
Information and Software Technology 142 (2022) 106737

A
0

T
E
B

A

K
M
B
C
C
P
P

1

s
f
a
b
o
d
c

M
t
i
t
t
s
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

owards a taxonomy of code review smells
mre Doğan ∗, Eray Tüzün

ilkent University, Department of Computer Engineering, Ankara, Turkey

R T I C L E I N F O

eywords:
odern code review
ad practices
onformance checking
ode review smell
rocess smell
rocess debt

A B S T R A C T

Context: Code review is a crucial step of the software development life cycle in order to detect possible
problems in source code before merging the changeset to the codebase. Although there is no consensus on
a formally defined life cycle of the code review process, many companies and open source software (OSS)
communities converge on common rules and best practices. In spite of minor differences in different platforms,
the primary purpose of all these rules and practices leads to a faster and more effective code review process.
Non-conformance of developers to this process does not only reduce the advantages of the code review but
can also introduce waste in later stages of the software development.
Objectives: The aim of this study is to provide an empirical understanding of the bad practices followed in
the code review process, that are code review (CR) smells.
Methods: We first conduct a multivocal literature review in order to gather code review bad practices discussed
in white and gray literature. Then, we conduct a targeted survey with 32 experienced software practitioners
and perform follow-up interviews in order to get their expert opinion. Based on this process, a taxonomy
of code review smells is introduced. To quantitatively demonstrate the existence of these smells, we analyze
226,292 code reviews collected from eight OSS projects.
Results: We observe that a considerable number of code review smells exist in all projects with varying degrees
of ratios. The empirical results illustrate that 72.2% of the code reviews among eight projects are affected by
at least one code review smell.
Conclusion: The empirical analysis shows that the OSS projects are substantially affected by the code review
smells. The provided taxonomy could provide a foundation for best practices and tool support to detect and
avoid code review smells in practice.
. Introduction

Code review has been a widely accepted and applied best practice in
oftware development for more than 40 years. The initial expectations
rom the code review process were only to find defects in code as early
s possible and to increase software quality [1]. Over the years, it has
een established that when properly applied, code review has some
ther benefits such as increasing the knowledge transferred within the
evelopment team, building team assessment and increasing the shared
ode ownership [2].

The first known systematic code review process was proposed by
ichael Fagan in 1976 [1]. Fagan introduced the term code inspection

o denote the meetings that developers come together and find defects
n the source code before it is merged to the project codebase. Despite
he success of these meetings in earlier days, the immense increase in
he size of development teams and the rising popularity of distributed
oftware development have raised the necessity of a more lightweight
nd flexible code review process, also known as modern code review.

∗ Corresponding author.
E-mail address: emredogan7@outlook.com (E. Doğan).

Prior work investigates the code review process and its impacts on
the code quality. McIntosh et al. [3] analyze the effect of code review
coverage and participation on the software quality by mining code
review histories of three open source projects. They find that commits
with low review participation are more likely to have post-release
defects. Thompson and Wagner [4] perform a similar study on a large
dataset consisting of review histories of 3126 GitHub projects. They
aim to observe the effect of code review coverage and participation on
the software quality and security in terms of issues and security bugs
related to the previously reviewed pull requests. Their results reveal
that a high coverage and participation rate in the code review process
reduces the number of future issues and severity bugs related to the
commits reviewed. According to a recent report [5], 55% of developers
are not satisfied with their current code review process.

Deviating from best practices or providing sub-optimal solutions is
known as debt, a popular concept in software development that reflects
the implied cost of additional rework caused by choosing an easy
vailable online 10 October 2021
950-5849/© 2021 Published by Elsevier B.V.

ttps://doi.org/10.1016/j.infsof.2021.106737
eceived 1 January 2021; Received in revised form 13 September 2021; Accepted
 24 September 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:emredogan7@outlook.com
https://doi.org/10.1016/j.infsof.2021.106737
https://doi.org/10.1016/j.infsof.2021.106737
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106737&domain=pdf


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün

p
i
a
s
m
h

l
w
c
c
a
i
t
e
w

R
t

f

M
q
f

R
t

p
p
S
i

t
m
e
o
e
t
w

solution now instead of using a better approach that would take longer.
Providing sub-optimal solutions for short-term benefits usually brings
waste and thus should be avoided for long-term benefits. According to
Li et al. there are many subcategories of technical debt such as archi-
tecture debt, code debt, test debt, etc. [6]. There are also non-technical
debt categories such as Social Debt [7] and Process Debt [8,9]. Martini
et al. [10] defined the term process debt as ‘‘a sub-optimal activity or
rocess that might have short-term benefits, but generates a negative impact
n the medium-long term’’. In this study, we focused on the process debt
nd more particularly in the code review context. Process debt in the
hort run, may seem faster (not conducting a code review for a commit
ay speed up the merge initially), however it would be potentially
armful in the long run (lack of a code review might trigger rework).

To denote the bad practices in the code review process that would
ead to the process debt, we use the term code review smell. Previous
ork has referred to some of the problems in the code review pro-

ess from different aspects such as lack of participation and review
overage [3,4]. Recently, Choucken et al. [11] listed five code review
nti-patterns and manually investigated them on 100 code review
nstances. To define a catalog of code review smells and investigate
he existence of smells in practice, in this study we systematically cat-
gorize bad practices in the code review process. Within our research,
e define the following research questions:

Q1- What are the bad practices followed by developers during
he code review process?

In order to answer this research question, the following steps are
ollowed:

1. We conduct a multivocal literature review (MLR) [12] to collect
an initial set of bad practices in the code review process (code
review smells). After analyzing the white literature (20 studies
published in conference proceedings and journals) and the gray
literature (19 sources), an initial set of code review smells is
formed.

2. In order to validate the initial set of smells and gather the feed-
back of practitioners on these code review smells, we conduct a
comprehensive survey among 32 software practitioners having
a wide experience in software development and code review.
We perform follow-up interviews to further discuss the smell
definitions.

3. The survey and interview results lead us to define seven bad
practices in the code review process.

After compiling a list of seven code review smells with respect to the
LR, practitioner survey and the interview results, we also searched for

uantitative evidence for the defined smells. This leads us to define the
ollowing research question:

Q2- How frequently does each code review smell occur in prac-
ice?

To answer this research question, each code review smell is em-
irically investigated by mining code review histories of eight OSS
rojects (QT, Eclipse, Wireshark, LibreOffice, GitHub Desktop, Visual
tudio Code, Tensorflow and Django) including 226,292 code review
nstances.

The rest of the paper is organized as follows. In the following sec-
ion, we present the background information. In Section 3, the research
ethodology followed in this study is described. Section 4 illustrates

ach code review smell within the taxonomy. Section 5 gives the details
f the empirical evaluation on eight OSS projects. In Section 6, the
mpirical results are discussed. Section 7 addresses validity threats of
his study and finally, Section 8 presents our conclusion and future
2

ork.
2. Background & related work

2.1. Background

Code review is the examination of source code by developers other
than the author in order to maintain software quality. It has been a
widely approved and applied best practice in the software develop-
ment for a long time [13]. However, the mindset of code review has
changed significantly due to the transformation of software develop-
ment methodologies.

The first known code reviews were based on the formal inspection
methodology defined by Michael Fagan [14]. This formal and strictly
structured review methodology was based on inspecting the source
code in face-to-face meetings. Although inspection meetings in those
days were very helpful to detect possible software bugs as early as
possible, the lack of adaptation of this approach to fast-paced Agile
methodologies [15] and cost ineffectiveness in terms of time and or-
ganizational resources [16] have led practitioners to come up with a
more lightweight and tool-based code review methodology, known as
modern code review.

Despite some minor changes in different organizations, a generic
code review process consists of the following steps (As illustrated in
Fig. 1) :

1. A developer is assigned as the author for the implementation of
a development task (either fixing a bug or implementing a new
feature).

2. When the developer completes the assigned task, they create a
changeset/ pull request from their commits and start to wait for
a developer to review their changeset.

3. At this stage, one or more proper code reviewers should be
assigned for the pull request. This assignment can be done by
a bot, a team leader, or even the authors themselves.

4. Every reviewer assignment does not necessarily end up with a
completed code review. Sometimes, the assigned reviewer might
reject the review request due to availability reasons. At this
point, the assigner has to reassign another developer for the
pull request until a reviewer accepts the review request. The
same procedure is followed for each reviewer if there exists a
team/company policy on the multiple numbers of reviewers for
each pull request.

5. As the code review process starts, the reviewer gives feedback
to the author and requests some code changes if necessary.
The author updates their pull request by applying the changes
requested by the reviewer. This loop continues until the reviewer
is satisfied with the pull request.

6. When all code reviewers are satisfied, the pull request becomes
ready to be merged to the project codebase. However, the person
responsible for the merging operation might vary in different
development teams.

2.2. Related work

2.2.1. Process mining in software engineering
Process mining, a combination of data science and business process,

is a concept first introduced by Wil van der Aalst [17]. Due to the recent
improvements in big data applications, process mining has become a
promising subfield of business intelligence and has been applied in
different domains. It investigates the life cycle of business processes
from different aspects by mining event logs [18]. One important type
of process mining is business process conformance, checking whether
there exists a mismatch between a formally defined process model and
real-life event logs progressing this model [18]. In recent years, many
different conformance checking studies have been proposed in various

industries such as healthcare [19] and manufacturing [20].



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 1. Activity diagram for the code review process.
Throughout the years, the software engineering community has de-
veloped and introduced many software development life cycles, models
and processes [21]. The main objective of following such processes is
to ensure the development of software within the limited resources and
limitations (time and budget) [21]. Due to the considerable amount of
process logs collected from real-life software projects, it has recently be-
come possible to mine these processes in order to find cases conflicting
with the ideal process definition.

Lemos et al. [22] investigate the conformance of software develop-
ment processes from a software company with more than 2000 projects.
The results illustrate that the formal software development process
defined by the company is violated in different stages. For instance,
25.2% of the investigated processes skip the whole planning stage and
initialize the process with the development. Zazworka et al. [21] intro-
duce a tool-based approach to detect the process non-conformances and
their future impacts. Poncin et al. [23] and Rubin et al. [24] propose
their own software process mining frameworks based on ProM [25], a
generic process mining tool used in different domains.

Process mining is also a useful and powerful tool to observe software
artifact life cycles. Sunindyo et al. [26] compare the designed and
actual processes to support OSS project managers in improving the
process flows. Gupta [27,28] proposes a framework called Nirikshan
in order to observe inconsistencies between the runtime process model
(real-life model) and the design time model (ideal model) within the
bug life cycle of an OSS project. In another study, the bug life cycle
of the project Chromium is elaborated by mining issue tracking, peer
code review and version control systems. Furthermore, some devia-
tions from the ideal process and bottlenecks within the life cycle are
investigated [29].

In the following subsection, we will specifically focus on the studies
that investigates the code review process.

2.2.2. Code review process
In the literature, there are many studies investigating the code re-

view process and the human factors affecting this flow. Baum et al. [30]
investigates the process variations of the code review process among
different software companies by conducting interviews among software
developers from 19 companies. Their results indicate that the code
review activity is not followed in a regular manner for some com-
panies (irregular, non-systematic review). By interviewing developers,
they also conclude that there are some factors directly shaping the
code review process within a company such as company culture, tools
used, the complexity of the software developed etc. Fatima et al. [31]
3

proposes a list of the wastes introduced in the code review process and
maps them to the existing wastes in the software engineering domain.
Alami et al. [32] interviews OSS contributors from four communities
in order to explore the reasons why the code review process is helpful
in open source projects. Egelman et al. [33] investigates the negative
experiences within the code review process and calls them as pushbacks.
Their results reveal that pushbacks are rare in the software projects
but might have serious consequences. Caulo et al. [34] conducted
an empirical study to quantitatively illustrate the effect of the code
review activity to the knowledge transfer between the developers. Bird
et al. [35] reports their experiences on building a code review analytics
tool, CodeFlow Analytics. Beyond the design and building steps of this
tool, they provide a set of suggestions for the future researchers to
implement some data intensive software analytics tools.

The closest study to ours is conducted by Chouchen et al. [11].
They conducted a preliminary study to come up with a list of anti-
patterns followed in the code review process. Their catalog consists of
five anti-patterns previously mentioned in the literature. Then, by man-
ually inspecting 100 code review instances from a single OSS project,
OpenStack, they examine the occurrence ratios of these anti-patterns.
Although their study lists an initial set of code review bad practices, we
create our taxonomy in a more systematic and comprehensive manner
by conducting: (1) white & gray literature reviews, (2) survey and
interviews with developers. We also provided an empirical analysis on
eight OSS projects from two different CR platforms with 226,292 code
review instances.

3. Research methodology

In this study, we follow a mixed-methods based approach. The main
idea behind this research methodology is to support empirical quanti-
tative results with qualitative analysis [36].

The overview of the research methodology followed in this study
is given in Fig. 2. First, a multivocal literature review is conducted to
mine an initial set of code review bad practices from both academic and
industry perspectives. Then, 32 experienced developers actively con-
ducting code reviews are surveyed in order to get their expert opinion
on code review smells. Their feedback leads us to calibrate the final
set of code review smells. We also ask for their opinion on how these
smells can be detected. After getting a final list of code review smells,
an empirical investigation on the code review repositories of eight OSS
projects is performed to support our qualitative results (MLR, developer
survey, and semi-structured interviews) with quantitative analysis. In the
following subsections, we detail the steps of our research methodology.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 2. Research methodology followed in this study.
3.1. White & gray literature search

To establish a foundation on the bad practices followed in the
code review process, an MLR is conducted. We will be describing the
components of MLR (the white literature search and the gray literature
search) and the elicitation of the code review smell types from the MLR
in the following.

3.1.1. White literature
To scan the white literature, the guidelines of Kitchenham [37]

are followed. According to Kitchenham, a typical systematic literature
review (SLR) consists of 13 steps that can be grouped into three cat-
egories: planning, conducting and reporting the review. The following
subsections include the details of these steps briefly.

