
PERFORMANCE AND COMPUTATIONAL
ANALYSIS OF POLARIZATION-ADJUSTED

CONVOLUTIONAL (PAC) CODES

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

electrical and electronics engineering

By

Mohsen Moradi

June 2022

ABSTRACT

PERFORMANCE AND COMPUTATIONAL ANALYSIS
OF POLARIZATION-ADJUSTED CONVOLUTIONAL

(PAC) CODES

Mohsen Moradi

Ph.D. in Electrical and Electronics Engineering

Advisor: Erdal Arıkan

June 2022

We study the performance of sequential decoding of polarization-adjusted con-

volutional (PAC) codes. We present a metric function that employs bit-channel

mutual information and cutoff rate values as the bias values and significantly re-

duces the computational complexity while retaining the excellent error-correction

performance of PAC codes. With the proposed metric function, the computa-

tional complexity of sequential decoding of PAC codes is equivalent to that of

conventional convolutional codes.

Our results indicate that the upper bound on the sequential decoding compu-

tational complexity of PAC codes follows a Pareto distribution. We also employ

guessing technique to derive a lower bound on the computational complexity

of sequential decoding of PAC codes. To reduce the PAC sequential decoder’s

worst-case latency, we restrict the number of searches executed by the sequential

decoder.

We introduce an improvement to the successive-cancellation list (SCL) decod-

ing for polarized channels that reduces the number of sorting operations without

degrading the code’s error-correction performance. In an SCL decoding with an

optimum metric function, we show that, on average, the correct branch’s bit-

metric value must be equal to the bit-channel capacity. On the other hand, the

average bit-metric value of a wrong branch can be at most 0. This implies that a

wrong path’s partial path metric value deviates from the bit-channel capacity’s

partial summation. This enables the decoder to identify incorrect branches and

exclude them from the list of metrics to be sorted. We employ a similar technique

to the stack algorithm, resulting in a considerable reduction in the stack size.

Additionally, we propose a technique for constructing a rate profile for PAC

codes of arbitrary length and rate which is capable of balancing the error-

correction performance and decoding complexity of PAC codes. For signal-to-

noise ratio (SNR) values larger than a target SNR value, the proposed approach

iii

iv

can significantly enhance the error-correction performance of PAC codes while

retaining a low mean sequential decoding complexity.

Finally, we examine the weight distribution of PAC codes with the goal of

providing a new demonstration that PAC codes surpass polar codes in terms of

weight distribution.

Keywords: polarization-adjusted convolutional codes, polar codes, convolutional

codes, sequential decoding, successive cancellation decoding, list decoding, weight

distribution.

ÖZET

KUTUPSAL VE POLARİZAYSON AYARLI EVRİŞİMLİ
(PAC) KODLARININ PERFORMANS VE HESAPLAMA

ANALİZİ

Mohsen Moradi

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Akademik Ünvansız isim X

Haziran 2022

Kutupsal ve polarizasyon ayarlı evrişimli (PAC) kodların sıralı kod çözme per-

formansını inceliyoruz. Sapma değerleri olarak bit kanalı karşılıklı bilgi ve kesme

oranı değerlerini kullanan ve PAC kodlarının mükemmel hata düzeltme perfor-

mansını korurken hesaplama karmaşıklığını önemli ölçüde azaltan bir metrik

sunuyoruz. Önerilen metrik fonksiyonu sayesinde, PAC kodlarının sıralı kod

çözme hesaplama karmaşıklığı, geleneksel evrişimli kodlarınkine eşdeğer olmak-

tadır.

Sonuçlarımız, PAC kodlarının sıralı kod çözme hesaplama karmaşıklığının üst

sınırının bir Pareto dağılımını izlediğini göstermektedir. Ayrıca, PAC kodlarının

sıralı kod çözme hesaplama karmaşıklığına ilişkin bir alt sınır elde etmek için

tahmin tekniğini kullanıyoruz. PAC sıralı kod çözücünün gecikmesinin en kötü

durumda alabileceği değeri azaltmak için sıralı kod çözücü tarafından yürütülen

aramaların sayısını kısıtlıyoruz.

Polarize kanallar için sıralı elemeli ve listeli (SCL) kod çözme işleminde, ko-

dun hata düzeltme performansını düşürmeden sıralama işlemlerinin sayısını azal-

tan bir iyileştirme sunuyoruz. Optimum metrik fonksiyona sahip bir SCL kod

çözmede, ortalama olarak doğru dalın bit metrik değerinin bit kanalı kapasite-

sine eşit olması gerektiğini gösteriyoruz. Öte yandan, yanlış bir dalın ortalama

bit metrik değeri en fazla sıfır olabilir. Bu durum, yanlış bir yolun kısmi yol

metrik değerinin bit kanalı kapasitesinin kısmi toplamından saptığı anlamına

gelir. Bu, kod çözücünün yanlış dalları tanımlamasını ve bunları sıralanacak

metrikler listesinden çıkarmasını sağlar. Burada, yığın boyutunda önemli bir

azalmayla sonuçlanan yığın algoritmasına benzer bir teknik kullanıyoruz.

Ek olarak, herhangi bir uzunluk ve hızdaki PAC kodları için, PAC kodlarının

hata düzeltme performansını ve kod çözme karmaşıklığını dengeleyebilen bir oran

profili oluşturmak adına bir teknik öneriyoruz. Önerilen yaklaşım, hedeflenen

v

vi

sinyal-ses oranı (SNR) değerinden daha büyük SNR değerleri için, düşük bir or-

talama sıralı kod çözme karmaşıklığını korumaktadır. Bununla birlikte, PAC

kodlarının hata düzeltme performansını da önemli ölçüde artırabilir.

