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ABSTRACT

SEMANTIC AND GOAL-ORIENTED SIGNAL
PROCESSING: SEMANTIC EXTRACTION

Mehmetcan Gök

M.S. in Electrical and Electronics Engineering

Advisor: Orhan Arıkan

August 2022

Advances in machine learning technology have enabled real-time extraction of se-

mantic information in signals, which has the potential to revolutionize signal pro-

cessing techniques and drastically improve their performance for next-generation

applications. A graph-based semantic language and a goal-oriented semantic

signal processing framework are adopted for structured and universal representa-

tion and efficient processing of semantic information. In the adopted framework,

preprocessing of input signals is followed by a semantic extractor which identi-

fies components from a set of application-specific predefined classes where the

states, actions, and relations among the identified components are described by

another application-specific predefined set called predicates. For additional in-

formation, the resulting semantic graph is also embedded with a hierarchical set

of attributes. In this thesis, we focus on the crucial semantic extractor block,

and to illustrate the proposed framework’s applicability, we present a real-time

computer vision application on video-stream data where we adopt a tracking

by detection paradigm for the identification of semantic components. Next, we

show that with the adopted semantic representation and goal-filtering, the se-

mantic signal processing framework can achieve an extremely high reduction in

data rates compared to traditional approaches. Finally, we demonstrate a way to

identify points of significant innovation over extended periods of time by tracking

the evolution of multi-level attributes and discussing future research directions.

Keywords: semantic signal processing, goal-oriented signal processing, semantic

extraction, graph-based languages.
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ÖZET

ANLAMSAL VE HEDEFE YÖNELİK SİNYAL İŞLEME:
ANLAMSAL ÇIKARMA

Mehmetcan Gök

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Orhan Arıkan

Ağustos 2022

Makine öğrenimi teknolojisindeki ilerlemeler, sinyal işleme tekniklerinde devrim

yaratma ve yeni nesil uygulamalar için performanslarını büyük ölçüde iyileştirme

potansiyeline sahip olan sinyallerdeki anlamsal bilgilerin gerçek zamanlı olarak

çıkarılmasını sağlamıştır. Semantik bilginin yapılandırılmış ve evrensel temsili

ve verimli işlenmesi için grafik tabanlı bir semantik dil ve hedef odaklı bir se-

mantik sinyal işleme yapısı benimsenmiştir. Benimsenilen yapıda, sinyal girdi-

lerinin ön işlenmesine bir anlamsal çıkarıcı eşlik etmektedir. Bu anlamsal çıkarıcı,

anlamsal bileşenlerin tanımlanması, tanımlanmış bileşenler arasındaki durum-

ların, eylemlerin ve ilişkilerin uygulamaya özel önceden tanımlanmış bir küme

içinden seçilmesini sağlar. Ek bilgi için, elde edilen anlamsal grafik çıktısına

ayrıca hiyerarşik bir dizi öznitelikle gömülmüştür. Bu tezde, önemli semantik

çıkarıcı bloğuna odaklanıyoruz ve önerilen yapının uygulanabilirliğini göstermek

için video akışı verileri üzerinde gerçek zamanlı bir görüntü işleme uygula-

ması sunuyoruz. Daha sonra, benimsenen anlamsal temsil ve hedef odaklı fil-

treleme ile sinyal işleme yapısının geleneksel yaklaşımlara kıyasla veri hızlarında

son derece yüksek azalma sağlayabileceğini gösteriyoruz. Son olarak, çok se-

viyeli özniteliklerin gelişimini izleyerek uzun zaman dilimlerinde önemli yenilik

noktalarını belirlemenin bir yolunu gösteriyoruz ve ileriki araştırma konularını

tartışıyoruz.

Anahtar sözcükler : anlamsal sinyal işleme, hedef odaklı sinyal işleme, anlamsal

çıkarım, grafik tabanlı diller.
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Chapter 1

Introduction

Signal processing has played a major role in the era of the digital revolution. It

has been essential in the design and development of complex systems that inte-

grate the contributions of multiple scientific disciplines. Significant challenges in

critical areas including remote sensing, healthcare, finance, transportation, rec-

ommendation systems, Human-machine symbiosis, defense, virtual reality (VR),

augmented reality (AR) and security have been successfully overcome with ad-

vances in signal processing techniques [1].

Semantic information theory (SIT) [2] has been around almost as long as the

classical information theory (CIT) [3]. As its name implies, SIT is focused on

the semantic problem which is the accurate generation, processing, storage, and

transmission of the intended meaning rather than the transmission and recovery

of individual bits and symbols referred as the technical problem. Comparison of

traditional and semantic communication systems is illustrated in Fig. 1.1.

Despite its long history, semantic information has only been employed seldom

and at a low level in various signal processing applications. Target tracking by

an individual sensor or a sensor network is an important example of semantic in-

formation use. In radar signal processing, for example, following the detection of

targets via real-time processing of radar returns, only a small portion of detected

1



(a) Traditional communication system.

(b) Semantic communication system.

Figure 1.1: Comparison of traditional and semantic communication systems.

target reports are usually transmitted to the tracking system to initiate new

tracks or maintain the existing ones. Targets that move in close proximity can be

detected and monitored as a group in such processes. The detection and tracking

of targets with their indicated group features may be considered as a semantic

extraction of information from radar returns in this application. Furthermore, if

multiple radars are linked together in a network, they may share semantic infor-

mation in the form of target tracks for better surveillance and target handover

operations [4, 5].

Recent developments in machine learning have far-reaching consequences in

many fields, including but not limited to healthcare [6, 7, 8], finance [9, 10, 11],

entertainment [12, 13], communications [14, 15], and defence [16]. Among the

many accomplishments of machine learning technology, real-time extraction of

rich semantic information from streaming data is crucial in future signal process-

ing applications. For example, recognition of objects in images and videos may

be done in real-time [17, 18, 19]. The availability of such rich semantic data can

2



drastically alter and improve signal processing techniques.

The 6G and beyond communication systems have the potential to bring about

an Internet of Intelligence with connected people, connected things, and con-

nected intelligence [20, 21, 22, 23, 24]. It will possess the potential to build up a

wireless network of everything sensing, everything connected and everything intel-

ligent. Aside from traditional radio technical advancements, 6G and beyond will

investigate several novel architectures and technologies, with goal-oriented seman-

tic signal processing and communications being a key component. Semantic com-

munications will enable more efficient use of network bandwidth. Furthermore,

network users such as self-driving vehicles will profit greatly from goal-filtered

semantic data exchanges between themselves and the smart city backbone.

In this thesis, for a structured and universal representation and efficient pro-

cessing of the semantic information, first we re-introduce the graph-based seman-

tic language and the goal-oriented semantic signal processing framework proposed

in our previous work [25], in which the proposed formal semantic signal process-

ing framework incorporates a goal-oriented parsing method and can easily be

tailored for specific signal processing applications and goals. A semantic infor-

mation extractor in the proposed framework identifies signal components and

semantic relation into a set of application-specific classes and predicates respec-

tively. Moreover, along with the identification of components and predicates, each

node in the graph has a hierarchical collection of attributes that are organized in

increasing levels of complexity and offer additional detailed information. Those

components that are semantically related to each other form directed bipartite

graphs where only edges between a component and a predicate are allowed to

exist. Since these graphs often have a very small number of nodes, operations

on them can be carried out very effectively. Additionally, the proposed bipartite

structure permits a comprehensive yet relatively straightforward representation of

signals and significantly reduces the complexity of graph-based signal processing

applications.

In the proposed semantic signal processing framework, the graphs that will

be processed further and those that are currently not of interest can be grouped

3



based on an internally or externally defined set of goals that can change over time.

Spatio-temporal tracking of graph parameters and performing various operations

on their attributes may be included in the later processing stages. The desired

level of semantic information contained in the graphs that are of interest can be

locally kept or exchanged with another processor through the appropriate com-

munication protocols at any time in the processing chain. Since interesting events

typically occur infrequently in high bandwidth sensor data, the corresponding se-

mantic signal processing algorithms produce astounding compression rates. Here,

we focus on the crucial semantic extractor block of the framework. We investigate

and propose methods for communication over a sensor network where sensor data

is semantically processed and semantic information is transmitted in the network

to illustrate the significant reduction in communication rate compared to tra-

ditional ways. To demonstrate the wide range of applicability of the proposed

goal-oriented semantic signal processing framework, we experiment on a real-time

video stream use-case and provide details on how the proposed framework can be

adapted for different signal modalities. Furthermore, we present a way to char-

acterize and identify innovations across frames at various attribute-levels. In the

next section, we review existing approaches to semantic information in signals.

1.1 Semantic Information

In his seminal paper [3], Claude E. Shannon introduced CIT and paved the way for

modern communications as we know it. However, as Shannon and Weaver later

formalized [26], CIT only addresses the low-level technical problem of accurate

encoding and transmission of bits and symbols. The semantic and effectiveness

problem at higher levels of abstraction are concerned with the transmission of

the intended meaning and the execution of the desired effect respectively, where

in this thesis we focus on the mid-level semantic problem.

Consider the conversation between two people. We utilize words as part of

4



shared language to convey certain information to one another. If person-A de-

scribes a visual scene to person-B, the precise image that reconstructed in person-

B’s mind is quite certainly not the one that in person-A’s mind. However, no

semantic information is lost during transmission if the intended information is

accurately delivered. Furthermore, in terms of throughput, a complex scene with

a few meaningful components may be represented with a comparable number of

words significantly reducing the amount of symbols transmitted compared to a

pixel-by-pixel decomposition of the image. Another crucial aspect of human com-

munication is the ability to ask questions, which significantly limits the domain

knowledge when transmitting information. In this thesis, we refer to questions

that can be asked internally or externally as goals. As a result, throughout the

thesis, the term goal-oriented information refers to semantic material that has

been filtered by pertinent queries.

With recent developments in Internet of Things (IoT), massive-machine type

communications (mMTC) will dominate next generation communication net-

works [21]. Using a language as a medium to describe signals and construct

inquiries about them enables a human-like way of communication between ma-

chines, which can significantly reduce the overall throughput while increasing

efficiency. Despite this increased efficiency has been widely anticipated and has

been known virtually from the introduction of CIT [26, 2], efficient extraction of

semantic information was not achievable until recent advancements in machine

learning (ML) and artificial intelligence (AI) technology.

ML and AI approaches enable the development of unique signal processing

algorithms and systems capable of extracting and using semantic information

in real-time inputs by allowing for the efficient extraction of semantic informa-

tion from signals of varying modality, such as speech, image, and video signals.

The generated semantic signals enable the next generation of signal processing

techniques to be applied at a semantic level in real-time using a goal-oriented

approach.

In contrast to traditional signal processing methodologies, goals in semantic

signal processing are specified in a semantic language. To be able to establish
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suitable performance metrics and apply compression/coding methods based on

the communicated or inferred meaning of transmission, a language that maps

these meanings to a predetermined syntactic structure must be determined. As

a result, it is vital to develop a semantic information and language model that

is generic enough to be used in a wide range of signal processing applications

while being simple enough to be used by low-end agents with limited power

and computational capabilities. The remainder of this section provides a quick

overview of previously suggested semantic language modalities.

1.1.1 Natural Languages

Natural Languages (NL) are the most popular and obvious alternatives for a

shared language in signal processing and mMTC applications. Natural Language

Processing (NLP) has generated a large amount of research for the synthesis of

NL sentences given an input signal, particularly for human-machine interaction

applications including visual question answering, image/video captioning, and

discourse parsing. Relatively recently, there has been an increasing focus on

semantic communications using NL as a basis as well [27, 28, 29, 30].

NLs are appealing because they provide a common language for all agents,

independent of their individual capabilities. However, this universality entails

the processing of a huge knowledge base (e.g., the English language), which has

inherent ambiguities and contradictions. Consequently, the NL techniques are

overly complicated for simple IoT sensors and similar machine-type applications.

In such instances, a clear and straightforward linguistic structure is essential.

1.1.2 Propositional Logic

Carnap and Bar Hillel’s pioneering work [2] on semantic communications provides

propositional logic as a semantic language. Common logical operations such as

NOT (¬), AND (∧), OR (∨), IMPLIES (⇒) etc., are used to combine several

6



symbols to form molecular sentences describing a state (e.g., ¬(A ⇒ B) ∧ C ).

Goals in this language can be formed similarly using propositional logic, effec-

tively parsing the existing truth table of symbols for the desired pattern. Specif-

ically, based on logical probabilities, the authors measured semantic information

as the degree of confirmation:

H(H, e) = −log c(H, e) (1.1)

where H is hypothesis, e is evidence, and c(H, e) is the degree of confirmation of

the hypothesis and the evidence, e.g, H may be new message and e may refer to

knowledge. In [31], the semantic entropy of a sentence s and its logical probability

defined as:

H(s) = −log2m(s), (1.2)

m(s) =
p (Ws)

p(W)
=

∑
w∈W,w|=s p(w)∑

w∈W p(w)
(1.3)

where |= is proposition of satisfaction, W is the symbol set of the conventional

source, Ws = {w ∈ W : w |= s} is the set of symbols which s is true, and p(w) is

the probability of w. Furthermore, in [32], the authors introduced the concept of

matching degree with the membership degree (i.e., a concept in fuzzy set theory

which is difficult to measure analytically) to define semantic entropy in fuzzy

systems. In [32], the membership degree is defined manually by following expert

intuition and experience. Specifically, for semantic concept ζ (e.g., transmission

of task) and membership degree µζ(X) for each X ∈ X , the matching degree for

the class Cj is defined as:

Dj(ζ) =

∑
X∈XCj

µζ(X)∑
X∈X µζ(X)

(1.4)

which characterizes the semantic entropy of X on concept ζ. Furthermore, with

Dj, the semantic entropy on class Cj defined as:

HCj
(ζ) = −Dj(ζ) log2Dj(ζ) (1.5)

It is important to note that, the definitions above are based on the assumption

that there exist a way to measure and quantify semantic information [33].
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The propositional logic as a semantic language is attractive, since it can be

tailored for specific applications and as a result, may not suffer from the complex-

ity and ambiguity of NLs. However, it is challenging to incorporate numerical

attributes such as position and velocity into the language; therefore, the resulting

descriptions may lack complete information about the signals of interest.

1.1.3 Graph Based Languages

Graph-based languages as mathematical constructions have major benefits over

NLs due to their ability to describe components in the signal along with the inher-

ent connections and states. Most popular applications of graph-based languages

include scene graph generations from images and videos [34, 35, 36, 37, 38, 39,

40, 41], knowledge graphs and graph-based question answering [42, 43, 44, 45],

and semantic web applications [46, 47, 48]. The question answering problems use

sub-graphs called motifs to search for a pattern within a graph representation,

enabling a goal-oriented approach [49, 50, 51, 52]. Moreover, graph nodes and

edges can include additional attributes to convey a more complete description of

the underlying scene [53].

We believe that graphs with attributes can give a structured and complete

description for a wide range of signals due to the aforementioned appealing prop-

erties. However, because the bulk of graph-based language models continue to rely

on NLs as their foundation, they might be overly complicated for basic machine-

type applications with strict efficiency requirements. Therefore, we recommend

the utilization of a graph-based language with a unique and relatively modest

knowledge base that can be adapted to specific signal domains and applications

of interest, which would be extremely useful for machine-type applications.