• Planning the Review: The main purpose of this study is to illus-
trate the bad practices followed during the code review process
and gather them within a taxonomy. In order not to miss any
previous studies referring to any of these smells, the need for
scanning the white literature arises.
After clarifying the motivation of this SLR, a review protocol has
been developed and discussed by two authors. Before conducting
the search process, a generic query is defined in the following
way:
‘‘code review’’ AND (‘‘bad practice*’’ OR ‘‘smell*’’ OR ‘‘challenge*’’
OR ‘‘anti-pattern*’’)

• Conducting the Review: A detailed description of the search and
selection process of primary studies is given in Fig. 3. Once the
search query was decided, the most popular digital libraries IEEE
Explore, ACM Digital Library and Springer were used to conduct the
search. In IEEE Explore and ACM Digital Library, the abstracts
of the studies were searched. Springer on the other hand, only
supported the title search and the whole text search. Since the
whole text search resulted in a very large number of studies, the
query search was conducted in the study titles for Springer. Also,
due to the limitations with the wildcard character (*) usage in
different digital libraries, we made minor modifications on the
individual search queries.
After the search processes in digital libraries were completed,
the references (backward snowballing) and the citations (forward
snowballing) of the resulting papers were manually checked in
order to include any studies missing from our search. In the
snowballing process, Google Scholar1 was used. The main inclu-
sion criterion for our case was the relevancy of the study to our
topic, i.e. non-ideal practices followed in the code review process. We
excluded the studies written in another language than English.
Also, the search process resulted with many studies investigating
the code review process from different aspects. Since the scope
of our study is the bad practices followed during the code review
process, we eliminated the ones not mentioning at least one bad

1 https://scholar.google.com/.
4

Table 1
Code review smells appeared in white & gray literature.

Smell name White literature Gray literature

Lack of review [3,11,38–41] [42–46]
Review buddies [47–49] [42,46,50]
Ping-pong [2,32,51,52] [50,53,54]
Looks good to me (LGTM) reviews [3,11,32,38,47,55] [42,53,56]
Sleeping review [2,52,57] [46,53,56,58,59]
Missing context [2,51,60,61] [42,46,56,59,62–67]
Large changesets [2,51,55,68,69] [46,53,56,63,70,71]

practice. For the studies that have both conference and journal
versions, the journal versions were included in our study. To en-
sure these criteria, each study was investigated and summarized.
The references (backward snowballing) and the citations (forward
snowballing) of each study are checked manually in order not
to miss any related studies. As a result of this step, a list of
20 primary studies published until the end of 2020 is created.
For all the primary studies, we extracted the code review bad
practice related parts (for further analysis that will be detailed in
Section 3.1.3) to a spreadsheet per each different type of smell.

• Reporting the Review: Since we combined the results of white
literature search and gray literature search, this step is described
in 3.1.3.

3.1.2. Gray literature
The decision to whether include gray literature review within our

study is made with respect to the criteria defined in the guidelines
of Garousi et al. [12]. The goal of our study is to verify the scien-
tific outcomes with practical experiences. Therefore, a combination of
evidence for code review smells from both industrial and academic
communities is essential. Given all this, we conduct a gray literature
review by following the steps defined by Garousi et al. [12]: (1) Search
process, (2) Source selection and (3) Quality assessment of sources.

We run a Google search for the term ‘‘code review’’. Each of the
resulting 42 pages (411 results) is checked respectively. Then some
modified versions of the generic query used in the white literature
review are searched on Google (e.g. ‘‘code review bad practices’’). The
following inclusion/exclusion criteria is used in our search:

• Does the source discuss practices about code review process?
• Is the source in English, and is it fully accessible?
• Does the source contain author information?
• Does the source contain non-duplicate information?

Similar to the white literature, a snowballing technique is performed
on the resulting sources. Two authors individually applied the criteria
for all the sources. In the case of a conflicting assessment, the conflicts
were resolved via an additional discussion session among the authors.

For the quality assessment of the resulting sources, the checklist pro-
posed by Garousi et al. [12] is followed. Finally, 19 sources indicating
at least one bad practice/smell in the code review process are collected.

https://scholar.google.com/


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 3. The workflow of the search process (The numbers within the parentheses correspond to the number of studies.).
3.1.3. Elicitation of the code review smell types
After we compiled a list of 39 primary studies identified in the

previous phase (20 white, 19 gray literature), two authors indepen-
dently analyzed these studies. The authors used a shared spreadsheet to
encode the specific smell/anti-pattern instance using a short sentence.
Upon adding the short sentence, each author could either select one of
the previously defined short descriptions from a drop-down menu, or
add a new one. If no description suited the specific case, the author
added a new short description in the list of possible ones, making it
available for the upcoming annotations. After we achieved the initial
set of categories, we merged the related process smells (for instance
we merged the self-review with no-reviews). After a few iterations, and
discussions among both of the authors, we ended up with the final list
of code review smell categories.

As a result of the white & gray literature reviews, a set of seven code
review smells is achieved. Sources from white & gray literature related
to each code review smell are illustrated in Table 1. The literature
sources with their corresponding smells are given in Appendix.

3.2. Developer survey & follow-up interviews

After completing the MLR, a comprehensive developer survey was
prepared for software practitioners actively conducting code reviews.
The questions of our survey are available online in our replication
package.2 The main objectives of this survey were:

1. To observe whether the definitions of code review smells re-
sulted in the MLR are agreeable to expert practitioners.

2. To find any other code review smells that we missed during our
literature reviews.

3. To ask the practitioners’ opinion about the detection mechanism
of the code review smells (inquiring about thresholds for calling
an instance as a code review smell).

4. To observe the perception of practitioners on the code review
smells.

Instead of relying on a public survey, we performed convenience
sampling to select the participants. Since our survey was targeted for
the experienced developers and took a long time to fill out (average
of 40 min), we contacted 47 experienced developers selected from
our personal & professional network. 32 developers out of 47 filled
out the survey and three of them volunteered to perform a follow-up
interview. The majority of respondents (19 out of 32) were working
for multinational software companies that were considered to be top
software companies in the world (e.g., Google, Amazon, Microsoft,
Facebook, Udemy and Atlassian). At any given time, the respondents
were told to ask clarifying questions to the authors.

The respondents have an average programming experience of
15.7 years and code review experience of 11.7 years. In the survey,
each smell was explained briefly with a real-life example. Then, various
questions related to respondents’ familiarity with each smell were

2 https://doi.org/10.6084/m9.figshare.12890864 .
5

asked. We also asked for their opinion on some configurable thresholds
to be used in our empirical analysis. The demographic information
about the survey respondents is given in Table 2.

Then, three respondents were interviewed to learn about their
perception on each bad practice. Each interview took about an hour
and was recorded for further analysis. By using the answers to the open-
ended survey questions and the interview transcriptions, we conducted
a thematic analysis, a systematic methodology to extract the recurring
themes from a set of documents, in order to find developers’ opinions on
the possible root causes and potential side effects of each smell. Within
our analysis, we followed the guidelines of Cruzes and Dybå [72]. First,
all of the survey/interview materials and the documents from literature
reviews were examined. Secondly, initial codes for each document were
extracted and reported. Then, similar codes were merged in order to
group and label the themes. All of these steps were followed separately
by two authors. When there was a disagreement on the codes or themes,
the problems were discussed until a consensus was reached.

By combining the results of literature reviews and the answers of
survey participants, we prepared a traceability table in order to show
evidence for each smell’s definition, possible root causes and potential side
effects from these resources. This traceability table is available online
in our replication package2.

3.3. Empirical analysis

After the survey and follow-up interviews, a finalized taxonomy of
seven code review smells is generated. Then, each smell is evaluated
on eight OSS projects using Gerrit or GitHub as their code review tool.
While selecting these projects, we performed purposive sampling where
projects are selected based on specific characteristics. As selection
criteria, we considered the following factors:

• Development History: Since the beginning phases of software
projects might tend to have more bad practices than usual, we
tried to choose projects with at least four years of development
histories.

• Number of Code Reviews: Since we wanted to mine and analyze
code review process in our quantitative analysis, we selected soft-
ware projects with an adequate number of code review instances.
All of the projects used in our study have more than 3000 code
review instances.

• Different Platforms: In order to show that the introduced CR
smells are not related to the code review platform and exist
regardless of the platform, we chose four projects from both Gerrit
and GitHub.

• Company & Community OSS Projects: Although all of the
projects used in our study are open source (meaning that their
code review histories are publicly accessible), some of them are
company driven projects (Desktop project by GitHub, VSCode
by Microsoft, QT projects by the QT Company) whereas others
are community driven projects (Eclipse, Django, TensorFlow). By
analyzing both types of software projects in our study, we aimed
to observe that the CR smells exist regardless of the fact that the
project is community or company driven.

The further details of the study setup are expanded in Section 5.

https://doi.org/10.6084/m9.figshare.12890864


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Table 2
Demographic information of the survey respondents.

Company type Company ID Num. of employees Num. of survey respondents Interval of CR experience (In years) Avg. CR experience (In years)

Multinational
software
company

#1 100,000+ 5 10-19 14.6
#2 100,000+ 2 6-7 6.5
#3 100,000+ 2 20-23 21.5
#4 50,000+ 5 6-20 15.2
#5 1000+ 3 4-7 6
#6 1000+ 2 10-10 10

Midsize
software
company

#7 1000+ 6 4-15 12.5
#8 1000+ 1 6-6 6
#9 1000+ 1 4-4 4
#10 200+ 2 3-14 8.5

Small-sized software
company

#11 10-50 1 14-14 14
#12 10-50 1 12-12 12

Consultancy #13 N/A 1 15-15 15

Total respondents: 32 3-23 11.7
4. Taxonomy of code review smells

The literature review leads us to seven code review smells focusing
on the bad practices in the code review process from different aspects.
Table 3 illustrates the definition, possible root causes and potential
side effects of each code review smell. As it can be seen from the
table, some of the possible root causes or potential side effects could be
shared among different code review smells. For example ‘‘availability
reasons’’ could potentially lead to ‘‘Lack of CR’’ or ‘‘LGTM review’’
process smells.

In the survey and follow-up interviews, we ask practitioners about
the importance of each smell in real life. The survey results show that
the practitioners mostly agree with the proposed smell definitions. The
perception of survey respondents on each code review smell resulting
from the MLR is illustrated in Table 4. Also, in order to illustrate the
diverging opinions of survey participants, the distributions of answers
to the Likert scaled questions are given in Figs. 4 and 5.

In the following subsection, the process of synthesizing the literature
reviews and the developer survey is presented. Then, the resulting
taxonomy of code review smells is given in Section 4.2.

4.1. Synthesizing literature reviews & developer survey

According to the survey results, the majority of the respondents
agree with our set of code review bad practices. Relatively lower
agreements related to the Reviewer-Author Ping-pong and Sleeping Review
smells were due to the threshold that we initially picked (i.e. in our
original definition, a review taking more than 24 h would be called
a sleeping review). We adjusted our thresholds (48 h for the sleeping
review) according to the survey respondents. Related to the criticality
of each smell, except ping-pong smell (17/32), the rest of the code
review smells got a score of 3 or more by at least 26 participants
indicating the importance of the code review smells. Finally, we asked
our survey respondents about how often they encountered these smells.
Since we deliberately picked the majority of our set of respondents from
top software companies with many years of experience, they were less
likely to encounter these smells. (Follow-up interviews and open-ended
questions indicated that their companies already had the necessary
guidelines & rules and incentive mechanisms to enforce good practices.)

In this section, the perception of developers is described by using
some quotations taken from the open-ended survey questions and the
MLR resources.

Lack of Code Review: The majority of the OSS projects warn the devel-
opers against self/unreviewed commits in their contribution guidelines.
In the email list of the popular Kitware project, VTK (The Visualization
Toolkit) [43], it is stated:

‘‘...We do not allow self reviews, even for trivial commits. At some point
in the future we will be taking measures to remove the ability to perform
6

self-reviews in Gerrit, but until then we ask that all developers with elevated
permissions from reviewing their own commits...’’

A similar warning to developers against approving their own code
change is available in the review policy of QT Community [42].

Bavota and Russo [41] found that the unreviewed commits have
over two times higher chances of introducing bugs compared to the
reviewed ones.

Review Buddies: The issue of selecting the same reviewer(s) without
considering the suitability of them for the code changeset is discussed in
both white and gray literature. QT Community warns the contributors
in the following way [42]:

‘‘Do not approve just because it would be convenient for your colleague
across the room/corridor’’.

The survey respondents mostly agree with this type of bad reviewer
selections and their common precaution to prevent it is to assign
developer groups instead of individuals. One of the survey respondents
states that:

‘‘Assigning a code review to a reviewer group instead of a specific user
will align the team. When a developer gets random comments from a group
member, he or she gets different points for self-improvement’’.

German et al. [48] conducted an empirical study among OpenStack
developers to observe the fairness during the code review process. Their
results illustrate that some developers look out for their friends instead
of looking out for the projects.

Reviewer-Author Ping-pong: The number of iterations within the
code review process is discussed in the gray literature. A post from the
Microsoft developer blog [53] explains the situation:

‘‘If one or two comments back and forth doesn’t resolve a problem, it
won’t be solved in code review. Instead, talk to the reviewer in person, on
the phone, or via chat. Remember, it’s okay to agree to disagree’’.

One of the survey respondents claims the same issue:
‘‘In my company, people are encouraged to take the review offline

(e.g. have a short meeting to discuss all issues) and get to a resolution quickly
in such cases’’.

According to the survey conducted among more than 3000 Google
developers, the review processes consisting of long iterations are per-
ceived 21 times more frustrating compared with a regular one [52].

LGTM Reviews: On this type of reviews, a survey participant shares
his opinion in the following way:

‘‘... In my company, developer promotion process considers this fact as
an input. The expectation from a CR is not whether it looks good or not, it
is whether they feel comfortable if they took ownership of the change, and
commit the changes under their name...’’

Similarly, this issue is discussed in the Microsoft developer blog
[53]:

‘‘LGTM’’ (a.k.a. ‘‘Looks Good To Me’’) is the easiest, least time-

consuming reviewer response, but it’s harmful to a codebase. If you know



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Table 3
Taxonomy of code review smells.

CR smell Definition Possible root causes Potential side effects

Lack of
CR

Unreviewed & self reviewed
changesets.

- Availability reasons
- Missing code reviews.- High self-confidence

- Time pressure

Review
buddies

The author assigns the same
reviewer(s). - Convenience reasons - Ineffective code reviews

- Low shared code ownership

Ping-pong Excessively long loops between
author and the reviewer.