Son olarak, PAC kodlarının ağırlık dağılımı açısından polar kodları geride

bıraktığının yeni bir gösterimini sağlamak amacıyla PAC kodlarının ağırlık

dağılımını inceliyoruz.

Anahtar sözcükler : Kutupsal ve polarizasyon ayarlı evrişimli kodlar, kutupsal

kodlar, evrişimli kodlar, sıralı kod çözme, sıralı elemeli kod çözme, liste kod çözme,

ağırlık dağılımı..

Acknowledgement

I would like to thank my adviser, Professor Erdal Arıkan, for the guidance and

support that he has provided. I am thankful to Professors Tolga M. Duman,

Ahmed Hareedy, Orhan Arıkan, and Barış Nakiboğlu for reading my dissertation

and providing helpful comments and suggestions during my defense. I was fortu-

nate to begin and complete my doctorate at the same time as Amir Mozammel.

This has made this stage of my life more bearable; our discussions contribute

to the advancement of our projects. I also want to express my appreciation to

Bilkent University for all of the provided support .

I would want to continue by expressing my deepest thanks and gratitude to my

parents and the rest of my family for the unwavering support and encouragement

they have provided to me during all of these years. Without their help, I never

would have been able to get to this point in my life. Many thanks to everyone.

vii

Contents

1 Introduction 1

1.1 Organization of the Dissertation 3

1.2 Notation . 5

2 Polar and PAC Codes 7

2.1 Polar Codes and SC Decoding . 7

2.2 On the Construction of Polar Codes 16

2.3 PAC codes . 20

2.3.1 List Decoding . 23

2.4 Sequential Decoding of Convolutional Codes 25

2.4.1 Convolutional Codes . 26

2.4.2 Stack Algorithm . 29

2.4.3 Fano Algorithm . 34

2.5 Sequential Decoding of PAC Codes 37

3 On the Metric Function and Complexity of Sequential Decoding 40

3.1 Metric Function . 41

3.2 Results for Computational Complexity and Error-Correcting Per-

formance . 47

3.3 Bounded Complexity Sequential Decoder 49

3.4 Distribution of Computational Complexity 51

3.5 Sequential Decoding of PAC Codes Using Heap Data Structure . . 53

3.5.1 Data Structure . 53

3.5.2 Heap Sequential Decoding Algorithm 54

3.5.3 Simulation Results . 58

viii

CONTENTS ix

4 Computational Complexity of Sequential Decoding of PAC

Codes 63

4.1 Application of Guessing to Sequential Decoding of PAC codes . . 64

4.2 Upper Bound Estimation on the Distribution of Computation for

Sequential Decoding . 72

5 SCL and Stack Decoding for Polarized Channels 83

5.1 Path Metric Function for SCL Decoder 84

5.2 Improving SCL Decoding for Polarized Channels 89

5.3 Improving Stack (Heap) Decoding for Polarized Channels 95

5.3.1 Dynamic Threshold . 97

6 Weight Distribution of PAC Codes 100

6.1 PAC Codes v. Polar Codes . 101

6.2 On the Weight Distribution of PAC Codes 113

7 Summary and Conclusions 116

List of Figures

1.1 Block diagram of a digital data transmission system 1

2.1 The channel W2 . 9

2.2 Polar coding scheme. 12

2.3 Polar encoding tree for N = 4. 14

2.4 SC decoding tree for N = 4. 16

2.5 Bit-channel capacities for information bits (solid circles) and frozen

bits (hollow circles) at 2.5 dB SNR. 17

2.6 Bit-channel Bhattacharyya parameters for information bits (solid

circles) and frozen bits (hollow circles) at 2.5 dB SNR. 18

2.7 Bit-channel cutoff rates (solid circles) and bit-channel mutual in-

formation (hollow circles) at an SNR value of 2.5 dB. 19

2.8 PAC coding scheme . 22

2.9 Performance of polar codes under list decoding. 24

2.10 Performance of PAC codes under list decoding. 26

2.11 Convolutional encoder example. 26

2.12 Flowchart of the convolutional coding with Viterbi decoding. . . . 27

2.13 Partially explored binary tree by stack decoding algorithm. 30

2.14 Flowchart of the Fano sequential decoding algorithm for a binary

tree. 36

2.15 Flowchart of the sequential decoding algorithm for a binary tree. . 37

3.1 Partial path metrics v. bit indices. 48

3.2 Performance of PAC codes with I(W
(i)
N) and E0(1,W

(i)
N) biases in

terms of FER and ANV. 49

x

LIST OF FIGURES xi

3.3 Performance of PAC codes with quantized bit-channel cutoff rate

bias values in terms of FER and ANV. 50

3.4 With MNV = 214, search-limited PAC code is compared to polar

code with SCL decoding, with list size 64 and CRC length of 11. . 51

3.5 CCDF of the number of node visits during sequential decoding of

PAC codes. 52

3.6 PAC(128, 64) code performance. 61

3.7 PAC(128, 99) code performance. 62

4.1 Polar code construction of length N 67

4.2 Decoding tree of PAC codes. 67

4.3 Recursive construction of polar code of length N 68

4.4 Decoding tree of PAC codes after one step polarization. 69

4.5 Decoding tree of PAC codes after two step polarization. 71

4.6 PAC(128, 64) rate profiles. 73

4.7 PAC(128, 64) rate profiles. 74

4.8 Error frequency of subsequent bits of FBE for PAC(256, 128) code. 75

4.9 PAC(256, 128) code rate profiles. 78

4.10 Error-correction performance and complexity of PAC(256, 128)

codes. 79

4.11 PAC(64, 32) code rate profiles. 80

4.12 Error-correction performance and complexity of PAC(64, 32) codes. 81

5.1 Comparison of the partial path metric corresponding to the cor-

rectly decoded codewords of list decoding of (1024, 512) polar code

with the capacity rate profile over BI-AWGN at 2.5 dB SNR. . . . 89

5.2 Comparison of the conventional SCL decoding with our proposed

SCL decoding algorithm for a list size of L = 4 of a (1024, 512)