8



1.2 Organization of the Thesis

The rest of the thesis is organized as follows. In the next chapter, we present

a detailed literature survey on the recently developed semantic information ex-

traction and semantic communication techniques. The proposed goal-oriented

semantic language and signal processing framework in [25] is re-introduced in

Chapter 3. In Chapter 4, we first demonstrate the proposed semantic signal pro-

cessing framework on video-stream signals and discuss customizations for adap-

tation of proposed framework on other signal modalities and applications. Then,

we investigate the data compression potential of the proposed framework and

introduce a way to identify innovations over the extended periods of time using

the associated attributes at multiple levels. Finally, we conclude the thesis and

discuss the future directions in Chapter 5.
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Chapter 2

A Review of Semantic

Transformations and

Goal-Oriented Semantic

Communications

In this chapter, existing semantic transformations that can effectively process

signals of different modalities, and current state of the goal-oriented semantic

communications are described. Here, we provide detailed survey of the state-of-

the-art semantic transformations.

Semantic information exists in many signal modalities such as a textual de-

scription of an image, a knowledge graph derived from a paragraph, and even in

correlation functions of random processes. We refer to semantic transformation

or semantic extraction as the mapping from an input modality to a target seman-

tic modality where the target semantic modality can be anything ranging from

vectors, texts, and graphs. It is important to point out that although there are

many input and target semantic modality pairs, we only discuss a small, albeit

an intuitive subset of transformation modalities mostly focused on visual input

types.
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2.1 Object Detection

Object detection can be interpreted as one of the core semantic transformations

from visual domain to domain of object classes. Convolutional Neural Networks

(CNNs) [54] constitute fundamental processing modules of object detection meth-

ods. Recurrent CNN (RCNN) models are introduced in [55], where the selective

search is utilized to propose candidate regions and each region is processed inde-

pendently by a CNN and classified using support vector machines (SVMs). The

use of RCNN models is further diversified in [56, 17]. In [56] instead of extracting

region features separately, a single forward pass through a CNN is performed and

the resulting feature map is branched into regions using Region-of-Interest (RoI)

pooling. RCNNs with real-time processing capabilities are introduced in [17],

where object regions are proposed by Region Proposal Networks (RPNs) instead

of selective search. YOLO is introduced in [57] as the very first attempt on

fast object detection task and it is further improved in [58, 59]. Unlike Faster-

RCNN [17], YOLO, and its later versions, do not utilize region proposals. Instead,

they split the input image into cells and perform inference on a limited number

of boxes in each cell [57] as shown in Fig. 2.1. Moreover, recent works [18, 19] use

network scaling approaches to achieve higher detection accuracy within shorter

inference times, and obtain state-of-the-art results for real-time object detection.

Particularly, [18] proposes a weighted bi-directional feature pyramid network to

fuse features from multiple levels, and in [19] a network scaling method is applied

to the YOLO architecture. Performance, architecture, input size and speed of

various object detection models are reported in Table 2.1.

2.2 Semantic Segmentation

Segmentation is another semantic transformation that is applicable for visual in-

puts or inputs that are transformed to 2-D domains such as time-frequency or

time-scale. Semantic segmentation can be considered as a higher resolution ver-

sion of object detection where a category label is assigned to each pixel. More
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Figure 2.1: YOLO [57] object detection model. Unlike Faster-RCNN [17], YOLO
does not use region proposals, instead, it splits the input image into grids and
performs inference on each grid.

formally, semantic segmentation aims to find a way to assign a label from cate-

gories to a set of random variables that correspond to each pixel in the image.

Here, each label can represent an object class such as “person”, “plane”, “car”,

etc., or labels can be the distinct but unspecified clusters in an unsupervised set-

ting [61, 62, 63]. In [64], texton forests are proposed as efficient low-level features

for image segmentation. Alternative approaches include random forest classi-

fiers [65] and combination of SVMs and Markov Random Fields (MRFs) [66]. The

state-of-the-art in semantic segmentation typically employs convolutional archi-

tectures in supervised, semi-supervised, and weakly-supervised settings [67]. It is

important to note that, the features extracted by the deeper layers of a CNN are

more concentrated on concise semantics with low spatial details whereas shallow

layers of a CNN are more aware of spatial details such as edge orientations. Con-

volutional architectures for image segmentation include dilated convolutions [68]

to incorporate context information from multiple scales, Fully Convolutional Net-

work (FCN) architectures [69] using skip-connections [70], a symmetrical encoder-

decoder structure called DeconvNet [71], and its simpler version in [72].

Recurrent architectures are also employed in semantic segmentation. In [73],

Recurrent Fully Convolutional Networks are proposed for multi-slice Magnetic
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Table 2.1: Performance comparison of various object detection models on MS
COCO dataset. mAP@0.5 is abbreviation for mean average precision (AP), i.e.,
the area under precision-recall curve, over all object classes at 0.5 IoU threshold.
Models are classified as real-time detectors if they operate faster than 30 FPS.

Model Backbone Size mAP@0.5 FPS

RCNN [55] AlexNet 224 58.50% ∼0.02

Fast-RCNN [56] VGG-16 Variable 65.70% ∼0.43

Faster-RCNN [17] VGG-16 600 67.00% 5

Mask-RCNN [60] ResNeXt-101-FPN 800 62.35% 10.6

YOLO [57] GoogLeNet 448 57.90% 45

YOLO9000 [58] DarkNet-19 352 44.00% 81

YOLOv3 [59] DarkNet-53 320 51.50% 45

YOLOv4 [19] CSPDarkNet-53 512 64.90% 31

EfficentDet-D2 [18] Efficient-B2 768 62.30% 39.7

Resonance Imaging (MRI) segmentation where Gated Recurrent Unit (GRU) is

incorporated into the bottleneck of the U-Net architecture given in [70]. Moreover,

several Generative Adversarial Network (GAN) architectures are proposed [74,

75, 76], where adversarial training is introduced to semantic segmentation in [74].

Semantic segmentation architectures that offer real-time operation are pro-

posed in [77, 78, 79]. In [60], Faster-RCNN [17] is modified for instance seg-

mentation and Mask-RCNN is introduced, the process of which is illustrated in

Fig. 2.2. Unlike semantic segmentation, instance segmentation aims at assigning

labels to pixels at an object level as opposed to a class level. Union of instance and

semantic level segmentation is called panoptic segmentation [80], where each pixel

is associated with both instance and class level labels, as shown in Fig. 2.3 along

with different segmentation types. Readers interested in semantic segmentation

can find detailed taxonomy of models, applications, discussion on challenges, and

possible future directions in [67, 81, 82].
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Figure 2.2: Mask-RCNN [60] model for instance segmentation. As its back-
bone, Mask-RCNN uses ResNet which is followed by a Feature Pyramid Network
(FPN) and a Region Proposal Network (RPN). Features for proposed regions are
extracted with RoI Alignment. Finally, bounding-box regression, instance classi-
fication, and segmentation mask inference are performed.

2.3 Image and Video Captioning

An intuitive way of representing the semantic information embedded in images

or videos is to describe them via natural languages (NLs). Image caption or an-

notation generation is defined as the process of generating textual descriptions

for images, which include not only the descriptions of objects within frames but

also their interrelations and states. Typical fundamental building blocks of cap-

tioning models include CNNs and Recurrent Neural Networks (RNNs). More

specifically, a CNN backbone is utilized to extract the visual features and RNNs

are used for sequence modeling [83, 84, 85, 86, 87, 88]. To improve the caption

quality, visual attention on CNNs [87] or captioning on multiple image regions

are proposed [84]. In [88], dense captioning is introduced where object detection
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(a) Object Detection (b) Semantic Segmentation

(c) Instance Segmentation (d) Panoptic Segmentation

Figure 2.3: Different object detection and segmentation techniques applied to
an image. (a) In object detection, detected/classified objects are localized with
bounding boxes. (b) Semantic segmentation aims to assign class labels at the
pixel level. (c) Instance segmentation is applied to the object detection for finer
localization. (d) In panoptic segmentation, both background and foreground
are segmented such that each pixel is associated with an instance and a class
simultaneously.

and caption generation tasks are tackled jointly in such a way that the detected

visual concepts are described with short NL phrases.

To overcome localization issues of visual concepts due to overlapping target

regions, global image features are fused with region features for dense captioning

in [89]. In [90], the dense captioning task is extended to relational captioning

where multiple captions are generated for each object pair based on spatial, at-

tentive, and contact relation information [91]. Examples of image captioning

techniques are illustrated in Fig. 2.4.
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A man and a cat are 
riding a bicycle.

person cat bicycle

The man wearing white shirt.

The cat is yellow.

The bicycle is black.

person

riding

bicycle

on

cat

bicycle

behind

person

cat

in front of

cat

person

A man riding a
black bicycle.

A yellow cat sitting
on the bicycle. 

A cat sitting in
front the person.

Old man sitting
behind a yellow cat.

Figure 2.4: Some semantic transformation examples on the image domain. Image
captioning simply generates a textual description of the image. Object detection
identifies the objects residing in the image. Dense captioning generates a caption
for each salient region or detected object in the image. Relationship detection
identifies relations among each object pair. Relational captioning generates a
caption for each detected object pair.

Video captioning can be considered as a temporal extension of image cap-

tioning. Just like image captioning, the video captioning architectures also use

CNNs (2D or 3D) as attention mechanisms or to extract visual semantic content.

Then, RNNs or LSTMs are typically used to generate NL text sequences [92]

as illustrated in Fig. 2.5. Specifically, one of the early works [93], which is only

applicable for videos of short duration, employs mean-pooling to frame represen-

tations extracted by a shared CNN and utilizes an LSTM architecture for caption

generation. To extend the validity of extracted features to longer durations, re-

current visual encoder architectures are used [83, 94, 95]. In [96], instead of a

single caption, multiple captions are generated without their temporal localiza-

tions using a hierarchical-RNN architecture. Furthermore, a hierarchical-RNN

architecture is used to generate paragraphs for videos in [97].

Dense captioning works in the image domain are also extended to video signals

in [98] where multiple captions are generated for each detected event, and they

are temporally localized. Dense video captioning is also referred to as joint event

detection and description generation. In [98] CD3 features are extracted before-

hand, and they are fed into a proposal module that uses an attention mechanism.

JEDDi-Net proposed in [99] is employed for dense video captioning in an end-

to-end fashion without pre-feature extraction. It uses a 3D-CNN to extract the
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video features and a segment-proposal-network (SPN) to generate candidate seg-

ments for events. A comprehensive survey of image and video captioning models

can be found in [100] and [92], respectively.

2.4 Scene Graph Generation

A powerful form of semantic transformation is to convert images into graphs that

represent a scene and encode the visual relationships presented in the image.

Scene graphs are proposed in [101] describe image features and object relation-

ships in an explicit and structured way for image retrieval. Scene graph genera-

tion models can capture a higher-level of understanding of the scenes compared to

object detection models by additionally identifying object attributes and relation-

ships among them. In essence, scene graph generator models can be considered as

image captioning models where they produce parsed versions of succinct captions

that are represented in the graph format, instead of NL sentences. Specifically,

a scene graph is a graphical data structure that describes the contents of a scene

where the nodes represent the detected objects, and edges linking them represent

the inter-node relationships. An example scene graph is shown in Fig. 2.6.

Scene graph can be described as a projection of given scene, e.g., image, video

or a 3D mesh, into a directed graph constituted by set of visual triplet, usually

describe as (object, predicate, subject), descriptions G defined over the product

of predetermined object O, attribute A and predicate set P . In other words,

G ⊆ O×P×(O ∪A). Generally, the predicate set P contains the is predicate pis

to express the cases where only one object is involved. In the following we will use

superscript S to denote belonging of sets and variables to a particular scene S. For

instance, whileO contains all possible object types such as car or person including

their location, OS will denote the set objects that are present in the scene S, e.g.

the set that contains the people in a landscape photo. Each object in scene graph

GS indexed by k and is expressed by a semantic label c and a bounding box b as

a location marker such that oSk =
(
cSk , b

S
k

)
∈ OS for k ∈ 1, . . . ,

∣∣OS
∣∣. For example,

a particular car in the right corner of a parking lot image S, we have cSk = car
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Figure 2.5: Video captioning pipeline. Often, frames are processed by 2D or 3D
convolutions to extract features. Then, extracted features are processed further in
the temporal domain by methods like attention, temporal encoding, LSTM, etc.
Finally, a caption is generated by feeding recurrent architectures with temporally
assessed features.
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Figure 2.6: A scene graph example. Detected objects are represented as objects
with circular colored nodes. Relationships among object nodes are shown with
directed edges. Object attributes are denoted with rectangular uncolored nodes
and they are connected to object nodes with undirected edges.
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whereas bSk contains the coordinates of vertices that characterize the smallest

rectangle covering oSk . Each relation between objects oSi and oSj is denoted by

pSi→j ∈ PS ⊆ P and forms the descriptive triplet tSi→j =
(
oSi , p

S
i→j, o

S
j

)
∈ T S for

i ̸= j. It is important to note that, for relation pSi→j = pis we have attribute

aSoi,j ∈ AS as the subject. Generation of scene graph GS for given scene S can be

formalized as below.

• BS =
{
bS1 , . . . , b

S
N

}
be set of N region candidates in S where bSi is the

bounding box of i-th candidate region

• OS =
{
oS1 , . . . , o

S
N

}
be set of objects where oSi denoting the label of candi-

date region bSi

• AS =
{
aSo1,1, . . . , a

S
o1,k1

, . . . , aSoN ,1, . . . , a
S
oN ,kN

}
be set of attributes for ki ≥ 0

with aSoi,j denoting j-th attribute associated with i-th object

• PS =
{
. . . , pSi→j, . . .

}
be set of predicates between objects where pSi→j pred-

icate in triplet descriptor tSi→j =
(
oSi , p

S
i→j, o

S
j

)
Assuming the detection of attributes and predicates as two independent pro-

cesses, we can write the probability of scene graph GS given scene S as:

P
(
GS|S

)
= P

(
BS|S

)
P
(
OS|BS, S

)
P
(
AS|OS,BS, S

)
P
(
PS|OS,BS, S

)
(2.1)

where P
(
BS|S

)
is the probability of proposing candidate regions given S and

P
(
OS|BS, S

)
denotes the probability of assigning specific labels to those proposed

regions.

As shown in Eq. 2.1, the scene graph generation process consists of several

steps [34] and these steps are illustrated in Fig. 2.7. First, given an image,

an object detection module extracts object region proposals and visual features

corresponding to these regions. Generally, a Faster-RCNN [17] is used for the

backbone of object detection. The extracted features are used to identify object

categories and their attributes. Identified objects along with their extracted fea-

tures are used as nodes in the initial graph, e.g., a fully connected dense graph.
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Figure 2.7: Scene graph generation pipeline. As a first step, object proposal
regions are generated by object detection architectures such as RPN [17]. The
proposals are used to construct a fully connected coarse graph where feature
representations are established by processing region of interests (RoI) and spa-
tial connections via backbone or additionally incorporated neural architectures.
Then, the initial graph and its features are refined iteratively by utilizing tech-
niques such as message passing, attention or visual embeddings. Refined features
are used to infer node and relationship types in the final graph via outermost
classifier head.
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Then, the extracted features along the nodes and edges are iteratively refined,

and a final graph is inferred according to these refined features. Some recent

papers [35, 36, 37] also consider joint optimization of object detection and rela-

tionship recognition parts. Specifically, Factorizable-Net is proposed in [38] where

an RPN is used to extract object proposals and proposed objects are paired to

obtain a fully-connected initial coarse graph. In [39], Graph-RCNN is introduced.

Graph-RCNN uses relation-proposal-network (RePN) to prune the connections

in the initial graph and an Attentional Graph Convolutional Network [40] refines

the features on the graph. On the other hand, VCTree model [41] constructs a

dynamic tree from a scoring matrix where visual context is encoded into the tree

structure. An illustration of the VCTree model is given in Fig. 2.8. Further-

more, some recent works [35, 36] use recurrent architectures for graph inference.