- The reviewer cannot propose all problems all in once. - Increase in the review time
- The author cannot apply all review suggestions at once. - Blocking other developers depending on the reviewed file

LGTM
reviews

The reviewer performs a lax
code review and directly
approves the changeset.

- Irrelevant reviewer
- Missing/ineffective code reviews.- Lax reviewer

- Availability reasons

Sleeping
reviews

The process takes too long in
terms of time.

- The reviewer’s being too busy with other tasks - Forgetting the changeset
- Lack of notifying the reviewer about the review request - Blocking other developers dependent on the commit waiting

for a review

Missing
context

The changeset is not properly explained
and the related issue(s) are not provided. - Time pressure - Lack of context information about the changeset.

- Decrease in the traceability of artifacts

Large
changesets

The changeset is too large to
be reviewed.

- Large tasks - Unwilling developers for review
- Everything in a single changeset - Ineffective code reviews
Table 4
Survey results.

Do you agree with the
smell definition? (Yes)

How critical is this smell? (Answers with a
score of 3 or higher on a scale of 5)

How often do you encounter this smell? (Answers
with a score of 3 or higher on a scale of 5)

Lack of review 32/32 31/32 4/32
Review buddies 31/32 28/32 21/32
Ping-pong 25/32 17/32 11/32
LGTM reviews 32/32 31/32 15/32
Sleeping reviews 28/32 26/32 21/32
Missing context 32/32 28/32 14/32
Large changesets 32/32 28/32 11/32
Fig. 4. Distribution of the answers to the question: When considering its future implications, how important/critical do you think this smell is?.
your reviewer only signed off because you applied heavy pressure (‘‘I’m
blocked by your review’’.), it does not help anyone.

According to the study of McInthosh et al. [3] on the code review
metrics affecting the software quality, the hastily reviewed changesets
tend to be more defect-prone.

Sleeping Reviews: Code review speed is a common discussion in the
industry. In Google’s Engineering Practices documentation, it is stated
that [56]:
7

‘‘If you are not in the middle of a focused task, you should do a code
review shortly after it comes in. One business day is the maximum time it
should take to respond to a code review request (i.e. first thing the next
morning)’’.

One of the survey respondents explains why this practice corre-
sponds to a smell:

‘‘This bad practice slows down the development life cycle in different
ways. Firstly, the author starts to forget the code. If there is a feedback from
the reviewer after some time, the author tends to spend more time than usual
since they are less familiar with the code they have written. Secondly, the



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 5. Distribution of the answers to the question: How often do you encounter this smell?.
context switch between their current tasks and the review task is sometimes
hard to handle, especially when the context is different. It also affects the
author’s other tasks since the author will spend more time on the review
task’’.

MacLeod et al. [2] conducted a study to find the challenges and
best practices in the code review process. In their survey conducted
among 911 Microsoft developers, it was seen as the biggest challenge
to receive feedback in a timely manner. One of the survey respondents
explain this in the following way:
Usually you write up some code and then you send it out for review, and
then about a day later you ping them to remind them... and then about half
a day later you go to their office and knock on their door [2].

Missing Context in Reviews: A survey respondent clearly illustrates
the importance of the changeset description:

‘‘Changesets without description make the job of the reviewer harder.
Knowing upfront what I’m reviewing helps me focus on the changes much
better. If missing sometimes I ask the author for these details over email’’.

In a keynote, Linus Torvalds mentions the same issue [62]:
‘‘...So commit messages to me are almost as important as the code change

itself. Sometimes the code change is so obvious that no message is really
required, but that is very rare. And so one of the things I hope developers
are thinking about, the people who are actually writing code, is not just
the code itself, but explaining why the code does something, and why some
change was needed. Because that then in turn helps the managerial side of
the equation, where if you can explain your code to me, I will trust the
code...’’

Ebert et al. [51] also shows the same issue, unclear description of
a pull request, as one of the confusions faced during the code review
process.

Large Changesets: In a blog post of Palantir [63], it is given that:
‘‘Changes should have a narrow, well-defined, self-contained scope that

they cover exhaustively. Shorter changes are preferred over longer ones. If a
CR makes substantive changes to more than 5 files, or took longer than 1–2
days to write, or would take more than 20 min to review, consider splitting
it into multiple self-contained CRs’’.

Another comment on this smell made by a survey respondent is:
‘‘In my opinion, this is a very important smell that will improve the

overall code review experience. Reviewing a changeset is really hard when
the change size is large and developers tend to lose focus after a while.
The larger the change the less attention it gets from reviewers, reducing the
quality of review and probably the overall code quality’’.

In the survey of MacLeod et al. [2] conducted among Microsoft
developers, the respondents also mention that they struggle with the
8

large reviews. One of them illustrate this issue in the following way:
‘‘It’s just this big incomprehensible mess... then you can’t add any value
because they are just going to explain it to you and you’re going to parrot
back what they say’’[2].

Beyond these comments, we also analyzed the contribution guide-
lines of eight OSS projects selected for our empirical analysis. Table 5
illustrates the CR smells mentioned in the contribution guidelines of
eight projects used in our empirical analysis. The results indicate that
75% of the projects warn the contributors against the missing context
smell. The reviewer-author ping-pong smell is not considered in any of
these projects whereas the LGTM, review buddies and sleeping review
smells are raised in only one project. The large changeset smell is
mentioned in two guidelines. For the lack of review smell, half of the
project guidelines warn their developers explicitly whereas the other
four guidelines imply the necessity of at least one code reviewer for
each pull request.

4.2. Final taxonomy

In the following subsections, each smell is introduced with a de-
tailed explanation, along with its possible root causes and potential side
effects.

4.2.1. Lack of code review
Code review activity has multiple motivations such as code im-

provement, finding bugs and increasing knowledge transfer within the
development team [2]. However, in order to benefit from the code
review process for these motivations, this activity should be completed
by a developer other than the changeset author.

If a changeset is not reviewed by a developer other than the author
before it is merged (unreviewed commits), or it is reviewed by only
the author themselves (self-reviewed commits), then it is a potential
indicator that the code review process is not followed properly. We call
this type of bad practice as lack of code review.

Possible Root Causes:
Availability Reasons: The author cannot find an available reviewer

at that moment so that they push their changeset with a self-review or
without a review at all.

High Self-Confidence: The author might think that the commit does
not strictly need a code review so that they push it with a self-review
or without a review at all.

Time Pressure: When the author has a strict deadline for a changeset,
they might merge it with a self-review or without a review at all.

Potential Side Effects:
The lack of a proper code review will lead to defects merged into
the code base undetected.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün

P
c
w
r

P
r
a
s

4

g
a
u
l
s
t

b
r

P

p

r
t

P

c
o

4

m
W
t
t
o
m

m

Table 5
Contribution guidelines of eight OSS projects used in our empirical analysis mentioning the code review smells. (Guidelines with asterisks (�*) do not warn against the smells
explicitly but mention the smell implicitly.)

Lack of review Review buddies Ping-pong LGTM Sleeping Missing context Large changeset

QT [42] � � � �
Eclipse [73] � �
Wireshark [66] �* �
LibreOffice [59] �* �
GH Desktop [74] � �
VS Code [75] �* � �
Tensorflow [76] �
Django [77] �* � �*
a
r

t
r

r

P

T
b

4

f
a
m
c
W
a
r
4
r
A

c
l

P

a

t

P

f
r

c
r

4

h
l
m
d
a

4.2.2. Review buddies
Selecting a proper reviewer is an important initial step for effective

code reviews [78]. Although getting a file reviewed by an expert
or a senior developer seems to be an advantage, the code review
activity must be balanced within the team to increase the shared code
ownership [2].

The code reviewer selection might be problematic when a developer
has a tendency to get their changesets reviewed by the same reviewer.
We call this type of smell review buddies.

ossible Root Causes: The main reason behind this smell is the
onvenience of picking the same reviewer. When a developer does not
ant to deal with finding a proper reviewer, they request the same

eviewer, e.g. a close friend, to review the changeset.

otential Side Effects: This type of smell might cause ineffective code
eviews and more importantly, decreases the shared code ownership,
nd causing some parts of the codebase to be known by only a very
mall number of developers.

.2.3. Reviewer-author ping-pong
According to the defined code review processes in the white and

ray literature, when the reviewer requests the author to make some
dditional changes on the code changeset, the author is supposed to
pdate their changeset by considering the requests of the reviewer. The
oop between the author and reviewer continues until the reviewer is
atisfied with the changeset and approves that it is ready to be merged
o the codebase.

If this loop gets excessively long, it might slow down or even
lock the code review process. We name this type of bad practice as
eviewer-author ping-pong.

ossible Root Causes:
Reviewer Related Reasons: The reviewer cannot detect all of the

roblems in the changeset at once.
Author Related Reasons: The author cannot apply all the changes

equested by the reviewer or can introduce some new bugs while fixing
he previous problems.

otential Side Effects:
A large number of iterations between the author and reviewer in-

reases the review time. Also, it may block other developers depending
n the reviewed file(s).

.2.4. Looks good to me reviews
Even though the code review process has a variety of benefits, its

ain purpose is to find defects in the source code as early as possible.
hen reviewers find a defect or have some suggestions for the author,

hey are supposed to state their opinion by providing some feedback
hrough comments. The absence of these comments defeats the purpose
f getting feedback through review comments. Lack of this feedback
ight potentially lead to some future uncaught bugs in the source code.

Our claim is that some developers do code reviews without paying
9

uch attention and directly approve the changeset. We call this type o
of reviews as looks good to me (LGTM) reviews referring to the popular
phrase used in the open source community ‘‘looks good to me (LGTM)’’.

Possible Root Causes:
Irrelevant Reviewer: The reviewer is unfamiliar with the changeset

nd has to respond to the review request due to an organizational
egulation.

Availability Reasons: The reviewer might be too busy with other
asks and cannot reject the review request due to an organizational
egulation.

Lax Reviewer: The requested reviewer does not pay attention to the
eview task and just approves the changeset.

otential Side Effects:
In such scenarios, the author cannot get feedback from the reviewer.

he lack of a proper review on changesets might lead to some future
ugs.

.2.5. Sleeping reviews
It has always been a key motivation of software development to

ind software defects as early as possible in order to save time, effort
nd money [79]. Fagan’s inspection methodology aimed to put this
otivation into practice by inspecting software artifacts at separated

heckpoints. In some cases this might take a long time such as weeks.
ith the modern code review tools, it has become possible to complete
review within days, or sometimes in hours [80]. In Google, code

eviews are completed in a short time, with a median of less than
h [81]. Whereas, in the study of Rigby and Bird [82], the median

eview completion times of Microsoft, AMD, and the Chrome and
ndroid projects are found to be between 14.7 and 20.8 h.

By considering all these results from industry and OSS projects, a
ode review process is named a sleeping review if it takes an excessively
ong time to be completed.

ossible Root Causes:
Availability Reasons: The reviewer might be too busy with other tasks

nd forget the review task.
Lack of Reminder: The non-responding reviewers are not notified of

he review task at regular intervals.

otential Side Effects:
Merge Conflict: When another developer needs to work on the

ile under review and their work is dependent on the commit being
eviewed, they might have to wait for a long time.

Forgetting Code: When a review task takes a long time, it be-
omes harder for the author to remember their commits and apply the
equired changes by the reviewer without introducing new defects.

.2.6. Missing context in reviews
Traceability among different software artifacts is an essential and

elpful factor to improve the software development and maintenance
ife cycles [83]. Code review is the inspection of a code changeset that
ight be created due to several reasons: bug, improvement, feature,
ocumentation, etc. This relation between the artifacts of code review
nd issue tracking processes makes it necessary to link them to each

ther.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 6. Contribution guidelines of the project apache submarine3.

In order to ensure this linkage between code review and issue
tracking repositories, most of the OSS projects have a strict contribution
policy on linking the related issue with the commit submitted for a
review. The contribution guidelines for submitting a new pull request
to Apache’s Submarine repository is given in Fig. 6. One of the required
fields in the given template is the Jira issue related to the commit under
review.

Dalipaj et al. [60] also show the lack of linkage between bug and
review repositories on the OpenStack project.

From a reviewer’s perspective, inspecting the changeset without
prior knowledge on the related issue might decrease the review quality
since the issue introduces the problem that is solved by the submitted
commit. Therefore, if a code review is not explicitly linked to an issue
or explained adequately, it is affected by the smell: the missing context
in reviews.

Possible Root Causes:
The main reason for this smell is the nonconformance of developers

to the formal software development process. The commit author might
be in a hurry and think that it is a waste of time to provide a proper
explanation and the related issue(s).

Potential Side Effects:
Lack of Traceability: The absence of a proper changeset description

decreases the traceability within the software project. When a bug is
reopened, the bug assignee should be able to find a proper explanation
in the re-visited changeset.

Lack of Information for Reviewers: The reviewer cannot get enough
information about the changeset before they start to review it.

4.2.7. Large changesets
For a code review process to consist of quick and frequent iterations,

the changeset must include small code changes [82]. Large changesets
have negative impacts on the review process in different aspects: Rigby
et al. [80] find that commits should include small and complete change-
sets. Bosu et al. [84] and Czerwonka et al. [57] validate this claim by
illustrating that there exists a relation between the useful comments
made by the reviewer and the size of the changeset.

The impact of large changesets is also discussed in the industry
projects: Sadowski et al. [81] claim that one main reason for fast code
reviews at Google is that 90% of code reviews include fewer than 10

3 https://github.com/apache/submarine/blob/master/docs/community/
contributing.md.
10
Table 6
Summary statistics for data collected from four gerrit repositories.

Project name Total reviews Filtered reviews Start date End date

QT 96,722 74,755 2017-01-01 2020-04-20
Eclipse 71,993 57,585 2017-01-01 2020-04-20
Wireshark 17,407 16,336 2017-01-01 2020-04-21
LibreOffice 58,781 54,032 2017-01-01 2020-04-20

Total 244,903 202,708

Table 7
Summary statistics for data collected from four GitHub repositories.