polar code with mT = −5. 91

5.3 Comparison of the conventional list decoding with our proposed

list decoding algorithm of a PAC(128, 64) code when mT = −10. . 91

5.4 FER and average number of stack size performance comparison of

PAC(128, 64) codes with mT = −20. 97

LIST OF FIGURES xii

5.5 FER and average number of stack size performance comparison of

PAC(128, 64) codes with dynamic threshold. 99

6.1 PAC codes with different polynomials. 115

List of Tables

2.1 The stack content and its partial path metric values after the or-

dering in each decoding iteration. 31

2.2 The stack content and its partial path metric values after the or-

dering in each decoding iteration. 32

3.1 Frequency distribution (number of visits of Θ) 50

4.1 Rate and cutoff rate after one and two steps of polarization for

different cutoff rate values of PAC(256, 128) code 72

4.2 Rate profiles. 77

5.1 Average number of executed sorting for decoding (1024, 512) polar

code. 90

5.2 Average number of executed sorting for decoding PAC(128, 64) code. 92

5.3 Levels, reliabilities, and bit-metric values of both branches (up and

down branches) of noiseless bit channels at 2.5 dB SNR. 96

6.1 Weight Distributions of the PAC(32, 16) codes with different poly-

nomial connections. 114

xiii

Chapter 1

Introduction

The fundamental objective of channel coding is to develop systems that enable

reliable and efficient data transmission. A basic model of a communication sys-

tem is best explained by the block diagram in Figure 1.1 [1]. In this research, we

treat both the source encoder outputs and the source decoder inputs as binary

sequences, and we only focus on the channel coding problem depicted inside the

dashed contour in this figure.

Source

encoder

Channel

encoder
Channel

Channel

decoder

Information

source Source

decoder

Destination

Figure 1.1: Block diagram of a digital data transmission system

The main result of Shannon’s work [1] is that if the code rate is less than

a certain value set by the channel capacity (a fundamental characteristic of the

channel), there are encoding and decoding operations that can asymptotically

lead to reliable reconstruction of the encoder input sequence. Shannon estab-

lished that selecting a random element from a properly specified ensemble could

create a reliable system with a high probability. The issue comes when we want

low-complexity encoding and decoding techniques (efficient) that satisfy the re-

quirements mentioned above.

1

Polar codes [2] are the first class of linear block codes that, based on channel

polarization, provably achieve the capacity of certain classes of channels with

practical encoding and decoding algorithms and explicit code construction. In

particular, under low-complexity successive cancellation (SC) decoder, it is proved

that the error probability of polar codes vanishes as code blocklength increases [2].

Earlier research on the performance of polar codes with SC decoder indicated

that their performance was inferior to that of the state-of-the-art codes such as

low-density parity-check (LDPC) [3–7] and turbo [8] codes at low-to-moderate

block lengths [9]. Tal and Vardy soon demonstrated that by using an SC list

(SCL) decoder, the performance of polar codes could be considerably improved

[9]. An SCL decoder initially established for Reed-Muller (RM) codes [10, 11],

with list size L maintains a list of L candidate codewords and chooses the most

likely one as its choice at the end of the decoding process. Additionally, the SCL

decoding of polar codes permits the concatenating of a polar code with a cyclic

redundancy check (CRC) code as an outer code to further improve polar codes’

block-error probability [12]. Polar codes are comparable to the state-of-the-art

turbo and LDPC codes when decoded using a CRC-aided SCL decoding [9].

Recently, Arıkan proposed a novel coding method termed polarization-adjusted

convolutional (PAC) coding that utilizes pretransformed convolutional codes

(CCs) to polar codes [13]. PAC codes have a significant performance gain com-

pared to the CRC-aided SCL decoding of conventional polar codes for small block-

lengths. The experimental findings demonstrate that the PAC codes approach

the theoretical limits for finite blocklength codes [13–15].

We investigate both the SCL and sequential decoding of PAC codes. Wozen-

craft [16] introduced sequential decoding, and the Fano [17] and stack [18,19] algo-

rithms are two of the most well-known sequential decoding algorithms. The stack

algorithm visits each node at most once during a decoding session but needs more

storage capacity, while the Fano algorithm may visit each node several times but

requires less memory. However, Fano decoding is more advantageous for practical

hardware implementations of PAC codes due to its low memory requirements [20].

Since both algorithms ultimately pick the same pathways through the decoding

2

tree, the set of nodes traversed by the Fano and stack algorithms is identical [21].

In this dissertation, we study both Fano and stack decoding algorithms. The

purpose of this dissertation is to investigate the error-correction performance and

the computational complexity of PAC codes. The structure of the dissertation

and my contributions are explained in detail in the following section.

1.1 Organization of the Dissertation

Chapter 2 provides a review of prior art on polar, convolutional, and PAC

codes and their decoding methods. We discuss SCL and sequential (stack and

Fano) decoding algorithms. This chapter also thoroughly explores several code

construction techniques necessary for the subsequent chapters.