Particularly, in [36] a feature refining module consisting of edge and node Gated

Recurrent Units (GRU), and in [102], stacked bi-LSTMs are used.

There are approaches to incorporate external prior knowledge for scene graph

generation tasks as well. In [104], natural language priors are incorporated and

visual relationships and textual relationships are jointly learned and aligned.

A linguistic knowledge distillation framework is proposed in [105] where statis-

tics obtained from external texts are used to regularize visual models. In [106],

knowledge-graphs are employed as prior information where the generated scene

and knowledge graphs are abridged and iteratively refined.

Scene graphs can also be extracted from video signals. In [107], each frame in

the video is converted into a scene graph as an intermediate semantic representa-

tion. Then, using frame and cross-frame level relationships of intermediate scene

graphs, a story of the video is generated. Joint parsing of cross-view videos is

introduced in [108] where scene-centric and view-centric graphs are hierarchically

generated. For more details, we refer the readers to survey papers [34, 109].
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Figure 2.8: VCTree model proposed in [41]. Visual features are extracted from
object proposals. Extracted features are used to compute a scoring matrix. Based
on the score matrix, a dynamic tree structure is constructed using REINFORCE
algorithm [103]. Finally, visual features are encoded into context features and a
scene graph is generated via supervised learning.

2.5 Automatic Speech Recognition

Speech is one the most natural sources of semantic information. The most popular

application of semantic transformation on speech signals is the conversion of audio

signals into NL texts via automatic speech recognition (ASR) systems [110]. This

semantic transformation can be explained as follows: for a given length n input

sequence {xi}ni=1 the role of an ASR system is to generate corresponding length

m output sequence {yi}mi=1 such that {yi}mi=1 has the highest probability given the
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input sequence {Xi}ni=1:

{yi}mi=1 = argmax
Z={Zi}mi=1

P
(
Z
∣∣X1 = x1, . . . , Xn = xn

)
= argmax

Z={Zi}mi=1

P
(
X1 = x1, . . . , Xn = xn

∣∣Z)P (Z)

P (X1 = x1, . . . , Xn = xn)
(2.2)

where P (Xi = xi) is the probability that xi is present in the i-th component in

the signal, P (Z) denotes the probability of occurrence of sequence of words, and

P (Z|X1 = x1, . . . , Xn = xn) is the probability that natural language output Z

is occurring in correspondence to the audio signal {xi}ni=1. It is important to

note that, similar to the image/video captioning applications, the range of target

semantic modality is formed by a predetermined portion of the desired natural

language. The extent of the covered portion of the target natural language is con-

tinuously expanding throughout the years from digits [111] to tens of thousands

of words [112].

Figure 2.9: Automatic speech recognition pipeline. The semantic features of a
preprocessed speech audio signal are extracted and fed into a predictor for text
generation. The prediction module is designed for a target language model.
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Even though the requirements of an ASR system may vary for different ap-

plications (e.g., speaker dependency, vocabulary size, and utterance-awareness),

most of the approaches conform with the process depicted in Fig. 2.9, as described

in [110]. Often, an ASR system consist of four modules, namely pre-processing,

feature extraction, prediction and language model. The preprocessing module in-

cludes different filters and methods such as framing, pre-emphasis, windowing

and normalization to increase signal-to-noise ratio which can vary based on the

utilized feature-extraction method since certain feature extraction techniques ne-

cessitate the use of a particular preprocessing procedure on its input audio signal.

The next step after obtaining the clean audio signal is the feature extraction

process which is quite crucial for the performance of upcoming prediction mod-

ule. Usually the extracted features are treated as intermediate semantics by the

ML community. In an ASR system, the desired qualities of extracted features

are robustness to noise and echo effects. The most often used feature extraction

methods are Mel-frequency Cepstral Coefficients (MFCC) [112, 113, 114], Dis-

crete Wavelet Transform (DWT) [115, 116, 117] and Linear Predictive Coding

(LPC) [118, 119, 120, 121].

Figure 2.10: MFCC feature extraction. Input speech is generally 16 bit, 16 kHz
signal. As preprocessing steps, the input audio initially divided into frames, then
passed through a pre-emphasis filter to preserve higher frequency components
and multiplied by a window function such as Hamming.

The schematic for extraction of MFCC is shown in Fig. 2.10. A continuous

audio function, as we know, has varying values at different moments in time. To
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simplify MFCC extraction process, the audio stream is split into smaller overlap-

ping frames. After dividing the audio signal into frames, each frame is multiplied

by the window function such as Hamming. Then, as illustrated in Fig. 2.10, Fast

Fourier Transform (FFT) is applied to obtain spectrum of the audio signal where

the results are then used to calculate log energy output via Mel scale filter bank

as follows:

Yi = log10

(
M−1∑
k=0

Hi(k)
∣∣X(k)

∣∣) for i = 1, . . . , N (2.3)

where X(k) is the k-th window for audio source signal, N is the length of FFT,

Hi(k) is the Mel scale filter bank and Yi denotes log energy outputs. Finally,

Discrete Cosine Transform (DCT) is applied to obtain Mel frequency cepstral

coefficients cj which allows us to preserve most of the contained energy while

reducing the dimensionality by discarding coefficients with high values but low

energy:

cj =
N∑
i=1

Yi cos
(
j
π

N
(i− 0.5)

)
for j = 0, . . . , J − 1 (2.4)

where J is the number of selected coefficients.

LPC is another feature extraction method for ASR systems first proposed

in [118]. LPC imitates the structure of vocal tract in the human auditory system.

The idea is to represent the current sample as linear combination of all previous

samples. As in the case of MFCC extraction, to perform LPC analysis, first the

input audio is split into frames and multiplied by a windowing function to ensure

absence of discontinuities in the beginning and end of each frame. Then the

auto-correlation between frames are calculated and LPC analysis is performed:

z[n] ≈
p∑

k=1

z[n− k] c[k] (2.5)

where z[n] denotes the current sample point of the calculated auto-correlation

signal and p is the total number of previous sample points. The main goal of LPC

analysis is to find coefficients ĉ so that the mean squared error E is minimized:

ĉ = argmin
c[1],...,c[p]

E = argmin
c[1],...,c[p]

∑
n

(
z[n]−

p∑
k=1

z[n− k] c[k]

)2

(2.6)
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The final module of an ASR system is the prediction module, to output the

most likely text sequence. The prediction module takes the extracted features

as input from the previous stage and can adopt generative, e.g. Hidden Markov

Models (HMM) [122, 123] and Gaussian Mixture Models (GMM), parametric,

e.g. SVMs [124, 125, 126], RNNs [127, 128, 129] and CNNs [130, 131, 132, 133],

or hybrid approach to obtain the text equivalence in the desired language. The

language model is employed to impose predefined vocabulary and grammar rules

such as phonemes. More details about ASR can be found in the pertinent survey

papers [110, 134].

2.6 Semantic Radar Signal Processing

Up to now, we only reviewed semantic transformation examples that are applied

to visual, audio and lexical data. Nevertheless, it is also possible to define ap-

propriate semantic transformations in other modalities such as radar signals. In

recent years, many works utilized ML and DL techniques to process radar signals

effectively to perform tasks such as waveform design, target recognition or inter-

ference mitigation [135, 136]. In this section, we briefly review some works that

can be considered as semantic transformation in radar signal processing. A coarse

framework of semantics in radar signal processing is illustrated in Fig. 2.11.

Radar has well-known reputation of being robust against weather and light-

ing conditions, a desired attribute especially for emerging applications such as

autonomous driving. In [137], it is proposed to use CNNs to extract semantic

representation of environment from raw radar signals by cell-wise classification

of the objects contained in the radar grid which enables foregoing priory object

extraction. Indoor mapping problem with mmWave radars are considered in [138]

where the dense grid map is constructed using the received mmWave signals and

additional semantic mapping is applied to identify object construction and space

accessibility such as walls, doors or lifts. In [139], several CNN based DL architec-

tures proposed to tackle semantic segmentation of radar data cube into multiple

views namely range-Doppler and range-Angle maps.
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Figure 2.11: Semantic extraction in radar signal processing. The received raw
time series data first preprocessed to obtain radar data cube. Next, the target
semantics such as segmented radar point cloud map or occupancy grid are gen-
erated via DL architectures or conventional methods.

Several works utilized logical-mathematical constructions to describe radar

operations to formalize the processes of semantic radar. Air object detection is

considered in [140], where it is proposed to convert the received radar signals into

spectral images using algebra on finite predicates on the set of spectral channels,

i.e., spectral patterns, to identify spectral types. In [141], this approach extended

to detection of low-visible air objects in multi-survey radar signal processing

such that radar images of noise markers and objects are converted into logical

dependencies similar to the human logic, and in [142], fuzzy transformations are

used to identify the semantic dependencies among radar raw data and images

where finite predicates are processed via boolean algebra and basic graph theory.

Furthermore, methodology for evaluation of efficiency of the spectral-semantic

radar signal processing model is presented and results are discussed in [143].
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2.7 Goal-Oriented Semantic Communications

In recent years, there has been a revived interest in semantic communications as

a result of enormous improvements in machine learning, notably on deep learn-

ing. Many studies envisioned that semantic communication will pave the way

for next generation wireless communications [27, 33, 21, 144, 145, 146, 147]. For

instance, in [21] the authors proposed to adopt semantic communications for 6G

networks to improve the effectiveness and sustainability without increasing the

usage of communication resources such as bandwidth and energy. The authors

argued that the next generation systems should focus on identification of the rel-

evant meaning rather than the bit-level recovery of transmitted data. In [146],

the authors pointed out the possible benefits of joint information generation,

transmission, and consumption. They further argued that transmission of most

meaningful data samples can give end users access to the latest and the most

crucial data which can improve the utilization of network resources especially in

next generation massive intelligent networks. On the other hand, in [145], the

authors proposed to utilize the significance of messages relative to the purpose

of data exchange such as value of information (VoI) in contrast to the meaning,

and analysed how it can be utilized for tasks including sampling, multiple access,

resource allocation and scheduling. Therefore, in this section we review the litera-

ture on semantic and goal-oriented communications. Illustration for the common

goal-oriented semantic communication framework and multiple communication

levels is shown in Fig. 2.12. As it is shown, the structure consists of three levels,

namely effectiveness, semantic and technical level. The technical level of com-

munication focuses on bit-level transmission accuracy and utilizes channel coding

and modulation techniques to recover transmitted symbols from their corrupted

counterparts by the physical channel. The semantic level of communication deals

with the extraction and encoding of essential information relevant to the task

based on the knowledge bases, and often interpreted as the intelligent part of the

communication which leads to significant reduction in data traffic. Compared

to the technical level of communication, this level focuses on the recovery of the

meaning rather than the recovery of the transmitted bit-sequence, i.e., the ex-

pressed message and the inferred message may not have identical bit symbols,
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however, they may convey the same desired meaning just like synonymous words.

The robustness against the semantic noise, i.e., an ephemeral noise that adds

ambiguity or diverges the desired meaning, imposed by the implicit semantic

channel is a desired quality for expressed messages. Many works utilize ML and

DL techniques at this level for the conversion of input modality into an arbitrary

semantic message whereas some works merge the semantic and technical level of

communications under the AI-enabled joint source-channel coding (JSCC) frame-

work. As the highest level of communication, the effectiveness level considers the

interaction between the communicating agents and the environment. In partic-

ular, the contained effectiveness factors quantify the performance of the agents

on their respective tasks, i.e., measures whether the communication assisted the

agents to conduct their work in the desired way. Many studies adopt a form of

reinforcement learning approach to address the problem of effective communica-

tions.

As a recent example, in [28] a deep learning enabled semantic communication

architecture called DeepSC is proposed for text transmission. Unlike traditional

approaches where the objective is to minimize bit errors, this work focused on

minimizing semantic errors while maximizing the system capacity with a mutual

information estimation model for semantic channel coding. The authors utilized

sentence similarity metrics, namely BLUE and BERT, to quantify the semantic

error at sentence level and illustrated robustness of the proposed architecture

compared to traditional technical level approaches, especially in the low signal-to-

noise ratio (SNR) regime. In [29] previous work is extended to internet-of-things

(IoT) applications where lite and distributed version of [28] called L-DeepSC is

proposed. The authors utilized channel state information (CSI) aided training

scheme to mitigate the effects of fading channels while pruning and sparsifying

the model parameters for affordable IoT devices.

The problem of adaptive and responsive sentence level semantic communica-

tion is tackled in [148]. The authors proposed to adopt Adaptive Computation

Time (ACT) [149] halting on transformer based semantic extractor, i.e., a cir-

culation mechanism to refine encoded semantic message, for more flexible and

simultaneous transmission of sentences with varying semantic information. The

30



Figure 2.12: Multi level structure of goal-oriented semantic communications. The
structure consists of three levels, namely effectiveness, semantic and technical
level. The technical level of communication focuses on bit-level transmission
accuracy and utilizes channel coding and modulation techniques to recover trans-
mitted symbols from their corrupted counterparts by the physical channel. The
semantic level of communication deals with the extraction and encoding of essen-
tial information relevant to the task based on the knowledge bases where many
works utilize recently developed ML and DL techniques. The effectiveness level
quantifies the performance of the communication agents on their respective tasks
and often a form of reinforcement learning approach is adopted at this level.
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signal shaping method to minimize semantic loss (SSSC) is proposed in [150]

for text transmission where the problem is formulated as power constrained vec-

tor optimization solved by a projected gradient descent algorithm. In [151] the

authors proposed to leverage both deep learning based and traditional methods

(SCHARQ) for text transmission in semantic communication. Specifically, se-

mantic source coding is utilized together with Reed-Solomon (RS) channel coding

and hybrid automatic repeat request (HARQ) to reduce semantic error further

which trained by similarity acknowledgments.

Transmission of speech data for semantic communications is considered

in [152]. The authors proposed a deep learning enabled system called DeepSC-S

which extracts essential semantic information from speech audio signals by using

squeeze-and-excitation (SE) networks [153] and applies attention based weighting

to emphasize the essential information where source and channel encoder/decoder

is jointly designed to mitigate channel distortion. The proposed architecture

shown to outperform traditional approaches almost in any SNR regime.

Other works on semantic communication address the transmission of image

modality through a wireless channel [30, 154, 155, 156, 157, 158, 159, 160].

In [156], reinforcement learning based training scheme for joint semantics and

noise coding is adopted to transmit images over phase-invariant fading (FIF)

channels. The authors proposed a learnable confidence module over a transformer

architecture to distil the semantic message embeddings. The fusion of high-level,

e.g., captioning and segmentation results, and low-level semantics, e.g., local spa-

tial details, for image transmission over wireless channel is proposed in [155].

The authors utilized pre-trained segmentation and image captioning model and

trained another model (MLSC-image) in end-to-end manner for image reconstruc-

tion task. It is illustrated that proposed method outperforms both traditional

methods and newer approaches such as DeepJSCC [30] on image reconstruction

task upon transmission over AWGN channel. In [154], a semantic communica-

tion architecture (SC-AIT) is introduced where both effectiveness, semantic and

technical level of communication is inter-connected via neural network supported

module. The proposed architecture is realized on a real-world test-bed for image
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classification task to detect surface defections. The authors showed that the pro-

posed architecture traditional approaches in any SNR regime while having lower

latency and higher compression ratio.