Project name Total PRs Filtered PRs Start date End date

GitHub Desktop 3602 2993 2016-05-11 2020-06-05
Visual studio Code 7343 5206 2015-11-16 2020-06-06
TensorFlow 14,498 9807 2015-11-09 2020-06-06
Django 13,008 5578 2012-04-28 2020-06-06

Total 38,451 23,584

changed files and the median value of changed lines of code (LOC)
is 24. Similarly at Microsoft, large changesets are found to be one
of the most common challenges in the code review process among
developers [2].

In this context, a changeset is called large if it consists of a large
number of changed LOC.

Possible Root Causes:
Large Tasks: If the task is too complicated to realize in a small

changeset, then the author has to create large changesets. To fix such
problems, the tasks should be generated in an atomic manner.

Everything in a Single Changeset: Some developers try to complete
a whole large task in a single changeset leading to the smell: large
changesets.

Potential Side Effects:
Unwilling Developers for Review: Since large changesets are harder

to review, most of the developers avoid reviewing them.
Ineffective Reviews: The results of the gray literature review and

developer survey show that developers cannot focus on the whole
of large changesets. This fact leads to ineffective reviews introducing
possible future bugs.

5. Empirical analysis

This section includes the details of the empirical analysis setup
and the quantitative evidence for code review smells. In Section 5.1,
the details regarding the datasets are explored. Section 5.2 illustrates
the preprocessing steps followed within this study. Finally, Section 5.3
presents the quantitative evidence for each code review smell among
eight OSS projects.

5.1. Dataset types and analysis

In order to explore and quantify code review smells in real-life
scenarios, we investigated eight popular open source projects using
Gerrit and GitHub as their code review tool.

Gerrit is a lightweight, web-based modern code review tool support-
ing integration with Git. In Gerrit, the code changesets are represented
in ‘‘patch sets’’. If the reviewer is satisfied with the current patch set,
then the changeset is merged to the codebase. If not, the reviewer
requests that the author makes some additional changes and create a
new patch set.

GitHub is a popular Git repository hosting service. Beyond its main
purpose as a version control system, it has many other services such
as bug tracking, feature requests, task management and continuous
integration/delivery. The code review tool in GitHub is integrated into

https://github.com/apache/submarine/blob/master/docs/community/contributing.md
https://github.com/apache/submarine/blob/master/docs/community/contributing.md


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün

p

Table 8
Counts and percentages of code review smells in four Gerrit projects.

QT Eclipse Wireshark LibreOffice Total

Total instances 74,755 57,585 16,336 54,032 202,708

CR smells Count Perc. (%) Count Perc. (%) Count Perc. (%) Count Perc. (%) Count Perc. (%)

Lack of review 2987 4.0 28,535 49.6 7486 45.8 32,621 60.4 71,629 35.3
Ping-pong 8577 11.5 1843 3,2 685 4.2 576 1.1 11,681 5.8
Sleeping reviews 15,718 21.0 16,438 28.5 1768 10.8 10,551 19.5 44,475 21.9
Large changesets 3564 4.8 6263 10.9 1006 6.2 2508 4.6 13,341 6.6
Missing context 20,345 27.2 18,883 32.8 4789 29.3 22,188 41.1 66,205 32.7
Combined 39,709 53.1 47,831 83.1 11,461 70.2 45,124 83.5 144,125 71.1
Table 9
Counts and percentages of code review smells in four GitHub projects.

GitHub Desktop Visual studio code TensorFlow Django Total

Total instances 2993 5206 9807 5578 23,584

CR smells Count Perc. (%) Count Perc. (%) Count Perc. (%) Count Perc. (%) Count Perc. (%)

Lack of review 440 14.7 3000 57.6 1276 13.0 3341 59.9 8057 34.2
Ping-pong 209 7.0 92 1.8 449 4.6 7 0.1 757 3.2
Sleeping reviews 1240 41.4 2089 40.1 4690 47.8 1887 33.8 9906 42.0
Large changesets 160 5.3 415 8.0 975 9.9 162 2.9 1712 7.3
Missing context 335 11.2 1277 24.5 4330 44.2 2138 38.3 8080 34.3
Combined 1868 62.4 4316 82.9 8015 81.7 4990 89.5 19,189 81.4
e
t
t
I

s
d
w
A

n
p
i

m
r

5

the pull request management service. When a developer creates com-
mit(s), they create a pull request and send it to appropriate developers
to accomplish the code review task. When the reviewer requires some
additional changes, the author creates new commit(s) and adds them
to the pull request.

We fetched the code review data of eight OSS projects by using
Perceval [85] and made the datasets available online.4 The summary
statistics for Gerrit and GitHub projects are given in Tables 6 and 7
respectively.

The empirical analysis is performed on interactive Python note-
books and shared online5 with instructions to replicate this study.

5.2. Data cleaning & preprocessing

After fetching the data, a manual inspection of the raw data is
completed for each project. Data instances affected by at least one of
the following conditions are removed from the dataset to improve the
correctness of our study:

• The scope of our empirical analysis is limited to the code re-
view instances ending up with a merge to the codebase since
the majority of the smells defined in our taxonomy analyze the
completed code review processes. For this reason, code review
instances other than the merged ones are ignored.

• Some review tasks are performed by review-bots. Since our study
investigates the nonconformance of developers to the code review
process, the reviews performed by bots are removed from our
dataset. To this end, all developer names are checked manually.

• Instances with missing ID information of the author or reviewers
(e.g. deleted GitHub & Gerrit accounts) are removed.

• Some commits seem to have a changeset with no changed lines
of code. When we inspect the webpages of these instances, it is
observed that these commits consist of a cherry pick operation,
applying a commit from one branch into another one. Since the
changeset comes from another commit, Gerrit does not reflect the
actual changed lines of code and shows this value as zero.

The numbers of instances in Gerrit and GitHub projects after the
reprocessing step are given in Tables 6 and 7.

4 https://doi.org/10.6084/m9.figshare.13040474.
5 https://doi.org/10.6084/m9.figshare.12890864.
11
Table 10
Size labels of changesets defined by Gerrit.

Changed lines of code Size label

[0,10) XS
[10,50) S
[50,200) M
[200,1000) L
1000+ XL

5.3. Quantitative results

According to the taxonomy detailed in Section 4, a detection method
for each smell is proposed except for LGTM Reviews. The reason to
xclude this smell is the feedback provided in our developer survey. Al-
hough the majority of the respondents agreed on the smell definition,
hey shared serious concerns about how accurately it can be detected.
n a follow-up interview, one of the respondents noted that:

‘‘When I read the definition of code review smell, it completely makes
ense. However, I have some serious doubts on whether it can be accurately
etected or not. While conducting reviews, I sometimes cannot find anything
rong (bug, typo, etc.) about the code and just approve it immediately.
ccording to your definition, this is a smell which in fact is not’’.

The remaining six code review smells are evaluated in terms of the
umber of occurrences (smell counts) and percentages in eight OSS
rojects. The resulting statistics for Gerrit and GitHub projects are given
n Tables 8 and 9.

In the following subsections, we first introduce the detection
ethod of each smell. Then, the analyzed projects are compared with

espect to their smell characteristics.

.3.1. Lack of code review
To detect this smell, the following procedure is followed:
Smell Detection Method:

1. If the changeset is merged to the project codebase without a code
review, then it is an unreviewed commit.

2. If the one and only reviewer of a changeset is the author of it,
then it is a self-reviewed commit.

3. If a review consists of unreviewed or self-reviewed changesets,
then it is affected by the smell: lack of code review.

https://doi.org/10.6084/m9.figshare.13040474
https://doi.org/10.6084/m9.figshare.12890864


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün

T

c
p
c
5

s

g
(

b

p
G

i
t
s
T
b
p

a
r

5

f

r
M
a

Table 11
Ratios of code reviews with lack of review smell for different sizes (XS: 0–10, S: 10–50, M: 50–200, L: 200–1000, XL: 1000+).

Changeset size QT Eclipse Wireshark LibreOffice GitHub Desktop VS Code TensorFlow Django

XS 0.05 0.57 0.47 0.55 0.17 0.63 0.13 0.74
S 0.04 0.49 0.43 0.60 0.13 0.52 0.12 0.55
M 0.03 0.46 0.43 0.65 0.15 0.51 0.10 0.50
L 0.03 0.43 0.50 0.71 0.15 0.60 0.11 0.52
XL 0.04 0.45 0.52 0.71 0.10 0.76 0.27 0.60
T
R

G
p

F
p
X
O
h

5

By following these steps, eight projects are examined respectively.
he empirical results are given in Tables 8 and 9.

Although Eclipse, Wireshark and LibreOffice projects show similar
haracteristics (45.8% to 60.4%), QT has a significantly lower smell
ercentage (4%). Such a major difference leads us to investigate the
ontribution guidelines & review policies of these four projects. [42,
9,66,73]

In the QT guidelines, developers are strictly warned against
elf/unreviewed changesets with the exact words:

‘‘Do not approve your own changes’’.[42]
While the other three projects do not have such a warning; in the

uidelines of LibreOffice, core developers are allowed to give a +2
approval in Gerrit) to themselves:

‘‘+2 is used by the author to signal no review is needed (this can only
e done by core developers, and should be used with care)’’.[59]

A similar investigation is also conducted on GitHub projects. Desktop
and TensorFlow projects have significantly lower smell ratios than Vi-
sual Studio Code and Django projects. Despite such differences between
rojects, the percentages of the lack of review smell in Gerrit and
itHub projects are close to each other (35.3% and 34.1%).

Since some of the survey respondents claim that this bad practice
s related to the changeset size, we investigate the relation between
he lack of review smell and the changeset size. Fig. 7 illustrates the
mell counts of different sized changesets in Gerrit and GitHub projects.
hese size intervals (XS through XL) are defined by Gerrit itself and can
e seen in Table 10. The smell ratios for these size intervals in eight
rojects are given in Table 11.

The results show that QT, Desktop and TensorFlow projects are not
ffected by the lack of review smell in a significant manner. The smell
atios seem to be higher in the very small and large changesets.

.3.2. Review buddies
In order to detect this type of smell, the following steps are per-

ormed:
Smell Detection Method:

1. Self-reviewed and unreviewed commits are eliminated.
2. Commits authored by a developer having fewer than 50 con-

tributions are ignored in order to obtain the core developers
of each project. This threshold is applied in order to avoid
the situation that when a developer has a small number of
contributions, the reviewers assigned for these commits become
the review buddies of this developer artificially. We asked this
threshold value to the survey participants and further discussed
it in the follow-up interviews. Although there is not a strict
consensus among the participants, the majority of them find the
value of 50 as reasonable.

3. All (Author, Reviewer) pairs and their corresponding numbers of
occurrence are listed for each core author.

4. If there exists a reviewer who reviewed at least half of the
commits submitted by an author, then this reviewer is called the
review buddy of the author.

Since this smell is related to the developers rather than the code
eview processes, its results are given separately in Tables 12 and 13.
ore than one fourth of 492 developers in four Gerrit projects assign
specific reviewer for more than half of their commits. On the other
12

f

able 12
eview buddies in four Gerrit projects.
Project Developers having a

review buddy
Developers having more
than 50 contributions

Smell percentage
(%)

QT 31 170 18.2
Eclipse 82 204 40.2
Wireshark 6 29 20.7
LibreOffice 31 89 34.8

Total 150 492 30.5

Table 13
Review buddies in four GitHub projects.

Project Developers having a
review buddy

Developers having
more than 50
contributions

Smell
percentage (%)

GitHub Desktop 0 6 0.0
Visual studio code 1 13 7.7
TensorFlow 1 31 3.2
Django 1 9 11.1

Total 3 59 5.1

hand, GitHub projects show significantly lower smell ratios due to the
smaller number of developers with at least 50 commits.

As a result, this smell is a more common practice in Gerrit projects.
The dominance of review buddies may lead to ineffective code reviews
and decreases the shared code ownership in these projects.

5.3.3. Reviewer-author ping-pong
The procedure to detect this smell is given in the following steps:
Smell Detection Method:

1. If a review process consists of an excessively large number of
iterations between the author and reviewer, it is affected by the
smell: reviewer-author ping-pong.

2. To decide the threshold value for the excessively large changeset,
the survey participants were asked how many iterations there
should be between the author and the reviewer at most. The
majority of the respondents (23 out of 32) agreed that this loop
should not exceed three iterations.

3. If a review process consists of more than three iterations be-
tween the author & reviewer, then it is affected by the smell:
reviewer-author ping-pong.

The results in Tables 8 and 9 show that the code review instances in
errit projects lead longer author–reviewer iterations than the GitHub
rojects.

Fig. 8 shows the smell percentages in different-sized changesets.
rom the size label XS through L, the number of reviewer-author ping-
ong cases increases as the changeset size increases However, for the
L sized changesets, the number of occurrences drop in five projects.
ne possible explanation for this behavior might be that it becomes
arder to find the issues in the very large changesets.

.3.4. Sleeping reviews
In order to detect this type of smell, the following steps are per-
ormed:



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 7. Number of different-sized changesets with the smell: Lack of Code Review in Gerrit and GitHub projects.
Smell Detection Method:

1. The elapsed time between the creation and completion moments
of each code review process is calculated and named review
sleeping time (RSTime).

𝑅𝑆𝑇 𝑖𝑚𝑒 = 𝑡𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 − 𝑡𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑟𝑒𝑎𝑡𝑒𝑑
13
2. According to Google Engineering Practices documentation
guidelines [56], a code review should not last more than 1
business day. In our survey, the participants are consulted on
how long a code review process should take. The majority of
the respondents (29 out of 32) claim that a code review process
should not exceed two days (48 h). Based on the survey results,
we set our threshold for a sleeping review as 48 h.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 8. Smell percentages of different-sized changesets with the smell: Reviewer-Author Ping-pong in four Gerrit (a) and four GitHub (b) projects.
3. Relying on the statistics established in the white and gray litera-
ture and the survey results, sleeping review occurs when the code
review takes more than two days.

In the detection method of sleeping reviews, there exists a minor
risk of choosing the threshold value as two days without considering
the weekends and holidays. These days are not considered since some
of the open source projects are developed on a volunteer basis and it is
not straight forward to distinguish weekends/holidays from weekdays.

The occurrence statistics of this smell are given in Tables 8 and
9. Wireshark seems to have faster code reviews whereas more than
one-fifth of the reviews in other projects take longer than 48 h.