Chapter 3 provides a metric function for sequential decoding of PAC codes

that takes advantage of the channel polarization. We investigate the relationship

between the metric function in an ensemble of PAC codes and the polarized

channels capacities. The fundamental disadvantage of sequential decoding, which

contributes to its decline, is that its computational complexity is random. To

overcome this, in this chapter, we also consider imposing a strict complexity

constraint on the sequential decoding method, analyze its performance under

such a constraint, and compare it to CRC-aided SCL decoding of polar codes.

Additionally, in this chapter, in collaboration with Amir Mozammel, we in-

vestigate a decoding technique for PAC codes that manages information using a

binary heap data structure. Heap data structure is used in sequential decoding

in [22]. The heap data structure is an array object that serves as a more effi-

cient priority queue than the stack. Our proposed algorithm employs a vector of

length N/2 to store intermediate check-sum values, which is half of the needed

space reported in the literature. The operations in the heap data structure are in

place, and simulation results demonstrate that even with a moderate heap size,

PAC codes can achieve good error-correction performance.

3

Chapter 4 investigates the complexity bounds associated with sequential de-

coding of PAC codes. We employ guessing in this chapter to derive a lower bound

on the computational complexity of sequential decoding of PAC code. By taking

advantage of the channel polarization, we prove that the computational cutoff

rate for sequential decoding of PAC codes polarizes.

Using channel polarization, we also propose a code construction approach in

this chapter that allows PAC codes to function within theoretical limits for various

code rates and lengths.

Chapter 5 analyzes the optimal metric function for the SCL decoding algo-

rithm for the polarized channels. In this chapter, we propose an advancement

to the SCL decoding for polarized channels that decreases the number of sorting

operations without sacrificing the code’s error-correction performance. We prove

that, in an SCL decoding with an optimal metric function, the average bit-metric

value of the correct branch must be equal to the bit-channel capacity and that,

on the other hand, the average bit-metric value of a wrong branch can be at

most zero. Therefore, the partial path metric value of an incorrect (wrong) path

deviates from the partial summation of the bit-channel capacities. Also, in the

case of a noiseless bit channel, we prove that the bit metric of a correct branch

is 1, whereas the bit metric of an incorrect branch is −∞. In this manner, we

would be able to detect incorrect branches in the polarized channels and exclude

them from the list of metrics that are needed to be sorted. Our results indicate

that, when a list size of 4 is employed, our proposed technique helps the decoder

to do almost 92 percent less sorting operations than the standard SCL algorithm

while decoding a (1024, 512) polar code at a 3 dB SNR value. We also apply this

to the stack decoding algorithm, and the results show that an average stack size

reduction of more than 90 percent is attainable for a PAC(128, 64) code when

the SNR is set to 3.5 dB. We prune the potential incorrect pathways using a

threshold. We prove that when the threshold is less than the bit-channel cutoff

rate, the chance of pruning the correct path from that bit of the decoding tree

exponentially reduces by the given threshold.

Chapter 6 investigates the weight distribution of PAC codes and gives a

4

new proof to the result of [23]. This proof aims to demonstrate that PAC codes

outperform polar codes in terms of weight distribution. In this chapter, we prove

that adding an odd number of clockwise cyclic shifts to any row of the polar

code generator matrix G added with some rows below it does not reduce the

row’s weight. To provide the proof, we use an algebraic equation of [24] which

is DN/4G = GCN/4 (the notation is defined in the chapter). We generalize this

result as DmG = GCm for 1 ≤ m < N . This proves that summing a row of

the polar code generator matrix with a row below it equals some clockwise cyclic

shifts of that row. We use this to prove that the dmin for PAC codes is higher

than or equal to the polar code’s dmin. The maximum likelihood (ML) decoding

performance is dictated by the weight distribution of linear codes, which can be

confidently predicted by the union bound, especially at high signal-to-noise ratios

(SNRs). In terms of error-correction performance, this means that PAC codes

outperform polar codes. This chapter

Additionally, in Section 6.2, we look at the performance of PAC codes when

various connection polynomials are used. This section is written in collaboration

with Amir Mozammel.

1.2 Notation

Throughout this dissertation, all the codes are over the binary Galois field

F2 = {0, 1} (GF(2)). We use boldface notation for vectors and for a vector

u = (u1, u2, ..., uN) ∈ FN
2 , u

i denotes the subvector (u1, u2, ..., ui) and uj
i denotes

the subvector (ui, ..., uj) for i ≤ j. For a vector u, (u)i denotes its ith element

ui. For any subset of indices A ⊂ {1, 2, ..., N}, Ac denotes the complement of A
and uA represents the subvector (ui : i ∈ A). For a matrix G, GA,B denotes a

submatrix of G that rows are selected by set A, and columns are selected by set

B.

5

Papers

1. Moradi, Mohsen. (2021). ”On Sequential Decoding Metric Function of Polarization-

Adjusted Convolutional (PAC) Codes.” IEEE Transactions on Communications (DOI

10.1109/TCOMM.2021.3111018).

2. Moradi, M., Mozammel, A. (2022). ”A Tree Pruning Technique for Decoding Complexity

Reduction of Polar Codes and PAC Codes.” Submitted to the IEEE Transactions on

Communications.

3. Moradi, M., Mozammel, A., Qin, K., and Arıkan, E. (2020). ”Performance and Com-

plexity of Sequential Decoding of PAC Codes.” arXiv preprint arXiv:2012.04990.

4. Moradi, M., Mozammel, A. (2021). ”A Monte-Carlo Based Construction of Polarization-

Adjusted Convolutional (PAC) Codes.” arXiv preprint arXiv:2106.08118.