Real-time semantic communications is first studied in [159] where the au-

thors developed a prototype for wireless image transmission based on the field-

programmable gate array (FPGA), Vision Transformer (ViT) [161] and denoising

auto-encoder. The implemented prototype has been shown to be superior to tradi-

tional 256-quadrant amplitude modulation (256-QAM) in the low SNR regime on

a measure of structural similarity index (SSIM). In [160] constellation constrained

version of DeepJSCC [30] (DeepJSCC-Q) is proposed for wireless image recon-

struction. DeepJSCC-Q utilizes a differentiable soft quantization layer to map

latent semantic vectors to transmitted symbols such that each quantization level

corresponds to a learnable constellation point. It is illustrated that DeepJSCC-Q

achieves comparable performances with respect to its unconstrained counterpart

and outperforms the traditional methods which rely on separate source and chan-

nel coding scheme.

Task unaware semantic communication in a dynamic data environment is stud-

ied in [157] where the receiver’s pragmatic task is not known by the transmitter

and the distribution of observed data by the transmitter is non-identical to the

one in the background knowledge library. The authors proposed to incorporate

a domain adaptation module that comprised of cycle-GAN [162] prior to the

semantic extractor module to mitigate the problem of observation and knowl-

edge mismatch which allows utilization of the same semantic extractor with-

out re-training as shown in Fig 2.13. The proposed method is tested on image

classification and image segmentation tasks without an information leakage to

the transmitter regarding the underlying task at the receiver. In [158] the im-

pact of semantic noise to the performance of semantic communication systems

is investigated. The authors first proposed an iterative adversarial fast gradi-

ent sign method (FGSM) [163] for generating semantic noise, and then used an

adversarial training technique with weight perturbation to combat the semantic

noise. The proposed architecture comprised of masked-ViTs as semantic source

encoder/decoder and vector quantized variational auto-encoders (VQ-VAE) [164]
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to learn shared discrete codebook for encoded features which further improves

robustness against semantic noise and reduces transmission overhead.

Multi-user semantic communication system with multi-modal data transmis-

sion is studied in [165] where authors performed visual question answering (VQA)

task subsequent to transmission over wireless channel. The proposed deep learn-

ing enabled semantic communication system (MU-DeepSC) utilizes two distinct

semantic extractor and channel encoders to process image and textual (question)

input data whereas the receiver employs a single unified architecture to decode

concatenated semantic message of both transmitters and outputs the answer text

as illustrated in Fig. 2.14. The proposed method shown to be superior compared

to traditional approaches in all SNR-regimes.

Deep learning aided end-to-end JSCC for wireless video transmission scheme

(DeepWive) is introduced in [167] where the proposed architecture performs video

compression, channel coding and modulation with a single neural network, re-

sulting in direct mapping from video signals to channel symbols whereas the

trained semantic decoder predicts the residuals without distortion feedback. Fur-

thermore, to maximize the overall visual quality, the authors adopted reinforce-

ment learning approach to simultaneously train another model for optimization

of channel bandwidth allocation among video frames where the resulting policy

outperforms naive uniform allocation by a significant margin.

Inference and error correction capabilities of semantic communication frame-

work is studied in [168]. The authors proposed a cognitive semantic commu-

nication framework that utilizes triplet components of knowledge graphs as ex-

tracted semantic features. Specifically, the input text data first converted into

a knowledge graph to identify semantic redundancies and semantic ambiguities

then distilled semantic message is encoded into semantic channel symbol. To

improve the robustness of proposed system, the authors further utilized a correc-

tion algorithm involves traversing the semantic symbols in the knowledge graph

to locate the most comparable one observed at the receiver. The illustration of

proposed cognitive semantic communication framework is shown in Fig. 2.15. The

proposed framework is tested against conventional separate source and channel
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Figure 2.13: Task unaware semantic communication system with dynamic data
environment proposed in [157]. The transmitter has no empirical knowledge re-
garding the observable data S. The empirical data K and its corresponding prag-
matic task Z, e.g., image classification and image segmentation, comes from the
shared library data between the transmitter and the receiver. Data Adaptation
module comprised of cycle-GAN [162] to handle distribution mismatch between
observations and the shared knowledge library. Modules that are utilized only in
training of semantic encoder and decoder are denoted in red. The loss function
quantifies the quality of extracted (or recovered) semantic information by the
semantic encoder (or decoder) to perform the task and to reconstruct the input
data for human usage.
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Figure 2.14: MU-DeepSC [165] framework for multi-modal semantic communi-
cation on visual question answering task. The image and text source denoted
by Simg (query image) and Stxt (question) respectively. The image transmitter
utilizes CNNs for semantic extractor to obtain semantic information Mimg and
for channel encoder to transmit symbols Ximg whereas the text transmitter takes
advantage of Bi-directional LSTM and MLP architectures to acquire Mtxt and
transmit Xtxt respectively. The signal detection module employs channel estima-
tion to mitigate the effects of noisy channel. Then, the semantic information M̂img

and M̂txt is reconstructed by CNN and MLP architectures respectively. Finally,
the reconstructed information is processed by a memory attention and composi-
tion network (MAC-network) [166] to output the answer Dans.

coding technologies under the binary symmetric channel (BSC) and shown to be

superior in terms of compression rate and reliability.

Another interesting study on semantic communications with knowledge graphs

is performed in [169] where the authors focused on semantic communication sys-

tem that can adjust the transmitted semantics contents adaptively according

to estimated channel quality. Then, the system sorts the extracted triplets ac-

cording to their semantic importance and allocates more transmission sources to

semantically important ones such that when the channel quality is extremely poor

the system transmits only the most significant triplet. To transform textual in-

puts into knowledge graphs, the proposed semantic extractor uses named entity

recognition (NER) units, LSTM, and MLP, whereas the semantic decoder uti-

lizes graph attention network (GAT), RNN, and MLP units to recover semantic

messages corrupted by the channel medium.
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“The runway length at
Ashgabat International airport,
located in Ashgabat, is 3800.”

“Ashgabat International Airport
has a runway length of 3800
and is located in Ashgabat.”

Figure 2.15: Cognitive semantic communication framework for text transmis-
sion proposed in [168] leverages knowledge graph as arbitrary semantic modality.
The text-to-knowledge graph (Text2KG) module is a simple alignment algorithm
which sequentially processes each sentence and constructs a concise knowledge
graph consist of triplets (head, relation, tail). The Semantic Symbol Coding mod-
ule is a simple dictionary (key, value) that maps each possible triplet to a unique
integer and encodes the integers to fixed length bit-sequence. The Semantic
Symbol Decoding module is an correction algorithm which traverses the possible
triplets in the knowledge graph to find most similar ones observed by the receiver.
Finally, the recovered set of triplets are processed by the knowledge graph-to-text
(KG2Text) module comprised of a fine-tuned NLP transformer module to output
semantically identical text.
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In [170], effectiveness of semantic communications is studied within joint learn-

ing and communication framework. The authors adopted multi-agent reinforce-

ment learning (MARL) approach to develop a systematic structure for collab-

orative agents participating in treasure hunts. The problem is formulated as a

multi-agent partially observed Markov decision process (MA-POMDP). Agents

are intended to learn policies to effectively exchange messages over a shared noisy

wireless channel for improved coordination and collaboration while taking long-

term rewarding actions. The proposed formulation incorporates noisy wireless

medium as environment dynamics and transmitted messages as part of actions

where the authors employed deep Q-learning (DQN) [171] and deep deterministic

policy gradient (DDPG) [172] for training of agents solely based on reward with no

information regarding the channel. In particular, the authors focused on guided

robot problem in grid world as illustrated in Fig. 2.16. As a result, the proposed

joint learning and communication framework achieves higher performance than

treating action-taking and communication aspects of MARL separately.

A reasoning based semantic communication architecture (R-SC) is proposed

in [173] that can adaptively expand the set of recognizable semantic meanings.

In [173], semantic information is represented in a graph-based structure which

also contains inference rules between semantic entities and relationships. The

proposed approach utilized embedding functions, i.e., additive, linear and multi-

plicative embeddings, to map high dimensional semantic graph structures to low

dimensional representations for transmission over channel, and a novel inference

method on the receiver side to figure out incomplete entities and relations that

cannot be observed in the transmitted graph message. Furthermore, the intro-

duced life-long learning model updates allows receiver to exploit prior messages

to discover new semantic entities and relations.

A theoretical work [174] introduced a semantic communication framework in-

spired by human communications. The authors proposed a stochastic model

(SNC) in which the transmitter eliminates nuisances and quantize the observa-

tions into finite set of semantic elements (concepts), then, transmits their sym-

bolic representations with the intent of referring to corresponding semantic enti-

ties. In order to reduce the communication overhead and increase the reliability,
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Figure 2.16: Proposed formulation of effectiveness level communication [170] as a
guided robot problem in grid world as MARL. The guide has perfect information
about the state of environment but it is unable to take any action on the grid
world whereas the scout can take actions, i.e., 16 possible movements and their
corresponding hand crafted codewords, however cannot observe the environment
state at all. Hence, the guide leads the scout to capture the treasure chest by
communicating through noisy channel. The authors models both the guide and
the scout as 3-layer MLPs and utilize deep reinforcement learning algorithms to
train the agents. In particular, the guide is trained to learn a semantic encoding
robust against the variations in the channel for the transmission of the action that
the scout should take. On the other hand, the scout is trained to learn a semantic
decoding technique to accurately recover the transmitted action-to-take.
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the proposed transmitter iteratively and locally self-communicates with a virtual

receiver before transmitting the final symbols to the actual one. Furthermore,

the authors present theoretical results on compression capabilities of the proposed

method whereas experiments unfold the trade-off between latency and reliability

of this contextual reasoning aided semantic communication system.

In [175] effectiveness aspect of goal-oriented semantic communications is in-

vestigated in which the transmitter and receiver cooperate to perform sequential

tasks in a dynamic environment using a common language structured by a hi-

erarchical belief set among them. In the proposed framework, the transmitter

observes the environment and transmits the initial description based on the be-

liefs whereas the receiver infers and completes the transmitted information by

incorporating additional related beliefs and takes the corresponding action to

affect the environment as illustrated in Fig. 2.17. The authors formulated an

constrained optimization problem to determine appropriate semantic descriptors

for each observation while minimizing transmission and reception costs such that

the adopted bottom-up curriculum learning (CL) approach, based on RL, enables

gradual identification of the structure of hierarchical belief set. It is illustrated

that the proposed CL framework outperforms traditional RL approaches.
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Figure 2.17: Schematic of goal-oriented semantic communications with common
language set proposed in [175]. The transmitter observes an event eTX

t at time
t as the environment state and describes it with its believes BTX

t , i.e., with ele-
ments from the common language set independent of the data modality. Next,
the receiver infers BRX

t based on BTX
t and reconstructs the event eRX

t based on
the combined believes Bt =

{
BTX
t ,BRX

t

}
. Finally, the receiver takes an action

based on the reconstructed event eRX
t and triggers transition of the environment

to the next event eTX
t+1 observed by the transmitter. Since the transmitter and

receiver have no information about the usefulness of any descriptor, they gain
this knowledge by experiencing rewards while executing various tasks. Particu-
larly, constructed belief sets hierarchically expand at each iteration based on the
incurred transmission, inference and task execution costs. Therefore, the prob-
lem is formulated as constrained infinite horizon discounted cost Markov decision
process. Due to sparseness of rewards and massive number of possible descriptor
the authors adopt curriculum learning approach of MARL to solve the formulated
constrained optimization problem such that the transmitter learns to choose use-
ful beliefs to describe each event as concise as possible whereas the receiver learns
to complete the transmitted description.
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Chapter 3

Adopted Goal-Oriented Semantic

Language and Signal Processing

Framework

In this chapter, first, we re-introduce the proposed graph-based semantic language

in [25] that is able to express any signal modality with a well-organized and easy-

to-parse directed bipartite structure. Then, we rigorously define fundamental

building-blocks of the proposed multi-graph semantic description, namely node

and attribute sets, and a goal-oriented filtering operation to parse and extract

the relevant information from the input signal. Finally, we end this chapter by

re-introducing the proposed semantic signal processing framework in [25] and

describing the contained conceptual blocks in detail.

3.1 Graph-based Semantic Language

The proposed semantic language in [25] adopts directed bipartite graph struc-

ture, illustrated in Fig. 3.1, as semantic representation of a signal composed of
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semantically connotated components. In this representation, the signal compo-

nents are first categorized into a predefined set of classes (denoted with solid

circles in Fig. 3.1), then, based on (again predefined) set of predicates (denoted

with dashed circles in Fig. 3.1) their states such as c1 → p0, and relationships with

other components such as c2 → p2 → c3, are labeled as tuples or triplets respec-

tively. As illustrated in Fig. 3.1, both the signal components and their semantic

states (or relationships) are depicted as nodes with labels ci and pi respectively. It

is important to note that, some applications might require a preprocessing stage

which projects the raw sensor signal to an appropriate domain prior to the iden-

tification of the signal components and the corresponding semantic relationships.

Furthermore, unlike general graph structures where feature extraction and pat-

tern matching like operations can be difficult, especially as the graph complexity

grows, the proposed hierarchical bipartite structure grants considerably simpler

yet complete semantic representation of a signal while possess the qualities of

being easy to generate and operate on.

Figure 3.1: Proposed semantic language graph in [25] utilizes directed bipartite
graph structure formed by signal components and predicates. The signal com-
ponents are drawn with solid yellow circles and depicted as nodes ci whereas
the predicate nodes are drawn with dashed green circles and denoted by pi. This
structure allows us to express both state indicating information such as c1 → p0 or
c4 → p3, and relation denoting information such as c2 → p1 → c3 or c2 → p2 → c4,
simultaneously. Note that, a signal component can be connected to more than
one predicate and vice-versa.
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3.2 Multi-Graph Semantic Description

As previously mentioned, the semantically connotated components of the pro-

posed bipartite graph structure utilizes predefined sets to label the signal com-

ponents and the predicates, and we denote these sets as C and P respectively:

C = {c1, c2, . . . , cNc} (3.1)

P =
{
p0, p1, . . . , pNp

}
(3.2)

where Nc and Np + 1 are the number of component and predicate classes in the

graph language respectively. It is important to note that, the first element of

the predicate set is defined as separate p0 class, also referred as null or exist

predicate class, to denote the detected signal components with no other semantic

connection to another component. In other words, these signal component nodes

are connected to the predicate p0 node to ensure the existence of non-zero edge

weight in the corresponding biadjacency matrix representation and omits the

presence of isolated nodes in the semantic graph. Furthermore, the predicate

set P can contain other state describing predicates similar to the p0 without

the intention of referring to any relation among components. As illustrated in

Fig. 3.1, state describing predicate nodes like p0 have single directed connection

to signal components nodes, e.g., c1 → p0 or c4 → p3, while relation indicating

predicate nodes form triplets depending on their definitions, e.g., c1 → p1 → c2

or c2 → p2 → c4.