We also investigated the relation between the changeset size and
sleeping review counts in each project. The histogram in Fig. 9 illus-
trates this relation in each project. Also, the smell ratios for the size
14
intervals in eight projects are given in Table 14. It is expected for the
reviews of large changesets to take a longer time. However, the long
review processes of small changesets indicate unwanted delays in the
process.

5.3.5. Missing context in reviews
In order to detect this type of smell, the following steps are per-

formed:
Smell Detection Method:

1. Since each OSS project has its own contribution guidelines, the
commit message format might vary in different projects. The text
pattern to link the related issues of reviews in each project is
achieved by analyzing the related guidelines.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 9. Number of different-sized changesets with the smell: Sleeping Reviews in four Gerrit (a) and four GitHub (b) projects.
Table 14
Ratios of code reviews with sleeping review smell for different sizes (XS: 0–10, S: 10–50, M: 50–200, L: 200–1000, XL: 1000+).

Changeset size QT Eclipse Wireshark LibreOffice GitHub Desktop VS Code TensorFlow Django

XS 0.14 0.17 0.05 0.15 0.24 0.33 0.40 0.16
S 0.22 0.27 0.10 0.20 0.37 0.43 0.53 0.34
M 0.27 0.35 0.17 0.50 0.54 0.48 0.62 0.53
L 0.33 0.42 0.21 0.25 0.71 0.38 0.70 0.58
XL 0.35 0.44 0.24 0.26 0.83 0.44 0.20 0.55
2. Heading and changeset description of each review instance are
mined in order to check whether they include a related issue
number/ID or a proper explanation of the changeset. If the PR
author leaves the description field empty or copies the PR title
and pastes it into the PR description field, then it is missing a
proper description.

3. If a review process is not linked to a related issue and a proper
description of the changeset is not provided, then it is affected
by the smell: missing context in reviews.
15
Gerrit and GitHub allow the developers to provide their commit
details in two different fields: a heading to summarize the changeset
and a body section to give further details. We observe that many
developers write a short description as a heading, then copy the exact
same text into the body section. In this study, a changeset/PR is affected
by the smell missing context in reviews if its body field is the same as the
heading field or does not include any further description/linked issue
information.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün

5

f

t
m
s
c

b
t
m
p

r
l
a
G

5

(
r

a

h
(
b

𝐻
p

𝐻

The obtained results for this smell are illustrated in Tables 8 and 9.
It is shown that almost one code review process out of three is affected
by the lack of a proper changeset description.

When the smell occurrence ratios in different-sized changesets are
investigated in Fig. 10, it is clearly seen that this bad practice is
more common in the small changesets among both Gerrit and GitHub
projects. The smell ratios for the size intervals in eight projects are
given in Table 15. It is observed that in general, the changesets with
the size labels XS and XL tend to suffer this smell more likely.

.3.6. Large changesets
In order to detect this type of smell, the following steps are per-

ormed:
Smell Detection Method:

1. The number of changed LOC is calculated by summing up the
number of added and deleted LOC.

2. If a changeset consists of more than 500 changed LOC, then the
code review process is affected by large changesets smell.

To define a threshold value for the large changesets, we asked
he survey respondents for their opinion on this threshold value. The
ajority of the respondents (28 out of 32) agreed that a changeset

hould not exceed 500 changed LOC. Therefore, we decided to call a
hangeset as a large one if it consists of more than 500 changed LOC.

The quantitative results for the large changesets are given in Ta-
les 8 and 9. It is illustrated that all of the projects are affected by
his smell with a percentage range between 2.9 and 10.9. Despite
inor differences between projects, Gerrit (6.6%) and GitHub (7.3%)
latforms show similar characteristics in terms of large changesets.

After evaluating six code review smells quantitatively, the occur-
ence counts and percentages of the code review processes having at
east one code review smell are obtained. The bottom lines of Tables 8
nd 9 illustrate that 71.1% of code reviews in Gerrit and 81.4% of
itHub PRs are affected by at least one smell defined in our taxonomy.

.4. Statistical analysis of the results

In order to statistically analyze the effect of the project type
community or company driven) and the changeset size to the code
eview smell percentages, we used the Chi-Square Test of Independence

test.

5.4.1. Project type vs smell percentages
To analyze the effect of project type to the smell percentages, first,

each code review instance is categorized with respect to its type (com-
munity or company). To assess the project type, each project is searched
online and the project type is tagged as either community or company.
According to our investigation, the projects QT, GitHub Desktop, VS Code
and Tensorflow are managed or supported by a company. On the other
hand, the other four projects (Eclipse, Wireshark, LibreOffice and Django)
re driven by a community.

After tagging each code review instance, we proposed the null
ypothesis and the alternative hypothesis for each applicable CR smell
lack of review, ping-pong, sleeping review, missing context and com-
ined smell):

0𝑎 : There is no statistically significant relationship between the
roject type and whether or not a code review is affected by the

<smell type>.

1𝑎 : There is a statistically significant relationship between the project
type and whether or not a code review is affected by the <smell type>.

Having set the significance level, 𝛼 = 0.01 (with a level of 99% confi-
dence), we tested each alternative hypothesis proposed for different CR
smells. Considering the different smell percentages among community
and company driven projects, it is not surprising that the P-values are
16

less than the significance level for all CR smells meaning that we can
reject the null hypotheses in favor of the alternative hypotheses. As it
can be observed Table 16, the smell percentages except for the ping-pong
and sleeping review smells are significantly higher in the community
projects whereas the ping-pong smell seems to occur more frequently
in the company projects.

5.4.2. Changeset size vs smell percentages
In order to investigate the relation between the changeset size and

whether or not a code review is affected by a smell, we proposed the
following null and alternative hypotheses for each smell:

𝐻0𝑏 : There is no statistically significant relationship between the
changeset size and whether or not a code review is affected by the
<smell type>.

𝐻1𝑏 : There is a statistically significant relationship between the
changeset size and whether or not a code review is affected by the
<smell type>.

In order to test our hypotheses, we applied the Chi-Square Test of
Independence to each project separately and then to all instances. The
resulting p-values are given in Table 17.

The p-values indicate that, except for the lack of review smell test in
GitHub Desktop project (which is 0.13), all other p-values are smaller
than the significance level 𝛼 = 0.01 favoring the alternative hypotheses.

6. Discussion

6.1. Code review smells in different platforms (Gerrit & GitHub)

The results of the empirical analysis show that each code review
smell occurs with different ratios in eight OSS projects. In this section,
the similarities and differences between Gerrit & GitHub projects are
discussed.

Lack of Code Review: In GitHub, it is not allowed to apply self-review
on a pull request. Therefore, the lack of review smell consists of only
unreviewed pull requests in GitHub projects. Nevertheless, the total
ratios of changesets with this smell are quite close to each other (%35.3
and %34.1).

Review Buddies: While Gerrit projects have a significant number
of developers with a review buddy, GitHub projects are not affected
by this smell that much. The main reason behind this difference is
the structural difference between Gerrit and GitHub projects. Gerrit
projects are larger in terms of the number of developers and code
review instances. In GitHub, the average number of contributions per
developer is lower than Gerrit resulting a smaller number of developers
with a review buddy.

Reviewer-Author Ping-pong: On average, code reviews in Gerrit take
slightly larger numbers of iterations compared with the GitHub projects
(5.8% and 3.2%). 11.5% of the code reviews in the QT project are
affected by this smell where LibreOffice and Django projects have the
best results among all.

Sleeping Reviews: This smell depends on the project structure rather
than the code review platform. Each project’s guidelines define the
maximum time for a code review task differently and these restrictions
affect the sleeping review percentages among different projects.

The smells Large Changesets and Missing Context in Reviews show very
similar characteristics among GitHub and Gerrit platforms. Although
there are some project-based differences, the total results of platforms
are close to each other.

In summary, 71.1% of Gerrit and 81.4% of GitHub code review
instances are affected by at least one smell. The QT project shows the
best results with 53.1% among 8 projects. One possible reason might
be the comprehensive guidelines of QT on the code review [42]. The
other seven projects are affected by at least one code review smell with

a range of 62.4% to 89.5%.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 10. Number of different-sized changesets with the smell: Missing Context in Code Reviews in four Gerrit (a) and four GitHub (b) projects.
Table 15
Ratios of code reviews with missing context smell for different sizes (XS: 0–10, S: 10–50, M: 50–200, L: 200–1000, XL: 1000+).

Changeset size QT Eclipse Wireshark LibreOffice GitHub Desktop VS Code TensorFlow Django

XS 0.33 0.43 0.36 0.45 0.21 0.29 0.49 0.51
S 0.26 0.30 0.25 0.38 0.10 0.20 0.38 0.33
M 0.21 0.28 0.23 0.36 0.04 0.19 0.34 0.29
L 0.19 0.27 0.22 0.43 0.03 0.29 0.33 0.37
XL 0.19 0.25 0.40 0.51 0.02 0.30 0.76 0.43
Table 16
Percentages of the code review instances affected by each smell and the 𝑝-value for the corresponding hypothesis.

Lack of review Ping pong Sleeping review Missing context Combined smell

Smell percentage of community projects (%) 53.49 2.33 22.95 35.95 81.93
Smell percentage of company projects (%) 8.30 10.05 25.59 28.34 58.11
p-value 0.00 0.00 2.40e−47 0.00 0.00
6.2. Selecting the right thresholds

Out of the seven code review smell categories that we described,
three of the code review smell definitions are based on selecting some
17
thresholds. We used thresholds in review buddies (50 or more con-
tributions required per author), ping-pong (more than 3 code review
iterations), sleeping review (a code review taking place more than
48 h) and large changesets (changeset is more than 500 LOC). These



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Table 17
P-values for the statistical test of different-sized changesets (XS, S, M, L, XL) and the smelling code review instances for eight projects and their combination.

Lack of review Ping pong Sleeping review Missing context Combined smell

QT 5.52e−31 0.00 0.00 1.50e−240 0.00
Eclipse 5.94e−128 2.93e−256 0.00 2.68e−293 3.55e−260
Wireshark 4.48e−09 3.04e−120 7.12e−125 1.41e−67 4.11e−103
LibreOffice 2.91e−136 2.26e−53 7.93e−106 5.74–70 1.53e−142
GitHub Desktop 0.13 5.84e−35 1.41e−72 3.77e−31 1.02e−37
VS Code 1.39e−17 1.09e−15 2.85e−15 4.31e−14 5.63e−18
TensorFlow 9.19e−29 1.04e−161 1.99e−129 1.11e−96 3.70e−56
Django 6.34e−48 9.41e−06 1.20e−110 1.24e−40 2.19e−15

Total 2.73e−25 0.00 0.00 0.00 0.00
Table 18
Survey results for the question: How many changed LOC should a changeset/pull request
include at most?

Number of changed lines of code Number of survey respondents

0–200 13
200–500 15
500–1000 4
1000+ 0

Table 19
Survey answers to the question: What should be the maximum number of iterations for
the loop between the author and the reviewer?

Number of iterations Number of survey respondents

1 0
2 4
3 18
4 4
5+ 6

thresholds actually depend on some project characteristics (such as size
of the project and domain) and project contribution guidelines. In this
study, to select these thresholds we relied on gray literature review and
expert opinion of the surveyed developers. When applying the findings
of this study in practice, we believe that the practitioners should pick
their own thresholds based on the specifics of their projects. In the
following, we provide justification of our threshold choices.

Threshold for The Large Changeset Smell: As given in Table 4, all
of 32 survey respondents agreed on the smell definition. Beyond that,
28 respondents agreed on that a pull request to be reviewed should not
exceed 500 lines of code. The detailed responses of survey participants
are given in Table 18. We also plot the LOC distribution graphs of the
eight projects in Fig. 11. It can be seen that the majority of the code
review instances have less than 500 changed LOC.

Threshold for Ping-pong Smell: To the question asked in the survey,
What should be the maximum number of iterations for the loop between the
author and the reviewer?, 22 out of 32 respondents agreed on that the
loop between the code author and reviewer should not exceed more
than three iterations (Table 19). Also, the eight projects used in our
empirical analysis are analyzed in terms of the number of iterations in
the code review processes. As it can be seen in Fig. 12, the majority of
the code review instances consists of three of less iterations between
the author and reviewer.

Threshold for Review Buddies Smell: We analyzed the distribution
of the number of contributions made by developers in Gerrit and
GitHub projects used in our empirical analysis. The related histograms
for the number of contributions made by a developer are given in
Fig. 13. The results indicate that all projects have a highly right-skewed
distribution meaning that there are lots of developers with less than
50 contributions. Since we are looking for the core contributors of
OSS projects (by core, the developers, who have contributed to the
18

project enough to have a review buddy), we decided to keep the
related threshold as 50. This threshold could be configured differently
depending on the definition of the core contributors.

6.3. Implications for research

Classifications form a body of knowledge within a field, enabling
researchers and practitioners to generalize, communicate, and apply
the findings [86]. In the literature, many taxonomies have been pro-
posed in all software engineering (SE) knowledge areas to provide a
systematic description and organization of the investigated subjects.
According to Usman et al. [87], out of 271 taxonomies published in the
literature, only Bayona-Oré et al. [88] described a systematic approach
to develop their taxonomy, whereas the remaining 270 taxonomies
are described in an ad-hoc manner. The authors [87] identified some
issues associated with Bayona-Oré et al.’s taxonomy design method.
Thus, they proposed a revised taxonomy development methodology.
We mapped our taxonomy development methodology according to the
guidelines in [87] in Table 20.

In this study our intention is to classify and organize the bad
practices/anti-patterns in the code review practice. The subject mat-
ter is the code review bad practices in this study. The classification
procedure as we have described in our study is based on an MLR.
We further verified this taxonomy with expert opinion using a survey
methodology. Finally, we validated the existence of the proposed code
review smells in 8 different open source projects. In our taxonomy,
we defined our smell categories with a short descriptive name, a
longer definition, possible root causes for this smell, and potential side
effects (Table 3). As we have discussed in the paper, we further define
the details of a code review smell with possible (and configurable)
thresholds, and their corresponding smell detection mechanism.

