perform band-pass filtering, motion filtering, and constant false alarm rate

(CFAR) target detection on the raw scan data. The processed data is provided

to the MRM reconfiguration and evaluation tool (RET) for display and logging.

The user has the option of applying several different types of filters. A system

block diagram is shown in Figure 2.4.

Figure 2.4: Illustration of the interface to a P410 MRM [2].

There are some advantages of the P410 MRM such as very good perfor-

mance in high multipath and high clutter environments, coherent signal pro-

cessing (which extends the operating range at very low signal power levels), and

the availability of seven separate channels. Moreover, the P410 MRM provides

raw scans for post processing and two user-configurable antenna ports for dual

antenna operation. At the same time, there are some other application areas

such as robotics, proximity detection, collision avoidance, security applications,

presence/intrusion detection and surveillance [2].

Using the P410 MRM is quite simple. First, all the sensors should be con-

nected to a computer. For this purpose, the IP addresses of the specific P410

MRMs are entered to the Network IP Address as illustrated in Figure 2.5. After

connecting the sensors (P410 MRMs) to the computer, the configuration menu

is started (Figure 2.6). In this window, the sensor parameters are tuned. Espe-

cially, the code channel has a significant role for multi-sensor operations; namely,

in order to prevent the collisions among sensors’ signals, the channel codes should

15



Figure 2.5: P410 MRM with attached broadspec antennas [2].

be different for each sensor. Moreover, the scan start and stop times provide the

sensors with the facility to scan the environment so that the locations of the fixed

equipments in the environment can be known by the sensors. The second user

Figure 2.6: Configuration window [2].

interface window is about the scanning of the sensors (Figure 2.7). The time be-

tween consecutive two impulses is adjusted by the interval section. In addition,

the impulse number can be constant depending on the request of user or it can

be continuous until the user stops. The last important part of the software for

the P410 MRM is the scan window (Figure 2.8). In this window, all data types

can be seen such as raw, bandpass, and motion filtered data. Moreover, detection

points and the first detection points can be observed.
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Figure 2.7: Control window [2].

In our experiments, four P410 MRMs are employed as radar sensors. The P410

MRM, shown in Figure 2.9, is a small and affordable monostatic radar platform

that provides more than 2 GHz of RF bandwidth at a center frequency of 4.3

GHz [2]. Each radar sensor (P410 MRM) is equipped with an UWB transmitter

and an UWB receiver. The radar sensors use different code channels in order to

prevent interference among the sensors. In addition, for reducing the effects of

severe multipaths at the receiver, there is an environment scanning phase for a

30 ns duration, which is used as a reference for determining signals reflected from

non-stationary objects. The UWB pulses are sent from the radar sensors at every

0.1 second by the transmitter (TX) antenna and all reflected signals are collected

by the receiver (RX) antenna. P410 MRM UWB sensors provide four types of

information; raw signal, bandpass signal, motion filtered signal, and detection list.

In some cases, the motion filtered data and detection lists may not be sufficient to

detect the targets accurately since there can be many unnecessary measurements

(due to the very high resolution of UWB signals) that are originated from the

reflections from other equipments or objects in the environment. Therefore, we

use the bandpass data (see Figure 2.10 for an example) in our algorithm in order

17



Figure 2.8: Control window [2].

to eliminate the clutters, and then obtain the motion filtered data, as explained

in the next section. Fig 2.11 presents an example of motion filtered data when a

person is present in the environment.

2.6 Proposed Detection/Tracking Algorithm

In order to perform accurate detection and tracking of multiple persons via UWB

radar sensors, the following algorithm is proposed. The input to the algorithm

is the bandpass signal sets from the UWB radar sensors. Figure 2.10 illustrates

an example for bandpass signal at an arbitrary time stamp. After getting the

bandpass signal sets from the radar sensors, the start time (ts) and stop time (tf )

of the experiment are calculated. In total, Nd sets of measurements are obtained

from the sensors, where Nd is given by

Nd =
tf − ts
Ts

(2.48)
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Figure 2.9: P410 MRM with attached broadspec antennas [2].

with Ts representing the sampling period of the signal set, which is equal for all

sensors. The bandpass signal set is filtered by a motion filter in order to mitigate

the effects of the signals coming from stationary objects in the environment. The

following motion filtering method is employed:

mi
k[n] = h[1]rik[n] + h[2]rik[n− 1]

+ h[3]rik[n− 2] + h[4]rik[n− 3] (2.49)

for i ∈ {1, . . . , 4} and k ∈ {1, . . . , Nd}, where rik[n] represents the bandpass

signal of the ith radar sensor for the kth measurement set, h[n] denotes the

coefficients of the motion filter with values [1 -0.6 -0.3 -0.1], and Nd is the number

of measurement sets as defined in (2.48). In other words, for each measurement set

and for each sensor, the motion filter in (2.49) is applied to the bandpass signal,

and the motion filtered signal mi
k[n] is generated. The peaks of the motion filtered

signal correspond to possible target distances as can be observed from Figure 2.11.