The multi-graph semantic description of a signal at time t defined as the set

of connected bipartite graphs:

St = {St,1, St,2, . . . , St,N} (3.3)

where N is the number of atomic class graphs in the data that represent disjoint

bipartite graphs. An i-th atomic class graph at time t is denoted by:

St,i = (C,P , Et,i) (3.4)

is a connected directed bipartite graph with component and predicate node sets

(C,P) and edges Et,i at time t:

Et,i = {. . . , (ci, pj) , (pj, cl) , . . .} . (3.5)
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Since the suggested graph structure is bipartite, we only permit the connections

from signal component classes to predicate classes and vice versa. This allows to

represent each connected graph St,i in (3.3) via the following biadjacency matrix:

St,i =

[
0 SCP

t,i

SPC
t,i 0

]
, (3.6)

where SCP
t,i and SPC

t,i represent the directed edges from the signal component

nodes to the predicate nodes and the other way around respectively. In detail,

each [m,n]-th entry of the sub-matrices in (3.6) denotes:

SCP
t,i [m,n] =

1, if ∃ connection from cm to pn,

0, otherwise,
(3.7)

SPC
t,i [m,n] =

1, if ∃ connection from pm to cn,

0, otherwise.
(3.8)

It is important to note that, the node sets C and P in the multi-graph descrip-

tion are class definitions, and in reality there may have multiple detections of the

members of these sets in a signal. However, this class level description of the

signal provides a higher level abstraction, and it is advantageous when the goals

are specified over classes rather than individual instances of signal components

and predicates. In order to cover the cases where goals are defined over individual

instances, we introduce a lower level abstraction counterpart Dt of (3.3) again in

the form of bipartite graphs which only utilizes the detected instances from sets

C and P . Therefore, we define the detected signal component set CD
t,i and detected

predicate set PD
t,i for i-th atomic class graph St,i at time t as follows:

CD
t,i =

{
(cj, k)

∣∣∣∣∣ k ∈ [1, N
cj
t,i ] and ∃m with

SCP
t,i [j,m] = 1 or SPC

t,i [m, j] = 1

}
(3.9)

PD
t,i =

{
(pj, k)

∣∣∣∣∣ k ∈ [1, N
pj
t,i ] and ∃m with

SCP
t,i [m, j] = 1 or SPC

t,i [j,m] = 1

}
(3.10)

where N
cj
t,i and N

pj
t,i are the number of detected instances of the signal component

class cj and the predicate class pj in the atomic graph St,i, and k is the unique
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identifier for each class instance. Using the detection sets in (3.9) and (3.10) we

denote the multi-graph instance description and atomic instance graphs analo-

gously as:

Dt = {Dt,1, Dt,2, . . . , Dt,N} (3.11)

Dt,i =
(
CD
t,i,PD

t,i, ED
t,i

)
(3.12)

where the corresponding detected connection list ED
t,i consists of connections in

the form of triplets as:

ED
t,i = {. . . , ((ci, ki), (pj, kj), (cl, kl)) , . . .} . (3.13)

Unlike the nodes in atomic class graphs, nodes in atomic instance graphs

are indexed by unique identifiers which allows us to express multiple individ-

ual components or predicates belong to the same class simultaneously. As a

concrete example, the atomic class graph may contain a descriptor such as

person → ride → bike whereas the detected atomic instance graph may con-

tain more than one person such as (person, 1) → (ride, 1) → (bike, 1) and

(person, 2) → (ride, 2) → (bike, 2). It is also important to note that in (3.13),

we allow last entry of each triplet to be empty in order to represent singular con-

nections from a signal component to a predicate but not the other way around

which is in line with the definition of p0 predicate. Analogously, we define the

instance level counterparts of biadjacency matrix in (3.6) for Dt,i as follows:

Dt,i =

[
0 DCP

t,i

DPC
t,i 0

]
, (3.14)

where DCP
t,i and DPC

t,i represent the connections from signal component nodes to

predicate nodes, as in (3.7, 3.8), and the other way around where the instances

are listed in order across the rows and columns.

As noted before, the multi-graph sets St and Dt provide a more simplified

hierarchical representation of a signal easier to operate on rather than a general

single graph structure. It is also important to note that, in machine-type appli-

cations, the predicate and component sets may scale according to the complexity

and processing capabilities of sensors and devices. Specifically, for a simple sensor
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the multi-graph representation may not have more than a handful of signal com-

ponents and predicate classes which facilitates the graph pattern matching and

goal-filtering operations with simple available methods proposed in [49, 50, 51, 52].

Figure 3.2: Instance level semantic graphD. Just like class level graph S, instance
level graph D preserves the directed bipartite graph structure formed by signal
components and predicates. As illustrated, there may be more than one instance
that belongs to the same class, both for signal components and predicates which
are indexed by k. The signal components are drawn with solid yellow circles
and depicted as nodes (ci, ki) whereas the predicate nodes are drawn with dashed
green circles and denoted by (pj, kj). This structure allows us to express both
state indicating information for individual instances such as (c1, 1) → (p0, 1) or
(c3, 1) → (p2, 1) and relation among the individual components and predicates
such as (c2, 1) → (p1, 1) → (c2, 2) or (c2, 2) → (p1, 2) → (c3, 1), simultaneously.
Note that, since (c1, 1) component is disconnected from others, it is connected to
(p0, 1) by default.

3.3 Attribute Sets

The class definitions and detected instances do not necessarily constitute a com-

plete semantic description of a signal, therefore, in [25], we utilized associated

attribute sets for each signal component and predicate node to fully capture ad-

ditional properties and features. Specifically, for each atomic instance graph Dt,i
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in the multi-graph description the attribute superset At,i is defined as:

At,i =
{
Θt,i(nj, k)

∣∣(nj, k) ∈ CD
t,i ∪ PD

t,i

}
(3.15)

where (nj, k) corresponds to a node and instance index pair, and Θt,i(.) is defined

as the multi-level attribute set of its argument nodes as:

Θt,i(nj, k) =
{
θ
(1)
t,i (nj, k),θ

(2)
t,i (nj, k), . . . ,θ

(Lnj )

t,i (nj, k)
}

(3.16)

where Lnj
is the number of levels in attributes for j-th node. Note that, the

number of levels may vary for each type of signal component or predicate, or

may be kept similar for all nodes to for simplicity. We like to point out that,

the introduction of attribute levels allows hierarchical organization of attributes

from simpler to complex representation which facilitates the goal-oriented filtering

operation. Just like the C and P , the exact definition of (3.16) is depends on the

application, specification of goals, and the performed signal processing techniques

to extract semantic information.

The companion attribute set for instance multi-graph description Dt defined

as:

At = {At,1, At,2, . . . , At,N} (3.17)

and finally, the full semantic description Yt at time t is expressed as a triplet

consist of the class level multi-graph description St, the instance level multi-graph

description Dt and the corresponding companion attribute set At:

Yt = (St,Dt,At) (3.18)

3.4 Semantic Goals and Goal-Oriented Filtering

In this section, we re-introduce a goal operator on the proposed semantic graph

language to parse and filter the desired portion of the semantic information from

a signal. For simplicity, we drop the time index subscript t from this point.

A goal-filtering operator G on semantic description Y outputs filtered semantic

48



description Ỹ again as a triplet:

G(GS, GD, lg, la){Y } =
∼
Y , (3.19)

∼
Y = (

∼
S,

∼
D,

∼
A), (3.20)

where the argumentGS = (C,P , ES) is queried bipartite graph pattern in the class

level graph S, GD = (CD,PD, ED) is queried bipartite graph in the instance level

graph D, lg is graph complexity (or neighbourhood) vector, and la is attribute

complexity vector which determines the structure of the output in terms of multi-

graph representation and companion attribute sets respectively.

The utilization of class level and instance level queries for G enables us to

define goals with different abstraction levels, namely, global goals with interest on

class level information and local goals with the attention on specific instances and

corresponding relations. For real world applications, we expect users to define

initial global goals that slowly changing over time and more transient local goals

to track the status of a detected component of interest.

The graph complexity vector lg is vector on natural numbers defining the lg-

hop neighbourhood around components of each queried graph pattern in G such

that the size of the vector is equal to the number of subgraphs to be searched

which enables us to identify specific patterns. Using GS, GD and lg the output

semantic multi-graphs S̃ and D̃ can be defined as:

∼
S =

{
∼
Si

∣∣∣∣∣
∼
Si ⊂ Si, G

S ⊂
∼
Si and

∼
Si includes

lg-hop neighborhood of GS within Si

}
(3.21)

∼
D =

{
∼
Di

∣∣∣∣∣
∼
Di ⊂ Di, G

D ⊂
∼
Di and

∼
Di includes

lg-hop neighborhood of GD within Di

}
(3.22)

It is important to note that, one can employ specifically designed graph pattern

matching and lg-neighbourhood searching algorithms to generate filtered class

level multi-graph S in (3.21) and filtered instance level multi-graph D in (3.22)

or may prefer to utilize available alternative algorithms in the aforementioned

literature [49, 50, 51, 52] where the computational complexity is relatively low and

well-scaling according to complexity of the sensor or device. Hence, once again,
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we would like to emphasize the simplicity and capability to provide complete

semantic description of the proposed multi-graph description compared to general

single-graph structure. In Fig. 3.3, the goal filtering operation for queried class

level graph (Fig. 3.3b) and graph complexity of lg = 1 is illustrated. The exact

matching results is denoted with magenta and the requested 1-hop neighbourhood

around the matched instance is shown inside the shaded purple parallelogram in

Fig. 3.3c. The output pattern which includes the component instances separated

by at most lg = 1 predicates with the goal-matched pattern is shown in Fig. 3.3d.

After finding out the class and instance level filtered graph outputs
∼
S and

∼
D,

their corresponding attribute sets are also filtered with the attribute complexity

vector la which retains only the first la levels within the hierarchy of attribute

sets:
∼
A = {

∼
Θi ∈

∼
Di | Θi = {θ(1),θ(2), . . . ,θ(Lmin)}}, (3.23)

where Lmin = min(la, L) is the minimum of the requested and available levels of

attribute complexity.

3.5 Goal-Oriented Semantic Signal Processing

Framework

The proposed semantic signal processing framework in [25] with its generic form

is illustrated in Fig. 3.4 which utilizes the proposed graph language re-introduced

at the beginning of this chapter. In the following, we give brief descriptions for

each conceptual block in Fig. 3.4 and discuss possible techniques for real-world

implementation at the goal and the hardware level.

The proposed goal-oriented semantic signal processing framework consists of

the conceptual blocks of preprocessing, semantic extraction, semantic filtering,

semantic post-processing, and storage or transmission, depending on the appli-

cation. The preprocessing block, as in many applications, is present to per-

form prefiltering for noise and interference reduction. Furthermore, it allows
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(a) Instance level semantic input graph D
(b) Class level queried graph
pattern GS

(c) Graph pattern matching and lg = 1 goal-
neighbourhood search

(d) Instance level goal-filtered se-
mantic output graph D̃

Figure 3.3: An example goal-filtering process with GS and lg arguments. (a) The
instance level input graph D contains 3 types of predicates and signal components
with varying multiplicity regarding instances. (b) The class level queried graph
pattern GS seeks to gather all the nodes where a c2 type component instance is
connected to p1 type predicate instance. (c) The input D contains the queried
graph pattern GS which denoted in magenta. The specified neighbourhood com-
plexity is lg = 1 retrieves the other signal component and predicate nodes within
1-hop distance with respect to predicates. (d) The instance level output graph D̃
has lesser complexity than the input graph D, since the isolated (c1, 1) component
and the associated null predicate (p0, 1) instances are goal-filtered.
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Figure 3.4: The proposed goal-oriented semantic signal processing framework
in [25]. First, the input signal xt is processed by the preprocessing block to ob-
tain x̃t version that is more suitable for semantic extraction. The latter block
semantic extraction is responsible for detection and classification of signal com-
ponents and predicates present in the semantic graph description Yt. In the next
block, i.e., semantic filtering, the generated semantic description is pruned ac-
cording to the goal Gt of the underlying application to output refined version
Ỹt. The last block is the semantic post-processing where final processes such as
denoising and statistical modelling is handled on goal-filtered representation Ỹt.
Finally, storage or transmission is realized depending on the application.

input signal xt to be transformed to an appropriate version x̃t where seman-

tic extraction, i.e., detection and classification of semantic signal components

and predicates, can be performed efficiently. For certain input signal modali-

ties (e.g., 1D time series signals such as speech signal), decomposition of the

signal for graphical representation may not be evident in the first place or the

input signal may be highly contaminated by noise. In such cases, commonly

used domain transformation approaches such as the time-frequency and the time-

scale domain processing [176, 177, 178], can be used to segment and detect dis-

tinct signal components via pattern recognition and computer vision techniques

[179] (e.g., see Fig. 2.10 for MFCC extraction). For text input modality, ex-

pansion of contractions (e.g., ”ain’t”
to−→ ”are not”), removal of stopwords (e.g.,

”the”, ”a/an”, ”be/am/is/are”, etc.) or punctuations, tokenization, lemmati-

zation, stemming and embedding are some of the preprocessing steps for NLP

applications [180, 181]. On the other hand, for image and video applications,

transformation to another domain may not be necessary, as component detection

and classification in these domains can be efficiently implemented on the input

signals directly.

The semantic extraction block is where the multi-graph description Yt (i.e.,
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the signal components, predicates and connections) with corresponding attribute

sets are generated from the preprocessed input data x̃t. Note that, as shown in

Fig. 3.4, a global goal G0 can be incorporated at this point. If a constant or slowly

changing goal is defined either internally, or it is received from an external agent,

the semantic extraction algorithm can adapt accordingly. For example, if the

global goal is only related to a small subset of potential components that can be

extracted, the algorithm efficiency can be increased by limiting the output classes

of the classification algorithm implemented as a DNN. In the case of semantic

representation of 2D signals such as images or 3D data such as video streams of

MRI volume, components (or objects) can be first identified by appropriate object

detection or semantic segmentation techniques (see Chapter 2 and references

therein). Furthermore, for image and video input modalities, available scene

graph extractors discussed in Chapter 2 can be utilized [101, 34, 35, 36, 37,

38, 39, 40, 41] to form the basis of the proposed graph structure which can be

further refined. Alternatively, spatio-temporal information can be exploited with

the assist of object detection and tracking methods, which will be illustrated in

Chapter 4 for video-stream data, for identification of predicates. For text input

modality, the input can be initially transformed to knowledge-graph by simple

alignment algorithms such as [168]. Speech signals, first can be converted to

textual counterparts such as sentences by ASR algorithms discussed in Chapter 2,

then the usual schemes to process text input can be followed.

In the next block, semantic filtering operations are performed. Once the scene

descriptions Yt are generated, local and time-varying goals Gt can be applied to

filter semantic information of interest within Yt. In a typical application, local

goals Gt are either generated internally via decision-making algorithms or are re-

ceived from external agents. This block typically employs graph signal processing,

graph search and pattern matching algorithms to match and extract goal queries

from the graph-based representation of the signal. Note that the semantic out-

put Yt, generated by the proposed language yields relatively simple graphs due to

their bipartite and goal-oriented definitions; hence, the computational complexity

of any graph operation is considered to be more tractable compared to general
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graph structures. In certain scenarios, the goal-filtering can be reduced to sub-

graph isomorphism search problem where available algorithms in the literature

such as VF3 [182], TurboIso [183], QuickSI [184], STW [185] and SPath [186] can

be utilized. Note that, these algorithms adopt the backtracking strategy to recur-

sively found and report matched vertices. In addition, class level queries can be

handled by techniques developed for reasoning over knowledge graphs (including

multi-hop queries) which generally utilizes vector algebra over embedding space

of graph [187, 188, 189, 190, 191] (see [192] for pertinent survey on knowledge

graphs).

The semantic post-processing block is a conceptual block where further pro-

cessing of the extracted and goal-filtered semantic data can be performed which

can also incorporate local goals Gt, to schedule transmission and storage opera-

tions according to the level of desired semantic information.

Note that at this point, the semantic data are strictly organized and only

include goal-filtered components and their corresponding attributes, i.e., quite

distilled for the underlying application. These attributes allow the implemen-

tation of a wide spectrum of processing tasks. For instance, since the location

information of the components is a probable part of the attribute sets, it can allow

for tracking of components or groups of components by using standard tracking

techniques. Furthermore, the detailed attributes of components such as wavelet

representation of its time-scale characterization facilitate the application of more

specific signal processing algorithms on the components of interest such as further

denoising or statistical modelling. For instance, the post-processing block may

be responsible for extraction of certain graph statistics such as degree, cluster-

ing coefficients, and orbit counts for analytics tasks. Some of these statistics are

expressed below.