With the introduction of code review smell taxonomy,
- We provided a common terminology and a taxonomy for code re-

view smells, which eases the sharing of knowledge among researchers.
- The taxonomy and the overall classification effort helps to identify

gaps in the knowledge. For example, as we discussed earlier, it is not
straightforward to mine LGTM smells since it is difficult to differentiate
between a proper LGTM (reviewer has done a thorough job and was not
able to find defects) vs an LGTM smell (the reviewer just approved the
code review without adequately reviewing). Another possible research
direction is to quantify the impact of these code review smells in
productivity or rework.

- As all the other SE taxonomies, we expected that the code review
smell taxonomy will evolve over time incorporating new knowledge

Code review smells are also closely correlated with the software
development waste research [89]. Waste is defined as any activity that
consumes time, resources, or space but does not add any value to the
product as perceived by the customer. According to Sedano et al. [89],
there are nine software development wastes. We found that the smells
in the code review process could potentially lead to five different types
of waste. Process smells in the code review process might lead to
rework (lack of review and LGTM), extraneous cognitive load (missing
context and large changeset), waiting/multitasking (sleeping review),
knowledge loss (review buddies smell), and ineffective communication
(ping-pong smell). In the future, we are planning to explore the impact

of code review smells on software development waste.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Fig. 11. Histograms for the numbers of the changed LOC in Gerrit and GitHub projects.
Fig. 12. Histograms for the number of iterations between author & reviewer in Gerrit and GitHub projects.
Fig. 13. Histograms for the number of developer contributions in Gerrit and GitHub projects.
6.4. Implications for industry and software engineering practice

The survey results reveal that the code review smells proposed in
our taxonomy are considered as critical actions and should be avoided
in order to enhance the software development process. Also, the results
indicate that all of the code review smells introduced in our taxonomy
19
exist in different ratios. The implications of this study for software
engineering practice are listed as follows:

• Practitioners can use the proposed taxonomy to potentially avoid
the code review smells. To this end, proper code review guidelines
and rules can be prepared (or they can be updated if already



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Table 20
The taxonomy development activities according to the guidelines at [87].

Taxonomy development
activity

Description

B1: Define SE knowledge area The software engineering knowledge area
associated to the designed taxonomy is
Software Quality.

B2: Describe the objectives of
the taxonomy

The main objective of the proposed taxonomy
is to define a set of categories that enables to
classify process smells in the code review
process.

B3: Describe the subject
matter to be classified

The subject matter of the designed taxonomy is
the anti-patterns/bad practices/smells in the
code review process.

B4: Select classification
structure type

The taxonomy was designed using a hierarchy
classification structure.

B5: Select classification
procedure type

The procedure used to classify the code review
smells is qualitative.

B6: Identify the sources of
information

The basis of the taxonomy consists of code
review smells drawn from both multivocal
literature review and a developer survey
conducted with 32 professionals.

B7: Extract all terms All the categories were extracted from the
literature.

B8: Perform terminology
control

It was not necessary to perform terminology
control, because the categories are the result of
an aggregation of concepts from existing
literature.

B9: Identify and describe
taxonomy dimensions

Since it is a hierarchical classification structure,
it has a single dimension.

B10: Identify and describe
categories of each dimension

Seven categories were identified, as follows:
lack of a code review, review buddies,
reviewer-author ping-pong, looks good to me
reviews, sleeping reviews, missing context in
reviews and large changesets. The categories
are further identified by stating the short
name, description, representative example, root
causes, potential impacts, (possible) thresholds,
and a corresponding detection method.

B11 : Identify and describe
the relationships

Not applicable.

B12: Define the guidelines for
using and updating the
taxonomy

The taxonomy deriving process is described.
The necessary scripts to mine each code review
smell type for popular code review tools
(GitHub and Gerrit) are provided publicly.

B13: Validate the taxonomy To validate the definitions of the taxonomy, we
conducted a survey with expert professionals.
To validate the existence of code review smells
in practice, we mined 4 repositories of GitHub,
and 4 repositories of Gerrit.

exist). The existence of such guidelines does not guarantee to
avoid all smells but can decrease the smell percentages. For
example, the QT project has the best results for the smell lack
of review within our empirical analysis. This might be due to the
strict warning in the QT Review Policy [42] about the lack of
review smell.

• Practitioners can enhance their code review process by intro-
ducing appropriate tooling for code review. For example, code
review tools can be configured in order to block developers to
merge unreviewed/self-reviewed changesets. Again, reminding
developers the review task with periodic e-mails can reduce the
possibility of sleeping reviews. For instance, the tool Pull Re-
minders6 notifies the developers with Slack notifications in order
to remind the forgotten pull requests and avoid the smell: sleeping
reviews.

6 https://pullreminders.com/.
20
• The initial taxonomy can be used as a starting point to develop
(semi) automated recommendation systems to detect code review
smells by mining software repositories. These tools are not only
limited to the code review smells but can be generalized among
the bad practices followed in different steps of the software
development such as bug life cycle, testing and continuous inte-
gration. Detecting bad practices in different steps can enhance the
software process quality in a more significant way.

• Software development life cycle consists of different steps. The
previous work in this area investigated the bad practices followed
within some of these steps. Garcia et al. [90] introduced bad
smells in the software architectures. Rompaey et al. [91] defined
the symptoms of poorly designed tests as test smells. Zampetti
et al. [92] categorized the bad practices followed in the con-
tinuous integration process. In the future, other steps/processes
within the software development life cycle can be investigated to
detect and avoid the smells.

7. Threats to validity

This section discusses the threats to the internal and external va-
lidity of our study. Internal validity is concerned with the causal
relations investigated within the study [93]. To minimize the risk of any
subjective activity during white & gray literature review, web searches
are conducted in the private mode of browsers.

During the systematic literature review, we mainly had two validity
threats. (1) Digital libraries: The selection of digital libraries to a conduct
a systematic review is crucial. To mitigate this issue, we searched three
of the most popular digital libraries: IEEE Xplore, ACM Digital Library
and Springer. Although it is not feasible to check all digital libraries,
we tried to mitigate this threat by applying forward & backward
snowballing. (2) Search string: Before creating our search string, we
examined a few previous studies investigating anti-patterns in other
software engineering domains. Then, we created our initial draft search
string and made the first search by using it. As we came across with
more related studies, we adjusted our string and repeated the search
process.

Regarding the developer survey, there are two main potential
threats to validity: (1) The respondents may misunderstand the smell
definitions. (2) Some of the inexperienced respondents may give mis-
leading answers. To mitigate these issues, a detailed description for
each smell with a real-life example is provided and the survey is
conducted only with experienced software practitioners working in
industry. The respondents were also told to contact the authors if
they would need any further clarifications related to the survey. After
the survey, we asked all the participants whether they wanted to be
further interviewed on their answers to the open-ended survey ques-
tions. Although the self-volunteer based participation in the interview
exposes a self-selection bias threat, the main purpose of these follow-up
interviews is to gather further insights and possible clarifications, and
since these interviews do not have an effect on the survey statistics, we
believe the impact of the threat is not significant.

Our empirical analysis is designed to observe the occurrence ratio
of each smell by keeping all other parameters fixed. To increase the
replicability of our study, we shared the datasets7 and the source
code8 online. Some other validity threats regarding our study setup and
dataset can be listed in the following way:

• Data Preprocessing: In the data cleaning step, code review in-
stances other than the merged ones are ignored. We applied the
same preprocessing step for all the smells to ensure consistency.
The reason behind this choice was the fact that the specific code

7 https://doi.org/10.6084/m9.figshare.13040474.
8 https://doi.org/10.6084/m9.figshare.12890864.

https://pullreminders.com/
https://doi.org/10.6084/m9.figshare.13040474
https://doi.org/10.6084/m9.figshare.12890864


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
review instance has not been finalized yet. This decision has a
potential risk of underestimating the sleeping review counts, since
there might be some sleeping code review instances that will
never be merged.

• Tool Dependency: In our empirical analysis, code review his-
tories of four Gerrit and four GitHub projects are analyzed. Al-
though our taxonomy consists of code review smells defined in
a generalized manner, the study setup for each smell detection
process is influenced by Gerrit and GitHub specific features.

• Assumptions in the Smell Definitions: Although we derive the
list of code review smells by elaborately scanning the literature
and surveying developers, these smells might not be valid for
each scenario. For instance, the review buddies smell is men-
tioned in the literature many times and recognized by the survey
respondents. However, there might be still some scenarios where
a review buddy is conducting proper reviews and not leading to
a suboptimal scenario.

• Configurable Thresholds: Within the smell detection methods,
we made some assumptions on the configurable parameters and
definitions. Although we justified these thresholds by getting ex-
pert opinions through the survey, these thresholds are still subject
to discussion and could be configured depending on the project.
In our survey, we did not ask the participants about their OSS
experience since the code review smell categories that we identi-
fied from our MLR are not really specific to OSS or commercial
projects. We argue that the smell categories would apply to both
scenarios. The respondents’ OSS experience could potentially be
an issue for selecting thresholds. We used thresholds in review
buddies (50 or more contributions per author), ping-pong (more
than 3 iterations), sleeping review (a code review taking place
more than 48 h) and large changesets (large change is more
than 500 LOC). These thresholds actually depend on some project
characteristics (such as size and domain) and project contribution
guidelines as well. So even if we surveyed developers with high
OSS experience, this (not all the OSS projects are the same) could
still be a threat.
For instance, the threshold value of 50 changesets defined in the
review buddies smell is highly dependent on the project size.
Since Gerrit projects in our empirical analysis are larger than
GitHub projects in terms of the number of code review instances,
using the same threshold value for all projects might pose a threat
to the validity of our results. Another example of a potential
threat is related to selecting threshold value as two days without
considering the weekends and holidays. Depending on the nature
of a project, working on a weekend may or may not be expected.
As a future work, some rules can be formulated in order to obtain
project dependent threshold values.

Threats to external validity are concerned with to what extent our
results can be generalized [93]. To mitigate this threat, our study
is evaluated empirically on eight large OSS projects using Gerrit or
GitHub as the code review tool. As future work, we are planning
to evaluate code review smells on closed-source projects and other
code review platforms to diminish the generalizability concerns. The
survey conducted with 32 experienced professionals also supports the
importance and existence of code reviews smells in practice.

8. Conclusion and future work

In this study, we propose a taxonomy of code review smells to
demonstrate bad practices in the code review process. The taxonomy is
based on a multivocal literature review which later further validated by
32 expert software professionals. Our taxonomy consists of seven code
review smells (lack of a code review, review buddies, reviewer-author
ping-pong, looks good to me reviews, sleeping reviews, missing context
21

in reviews and large changesets). To demonstrate the existence of these
code review smells, we conduct an empirical evaluation by mining
code review histories of eight open source projects: QT, Eclipse, Wire-
shark, LibreOffice, GitHub Desktop, Visual Studio Code, Tensorflow and
Django. Some of our findings from the investigation of 226,292 code
review instances are listed below:

• 35.2% of the changesets are merged to the codebase with a
self-review or no review at all.

• 27.8% of developers in eight projects have a review buddy.
• 5.5% of code review instances take more than three review

iterations.
• 24.0% of the code review instances take longer than two days.
• 32.8% of code reviews have a missing context.
• 72.2% of the code reviews among eight projects are affected by

at least one code review smell.

These findings reveal that OSS projects are affected by the code re-
view smells within our taxonomy. These smells are potential threats to
some appreciated values among the software development communities
such as code quality, team assessment and productivity.

In our study, each code review smell is evaluated by getting domain
experts’ opinions and illustrating the occurrence ratios in eight open
source projects. A future direction would be to measure the impact of
each smell on code quality in order to observe the bad effects of such
practices quantitatively.

Another future work for this study is to implement some practical
tools to detect the CR smells. After the term code smell is introduced
by Kent Beck [94], several smell detection tools have been proposed in
order to enhance software maintainability by automatically detecting
code smells [95]. Similarly, a detection tool for code review smells
is essential in order to speed up the process and enhance the review
quality. In addition to smell detection, some tools/extensions can be
useful to avoid these smells (e.g., reminder mails for sleeping reviews,
unreviewed/self-reviewed PR blocker etc.). The usage of such tools in
the software development teams can reduce the risk of wasting the
developers’ effort and time.

As explained in Section 4, LGTM Reviews smell is excluded in our
empirical analysis. The proper detection of this smell remains as a
future direction. Although we scanned both white & gray literature, we
may have missed some other bad practices in the code review process.
As future work, our taxonomy can be extended with these smells and
their corresponding empirical analysis.

CRediT authorship contribution statement

Emre Doğan: Methodology, Software, Formal analysis, Investiga-
tion, Data curation, Writing – original draft, Visualization. Eray Tüzün:
Conceptualization, Validation, Resources, Writing – review & editing,
Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This study was supported by The Scientific and Technological Re-
search Council of Turkey (TUBITAK) 1505 program (Project Number:
5200078).

Appendix. Literature sources

As the result of the multivocal literature review, 20 academic stud-
ies and 19 gray literature sources are shared with the corresponding
smells in Table A.21.



Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Table A.21
Literature review results with the related smells.