5. Moradi, M., Mozammel, A. (2022). ”Concatenated Reed-Solomon and Polarization-

Adjusted Convolutional (PAC) Codes.” Accepted by IEEE International Black Sea Con-

ference on Communications and Networking (BlackSeaCom) [25].

6. Moradi, Mohsen. (2022). ”Bit-Flipping for Stack Decoding of Polarization-Adjusted

Convolutional (PAC) Codes.” Accepted by IEEE 10th International Workshop on Signal

Design and its Applications in Communications (IWSDA).

6

Chapter 2

Polar and PAC Codes

This chapter reviews convolutional, polar, and PAC codes and explains the es-

sential prerequisites for the subsequent chapters. In particular, we discuss chan-

nel polarization in detail and some well-known techniques for constructing polar

and PAC codes. We briefly study the SC [2] and SCL [9, 26, 27] decoding of

polar and PAC codes. We also briefly review the sequential decoding of convolu-

tional [17–19] and PAC codes [13,14,28].

2.1 Polar Codes and SC Decoding

Polar codes are the first family of codes that have been proved to achieve Shannon

channel capacity. Polar codes have a low encoding and decoding complexity, with

both encoding and decoding complexity equal to O(N logN) for a code of length

N = 2n [2].

This section describes polar codes and discusses their encoding and decoding.

A discrete memoryless channel (DMC) W : X → Y has a discrete input alphabet

X , a discrete output alphabet Y , and a set of conditional probabilities for the

outputs given the inputs. We make the assumption that the input alphabet

X is always binary. The given conditional probabilities are denoted by W (y|x)

7

for x ∈ X and y ∈ Y . Each channel output letter is solely dependent on the

associated input (memoryless condition), thus the conditional probability of a

corresponding output sequence, indicated by y = (y1, y2, · · · , yN), may be written

as

WN(y|x) =
N∏
i=1

W (yi|xi) (2.1)

for an input sequence of length N , represented by x = (x1, x2, · · · , xN).

Given a DMC W , let

I(X;Y) ≜
∑
y∈Y

∑
x∈X

q(x)W (y|x) log W (y|x)∑
x′∈X q(x′)W (y|x′)

(2.2)

denote the average mutual information between the DMC’s inputs and outputs.

The channel input and the conditional channel probabilities determine the

average mutual information I(X;Y). It should be noted that the channel input

probability is independent of the DMC. Then, with regard to the input probability

distribution q = {q(x) : x ∈ X}, we can maximize I(X;Y).

A DMC’s channel capacity C is defined as

C ≜ max
q

I(X;Y). (2.3)

Symmetric capacity, I(W), is I(X;Y) with q(.) uniform and is a rate measure

that represents the highest rate at which reliable communication across the chan-

nel W is possible while using W ’s inputs uniformly (channel input probability is

as q(0) = q(1) = 1
2
in the binary input case).

Another fundamental channel parameter is the Bhattacharyya parameter

Z(W) ≜
∑
y∈Y

√
W (y|0)W (y|1) (2.4)

and is a measure of the channel reliability, which is an upper bound on the

probability of ML decision error when the channelW is used just once to transmit

a bit.

8

Assume that we use two independent copies of a binary input DMC (BI-DMC)

W to send u1 and u2 bits, and the corresponding channel outputs are y1 and y2.

Let W
′
and W

′′
denote the first and the second copies of the channel W . We

have I(W
′
) = I(W) = I(W

′′
) since each transmission utilizes the same channel.

Hence, both usages of the channel are equally reliable in this case.

Now let us send x1 = u1 ⊕ u2 bit over the first copy of the channel W and

x2 = u2 over the second copy of the channel W , where ⊕ denotes addition in

F2. Let W
(1)
2 : X → Y2 represent a synthetic (artificial) channel with an input

of u1 and an output of (y1, y2). Also, let W
(2)
2 : X → Y2 × X represent another

synthetic channel with an input of u2 and an output of (y1, y2, u1). The channels’

outputs are regarded to be vector outputs. Also, as Figure 2.1 shows, assume

that W2 is the overal channel with input (u1, u2) and output (y1, y2).

W+u1

Wu2

y1

y2

x1

x2

W2

Figure 2.1: The channel W2

Notice that u2 has an effect on both y1 and y2, providing us with somewhat

more information about u2 than we have about u1. Furthermore, because u1⊕u2

scrambles u1 by u2, there is somewhat lesser information about u1 than there was

in the initial transmission setup. As a result, with further precise descriptions to

be established later,

I(W
(1)
2) ≤ I(W) ≤ I(W

(2)
2). (2.5)

By using this fundamental coding method, a synthetic channel W
(2)
2 that is su-

perior (more reliable) to the channel W is constructed. On the other hand,

simultaneously, another channel W
(1)
2 that is inferior (less reliable) to the channel

W is created.

9

For N = 2, x = (x1, x2) are obtained from u = (u1, u2) by

x1 = u1 ⊕ u2,

x2 = u2.
(2.6)

This mapping from the input of W2 to the input of W 2 can be expressed as

x = uF with

F ≜

[
1 0

1 1

]
. (2.7)

W2(y1, y2|u1, u2) channel transition probability can be used to obtain the pair of

synthetic channel transition probabilities (W
(1)
2 ,W

(2)
2). The transition probability

of this joint channel is indicated by

W2(y1, y2|u1, u2) = W 2(y1, y2|(u1, u2)F) = W 2(y1, y2|(u1 ⊕ u2, u2))