• For graph G = (V,E) with vertices V and edges E, we define the neigh-

bourhood for vertex vi as Ni = {vj : eij ∈ E or eji ∈ E}. Let ki be number

of vertices in the neighbourhood Ni. Then, the clustering coefficient Ci for
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vertex vi is:

Ci =

∣∣ {ejk : vj, vk ∈ Ni, ejk ∈ E}
∣∣

ki (ki − 1)
(3.24)

• For graph G = (V,E) orbit of node v is denoted by Orb(G, v) and it is the

set of nodes that can be mapped onto v by some automorphism Aut(·) of
the graph, i.e.:

Orb(G, v) = {w ∈ V : ∃σ ∈ Aut(G), σ(v) = w} (3.25)

In addition, this block may include techniques to quantify innovation over time,

therefore it may implement metrics such as graph edit distance (GED) on original

graph or maximum mean discrepancy (MMD) on extracted statistics to quantify

the change across time. Some of these metrics are expressed below.

• For graphs G1 and G2 the Graph Edit Distance GED(G1, G2) is:

GED(G1, G2) = min
(e1,...,en)∈P (G1,G2)

n∑
i=1

c(ei) (3.26)

where P (G1, G2) is set of edit paths to transformG1 intoG2 with elementary

graph edit operations (i.e., vertex/edge insertion, deletion or substitution)

and c(·) is cost function for each graph edit operation ei.

• For two independent probability distributions P and Q, maximum mean

discrepancy (MMD) can be expressed as:

MMD(F , P,Q) = sup
f∈F

∣∣∣∣Ex∼P [f(x)]− Ey∼Q[f(y)]
∣∣∣∣ (3.27)

where F is class of functions and typically chosen as a unit ball in repro-

ducing kernel Hilbert space (RKHS).

Finally, the storage and the transmission are tentative blocks that can be

added to the framework depending on the application. In either case, an encoding

scheme is utilized to compress the goal-filtered graphs and attributes. Then, the

compressed semantic information can either be stored internally or passed forward
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to a transmission block where further channel coding operations can be performed

prior to transmission.

The semantic signal processing framework described above can be adopted in

the next generation of devices and communication networks. Although the types

and implementation strategies of goals are previously discussed, the generation

and dissemination of semantic goals warrant further discussion. Typically, global

goals G0 for a semantic device can be defined either by human operators at the

language level or by manufacturers at a hardware level. Alternatively, in a hi-

erarchical network such as a Smart City application [193, 194], global goals can

be defined at the highest level, and then they can be disseminated by mapping

the global goals to the low-level device language by intermediate devices such as

base stations. On the other hand, the generation of rapidly varying local goals

G0 requires decision-making algorithms to be implemented at intermediate levels

to optimize throughput and goal implementation. Possible approaches to the

goal generation and dissemination problems address the so-called effectiveness

problem described in Chapter 1, and constitute a future research direction for

goal-oriented semantic signal processing.

The adoption of the proposed semantic signal processing framework in Fig. 3.4

will also have repercussions at a hardware level. The preprocessing and the se-

mantic extraction stages can be implemented as part of a sensor subsystem de-

signed to acquire signals of the desired modality such as audio or video signals.

Such a sensor subsystem must provide its output in the proposed semantic struc-

ture so that the rest of the semantic processing chain can be implemented on its

output. Therefore, the proposed semantic signal processing framework may form

a basis for sensor standardization efforts for future applications of semantic signal

processing and communication systems.
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Chapter 4

Application of the Adopted

Semantic Signal Processing

Framework

In this chapter, we provide concrete examples of the aforementioned goal-oriented

semantic signal processing framework. First, we design a semantic extractor

for a real-time computer vision application on a video-stream input. Next, we

discuss applications of the framework with different signal modalities and provide

a crude taxonomy. Then, we showcase the potential data compression capabilities

of the designed semantic extractor and discuss efficient compression and coding

strategies for transmission and storage. Finally, we demonstrate a way to identify

points of significant innovation over extended periods of time using the embedded

attributes at multiple-levels. It is important to note that these case studies are

provided only as a proof-concept of the generality of the proposed framework,

which has a great potential to be customized for many different applications

outside of what is presented here.
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4.1 Real-Time Semantic Processing of Video-

Stream Data

In this section, we demonstrate the use of the proposed semantic signal process-

ing framework on real-time video signals via the architecture shown in Fig. 4.1.

An input sequence of frames denoted as Fn, with n as the discrete time in-

dex, is fed into a detection and classification block, and the detected enti-

ties in each frame are filtered out via a global goal Gobject. The remaining

globally-interesting objects and extracted predicates among them are tracked

across frames using their position and velocity information provided by the ob-

ject tracking block. Based on the tracks, a multi-graph instance representation

Dn = {D1, . . . , DMn} composed of Mn disconnected subgraphs and a correspond-

ing attribute set An = {A1, . . . , AMn} are generated. The detailed semantic

representation for each frame is updated in accordance with the tracking unit’s

updates. In this specific application, the multi-graph class representation Sn is

constructed via a post-processing step as a higher-level abstraction and summary

of Dn in the Graph Abstraction block. Finally, the complete semantic description

Yn = (Sn, Dn, An) is generated. The local goals Gn prune the semantic descrip-

tion Yn to generate the goal-oriented semantic description
∼
Y n. Note that, in this

example, we are considering fast algorithms that are available for real-time im-

plementation. Alternatively, for delay-tolerant (offline) applications, scene graph

generator models [109] can be used directly in place of the first three blocks. A

detailed description of each block and the algorithms employed are discussed in

the following.

4.1.1 Object Detection

Taking into account the real-time processing requirements, we use a pretrained

YOLOv4-CSP [19] model on COCO dataset [196] for our object detection module

since it achieves greater accuracy compared to the other models [18, 197] under

the latency requirements of a typical video signal with 24 frames-per-second.
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Object Detection
and Classification Object Tracking Graph Generation

Graph Abstraction

Goal-Based
Filtering

Figure 4.1: Semantic processing architecture for real-time video signals. Objects
are detected and classified at each frame Fn by YOLOv4-CSP [19]. For temporal
extension, detected objects are tracked across the frames using DeepSORT [195].
Sn is obtained by performing a summarization of Dn, i.e, simply drawing a crude
version of Sn by only keeping the class information of the nodes. Finally, the
complete semantic description Yn consists of the generated graph Dn, its abstract
version Sn and its attribute set An. The resulting semantic description Yn is then
filtered via local goals Gn.

Consequently, our semantic graph language contains NC = 80 semantic com-

ponent classes, i.e., C = {c1, . . . , c80}, corresponding to the object categories in

the COCO dataset (c1 : person, c2 : bike, c18 : dog, etc.). Omitting the time

index n for simplicity, YOLOv4-CSP provides each detected object in the form

oi = (bi,yi), where bi ∈ R4 contains the position of the object according to its

bounding box and yi ∈ RNC contains the category confidence scores. Here, we

determine the classes of detected semantic instances via yi and represent each

object in the form oi ≡ (ca, i). This representation simply indicates that the

object oi is an instance of component class ca with a unique identifier index i

where:

a = arg max
c=1,...,80

yi[c] (4.1)

To put it another way, (ca, i) is the pointer of object oi so that CD as defined

in (3.9) stores the detected objects as

CD =

{
(ca, i) ≡ oi

∣∣∣∣ ca ∈ C
}

(4.2)
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An example output of object detection/classification module is shown in Fig. 4.2.

The three detected objects belong to the semantic component classes c1 : per-

son, c18 : dog, and c19 : horse, i.e., the set of detected objects is simply

CD = {o1 ≡ (c1, 1), o2 ≡ (c19, 2), o3 ≡ (c18, 3)}.

Figure 4.2: An example of detected objects by YOLOv4-CSP [19] model. Pre-
dicted bounding boxes bi are shown and maximum element of class confidence
scores max{yi[c]} are listed.

In this example, we define our predicate set as P = {p0, p1, p2} where p0 : null,

p1 : moving-together, and p2 : conjunct. The null predicate p0 is connected to

isolated objects by default. The predicate p1 : moving-together is placed between

adjacent objects moving towards to the same direction with similar velocities,

whereas p2 : conjunct predicate is placed between objects which have significantly

overlapping bounding boxes and possibly possessive relationships, e.g., a person

with their bike or bag. Note that all predicates are defined in such a way that

all the edges start from the detected components and end at the predicates.

This is due to the symmetric nature of the predicates in this specific application.

Moreover, it should be noted that these predicates are only defined due to the
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simplicity of their inference, and the predicate set can be enriched further by

extracting other relationships among the detected instances. For instance, if a

person and a bicycle are moving towards the same direction with a significant

overlap between their bounding boxes, then the predicate between these objects

can be set to riding. With a similar reasoning for objects person and car, a driving

predicate can be generated. Analogous to the objects, we denote the predicates

as ek ≡ (pw, k) with k being a unique identifier index. Predicates ek are placed

between some objects oi ≡ (ca, i) and oj ≡ (cb, j), where the set PD as defined

in (3.9) stores the detected predicates as

PD =

{
(pw, k) ≡ ek

∣∣∣∣ pw ∈ P
}

(4.3)

4.1.2 Object Tracking

To identify the temporal and spatial changes within frames we perform track-

ing on the detected objects. Just like the object detection module, we require a

tracker with a fast inference capability. Therefore, we use the DeepSORT [195]

algorithm for tracking individual objects in the video stream. Specifically, Deep-

SORT utilizes a Kalman filter [198] to recursively predict future positions of the

objects. We denote the state vector of each object oi ≡ (ca, i) with mi, which

contains the parameters of its bounding box bi and its respective velocities as

mi =
[
xc
i , y

c
i , wi, hi, ẋ

c
i , ẏ

c
i , ẇi, ḣi

]
(4.4)

where xc
i , y

c
i , wi, hi are the center coordinates, the width, and the height of the

bounding box bi, respectively. We utilize the following linear constant velocity

state transition model for the internal Kalman filter (initialized for each detected

object) of DeepSORT tracker where we drop the object identifier subscript i for
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simplicity and denote the discrete time with superscript t:

xc

yc

w

h

ẋc

ẏc

ẇ

ḣ


t+1

=



1 0 0 0 dt 0 0 0

0 1 0 0 0 dt 0 0

0 0 1 0 0 0 dt 0

0 0 0 1 0 0 0 dt

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





xc

yc

w

h

ẋc

ẏc

ẇ

ḣ


t

+



nxc

nyc

nw

nh

nẋc

nẏc

nẇ

nḣ


t

(4.5)


zxc

zyc

zw

zh


t

=


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0





xc

yc

w

h

ẋc

ẏc

ẇ

ḣ


t

+


vxc

vyc

vw

vh


t

(4.6)

equivalently in matrix form as:

mt+1 = Kmt + nt (4.7)

zt = Hmt + vt (4.8)

where dt is velocity update coefficient that depends on operation FPS of under-

lying application, K is state transition matrix, H is observation/measurement

matrix, mt is state vector, zt is measurement vector (i.e., noisy bounding box

coordinates), nt is process and vt is measurement noise respectively. We assume

nt and vt are zero-mean independent Gaussian random vectors:

nt ∼ N
(
0,Qt

)
, vt ∼ N

(
0,Rt

)
(4.9)
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where Qt and Rt diagonal covariance matrices which their entries may change at

each time step with respect to predictions as:

Qt = diag

(
(σpos1 · m̂t−1|t−1[2])2, (σpos1 · m̂t−1|t−1[3])2,

(σpos2 · m̂t−1|t−1[2])2, (σpos2 · m̂t−1|t−1[3])2,

(σvel · m̂t−1|t−1[2])2, (σvel · m̂t−1|t−1[3])2,

(σvel · m̂t−1|t−1[2])2, (σvel · m̂t−1|t−1[3])2
) (4.10)

Rt = diag

(
(σmea · m̂t−1|t−1[2])2, (σmea · m̂t−1|t−1[3])2,

(σmea · m̂t−1|t−1[2])2, (σmea · m̂t−1|t−1[3])2
) (4.11)

We initialize the state estimate m̂0 with bounding box coordinates provided by

the YOLOv4-CSP model and set the unobserved velocities to 0. Furthermore,

the Kalman filter process can be expressed with the following recursions:

m̂t|t−1 = Km̂t−1|t−1 (4.12)

At|t−1 = KAt−1|t−1K⊤ +Qt (4.13)

Bt = At|t−1H⊤
(
HAt|t−1H⊤ +Rt

)−1

(4.14)

m̂t|t = m̂t|t−1 +Bt
(
zt −Hm̂t|t−1

)
(4.15)

At|t =
(
I −BtH

)
At|t−1 (4.16)

where we initialize the covariance matrix A0 again as a diagonal matrix (i.e.,

2 · Q0). At each time step t, the Kalman filter first predicts the prior state

vector estimate m̂t|t−1 as in (4.12) and the prior covariance matrix At|t−1 as

in (4.13). Next, the Kalman filter calculates the Kalman gain Bt using (4.14).

Finally, given the current observation zt and the calculated Kalman gain Bt, it

updates the posterior state vector estimate m̂t|t and posterior covariance matrix

At|t using (4.15) and (4.16) respectively. The tracking principle of DeepSORT

algorithm is shown in Fig. 4.3.

To improve the tracking performance under challenging scenarios such as occlu-

sion, non-stationary camera and multiple viewpoints, DeepSORT further utilizes
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Figure 4.3: Tracking by detection paradigm adopted by DeepSORT. Input frames
are processed by a object detection model YOLOv4-CSP, then, detected objects
are cropped and fed into another small CNN trained on re-identification task for
visual feature extraction. The algorithm compares feature vectors of detected
objects and existing tracks. Next, it assigns a cost to each (detection, track)
pair to fill the entries of a cost matrix. Finally, the matching is performed by
an assignment linear programming solver using the generated cost matrix, and
DeepSORT updates track attributes for the next frame.

convex combination of deep cosine association metric [199] and Mahalanobis dis-

tance between observed and predicted bounding boxes coordinates. Particularly,

each detected object oi ≡ (ca, i) is cropped from the original frame based on the

bounding boxes bi and passed through a CNN (trained on re-identification task)

to be represented as unit-norm vectors ri ∈ R128, ∥ri∥2 = 1, as illustrated in

Figs. 4.4 and 4.5. We refer to ri’s as the feature vectors. In fact, for each tracked

object oi ≡ (ca, i), we store multiple feature vectors across frames
{
r
(l)
i

}Ti

l=1
where

r
(l)
i stands for the l-th feature vector of the tracked object oi ≡ (ca, i), and Ti is

number of times the object oi is observed. It is important to mention that, in

certain settings we only store the most recent feature vector by utilizing expo-

nentially moving average (EMA) to gradually update stored features as:

r̃
(t+1)
i = βr̃

(t)
i + (1− β)r

(t+1)
i (4.17)

Specifically, we utilize EMA for innovation detection at attribute level which

introduced in Section 4.4 while speeding up the track association process. The

parameters utilized in our simulation is listed in Table 4.1.
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Figure 4.4: Schematic of DeepSORT tracking algorithm. At each frame, states of
the tracked objects are updated via Kalman filter. The Matching Cascade (see
Fig. 4.5 for details) performs first association of detections and existing tracks us-
ing both extracted visual features and state predictions. The second association
between unmatched tracks and unmatched detections is performed with respect
to IoU scores of the bounding boxes and the estimations. Then, remaining un-
matched tracks are deleted if their status are confirmed but expired or tentative.
Finally, unmatched detections are initialized as new tentative tracks which their
status are changed to confirmed with observed consecutive hits and deleted oth-
erwise.
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Table 4.1: DeepSORT parameters used in our simulations.