Source Type Lack of code
review

Review
buddies

Reviewer-
author
ping-pong

LGTM
reviews

Sleeping
reviews

Missing
context

Large
changesets

The impact of code review coverage and code review
participation on software quality [3]

White � �

An empirical study of the impact of modern code review
practices on software quality [38]

White � �

Four eyes are better than two: On the impact of code
reviews on software quality [41]

White �

Review participation in modern code review [39] White �

Investigating code review quality: Do people and
participation matter? [40]

White �

Anti-patterns in Modern Code Review: Symptoms and
Prevalence [11]

White � � �

Individual, social and personnel factors influencing modern
code review process [47]

White � �

Was my contribution fairly reviewed? [48] White �

Process aspects and social dynamics of contemporary code
review [49]

White �

Code reviewing in the trenches: Challenges and best
practices [2]

White � � � �

Confusion in code reviews: Reasons, impacts, and coping
strategies [51]

White � � �

Pushback: Characterizing and detecting negative
interpersonal interactions in code review [52]

White �

Why Does Code Review Work for Open Source Software
Communities?[32]

White �

A study of the quality-impacting practices of modern code
review at Sony mobile [55]

White � �

Predicting developers’ negative feelings about code review
[33]

White � �

Code reviews do not find bugs [57] White �

Software engineering artifact in software development
process-linkage between issues and code review processes
[60]

White �

What makes a code change easier to review: an empirical
investigation on code change reviewability [61]

White �

Small patches get in! [68] White �

The influence of non-technical factors on code review [69] White �

QTReviewPolicy [42] Gray � � � �

[vtk-developers]NoselfreviewsonGerritplease(e-mail) [43] Gray �

Whycodereviewsmatter [44] Gray �

7CodeReviewBestPracticesandDynamicstoImplement [45] Gray �

10FaultyBehaviorsofCodeReview [46] Gray � � � � �

IntroducingCodeReviewandCollaboration [50] Gray � �

HowWeDoCodeReview [53] Gray � � � �

CodeReviewGuidelines-GitLab [54] Gray �

Google’sEngineeringPracticesDocumentation [56] Gray � � � �

7CodeReviewBestPracticesAndDynamics [58] Gray �

ContributionGuidelines-LibreOffice [59] Gray � �

LinusTorvalds:‘IDoNoCodingAnyMore’ [62] Gray �

(continued on next page)
22

https://wiki.qt.io/Review_Policy
https://vtk.org/pipermail/vtk-developers/2012-April/011368.html
https://www.atlassian.com/agile/software-development/code-reviews
https://dzone.com/articles/7-code-review-best-practices-and-dynamics-to-imple
https://speakerdeck.com/lemiorhan/10-faulty-behaviors-of-code-review-itake-unconference
https://www.pluralsight.com/blog/platform/introducing-code-review-and-collaboration---a-better-way-to-mana
https://devblogs.microsoft.com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/
https://docs.gitlab.com/ee/development/code_review.html
https://google.github.io/eng-practices/
https://www.pluralsight.com/blog/platform/code-review-best-practices
https://wiki.documentfoundation.org/Development/GetInvolved
https://linux.slashdot.org/story/20/07/03/2133201/linus-torvalds-i-do-no-coding-any-more


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
Table A.21 (continued).
Source Type Lack of code

review
Review
buddies

Reviewer-
author
ping-pong

LGTM
reviews

Sleeping
reviews

Missing
context

Large
changesets

CodeReviewBestPractices-Palantir [63] Gray � �

HowtoMakeGoodCodeReviewsBetter [64] Gray �

Pullrequestbestpractices [65] Gray �

ContributionGuidelines-Wireshark [66] Gray �

HowtoWriteaGoodPullRequestDescription [67] Gray �

WhatisCodeReview? [70] Gray �

CodeReviewsatGoogle [71] Gray �
References

[1] M.E. Fagan, Design and code inspections to reduce errors in program devel-
opment, IBM Syst. J. 15 (3) (1976) 182–211, http://dx.doi.org/10.1147/sj.153.
0182.

[2] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, J. Czerwonka, Code reviewing in
the trenches: Challenges and best practices, IEEE Softw. 35 (4) (2017) 34–42.

[3] S. McIntosh, Y. Kamei, B. Adams, A.E. Hassan, The impact of code review
coverage and code review participation on software quality: A case study of
the qt, vtk, and itk projects, in: Proceedings of the 11th Working Conference on
Mining Software Repositories, 2014, pp. 192–201.

[4] C. Thompson, D. Wagner, A large-scale study of modern code review and security
in open source projects, in: Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering, 2017, pp. 83–92.

[5] The state of code review in 2019: Trends, tools, and insights for dev collabo-
ration, 2020, https://smartbear.com/resources/ebooks/the-state-of-code-review-
2019/ (Accessed on 08/28/2020).

[6] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and
its management, J. Syst. Softw. 101 (2015) 193–220.

[7] D.A. Tamburri, P. Kruchten, P. Lago, H. van Vliet, What is social debt in software
engineering? in: 2013 6th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), IEEE, 2013, pp. 93–96.

[8] Z. Codabux, B. Williams, Managing technical debt: An industrial case study, in:
2013 4th International Workshop on Managing Technical Debt (MTD), IEEE,
2013, pp. 8–15.

[9] N.S. Alves, L.F. Ribeiro, V. Caires, T.S. Mendes, R.O. Spínola, Towards an
ontology of terms on technical debt, in: 2014 Sixth International Workshop on
Managing Technical Debt, IEEE, 2014, pp. 1–7.

[10] A. Martini, V. Stray, N.B. Moe, Technical-, social-and process debt in large-scale
agile: an exploratory case-study, in: International Conference on Agile Software
Development, Springer, 2019, pp. 112–119.

[11] M. Chouchen, A. Ouni, R.G. Kula, D. Wang, P. Thongtanunam, M.W. Mkaouer,
K. Matsumoto, Anti-patterns in modern code review: Symptoms and prevalence,
in: 2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2021, pp. 531–535.

[12] V. Garousi, M. Felderer, M.V. Mäntylä, Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering, Inf. Softw.
Technol. 106 (2019) 101–121.

[13] J. Klünder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-Nabende, R. Heldal,
S. Krusche, M. Fazal-Baqaie, M. Felderer, M.F.G. Bocco, et al., Catching up
with method and process practice: An industry-informed baseline for researchers,
in: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE, 2019, pp. 255–264.

[14] M. Fagan, Design and code inspections to reduce errors in program development,
in: Software Pioneers, Springer, 2002, pp. 575–607.

[15] M. Beller, A. Bacchelli, A. Zaidman, E. Juergens, Modern code reviews in open-
source projects: Which problems do they fix?, in: Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014, pp. 202–211.

[16] L.G. Votta Jr., Does every inspection need a meeting?, in: Proceedings of the 1st
ACM SIGSOFT Symposium on Foundations of Software Engineering, 1993, pp.
107–114.

[17] W. Van Der Aalst, Data science in action, in: Process Mining, Springer, 2016,
pp. 3–23.

[18] A.R.C. Maita, L.C. Martins, C.R. Lopez Paz, L. Rafferty, P.C. Hung, S.M. Peres,
M. Fantinato, A systematic mapping study of process mining, Enterpr. Inf. Syst.
12 (5) (2018) 505–549.

[19] X. Lu, R.S. Mans, D. Fahland, W.M. van der Aalst, Conformance checking in
healthcare based on partially ordered event data, in: Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA), IEEE, 2014, pp. 1–8.

[20] M. Ehrendorfer, J.-A. Fassmann, J. Mangler, S. Rinderle-Ma, Conformance check-
ing and classification of manufacturing log data, in: 2019 IEEE 21st Conference
on Business Informatics (CBI), Vol. 1, IEEE, 2019, pp. 569–577.

[21] N. Zazworka, V.R. Basili, F. Shull, Tool supported detection and judgment of
nonconformance in process execution, in: 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, IEEE, 2009, pp. 312–323.
23
[22] A.M. Lemos, C.C. Sabino, R.M. Lima, C.A. Oliveira, Using process mining
in software development process management: A case study, in: 2011 IEEE
International Conference on Systems, Man, and Cybernetics, IEEE, 2011, pp.
1181–1186.

[23] W. Poncin, A. Serebrenik, M. Van Den Brand, Process mining software repos-
itories, in: 2011 15th European Conference on Software Maintenance and
Reengineering, IEEE, 2011, pp. 5–14.

[24] V. Rubin, C.W. Günther, W.M. Van Der Aalst, E. Kindler, B.F. Van Dongen,
W. Schäfer, Process mining framework for software processes, in: International
Conference on Software Process, Springer, 2007, pp. 169–181.

[25] B.F. Van Dongen, A.K.A. de Medeiros, H. Verbeek, A. Weijters, W.M. van
Der Aalst, The prom framework: A new era in process mining tool support,
in: International Conference on Application and Theory of Petri Nets, Springer,
2005, pp. 444–454.

[26] W. Sunindyo, T. Moser, D. Winkler, D. Dhungana, Improving open source soft-
ware process quality based on defect data mining, in: International Conference
on Software Quality, Springer, 2012, pp. 84–102.

[27] M. Gupta, Nirikshan: process mining software repositories to identify inefficien-
cies, imperfections, and enhance existing process capabilities, in: Companion
Proceedings of the 36th International Conference on Software Engineering, 2014,
pp. 658–661.

[28] M. Gupta, A. Sureka, Nirikshan: Mining bug report history for discovering process
maps, inefficiencies and inconsistencies, in: Proceedings of the 7th India Software
Engineering Conference, 2014, pp. 1–10.

[29] M. Gupta, A. Sureka, S. Padmanabhuni, Process mining multiple repositories
for software defect resolution from control and organizational perspective, in:
Proceedings of the 11th Working Conference on Mining Software Repositories,
2014, pp. 122–131.

[30] T. Baum, O. Liskin, K. Niklas, K. Schneider, Factors influencing code review
processes in industry, in: Proceedings of the 2016 24th Acm Sigsoft International
Symposium on Foundations of Software Engineering, 2016, pp. 85–96.

[31] N. Fatima, S. Nazir, S. Chuprat, Software engineering wastes-a perspective of
modern code review, in: Proceedings of the 3rd International Conference on
Software Engineering and Information Management, 2020, pp. 93–99.

[32] A. Alami, M.L. Cohn, A. Wasowski, Why does code review work for open source
software communities? in: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), IEEE, 2019, pp. 1073–1083.

[33] C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan,
J. Lin, Predicting developers’ negative feelings about code review, in: 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE), IEEE,
2020, pp. 174–185.

[34] M. Caulo, B. Lin, G. Bavota, G. Scanniello, M. Lanza, Knowledge transfer in
modern code review, in: Proceedings of the 28th International Conference on
Program Comprehension, 2020, pp. 230–240.

[35] C. Bird, T. Carnahan, M. Greiler, Lessons learned from building and deploying
a code review analytics platform, in: 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, IEEE, 2015, pp. 191–201.

[36] M. Di Penta, D.A. Tamburri, Combining quantitative and qualitative studies in
empirical software engineering research, in: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), IEEE, 2017, pp.
499–500.

[37] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Citeseer, 2007.

[38] S. McIntosh, Y. Kamei, B. Adams, A.E. Hassan, An empirical study of the impact
of modern code review practices on software quality, Empir. Softw. Eng. 21 (5)
(2016) 2146–2189.

[39] P. Thongtanunam, S. McIntosh, A.E. Hassan, H. Iida, Review participation in
modern code review, Empir. Softw. Eng. 22 (2) (2017) 768–817.

[40] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, M.W. Godfrey, Investigating code
review quality: Do people and participation matter? in: 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2015, pp.
111–120.

[41] G. Bavota, B. Russo, Four eyes are better than two: On the impact of code
reviews on software quality, in: 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2015, pp. 81–90.

https://medium.com/palantir/code-review-best-practices-19e02780015f
https://stackoverflow.blog/2019/09/30/how-to-make-good-code-reviews-better/
https://blog.pragmaticengineer.com/pull-request-or-diff-best-practices/
https://wiki.wireshark.org/Development/SubmittingPatches
https://www.freecodecamp.org/news/how-to-write-a-pull-request-description/
https://smartbear.com/learn/code-review/what-is-code-review/
https://www.michaelagreiler.com/code-reviews-at-google/
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb2
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb2
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb2
https://smartbear.com/resources/ebooks/the-state-of-code-review-2019/
https://smartbear.com/resources/ebooks/the-state-of-code-review-2019/
https://smartbear.com/resources/ebooks/the-state-of-code-review-2019/
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb6
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb7
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb8
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb9
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb10
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb11
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb12
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb13
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb14
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb17
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb17
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb17
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb18
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb19
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb20
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb21
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb22
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb23
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb24
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb25
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb26
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb27
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb32
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb32
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb32
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb32
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb32
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb33
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb33
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb33
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb33
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb33
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb33
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb33
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb35
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb36
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb37
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb37
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb37
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb38
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb38
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb38
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb38
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb38
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb39
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb40
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb41
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb41


Information and Software Technology 142 (2022) 106737E. Doğan and E. Tüzün
[42] Review policy - qt wiki, 2020, https://wiki.qt.io/Review_Policy (Accessed on
08/21/2020).

[43] [Vtk-developers] no self reviews on gerrit please, 2020, https://vtk.org/
pipermail/vtk-developers/2012-April/011368.html (Accessed on 08/21/2020).

[44] Why code reviews matter (and actually save time!), 2020, https://www.atlassian.
com/agile/software-development/code-reviews (Accessed on 08/21/2020).

[45] 7 code review best practices and dynamics to implement (part 1) -
dzone agile, 2020, https://dzone.com/articles/7-code-review-best-practices-and-
dynamics-to-imple (Accessed on 08/21/2020).

[46] 10 faulty behaviors of code review - itake unconference - speaker deck,
2020, https://speakerdeck.com/lemiorhan/10-faulty-behaviors-of-code-review-
itake-unconference (Accessed on 08/21/2020).

[47] N. Fatima, S. Nazir, S. Chuprat, Individual, social and personnel factors influ-
encing modern code review process, in: 2019 IEEE Conference on Open Systems
(ICOS), IEEE, 2019, pp. 40–45.

[48] D. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, K. Inoue, ‘‘Was my
contribution fairly reviewed?’’ A framework to study the perception of fairness
in modern code reviews, in: 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), IEEE, 2018, pp. 523–534.

[49] A. Bosu, J.C. Carver, C. Bird, J. Orbeck, C. Chockley, Process aspects and social
dynamics of contemporary code review: Insights from open source development
and industrial practice at microsoft, IEEE Trans. Softw. Eng. 43 (1) (2016) 56–75.

[50] Manage pull requests at scale with code review — pluralsight, 2020,
https://www.pluralsight.com/blog/platform/introducing-code-review-and-
collaboration---a-better-way-to-mana (Accessed on 08/21/2020).

[51] F. Ebert, F. Castor, N. Novielli, A. Serebrenik, Confusion in code reviews:
Reasons, impacts, and coping strategies, in: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE,
2019, pp. 49–60.

[52] C.D. Egelman, E. Murphy-Hill, E. Kammer, M.M. Hodges, C. Green, C. Jaspan, J.
Lin, Pushback: Characterizing and detecting negative interpersonal interactions
in code review, in: 2020 IEEE/ACM 42st International Conference on Software
Engineering (ICSE), IEEE, 2020.

[53] How we do code review — app center blog, 2020, https://devblogs.microsoft.
com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/
(Accessed on 08/21/2020).

[54] Code review guidelines — gitlab, 2020, https://docs.gitlab.com/ee/development/
code_review.html (Accessed on 08/21/2020).