Next, each motion filtered signal is divided into (Nb) blocks as follows:

mi
k,j[n] = mi

k[n+ (j − 1)K], n = 1, . . . , K (2.50)

for j ∈ {1, . . . , Nb}, where K is the number of samples in each block, which
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Figure 2.10: Bandpass signal.

is considered as constant.1 An example illustration is presented in Figure 2.12,

where Nb = 5. The aim of dividing motion filtered signal into blocks is to increase

both the efficiency and the speed of the proposed algorithm, which can be justified

as follows. Due to the very high time resolution of UWB signals, there exist many

peaks in the motion filtered signal, most of which are originated from the same

targets (that is, each moving object/person results in many peaks in the motion

filtered signal). In order to determine the number of targets accurately (hence,

to track them efficiently), only a few significant motion filter peaks should be

considered, which is facilitated by the proposed block operation in (2.50) (and

the energy thresholding technique explained below). This operation also increases

the speed of the algorithm since a smaller set of measurements are input to

the tracking part of the algorithm. The number of blocks, Nb, is an important

1For simplicity of notation, the size of signal mi
k[n] is assumed to be an integer multiple of

K. Extensions in the absence of this assumption are straightforward.
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Figure 2.11: Motion filtered data.

parameter, which should be selected according to the number of expected targets

in the environment. As the number of targets increases, Nb should be set to a

larger number.

Once the motion filtered signal is divided into blocks, the average strength of

each block is calculated as follows:

Ei
k,j ,

1

K

K∑
n=1

∣∣mi
k,j[n]

∣∣ (2.51)

for j ∈ {1, . . . , Nb}, i ∈ {1, . . . , 4}, and k ∈ {1, . . . , Nd}. Then, these values are

compared to a threshold τi for each sensor in order to eliminate the blocks that

do not contain signals from the targets. In other words, if the average strength

of a block is below the threshold, then that block is not considered in the next

steps. This process both reduces the computational complexity and number of

detections. If the average strength of a block is larger than the threshold, then the
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Figure 2.12: Blocks of motion filtered signal.

sample index of the strongest motion filter output in that block is converted into

distance (meters) and stored into the measurement vector Zi
k. Mathematically,

for j ∈ {1, . . . , Nb}, if Ei
k,j > τi, then the sample index

arg max
n∈{1,...,K}

∣∣mi
k,j[n]

∣∣ (2.52)

is converted into distance and saved into Zi
k. Therefore, Zi

k is a vector with Gi
k

measurements, where Gi
k ∈ {0, 1, . . . , Nb} is the number of blocks that satisfy

Ei
k,j > τi.

2 Measurements from all four sensors are collected into measurement

set Zk as in (2.15); that is, Zk = [Z1
k ;Z2

k ;Z3
k ;Z4

k ]. Then, Zk is input to the GM-

PHD filter described in Section 2.4, and tracking is performed. The proposed

detection and tracking algorithm is summarized in Table 2.1.

2If the strengths of all the blocks are below τi, then Z
i
k becomes an empty vector, Zi

k = ∅.
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Table 2.1: Proposed Algorithm

1: Calculate the number of measurement sets Nd, (2.48)
2: for k = 1→ Nd do
3: for i = 1→ Qs do
4: Get bandpass signal rik[n] from radar sensors
5: Obtain motion filtered signal mi

k[n], (2.49)
6: Divide motion filtered signal into blocks as in (2.50),

and obtain mi
k,j[n] for j = 1, . . . , Nb

7: for j = 1→ Nb do
8: Calculate Ei

k,j in (2.51)
9: if Ei

k,j is larger than threshold τi then
10: Find sample index of the peak as in (2.52)
11: Convert the sample index into distance
12: Store the distance into Zi

k

13: end if
14: end for
15: end for
16: Form Zk = [Z1

k ;Z2
k ;Z3

k ;Z4
k ] as in (2.15)