= W (y1|u1 ⊕ u2)W (y2|u2),
(2.8)

where W (.|.) represents the channel W ’s transition probability, and where the

final equality is true since the channel W is a memoryless channel. The syn-

thetic channel transitions W
(1)
2 (y1, y2|u1) and W

(2)
2 (y1, y2, u1|u2) are calculated

using probability rules (assume uniformly distributed input bits) using

W
(1)
2 (y1, y2|u1) =

∑
u2∈X

W2(y1, y2|u1, u2)q(u2) =
1

2

∑
u2∈X

W2(y1, y2|u1, u2)

W
(2)
2 (y1, y2, u1|u2) = W2(y1, y2|u1, u2)q(u1) =

1

2
W2(y1, y2|u1, u2),

(2.9)

which may be represented as

W
(1)
2 (y1, y2|u1) =

1

2

∑
u2∈X

W (y1|u1 ⊕ u2)W (y2|u2)

W
(2)
2 (y1, y2, u1|u2) =

1

2
W (y1|u1 ⊕ u2)W (y2|u2).

(2.10)

In general, these equations have converted a pair of channels (W,W) into a

pair of new synthesized channels (W
(1)
2 ,W

(2)
2).

The fundamental concept underlying SC decoding is that bits are estimated in

a specific order, and formerly decoded bits are utilized to compute the likelihood

10

of following bits. The likelihood ratios for theW
(1)
2 andW

(2)
2 synthesized channels

are used in the decoding process. As a function of the received values (y1, y2), let

λ
(1)
2 (y1, y2) ≜

W
(1)
2 (y1, y2|u1 = 0)

W
(1)
2 (y1, y2|u1 = 1)

(2.11)

indicate a likelihood ratio for the bit u1, and

z
(1)
2 (y1, y2) ≜ log2 λ

(1)
2 (y1, y2) = log2

W
(1)
2 (y1, y2|u1 = 0)

W
(1)
2 (y1, y2|u1 = 1)

(2.12)

indicates the log-likelihood ratio (LLR) for this bit. The SC decoder decides that

the estimate û1 to be 0 if and only if W
(1)
2 (y1, y2|u1 = 0) ≥ W

(1)
2 (y1, y2|u1 = 1);

otherwise the decoder decides that the estimate û1 to be 1. This decision rule

may be expressed mathematically as

û1 =

0, if z
(1)
2 (y1, y2) ≥ 0,

1, if z
(1)
2 (y1, y2) < 0.

(2.13)

Similarly,

z
(2)
2 (y1, y2, û1) ≜ log

W
(2)
2 (y1, y2, û1|u2 = 0)

W
(2)
2 (y1, y2, û1|u2 = 1)

(2.14)

indicates the LLR for the bit u2 and the decision rule to estimate this bit can be

formulated as

û2 =

0, if z
(2)
2 (y1, y2, û1) ≥ 0,

1, if z
(2)
2 (y1, y2, û1) < 0.

(2.15)

Note that to decode the first bit, the channel output vector (y1, y2) is needed,

and the SC decoder uses the estimated value of the first bit in addition to the

channel outputs to decode the second bit.

Let us define the LLRs for the copies of the W channels as

Li ≜
W (yi|xi = 0)

W (yi|xi = 1)
, (2.16)

for i = 1, 2. Notice that from (2.6) we have u1 = x1 ⊕ x2 and using the known

single parity check discussion in the LDPC codes context (as an example see [29]),

11

the LLR value for u1 can be obtained from the check-node operation like for the

LLR values for x1 and x2 as

z
(1)
2 (y1, y2) = L1 ⊞ L2

= 2 tanh−1(tanh(L1/2) tanh(L2/2))

≈ sign(L1)sign(L2)min(|L1|, |L2|).

(2.17)

Also from (2.6) we have u2 = x2 and by estimating u1 from z
(1)
2 (y1, y2), we can

write u1 = x1 ⊕ x2 as û1 = x1 ⊕ u2, which equivalently we have

u2 = û1 ⊕ x1

u2 = x2.
(2.18)

If û1 = 0, using the repetition code discussion of the LDPC codes and (2.18) we

have z
(2)
2 (y1, y2, û1 = 0) = L2 + L1; otherwise, if û1 = 1, u2 is the inverse of x1

and we can have z
(2)
2 (y1, y2, û1 = 1) = L2 − L1. Therefore, we can write the LLR

value of u2 as

z
(2)
2 (y1, y2, û1) = L2 + (−1)û1L1. (2.19)

Note that for a binary-input additive white Gaussian noise (BI-AWGN) channel,

Li = 2yi/σ
2, where yi is the ith channel output and σ2 is the noise power.

It is conventional to show the check operation of (2.17) by f(L1, L2) known as

f-function, and the node operation of (2.19) by g(L1, L2, û1) known as g-function.

Data

insertion

Polar

mapper
Channel

d u x y

Polar encoder

Polar

decoder

d̂

Figure 2.2: Polar coding scheme.

The general polar coding scheme is shown in block diagram form in Figure

2.2. In general, three parameters (N,K,A) can be used to specify a polar code,

where N = 2n, n ≥ 1 is the codeword length, K is the data word length and can

be any integer number from 1 to N , and set A, known as the data index set, is a

12

subset of {1, 2, · · · , N} of size |A| = K. In the following subsections, we will go

through some of the most common approaches for acquiring the data index set

A.

For an arbitrary blocklengthN = 2n, the encoding procedure may be expressed

in terms of the generator matrix F⊗n defined recursively as

F⊗n ≜

[
F⊗n−1 0

F⊗n−1 F⊗n−1

]
, (2.20)

where

F⊗1 = F =

[
1 0

1 1

]
(2.21)

is the kernel matrix of polar codes.