DeepSORT Simulation Parameters

Velocity coefficient dt 1 (for 30 FPS)

Initial state estimate m̂0 [xc, yc, w, h, 0, 0, 0, 0]

Initial covariance estimate A0 2 ·Q0

Noise std coefficient σpos1 0.1

Noise std coefficient σpos2 0.05

Noise std coefficient σvel 0.00625

Noise std coefficient σmea 0.05

Track deletion age-limit 150 (5s for 30 FPS)

Track confirmation num-hits 5

Cosine distance gating threshold τC 0.2

Mahalanobis distance gating threshold τC 6

Maximum feature dictionary size Ti 50 (or 1 for EMA)

Cost matrix coefficient λ 0.5 (or 0.7 for EMA)

EMA coefficient β 0.9

4.1.3 Graph Generation and Graph Abstraction

We employ the state mi, feature vectors
{
r
(l)
i

}Ti

l=1
and the cropped RGB image

Ii ∈ Rwi×hi×3 as the multi-level attributes of object oi ≡ (ca, i) with L = 3 number

of levels as defined in (3.16), i.e.:

Θ(ca, i) =
{
θ(1)(ca, i), θ

(2)(ca, i), θ
(3)(ca, i)

}
=
{
mi, {r(l)

i }Ti
l=1, Ii

}
(4.18)

Note that, it is possible that different categories can have a different number of

attribute levels La; however, for our experiments, we set La = 3, ∀a, for simplic-

ity. It is important to note that, even though in our experiments, θ(3)(ca, i) is set

to the raw data Ii itself, it can also be chosen as any multi-scale representation of

Ii such as its wavelet decomposition or discrete cosine transform. As an example,

attributes for a detected person object is illustrated in Fig. 4.6.
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Figure 4.5: First association process of DeepSORT via Matching Cascade. For
each tracki and detectionj pair, two distance metrics are computed, namely, Ma-
halanobis distance ρMij of bounding box coordinates and cosine distance ρCij of
feature vectors. We denote the entries that corresponds to bounding box coordi-
nates of estimates with (b) superscript as in state estimate m̂

(b)
i and covariance

matrix A(b)−1
, and use bj for bounding box coordinates of detectionj. For feature

dictionary configuration, we use the smallest cosine distance among all extracted

feature vectors in
{
r
(l)
i

}Ti

l=1
of tracki. If the computed distance values exceed the

predefined gating thresholds τM or τC , we replace them with infinity to prevent
unfavourable matching outcomes. The entries of cost matrix consist of convex
combination of gated Mahalanobis ρ̃Mij and gated cosine ρ̃Cij distances. Finally, the
resulting cost matrix is used by Hungarian assignment algorithm [200] to match
tracks and detections.

The exploitation of object positions and velocities enables us to determine

types of predicates between different object pairs. We identify the type of a

predicate between objects oi ≡ (ca, i) and oj ≡ (cb, j) by using their states mi

and mj. The following three metrics are defined for predicate detection:

d(1)(i, j) =

∥∥(xc
i , y

c
i )− (xc

j, y
c
j)
∥∥2
2√

wi · hi · wj · hj

(4.19)

d(2)(i, j) =
(ẋc

i , ẏ
c
i )

⊤(ẋc
j, ẏ

c
j)

||(ẋc
i , ẏ

c
i )||2 ||(ẋc

j, ẏ
c
j)||2

= cos
(
(ẋc

i , ẏ
c
i ), (ẋ

c
j, ẏ

c
j)
)

(4.20)

d(3)(i, j) = IoU (bi, bj) (4.21)

Here, d(1)(i, j) corresponds to scaled Euclidean (2-norm) distance between center
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Person
40

Person
14

Conjct
8

Bicycle
35

Null
31

(a) Frame under process, generated instance graph, and corresponding at-
tribute set for Person-40.

(b) Lowest level attribute set corresponding to the state vector m of Person-
40. Units are in pixels for position and pixels-per-frame for velocities.

(c) Second and third level attributes of Person-40. The second level includes a
set of collected feature vectors across 48 frames with T40 = 48. The third level
includes the cropped RGB image I40, although alternative encoded versions of
I40 can also be used.

Figure 4.6: Illustration of attributes for a person component instance.
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coordinates of the positions, d(2)(i, j) is the cosine similarity between the veloc-

ities, while d(3)(i, j) is the intersection-over-union of bounding boxes of objects

oi and oj. Specifically, for a predicate ek ≡ (p1, k), i.e., moving-together between

objects oi ≡ (ca, i) and oj ≡ (cb, j), across multiple frames we require:

1
(
d(1)(i, j) ≤ τ (1)

)
· 1
(
d(2)(i, j) ≥ τ (2)

)
(4.22)

and similarly, for ek ≡ (p2, k), i.e., conjunct, we require:

1
(
d(1)(i, j) ≤ τ (1)

)
· 1
(
d(2)(i, j) ≥ τ (2)

)
· 1
(
d(3)(i, j) ≥ τ (3)

)
(4.23)

for predetermined thresholds τ (1), τ (2) and τ (3), where 1(·) denotes the indicator

function. Furthermore, even though it is not crucial for our application, we define

attributes for a predicate ek ≡ (pw, k), pw ∈ P \ {p0} as:

Θ(pw, k) =
{
θ(1)(pw, k)

}
=

{[
d(1)(i, j), d(2)(i, j), d(3)(i, j)

]}
(4.24)

with Lw = 1, ∀w. Here, Θ(pw, k) consists of a single-level attribute, i.e., a vector

that contains metric evaluations between objects oi and oj. Note that unlike

the other predicates belonging to classes in P \ {p0} which are connected to two

objects oi ≡ (ca, i) and oj ≡ (cb, j), a null predicate el ≡ (p0, l) is only connected

to ou ≡ (cf , u), for an isolated object ou. For null predicates, the attribute set is

simply defined as the the empty set, i.e., Θ(p0, l) = ∅.

Given the set of detected objects CD and predicates PD, we denote our detected

connection set ED with triplets and pairs as:

ED =

{
(oi, ek, oj)

∣∣∣∣ oi, oj ∈ CD, ek ∈ PD, pw ∈ P \ {p0}
}

⋃ {
(ou, el)

∣∣∣∣ ou ∈ PD, el ≡ (p0, l)

} (4.25)

In other words, the detected connection set ED simply consists of (object, pred-

icate, object) triplets and (unaccompanied object, null predicate) pairs. Conse-

quently, the graph D is generated by the detected object, predicate, and edge

sets as:

D =
(
CD, PD, ED

)
(4.26)
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We then define the companion attribute set A of graph D as:

A =

{
Θ(ca, i)

∣∣∣∣ oi ≡ (ca, i) ∈ CD

} ⋃ {
Θ(pw, k)

∣∣∣∣ ek ≡ (pw, k) ∈ PD

}
(4.27)

which stores attributes for both object and predicate instances. Furthermore, we

generate the class-level representation of instance graph D as defined in (3.4).

The class description graph S is defined as:

S = (CS,PS, ES), (4.28)

where

CS =

{
ca

∣∣∣∣ oi ≡ (ca, i) ∈ CD

}
(4.29)

PS =

{
pw

∣∣∣∣ ek ≡ (pw, k) ∈ PD

}
(4.30)

ES =

{
(ca, pw, cb)

∣∣∣∣(oi, ek, oj) ≡ ((ca, i), (pw, k) (cb, j)) ∈ ED

}
⋃ {

(cf , p0)

∣∣∣∣ (ou, el) ≡ ((cf , u), (p0, l)) ∈ ED

} (4.31)

To facilitate a better understanding of the high-level abstraction provided

by (4.28), we provide an illustrative example in Fig. 4.7. The class level graph

generation is a summarization of the components and predicates in the instance

level graph, i.e., it is a surjective function mapping D to S.

Finally, we define the semantic description Y as a triplet consisting of the

class-level graph, the instance-level graph, and attribute supersets as

Y = (S,D,A). (4.32)

It should be noted that, while in Chapter 3, an instance level graph D is defined as

union of disjoint subgraphs D = {D1, . . . , Dm, . . . DM}, we use a single combined

graph D to represent the whole scene. It is desirable to split D into atomic graphs

for an easy processing of goals, as discussed in Chapter 3. That is, splitting of

D into its disjoint subgraphs Dm (also called atomic graphs), can be performed

during post-processing for this specific scenario. A similar splitting operation can

also be applied to the attribute set A = {A1, . . . , Am, . . . , AM} and class-level

graph S = {S1, . . . , Sm, . . . , SM} where Sm denotes the abstraction of Dm. The

splitting operation on D and its class level counterpart is illustrated in Fig. 4.8.
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(a) Frame under process with detections.
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(b) Instance-level graph D. Object nodes are denoted with solid circles, predicates are
denoted with dashed circles. Isolated objects are connected to the null predicate by
default.

Person Bicycle

MovTg ConjctNull

(c) Class-level graph S.

Figure 4.7: Illustration of the instance level and class level graph representations.
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(a) Instance-level graph splitting at post-processing. Graph D in Fig. 4.7b is split into
its atomic components Dm such that D = {D1, . . . , D11}. Corresponding attributes
are split to atoms A = {A1, . . . , A11} as well.

MovTgPerson

Person Bicycle

Conjct

BicyclePerson

Conjct

Person Bicycle

Conjct

Person

Null

Person Null

Person

Null

Person Null

Person

Null

Person

Null

Person Null

(b) Class-level abstractions are performed on disconnected subgraphs similar to the
one in Fig. 4.7c so that we obtain S = {S1, . . . , S11}. Together with original graph D
and attribute set A, abstraction S forms the complete semantic description Y . Global
goal-based filtering is performed using these high-level graphs.

Figure 4.8: Decomposing the instance-level and class-level graphs into their
atomic components.
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4.1.4 Goal-Based Filtering

We can also illustrate the goal-based filtering defined in Chapter 3 using the

same scenario. Goal-based filtering operation allows for further distillation of the

semantic information with respect to a specified goal and it enables reasoning over

the semantic graph. In a sense, the filtering operation acts as a semantic parsing

operator. The goal filtering operation for a small semantic graph with only two

subgraphs is illustrated in Fig. 4.9. It should be observed that the queried graph

patterns GS and GD as defined in (3.19), both include simple motifs with a single

graph. Consequently, graph complexity and attribute complexity vectors reduce

to scalars.

As illustrated in this part, the proposed goal-oriented semantic graph lan-

guage and the signal processing framework can be incorporated into video signals

for real-time applications. The semantic language allows for a structured and

complete representation of the meaningful and interesting information embedded

within the signal and allows for easy parsing of the information according to the

desired goal.

4.1.5 Discussion on the Designed Semantic Extractor and

its Alternatives

As stated in Section 4.1, for this case study on video stream data, we only con-

sidered causal semantic extractors with real-time processing capabilities. The

utilization of object detection model allows us to identify signal components (i.e.

objects) at each frame. The following object tracker ensures temporal continuity

of the semantic signal components across frames in real-time. Furthermore, with

the achieved temporal extension, we can identify our elementary predicates and

fill the entries in our companion attributes for additional semantic information

which allows us to detect significant changes in time called innovations (see Sec-

tion 4.4). It is important to note that, to expand the predicate set one can utilize a

knowledge base and exploit classes of detected components. For example, if there
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Semantic Output Goal Filtering

Goal-Oriented Output

Figure 4.9: A goal-based filtering example. The filtering operation yields goal-

oriented semantic description
∼
Y . Dashed red lines denote the queries/goals and

solid green lines denote the goal-oriented returns. For brevity, we do not visualize

class-level graphs S. The goal pattern GS is searched in S1 and D1 to provide
∼
S1,

and
∼
D1. Graph complexity is chosen as lh = 0 so that only the exact matchings

are returned. The corresponding attributes A1 are distilled into
∼
A1 according to

the given attribute complexity parameter la = 2.
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exist significant overlap between bounding boxes of person1 and bike2 components

and have similar velocities, the knowledge base might suggest to utilize ride1 pred-

icate instance to express semantic information person1 → ride1 → bike2. Here,

we briefly discuss other alternatives to the designed semantic extractor which can

transform the video signals to the semantic graph structure (see Table 4.2).

As discussed in Chapter 2, scene graph generators are able to provide detailed

descriptions of scenes based on natural languages which can enrich the predicate

set. However, image based scene graph generators lack temporal continuity and

requires additional graph level tracker to ensure a temporal extension. On the

other hand, video based scene graph generators can process video-stream data

as batches in a non-causal fashion without the need of additional graph level

tracker. Nevertheless, both image and video based scene graph generators are

not suitable for applications that requires real-time processing. For delay tolerant

applications, these models can be used directly in place of first three block in

Fig. 4.1.

Another alternative semantic extractor can be formed by the combination of

captioning and text to graph aligner modules. Specifically, the captioning module

outputs a textual description at each frame, and the aligner converts the textual

description into a graph format. Note that, unlike scene graph generators, this

semantic extractor can be suitable for real-time applications. However, it also

lacks temporal continuity and requires a tracker either at the text or graph level.

Moreover, inherit utilization of natural languages by the captioning module may

introduce ambiguities to the underlying application. It should be pointed out

that, the video captioning variants can also be utilized in delay tolerant applica-

tions for temporal extension provided by batch processing of frames, again in a

non-causal fashion.

Finally, for real-time applications, segmentation methods can be employed to

generate an arbitrary semantic description, possibly at a slightly finer resolution

then object detection methods with the temporal extension. However, it is more

challenging to convert the segmentation mask into the adopted semantic graph

structure compared to list of detected objects.
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Table 4.2: Comparison of designed semantic extractor and its alternatives.

Semantic Extractor Real-Time Processing Temporal Continuity Causal

Object Detection +
Yes (25∼35 FPS)

Yes (by the
Yes

Object Tracker (Ours) Object Tracker)

Scene Graph
No (0.5∼10 FPS)

No (requires
Yes

Generator (Image) graph level tracker)

Scene Graph
No (0.1∼10 FPS)

Yes (processing
No

Generator (Video) batch of frames)

Image Captioning +
Yes (20∼30 FPS)

No (requires text
Yes

Text2Graph Aligner or graph level tracker)

Video Captioning + Yes (10∼30 FPS Yes (processing
No

Text2Graph Aligner with small batch sizes) batch of frames)

4.2 Other Signal Modalities and Application

Areas

So far, we have presented a detailed application example using the proposed se-

mantic signal processing framework: namely, the real-time computer vision on

video streams. However, there is a great potential of the proposed framework

for use in many other applications as well, including heterogeneous sensor net-

works that work on a dedicated task. Some application domains and correspond-

ing examples are that can benefit from the proposed semantic signal processing

framework listed in Table 4.3. Moreover, we provide the respective input data

modalities of these applications in Table 4.4.

A good example of the many fields that can benefit from semantic signal pro-

cessing is agriculture. For intelligent crop and plantation monitoring applications,

a heterogeneous network of sensors (cameras, temperature/humidity sensors, etc.)

provides information on critical events such as the crop yield and flowering status,

temperature and humidity of the soil, existence of pests [201, 202]. In this appli-

cation, a global goal regarding the ultimate objectives of the farm can be defined
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for a common customized language, and then it can be mapped to the respec-

tive capabilities of each sensor in the network. Based on goal-oriented returns

from the sensors, appropriate actions can be taken. For example, an appropriate

pesticide can be recommended and applied automatically to eliminate insects, or

in the case of plant growth monitoring, ripe plants can be harvested or infected

plants can be exterminated.

Table 4.3: Some examplar smart applications and their domains that can benefit
from the proposed semantic signal processing framework.