[55] J. Shimagaki, Y. Kamei, S. McIntosh, A.E. Hassan, N. Ubayashi, A study of
the quality-impacting practices of modern code review at Sony mobile, in:
Proceedings of the 38th International Conference on Software Engineering
Companion, 2016, pp. 212–221.

[56] Google engineering practices documentation — eng-practices, 2020, https://
google.github.io/eng-practices/ (Accessed on 08/26/2020).

[57] J. Czerwonka, M. Greiler, J. Tilford, Code reviews do not find bugs. how the
current code review best practice slows us down, in: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, 2, IEEE, 2015, pp. 27–28.

[58] 7 code review best practices and dynamics — pluralsight, 2020, https:
//www.pluralsight.com/blog/platform/code-review-best-practices (Accessed on
08/21/2020).

[59] Development/getinvolved - the document foundation wiki, 2020, https://wiki.
documentfoundation.org/Development/GetInvolved (Accessed on 08/26/2020).

[60] D. Dalipaj, J.M. Gonzalez-Barahona, D.I. Cortazar, Software engineering arti-
fact in software development process-linkage between issues and code review
processes, in: New Trends in Software Methodologies, Tools and Techniques:
Proceedings of the Fifteenth SoMeT_16, Vol. 286, 2016, p. 115.

[61] A. Ram, A.A. Sawant, M. Castelluccio, A. Bacchelli, What makes a code change
easier to review: an empirical investigation on code change reviewability, in:
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 201–212.

[62] Linus torvalds: ’i do no coding any more’ - slashdot, 2020, https://linux.slashdot.
org/story/20/07/03/2133201/linus-torvalds-i-do-no-coding-any-more (Accessed
on 08/21/2020).

[63] Code review best practices. The internet provides a wealth of . . .— by palantir
— palantir blog — medium, 2020, https://medium.com/palantir/code-review-
best-practices-19e02780015f (Accessed on 08/21/2020).

[64] How to make good code reviews better - stack overflow blog, 2020, https:
//stackoverflow.blog/2019/09/30/how-to-make-good-code-reviews-better/ (Ac-
cessed on 08/21/2020).

[65] Pull request best practices - the pragmatic engineer, 2020, https:
//blog.pragmaticengineer.com/pull-request-or-diff-best-practices/ (Accessed
on 08/21/2020).

[66] Development/SubmittingPatches - the wireshark wiki, 2020, https://wiki.
wireshark.org/Development/SubmittingPatches (Accessed on 08/26/2020).

[67] S. Sharma, How to write a good pull request description – and why it’s im-
portant, 2020, URL https://www.freecodecamp.org/news/how-to-write-a-pull-
request-description/.

[68] P. Weißgerber, D. Neu, S. Diehl, Small patches get in!, in: Proceedings of the
2008 International Working Conference on Mining software Repositories, 2008,
pp. 67–76.
24
[69] O. Baysal, O. Kononenko, R. Holmes, M.W. Godfrey, The influence of non-
technical factors on code review, in: 2013 20th Working Conference on Reverse
Engineering (WCRE), IEEE, 2013, pp. 122–131.

[70] What is code review?, 2020, https://smartbear.com/learn/code-review/what-is-
code-review/ (Accessed on 08/21/2020).

[71] M. Greiler, Code reviews at google are lightweight and fast, 2020, https://www.
michaelagreiler.com/code-reviews-at-google/ (Accessed on 08/21/2020).

[72] D.S. Cruzes, T. Dyba, Recommended steps for thematic synthesis in software en-
gineering, in: 2011 International Symposium on Empirical Software Engineering
and Measurement, IEEE, 2011, pp. 275–284.

[73] Eclipse development process — the eclipse foundation, 2020, https://
www.eclipse.org/projects/dev_process/development_process_2010.php (Accessed
on 08/26/2020).

[74] Desktop, Desktop/Pull-Requests.Md at development . desktop/desktop, 0000.
URL https://github.com/desktop/desktop/blob/development/docs/process/pull-
requests.md.

[75] Microsoft, How to contribute . microsoft/vscode wiki, 0000. URL https://github.
com/microsoft/vscode/wiki/How-to-Contribute.

[76] Tensorflow, Tensorflow/contributing.md at master . tensorflow/tensorflow, 2021,
URL https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.
md.

[77] Django, Django/contributing.rst at main . django/django, 2015, URL https://
github.com/django/django/blob/main/CONTRIBUTING.rst.

[78] E. Doğan, E. Tüzün, K.A. Tecimer, H.A. Güvenir, Investigating the validity of
ground truth in code reviewer recommendation studies, in: 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), IEEE, 2019, pp. 1–6.

[79] M. Fagan, A history of software inspections, in: Software Pioneers, Springer,
2002, pp. 562–573.

[80] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, D. German, Contemporary peer
review in action: Lessons from open source development, IEEE Softw. 29 (6)
(2012) 56–61.

[81] C. Sadowski, E. Söderberg, L. Church, M. Sipko, A. Bacchelli, Modern code
review: a case study at Google, in: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, 2018,
pp. 181–190.

[82] P.C. Rigby, C. Bird, Convergent contemporary software peer review practices,
in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 202–212.

[83] R. Oliveto, G. Antoniol, A. Marcus, J. Hayes, Software artefact traceability: the
never-ending challenge, in: 2007 IEEE International Conference on Software
Maintenance, IEEE, 2007, pp. 485–488.

[84] A. Bosu, M. Greiler, C. Bird, Characteristics of useful code reviews: An empirical
study at microsoft, in: 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, IEEE, 2015, pp. 146–156.

[85] S. Dueñas, V. Cosentino, G. Robles, J.M. Gonzalez-Barahona, Perceval: Software
project data at your will, in: Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, 2018, pp. 1–4.

[86] I. Vessey, V. Ramesh, R.L. Glass, A unified classification system for research in
the computing disciplines, Inf. Softw. Technol. 47 (4) (2005) 245–255.

[87] M. Usman, R. Britto, J. Börstler, E. Mendes, Taxonomies in software engineering:
A systematic mapping study and a revised taxonomy development method, Inf.
Softw. Technol. 85 (2017) 43–59.

[88] S. Bayona-Oré, J.A. Calvo-Manzano, G. Cuevas, T. San-Feliu, Critical success
factors taxonomy for software process deployment, Softw. Qual. J. 22 (1) (2014)
21–48.

[89] T. Sedano, P. Ralph, C. Péraire, Software development waste, in: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), IEEE, 2017, pp.
130–140.

[90] J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying architectural
bad smells, in: 2009 13th European Conference on Software Maintenance and
Reengineering, IEEE, 2009, pp. 255–258.

[91] B. Van Rompaey, B. Du Bois, S. Demeyer, Characterizing the relative significance
of a test smell, in: 2006 22nd IEEE International Conference on Software
Maintenance, IEEE, 2006, pp. 391–400.

[92] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. Gall, M. Di Penta, An
empirical characterization of bad practices in continuous integration, Empir.
Softw. Eng. 25 (2) (2020) 1095–1135.

[93] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131.

[94] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Professional, 2018.

[95] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, E. Figueiredo, A review-based
comparative study of bad smell detection tools, in: Proceedings of the 20th
International Conference on Evaluation and Assessment in Software Engineering,
2016, pp. 1–12.

https://wiki.qt.io/Review_Policy
https://vtk.org/pipermail/vtk-developers/2012-April/011368.html
https://vtk.org/pipermail/vtk-developers/2012-April/011368.html
https://vtk.org/pipermail/vtk-developers/2012-April/011368.html
https://www.atlassian.com/agile/software-development/code-reviews
https://www.atlassian.com/agile/software-development/code-reviews
https://www.atlassian.com/agile/software-development/code-reviews
https://dzone.com/articles/7-code-review-best-practices-and-dynamics-to-imple
https://dzone.com/articles/7-code-review-best-practices-and-dynamics-to-imple
https://dzone.com/articles/7-code-review-best-practices-and-dynamics-to-imple
https://speakerdeck.com/lemiorhan/10-faulty-behaviors-of-code-review-itake-unconference
https://speakerdeck.com/lemiorhan/10-faulty-behaviors-of-code-review-itake-unconference
https://speakerdeck.com/lemiorhan/10-faulty-behaviors-of-code-review-itake-unconference
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb47
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb47
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb47
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb47
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb47
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb48
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb48
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb48
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb48
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb48
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb48
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb48
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb49
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb49
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb49
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb49
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb49
https://www.pluralsight.com/blog/platform/introducing-code-review-and-collaboration---a-better-way-to-mana
https://www.pluralsight.com/blog/platform/introducing-code-review-and-collaboration---a-better-way-to-mana
https://www.pluralsight.com/blog/platform/introducing-code-review-and-collaboration---a-better-way-to-mana
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb51
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb51
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb51
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb51
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb51
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb51
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb51
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb52
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb52
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb52
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb52
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb52
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb52
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb52
https://devblogs.microsoft.com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/
https://devblogs.microsoft.com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/
https://devblogs.microsoft.com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/
https://docs.gitlab.com/ee/development/code_review.html
https://docs.gitlab.com/ee/development/code_review.html
https://docs.gitlab.com/ee/development/code_review.html
https://google.github.io/eng-practices/
https://google.github.io/eng-practices/
https://google.github.io/eng-practices/
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb57
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb57
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb57
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb57
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb57
https://www.pluralsight.com/blog/platform/code-review-best-practices
https://www.pluralsight.com/blog/platform/code-review-best-practices
https://www.pluralsight.com/blog/platform/code-review-best-practices
https://wiki.documentfoundation.org/Development/GetInvolved
https://wiki.documentfoundation.org/Development/GetInvolved
https://wiki.documentfoundation.org/Development/GetInvolved
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb60
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb60
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb60
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb60
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb60
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb60
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb60
https://linux.slashdot.org/story/20/07/03/2133201/linus-torvalds-i-do-no-coding-any-more
https://linux.slashdot.org/story/20/07/03/2133201/linus-torvalds-i-do-no-coding-any-more
https://linux.slashdot.org/story/20/07/03/2133201/linus-torvalds-i-do-no-coding-any-more
https://medium.com/palantir/code-review-best-practices-19e02780015f
https://medium.com/palantir/code-review-best-practices-19e02780015f
https://medium.com/palantir/code-review-best-practices-19e02780015f
https://stackoverflow.blog/2019/09/30/how-to-make-good-code-reviews-better/
https://stackoverflow.blog/2019/09/30/how-to-make-good-code-reviews-better/
https://stackoverflow.blog/2019/09/30/how-to-make-good-code-reviews-better/
https://blog.pragmaticengineer.com/pull-request-or-diff-best-practices/
https://blog.pragmaticengineer.com/pull-request-or-diff-best-practices/
https://blog.pragmaticengineer.com/pull-request-or-diff-best-practices/
https://wiki.wireshark.org/Development/SubmittingPatches
https://wiki.wireshark.org/Development/SubmittingPatches
https://wiki.wireshark.org/Development/SubmittingPatches
https://www.freecodecamp.org/news/how-to-write-a-pull-request-description/
https://www.freecodecamp.org/news/how-to-write-a-pull-request-description/
https://www.freecodecamp.org/news/how-to-write-a-pull-request-description/
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb69
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb69
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb69
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb69
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb69
https://smartbear.com/learn/code-review/what-is-code-review/
https://smartbear.com/learn/code-review/what-is-code-review/
https://smartbear.com/learn/code-review/what-is-code-review/
https://www.michaelagreiler.com/code-reviews-at-google/
https://www.michaelagreiler.com/code-reviews-at-google/
https://www.michaelagreiler.com/code-reviews-at-google/
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb72
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb72
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb72
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb72
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb72
https://www.eclipse.org/projects/dev_process/development_process_2010.php
https://www.eclipse.org/projects/dev_process/development_process_2010.php
https://www.eclipse.org/projects/dev_process/development_process_2010.php
https://github.com/desktop/desktop/blob/development/docs/process/pull-requests.md
https://github.com/desktop/desktop/blob/development/docs/process/pull-requests.md
https://github.com/desktop/desktop/blob/development/docs/process/pull-requests.md
https://github.com/microsoft/vscode/wiki/How-to-Contribute
https://github.com/microsoft/vscode/wiki/How-to-Contribute
https://github.com/microsoft/vscode/wiki/How-to-Contribute
https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md
https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md
https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md
https://github.com/django/django/blob/main/CONTRIBUTING.rst
https://github.com/django/django/blob/main/CONTRIBUTING.rst
https://github.com/django/django/blob/main/CONTRIBUTING.rst
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb78
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb78
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb78
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb78
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb78
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb78
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb78
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb79
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb79
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb79
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb80
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb80
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb80
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb80
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb80
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb83
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb83
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb83
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb83
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb83
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb84
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb84
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb84
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb84
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb84
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb86
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb86
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb86
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb87
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb87
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb87
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb87
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb87
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb88
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb88
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb88
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb88
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb88
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb89
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb89
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb89
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb89
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb89
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb90
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb90
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb90
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb90
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb90
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb91
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb91
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb91
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb91
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb91
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb92
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb92
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb92
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb92
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb92
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb93
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb93
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb93
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb94
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb94
http://refhub.elsevier.com/S0950-5849(21)00187-7/sb94

	Towards a taxonomy of code review smells
	Introduction
	Background & related work
	Background
	Related work
	Process mining in software engineering
	Code review process


	Research methodology
	White & gray literature search
	White literature
	Gray literature
	Elicitation of the code review smell types 

	Developer survey & follow-up interviews
	Empirical analysis

	Taxonomy of code review smells
	Synthesizing literature reviews & developer survey
	Final taxonomy
	Lack of code review
	Review buddies
	Reviewer-author ping-pong
	Looks good to me reviews
	Sleeping reviews
	Missing context in reviews
	Large changesets


	Empirical analysis
	Dataset types and analysis
	Data cleaning & preprocessing
	Quantitative results
	Lack of code review
	Review buddies
	Reviewer-author ping-pong
	Sleeping reviews
	Missing context in reviews
	Large changesets

	Statistical analysis of the results
	Project type vs smell percentages
	Changeset size vs smell percentages


	Discussion
	Code review smells in different platforms (Gerrit & GitHub)
	Selecting the right thresholds
	Implications for research
	Implications for industry and software engineering practice

	Threats to validity
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Literature Sources
	References