Data insertion is accomplished by inserting the bits of the data vector d =

(d1, · · · , dK) into the bits of a data-carrier vector u = (u1, u2, · · · , uN) as uA = d

and uAc = 0, resulting in an encoding rate of R = K/N , and the conventional

polar transformation F⊗n is applied to encode the vector u. Finally, we may

recover the data vector estimates d̂ from the channel output y using a polar

decoder such as the SC decoding algorithm.

Example 1. Consider a (8, 4, {4, 6, 7, 8}) polar code. The data insertion block

maps the data vector d = (d1, d2, d3, d4) to u = (0, 0, 0, d1, 0, d2, d3, d4). Finally,

the polar mapper block performs as

uF⊗3 = (u1, u2, · · · , u8)



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


=



u1 ⊕ u2 ⊕ · · · ⊕ u8

u2 ⊕ u4 ⊕ u6 ⊕ u8

u3 ⊕ u4 ⊕ u7 ⊕ u8

u4 ⊕ u8

u5 ⊕ u6 ⊕ u7 ⊕ u8

u6 ⊕ u8

u7 ⊕ u8

u8



T

to obtain the channel input x = uF⊗3.

13

To generalize the SC decoding for an arbitrary length, we use the conventional

f and g vector functions on the LLR vectors L
′
= (a1, a2, · · · , aM) and L” =

(b1, b2, · · · , bM) and a binary vector u = (u1, u2, · · · , uM) defined as

f(L
′
,L”) ≜ (f(a1, b1), f(a2, b2), · · · , f(aM , bM)),

g(L
′
,L”,u) ≜ (g(a1, b1, u1), g(a2, b2, u2), · · · , g(aM , bM , uM)),

(2.22)

where the f and g functions are defined as (2.17) and (2.19), respectively.

For an arbitrary blocklength N , expressing SC decoding as a message passing

through a tree would be more straightforward. The following discusses SC de-

coding with a blocklength of N = 4. It will be straightforward to generalize it to

any blocklength.

Figure 2.3: Polar encoding tree for N = 4.

Figure 2.3 represnts the polar mapper block operation for N = 4. The leaf

nodes are labeled with the bits of the data-carrier vector u and the root node is

labeled with the vector x = uF⊗2. The output of the channel y would be the

noisy version of (x1, x2, x3, x4) = (u1 ⊕ u2 ⊕ u3 ⊕ u4, u2 ⊕ u4, u3 ⊕ u4, u4). Let

(L1, L2, L3, L4) be the output LLR values obtained as (2.16).

Notice that in the encoding tree, the left child of the root node (in general

notation: first node of depth 1) is equal to (x1⊕ x3, x2⊕ x4); therefore, the LLR

values corresponding to this node (with a same justification for N = 2) can be

obtained as

f(L1, L2, L3, L4) = (f(L1, L3), f(L2, L4)). (2.23)

In decoding tree, each level of the tree has N = 4 LLR values and we

14

use Ld = (Ld
1, L

d
2, L

d
3, L

d
4) notation to present the corresponding LLR values

for depth d of the tree, which the root node has depth 0 and the leaf nodes

are in depth d = log2N . Therefore, the channel output LLR values are

represented as (L1, L2, L3, L4) = (L0
1, L

0
2, L

0
3, L

0
4), and from (2.23), (L1

1, L
1
2) =

(f(L0
1, L

0
3), f(L

0
2, L

0
4)).

Similarly, in the encoding tree, notice that the left child of (u1 ⊕ u2, u2) node

is the binary summation of these two bits, and its corresponding LLR value can

be obtained as L2
1 = f(L1

1, L
1
2). Finally we have the LLR value corresponding

to the first bit u1 and the SC decoder based on the sign value of L2
1 finds û1 (if

L2
1 ≥ 0, û1 = 0; otherwise, û1 = 1). After this, the SC decoder checks if the first

bit is frozen. If the bit is frozen, despite its LLR value, it will always make the

estimated bit equal to 0.

The second step of SC decoding is to find the value û2. Similar to N = 2, its

corresponding LLR value L2
2 can be obtained as L2

2 = g(L1
1, L

1
2, û1), and based on

this obtained LLR value and checking if it is a frozen bit or not second bit can

be estimated.

The third step of the algorithm is to obtain û3. With knowing û1 and û2, the

estimated bits of the first node of depth one in the decoding tree can be computed

as (û1 ⊕ û2, û2). Similar to N = 2, the LLR values of the right child of the root

node can be calculated as

(L1
3, L

1
4) = g(L0

1, L
0
2, L

0
3, L

0
4, (û1 ⊕ û2, û2)) = (g(L0

1, L
0
3, û1 ⊕ û2), g(L

0
2, L

0
4, û2)).

Now, the LLR value corresponding to the third leaf node can be calculated as

L2
3 = f(L1

3, L
1
4). Therefore, based on L2

3 and checking if it is a frozen bit or not,

the third bit can be estimated as û3.

Finally, the L2
4 can be obtained as g(L1

3, L
1
4, û3), and û4 can be obtained from

L2
4. This finishes the SC decoding. The LLR values of nodes on decoding tree for

N = 4 is shown in Figure 2.4.

If the blocklength were longer, we would need to obtain the estimated bits

corresponding to the root node of Figure 2.3, which is (û1, û2, û3, û4)F
⊗2, and

15

()L1
0
L2

0
L3

0
L4

0

L1
1
L2

1
L3

1
L4

1() ()

L1
2

L2
2

L3
2

L4
2

Figure 2.4: SC decoding tree for N = 4.

pass them to the parent node, where the decoding process would continue.