17: Input Zk to the GM-PHD filter (Section 2.4)
18: end for
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Chapter 3

Experimental Results

3.1 Experimental Results

Experimental results for single and multiple person are presented in this sec-

tion. The experiments are performed in an office room in the Department of

Electrical and Electronics Engineering at Bilkent University. There are many

equipments/objects which can generate multipaths in the office environment as

seen in Fig 3.1. In the experiments, four P410 MRMs are used. In order to reduce

the number of detections and the computational complexity of the algorithm, the

number of blocks is set to six in the algorithm; that is, Nb = 6 (see (2.50)). The

threshold τi in Section 2.6 is set to 12000 (in units of P410 MRM outputs) in

order to determine and eliminate noise only blocks, and the sampling period Ts

is taken as 0.1 second.

The standard deviation of the process noise is taken as σv = 2 m/s2 and

the standard deviation of the measurement noise is taken as σε = 0.2 m. The

spontaneous birth intensities are described in the center of the tracking area

since the birth locations are assumed as unknown. Hence, our method can be

applied to any scenario and we do not need to describe the birth intensities

even though the tracking is lost. In the algorithm, the initial weights which

are described in Section 2.4 as in (2.26) are taken as wi = 0.1. In pruning
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Figure 3.1: An illustration of the office environment. Four radar sensors are
placed on the chairs.

parameters, the truncation threshold for the weights is chosen as ρ = 10−6 and

the maximum allowable number of Gaussian terms is taken as 20. In our scenario,

the tracking scenario is not very complicated; hence, this number is set to 20

in order to have a faster result. However, in complex cases, this component

number can be increased. In clutter distribution, we determine the highest and

smallest measurements in order to estimate the number of clutters. The detected

measurements are immersed in clutter that can be modelled as Poisson RFS Kk

with intensity

κk(z) = λcV u(z) (3.1)

where u(·) is the uniform density over the surveillance region, V = 12m2 is the

”volume” of the surveillance region, and λc = 0.417m−2 is the average number

of clutter returns per unit volume (i.e., 5 clutter returns over the surveillance

region).

Our computer has 8 GB RAM and its speed is 3.40 GHz Intel(R) Core(TM)
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i7. The proposed approach runs at real-time and one iteration of the experiment

take approximately 1s on the average.

3.1.1 Single-Person Tracking Results

In the first set of experiments, we consider the tracking of one person and study

two different scenarios. In the first scenario (Scenario-1), the person (target)

starts from position (0, 2.5) m. and walks in a straight line until (2.8, 2.5) m.

Then, he turns right and walks until (2.8, 0.5) m. After that, he again turns right

and goes until (0, 0.5) m. The person walks with a constant speed of around

0.4 m/s, and the experiment takes about 19 seconds. The results are shown in

Figure 3.2, where the blue line is the ground truth of the target path, and the red

circles are the estimates of the proposed algorithm. The width of the person is

about 0.5 m and at different positions reflections from different parts of the body

are received. Therefore, the blue line is in fact the approximate ground truth of

the person’s path. For this reason, the red circles slightly digress from the blue

line as expected. The differences between the blue line and the red circles are

always smaller than 0.25 m in this scenario, which indicates that the positions of

the person can be estimated accurately by the proposed algorithm in this case.

The second scenario (Scenario-2) for the single target case involves a more

challenging target path with target maneuvers in a small area. In this scenario,

the target starts to move from position (0.6, 0.7) m. and comes back to the same

position after following the blue path in Figure 3.3. Similar to the previous ex-

periment, the red circles in Figure 3.3 are very close to the real path and the

algorithm performs very well for this difficult scenario. Duration of the experi-

ment is approximately 29s.

In Figure 3.4, the detection data obtained from four UWB radar sensors are

illustrated for the scenario in Figure 3.3. As discussed in Section 2.6, the indices

of the strongest samples are calculated for the blocks of motion filtered data

that have an average value larger than the threshold. Therefore, in the figures,

the number of points at each time instant indicates the number of blocks the
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Figure 3.2: Scenario-1 for single-person tracking. Blue solid line and red circles
represent the ground truth and filter estimates, respectively. Black squares are

for UWB radar sensors.

average strength of which are above the threshold (equivalently, the number of

elements in Zi
k for a given time index k and sensor index i; see Section 2.6).

The points in the figures are color coded in such a way that the colors blue,

green, red, cyan, and magenta are employed in the order of increasing distances

from the sensors; that is, the blue and purple points are used for the detection

points that are closest to and furthest away from the given sensor, respectively.