Domain Applications

Smart City

Road traffic prediction, Electricity consumption prediction,

Air quality prediction, Empty parking spot detection,

Social network device ownership identification

Smart Building

Plant disease/pest detection, Energy consumption prediction,

Human activity/emotion recognition,

Human motion tracking, Shop object localization

Healthcare
Smart wearables, Physiological measurements,

Pathological voice detection

Industry
Machinery fault diagnosis, 6D pose estimation,

Texture and shape detection on production lines

Sports Real-time sport analytics, Physical activity recognition

Transportation
Mobility prediction, Traffic road classification,

Traffic sign detection, Driver Behaviour Detection

Security
Intrusion detection, Crypto currency forecasting,

Malware network traffic detection

There are countless many other applications such as elderly fall detection,

robot navigation, event detection in sports, animal monitoring, farm automa-

tion, traffic condition analysis, etc., that can employ the proposed framework

or semantic approaches in general. We strongly believe that future research on

signal processing should include a focus on different adaptations of a semantic

framework for these applications. In order to give insights on how to adopt the
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Table 4.4: Rough categorization of data modalities and their examples.

Data Modality Examples

Time Series Data

Electricity consumption, Natural gas measurements,

Humidity, Light intensity, Accelerometer, GPS trajectories,

Sound, Bluetooth, Wi-Fi sensor measurements, Air quality,

Vibration, Temperature, Seismic measurements

Image Data

IoT camera, Parking lot cameras, Medical images,

RGB-D cameras on production lines,

Smart fridge/smart markets cameras

Video Data
Human activity annotations, Basketball/soccer game records,

Aerial video streams, Security cameras

N-arry Vector Data
Agricultural measurements, generally any sensor

measurements that do not require temporal coherency

Graph Data

Telecommunication networks, Transportation/traffic networks,

Social connection networks, Connected vehicles (V2V or V2X),

Malware/IoT network traffic, Array of things, Crypto currencies,

Semantic web for public data streams

proposed semantic signal processing framework for other applications we pro-

vide Table 4.5 where input modalities, possible semantic extractor and language

component settings are listed.

4.3 Data Compression using Semantics and

Goal-Filtering

The proposed semantic signal processing framework represents signals in a very

organized and easy-to-parse structure, which enables goal-oriented filtering of

the data to achieve very high compression rates. This is especially desirable in

the next generation of machine-type communications where a huge amount of

raw information will be generated by a plethora of IoT devices that needs to

be transmitted throughout massive networks. In this section, we showcase the
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potential compression rates that can be achieved by semantic representation and

goal-filtering through a simple example.

Depending on the application and the nature of the signals of interest, the

amount of data to be stored or transmitted can be greatly reduced using the pro-

posed semantic signal processing framework. To illustrate this point via a simple

example, we have simulated an object detection problem using YOLOv4 [19] on

a 240-frame-long prerecorded video. The object set of YOLOv4 is defined as

our component set C, while the predicate set is defined only with a p0 : exists

predicate as described in Chapter 3. Therefore, in this example, each detec-

tion from a frame can be represented as a single component-predicate connection

(i.e., ci → p0). The detected class instances throughout the 240-frame video are

illustrated in Fig. 4.10.

Figure 4.10: Detected component classes using YOLOv4 on a 240-frame long
video. The interesting detections from class remote are shown in red.

In accordance with the semantic language definition in Chapter 3, the detec-

tor outputs in Fig. 4.10 correspond to a multi-graph instance representation D.

80



The corresponding attribute set A for this experiment is chosen as the cropped

bounding box images of each detection, with a single level of complexity (i.e.,

L = 1). The class information is then encoded using Huffman coding [203] with

a predefined historical occurrence rate. The bounding box images and the full

frames are encoded using JPEG compression [204] with a constant compression

rate of 10:1. Note that the specific coding schemes discussed here are selected only

to give a general idea of the possible data throughputs, and alternative encoding

schemes can be used for different applications.

A typical application for this object detection problem could be the transmis-

sion of interesting objects to an external agent. For the demonstration of the

goal-filtering capabilities of the proposed framework, we assume that an exter-

nal agent is interested in the detections of remote class, and may or may not

require the bounding box images of pertinent detections. With this configuration

of the experiment and the input video stream given in Fig. 4.10, the following

transmission strategies are investigated:

• Full-Image Transmission: each full frame is sent,

• (D,A): the semantic graph outputs and the bounding box images are sent,

• D: only the semantic graph outputs are sent,

• (
∼
D,

∼
A): the goal-filtered semantic graph outputs and the corresponding

bounding box images are sent,

•
∼
D: only the goal-filtered semantic graph outputs are sent.

The data throughput per video frame using the above transmission strategies

is given in Fig. 4.11. As seen in Fig. 4.11, the amount of data generated and

transmitted can be reduced dramatically by organizing the data in a semantic

framework (see D, A). Even further reductions are possible by introducing goals,

and filtering out unwanted signal components (see
∼
D,

∼
A). With a goal-oriented

approach, transmissions are only sent when events of interest happen. Therefore,
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the amount of data reduction is dependent on the rate of innovation of inter-

esting patterns in the signal. A summary of the results in Fig. 4.11 is given in

Table 4.6, where the total throughput of the 240-frame video and the correspond-

ing data compression rates are listed. As reinforced by Table 4.6, extremely high

reductions in data rates are possible with the proposed goal-oriented approach.

Figure 4.11: Data throughput using different transmission strategies.

Table 4.6: Total throughput and compression rates using the semantic represen-
tation of a video stream. Compression rates are given with respect to JPEG
frame throughput.

JPEG Frames (D,A) D (
∼
D,

∼
A)

∼
D

Total Throughput [bits] 3.1× 107 1.6× 107 3316 4.6× 104 54

Compression Rate 2 : 1 9468 : 1 684 : 1 580000 : 1

In many semantic signal processing applications, it is possible to further in-

crease the compression rates. As an example, we consider the case study described

in Section 4.1 where it is possible to track the individual objects by comparing
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their features as illustrated in Fig. 4.6c using the similarity of the feature vec-

tors for consecutive frames. These similarities can also be exploited to create a

differential data storage and transmit system. That is, the first feature vector

obtained for a specific individual is to be compressed as previously described.

When a new feature vector arrives, the difference with the previous one can be

computed, which represents the fresh information in the new feature vector.

Furthermore, one may expect to have nearly sparse difference vectors due

to similarities, and consequently, it may be possible to further compress the

information to be stored or transmitted via innovative compressed sensing ap-

proaches [205].

In addition, the averages of feature vectors for each class can be determined

and shared with the receiver offline to enable class-aware compression. In most

scenarios, the attribute set (3.16) contains the class information and its asso-

ciated features. Hence, instead of compressing and transmitting each feature

vector, sensors may use the average feature information which is available at

both the sensors and the base station. Similar to a differential data transmission

setup, the fresh information in the feature vector can be extracted by taking the

difference between the new feature vector and the average feature vector of the

corresponding class. Furthermore, vector quantization or compressed sensing can

be employed to compress the differential feature vector. An interesting line of

research in the context of class-aware compression is not only to use the class

feature averages but also design a compressor for each class separately to exploit

the shared knowledge of the sensors and the base station.
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4.4 Innovation Detection on Attributes

In this section, we present a way to identify points of significant innovation over

extended periods of time using the companion attributes embedded in semantic

graph output. An example of an innovation event at the graph signal level can

mean a graph pattern of interest (that is predefined by the internally or exter-

nally defined goals) has emerged (or receded) in the semantic description of the

raw signal. Once a graph pattern of interest is identified and is being tracked,

the numerical attributes such as position and subfeature vectors can be tracked

across time to detect innovation events at the attribute level (again, based on the

interests defined by the goals). As stated in Section 4.1.3, we employ state vector

mi(t), visual feature vector ri(t) and cropped RGB image Ii(t) as the multi-level

attributes for each signal component node for our computer vision application.

Here, we utilize exponential moving average (EMA) formulated in (4.17) with

β = 0.9 and track the evolution of these features while reducing the number

of stored feature vectors and speeding up object tracking submodule which ex-

plained in Section 4.1.2. To identify the innovation, we increment t and estimate

the contribution of recently acquired attribute vector. Specifically, we choose

ℓ1-norm of the contribution and compare it with a predefined threshold.

To illustrate the observed innovation across consecutive frames, we show the

case in Fig. 4.12 where a car transients from a sunny to shaded region, abruptly

changes its trajectory and lefts the scene backward. Note that in the scenario

given in Fig. 4.12, the semantic components and predicates stay the same (i.e.,

the same objects and relationships are present throughout the clip), while the

attributes of the car-5 component change due to its movement, image brightness

and contrast etc.

First, we utilize second-level attributes r(t) and its EMA evolved counterpart

r̃(t), illustrated in Fig. 4.13, to identify the innovation occurred when the light-

ning conditions change for car-5 component during transition from the sunny to

the shaded region of parking lot (see Fig. 4.12a and Fig. 4.12b). We define the

innovation as ℓ1-norm of contribution vector rc(t) = r(t) − r̃(t). As illustrated
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in Fig. 4.14, ||rc(t)||1 achieves its maximum around t = 105 where we identify

the innovation due to transition of car-5 component from the sunny to shaded

region.

Next, we utilize a fragment of the first-level attributes, i.e., the vector corre-

sponding to velocity entries [ẋc, ẏc, ẇ, ḣ] in m(t), denoted by mv(t) and its EMA

evolved counterpart m̃v(t), illustrated in Fig. 4.15, to identify the innovation oc-

curred when car-5 component abruptly changes its trajectory to left the scene

backward (see Fig. 4.12c to Fig. 4.12f). Again, we define the innovation as ℓ1-

norm of contribution vector mv
c(t) = mv(t) − ñv(t). As illustrated in Fig. 4.16,

||mv
c(t)||1 achieves its maximum around t = 242 where we identify the innovation

due to changes in car-5 component’s trajectory due to abrupt stopping followed

by backward movement.
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(a) Frame 16 (b) Frame 100

(c) Frame 240 (d) Frame 303

(e) Frame 378 (f) Frame 453

Figure 4.12: A car transients from a sunny to shaded region, abruptly changes
its trajectory and lefts the scene backward.
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(a) Second-level attributes r(t) of car-5 component across frames.
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(b) EMA evolved attributes r̃(t) of car-5 component across frames.

Figure 4.13: Original and EMA evolved second-level attributes of car-5 compo-
nent across frames.
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(a) Absolute value of contribution vector rc(t) = r(t)− r̃(t) for car-5 component across
frames. The innovation region is denoted with white dashdotted lines.
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(b) Innovation of second-level attributes r(t) across frames as ℓ1-norm of contribution
vector rc(t). The innovation region is denoted with black dashdotted lines.

Figure 4.14: Innovation analysis of second-level attributes for car-5 component.
The innovation curve achieves its peak value around frame 105 where car-5 com-
ponent transients from sunny to shaded region as illustrated in Fig. 4.12b.
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(a) First-level attributes mv(t) of car-5 component across frames.
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(b) EMA evolved attributes m̃v(t) of car-5 component across frames.

Figure 4.15: Original and EMA first-level attributes evolved attributes of car-5
component across frames.
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(a) Absolute value of contribution vector mv
c(t) = mv(t)− m̃v(t) for car-5 component

across frames. The innovation region is denoted with white dashdotted lines.
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(b) Innovation of first-level attributes mv(t) across frames as ℓ1-norm of contribution
vector mv

c(t). The innovation region is denoted with black dashdotted lines.

Figure 4.16: Innovation analysis of first-level attributes for car-5 component. The
innovation curve achieves its peak value around frame 242 where car-5 component
changes its trajectory with abrupt stopping followed by backward movement as
illustrated in Fig. 4.12c.
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Chapter 5

Conclusion and Future Work

In this thesis, we first reviewed definitions of semantic information, various seman-

tic extraction and semantic communication techniques in the literature. Then, we

re-introduced the formal semantic signal processing framework proposed in our

former work [25] where the semantic information in the signals represented by a

graph-based structure. The adopted semantic graph-language enables structured

and universal representation and efficient processing of semantic information in

the signals. In the framework, preprocessing of input signals is followed by a se-

mantic information extractor block which identifies components from a set of pre-

defined application specific classes where the states, actions and relations among

the identified components are described by another application specific predefined

set called predicates. Moreover, to provide additional information regarding the

input signal in an organized way, each node in the resulting semantic graph is

embedded with a hierarchical set of attributes. The adopted signal processing

framework also incorporates internally or externally defined time varying goals

that enables grouping of graphs that will proceed in the process chain and that are

not essential to the underlying task. The post-processing block may contain wide

range of signal processing techniques on filtered semantic graph outputs such as

spatio-temporal graph tracking and innovation identification. At any point in the

processing chain, the desired level of semantic information of those graphs which

are of interest can be locally stored or shared with another processor through a
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communication protocol.

Here, we focused on semantic extractor block of the adopted semantic signal

processing framework. To demonstrate the potential of the re-introduced frame-

work, we presented a real-time computer vision application on video-stream data

and designed an appropriate semantic extractor. Specifically, we adopted tracking

by detection paradigm to identify semantic signal components in the stream and

exploited object positions and velocities to identify predicates. Furthermore, we

employed position and velocity indicating state vector, visual feature vector and

cropped RGB image as the multi-level attributes. Then, we showed that, with

the proposed semantic representation and goal-filtering, it is possible to achieve

extremely high reductions in data rates compared to traditional approaches. Fi-

nally, we demonstrated a way to identify points of significant innovation over

extended periods of time by tracking the evolution of multi-level attributes while

reducing the number of stored features.

The adopted semantic signal processing framework opens up multiple research

directions, in both theory and practice. First, available machine learning tech-

niques should be assessed for their applicability in this framework for real-time,

offline, and batch processing applications. For real-time applications where sen-

sor data is semantically processed to observe and control the state of a system,

semantic extraction should be completed within a certain deadline, depending

on signal bandwidth and processing capabilities. For applications that may al-

low offline processing such as semantic medical imaging, the semantic extraction

and processing techniques must prioritize increasing the reliability of extracted

meaning over the computational complexity. Based on the results of the assess-

ment on both existing real-time and offline semantic extractors, desired features

of new machine learning techniques should be identified for improved semantic

extraction in the proposed framework.

Along with the new ML techniques for semantic information extraction, new

goal-oriented signal processing techniques should be developed to take advantage

of the available semantic information on the identified signal components. By first

identifying the components of interest and prioritizing processing their attributes,
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the re-introduced framework may improve the time complexity over traditional

signal processing techniques. Note that, these algorithms should be able to set the

goals of semantic filtering and semantic post-processing based on the estimated

states of the components of interest. Further research on goal generation and

dissemination of goals should also be performed.

It is also important to note that, the process of semantic information extraction

relies on AI-enabled techniques followed by traditional methods as post-processes

to meet real-time requirements. However, the development of a single unified

AI-enabled model for the transformation of video stream into the proposed graph

structure is another research direction we plan to investigate. Furthermore, in

this thesis, first, we established a connection between innovation and component

node attributes through observations, then, presented a way to characterize the

innovation with traditional ways. Different characterizations of innovation may

pave the way for new AI-enabled methods for innovation detection and tracking.

A promising approach is to treat innovations as anomalies and develop AI-enabled

anomaly detection models [206] for attribute-level innovation tracking with a

unified architecture. Moreover, the same reasoning can be also applied to graph-

level innovations and graph anomaly detection techniques [207] may be preferred.

As future work, we plan to delve further into characterization of the innovation

problem at both attribute and graph-level.

We finally note that, depending on the type of sensor/device and its compu-

tational capabilities, the adopted framework can be used collectively or indepen-

dently. As the signal processing and communications paradigms move towards

semantic signal processing and transmission, we believe the proposed semantic

extraction framework will be an essential building block in developing the next

generation of sensor devices and networks.
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