It is observed from Figure 3.4 that there are many non-target detections due

to the high time resolution of UWB signals. However, the GM-PHD filter can

successfully eliminate clutter and provide accurate tracking results, as shown

Figure 3.3.
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Figure 3.3: Scenario-2 for single-person tracking. Blue solid line and red circles
represent the ground truth and filter estimates, respectively. Black squares are

for UWB radar sensors.

28



0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (sn)

di
st

an
ce

 (
m

)

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

di
st

an
ce

 (
m

)

(b)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

di
st

an
ce

 (
m

)

(c)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

di
st

an
ce

 (
m

)

(d)

Figure 3.4: Single person tracking scenario, (Scenario-2). Range measurements
of each sensor: (a) Sensor 1 (b) Sensor 2 (c) Sensor 3 (d) Sensor 4
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3.1.2 Multi-Person Tracking Results

Next, we consider cases, where multiple-person are walking. First, we choose to

perform controlled experiments for two people. The first person starts from the

position (3, 3) m. and the other person starts from the position (0, 1.5) m. The

first person walks until (3, 0) m. and turns right. Then, he walks until (1, 0) m.

His speed is constant and it is about 0.3 m/s. The second person walks in a

straight line and its velocity is about 0.25 m/s. The ground truths are shown

in Figure 3.5 with the blue lines. The experiment takes about 16 seconds. In

addition, the sensor locations are different from those in the previous experiments

(Sensor 1 at (0, 0), Sensor 2 at (2,−1) m., Sensor 3 at (4, 0) m., and Sensor 4 at

(2, 3) m., as shown in Figure 3.5). The red circles represent the estimation results

and they are commonly in the range of the human body. Therefore, for the

multiple person case, the algorithm performs well in this scenario. There are

some differences between the single and multiple person tracking scenarios. For

instance, the sensor measurements are more complicated in the multiple person

case, which can be observed by comparing the sensor data in Figure 3.6 with that

in Figure 3.4. In particular, when there are a larger number of detection points

(represented by different colors) for a time instant, target originated detections

and clutters are observed more frequently, which makes the tracking of people

more challenging.

In the final experiment, our aim is to track random paths which are not defined

to people before the experiment. One of the difficult scenarios is the one shown

in Figure 3.7 since there is an occlusion problem as the sensors may not detect

the locations of people when they are in the same line. Therefore, the occlusion

problem makes the situation quite complicated. In this experiment, there are

two people with the first target starting from (0.7, 1.5) m. and the second person

from (3.7, 1.5) m. The first person goes to (2.2, 3) m. and then continues to walk

until (3.7, 1.5) m. while the second person goes to (2.2, 0) m. and then finishes

his walk on (0.7, 1.5) m. The red circles are the location estimates for the people.

In this case, some points cannot be detected. However, most of the time, people

can be tracked with high accuracy by the proposed algorithm.
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Figure 3.5: Scenario-1 for multiple person tracking. Green and blue solid lines
denote the ground truth of the first and second person, respectively. Black

squares are for UWB radar sensors.
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Figure 3.6: Multi-person tracking scenario, (Scenario-1). Range measurements
of each sensor: (a) Sensor 1 (b) Sensor 2 (c) Sensor 3 (d) Sensor 4
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Figure 3.8: Multi-person tracking scenario, (Scenario-2). Range measurements
of each sensor: (a) Sensor 1 (b) Sensor 2 (c) Sensor 3 (d) Sensor 4
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The detection data of the sensors for the scenario in Figure 3.7 are shown in

Figure 3.8. Processing the data is quite difficult in this case since there are many

clutters and when the targets are closer to each other, they cannot be detected

separately because of the occlusion problem. However, the proposed algorithm

still provides accurate tracking in this challenging scenario.
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Chapter 4

Conclusion

In this thesis, tracking of multiple persons has been performed in an indoor

environment via UWB radar sensors. A detection algorithm has been proposed

and GM-PHD filtering has been employed for accurate target tracking. GM-

PDH filter overcomes the data association problem and achieves high tracking

accuracy. A development kit from TimeDomain has been used to collect data in

an office environment. Based on the data collection campaigns, the performance

of the proposed algorithm has been evaluated and it has been shown that it can

track single and multiple targets accurately in various scenarios. Future work

involves the consideration of non-line-of-sight scenarios in multi-person tracking

via UWB radar sensors.
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