In summary, the SC decoder starts from the root node of the decoding tree. On

each non-leaf node, it first operates an f function towards the left child, and after

obtaining the estimated bits corresponding to that node, the SC decoder operates

g function towards the right child. When reaching a leaf node, the associated bit

is estimated depending on its LLR value and whether it is a frozen bit.

The SC decoding described above needs a memory size of N log2N to store

the intermediate LLR values and N log2N to store the intermediate check-sum

values. This implementation offers a computational benefit in sequential decod-

ing algorithms that need backtracking (as discussed in the next chapter). If no

backtracking is required (for sequential decoding algorithms such as the stack

algorithm), as discussed in Section 3.5, a memory-efficient SC decoder stores in-

termediate LLR and check-sum values in a vector of lengths N − 1 and N/2,

respectively.

2.2 On the Construction of Polar Codes

This section reviews some well-known polar code construction techniques for iden-

tifying subchannels suitable for transmitting data. The reliabilities of binary

erasure channels (BECs) can be efficiently determined by recursively using the

Bhattacharyya parameters [2]. Arıkan suggested, as a heuristic method, using

the same recursion of Bhattacharyya parameters as for the BEC channel for the

16

other BI-DMCs [30]. Other well-known polar code constructions are the den-

sity evolution (DE) [31], Gaussian approximation (GA) [32], and RM-polar [33]

code construction methods. We use the GA algorithm to obtain the polarized

Bhattacharyya parameters, cutoff rates, and mutual information in our imple-

mentations in this dissertation, as detailed in [14].

Example 2. For a (128, 64) code with an SNR of 2.5 dB, Figure 2.5 illustrates

the bit-channel mutual information. Data bit locations are determined by the bit

channels with the highest bit-channel mutual information.

0

0.2

0.4

0.6

0.8

1

B
it

-c
h
a
n
n
e
l

m
u
tu

a
l

in
fo

rm
a
ti

o
n

1 32 64 96 128

Bit-channel index

Figure 2.5: Bit-channel capacities for information bits (solid circles) and frozen
bits (hollow circles) at 2.5 dB SNR.

Example 3. For a (128, 64) code with SNR = 2.5 dB, Figure 2.6 depicts the

values of bit-channel Bhattacharyya parameters. The bit channels with the lowest

values of bit-channel Bhattacharyya parameters determine data bit positions.

17

0

0.2

0.4

0.6

0.8

1

B
it

-c
h
an

n
el

 B
h
at

ta
ch

ar
y
y
a

p
ar

am
et

er
s

1 32 64 96 128

Bit-channel index

Figure 2.6: Bit-channel Bhattacharyya parameters for information bits (solid
circles) and frozen bits (hollow circles) at 2.5 dB SNR.

Bit-channel cutoff rate

The Gallager’s function of a channel W of probabilities q(x) on the input data is

described as

E0(ρ,W) = − log2
∑
y∈Y

[∑
x∈X

q(x)W (y|x)
1

1+ρ

]1+ρ

, (2.24)

for a given BI-DMC W and ρ ≥ 0 value [34].

We can also acquire the channel cutoff rate as

R0(W, q) ≜ E0(1,W), (2.25)

by simply replacing ρ = 1 in (2.24).

If the distribution of the inputs is uniform, the channel cutoff rate is therefor

E0(1,W) = log2
2

1 + Z(W)
, (2.26)

and this is a lower bound on the value of symmetric capacity I(W).

18

Based on the (2.26), the polarization of Z(W) yields in the polarization of

E0(1,W), and we denote the bit-channel cutoff rates by E0(1,W
(i)
N). The bit-

channel cutoff rates are compared to the bit-channel mutual information in Figure

2.7.

0

0.2

0.4

0.6

0.8

1

1 32 64 96 128

Bit-channel index

Figure 2.7: Bit-channel cutoff rates (solid circles) and bit-channel mutual infor-
mation (hollow circles) at an SNR value of 2.5 dB.

RM-polar

In this subsection, we review a hybrid code construction called RM-polar code

construction. This construction is created by merging Reed-Muller and polar

code constructions. Not only does it have a better weight distribution than

polar codes (construction only based on the bit-channels reliabilities), but it can

also be decoded as polar codes by using sequential or SCL decoders. The RM-

polar code construction outperforms polar code construction in terms of error-rate

performance [33]. To construct a (N,K,A) code s.t. N = 2n:

1. Select r in a way that

k ≜

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

r

)
≤ K. (2.27)

19

2. Select k row indices of RM(n, n) ≜ F⊗n matrix corresponding to the rows

with the highest weights and include them in the set A.

3. Select the remaining K − k row indices out of N − k indices that are not

yet in A with the highest reliability (equivalently, indices corresponding to

the lowest Bhattacharyya parameters) and include them in the set A.

Example 4. To have a (8, 6) code, r = 1 and k =
(
3
0

)
+
(
3
1

)
= 4. In

RM(3, 3) =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


matrix, the k = 4 rows with indices 4, 6, 7, and 8 have the highest weights. So,

in the step 2, A = {4, 6, 7, 8}. For the remaining row indices, the corresponding

Z(W
(i)
N) values are as

(0.9560, 0.6805, 0.5842,−, 0.4630,−,−,−).

The 3rd and 5th rows have the K − k = 2 lowest Z(W
(i)
N) values and as a result

A = {3, 4, 5, 6, 7, 8}.

2.3 PAC codes

Under SC decoding, polar code performance for short and medium blocklengths

falls significantly short of theoretical boundaries. One issue may be related to

the code’s poor weight distribution, which may be addressed by including parity

checks (CRC) in the data. Another issue arises from suboptimal SC decod-

ing, which may be remedied by utilizing an SCL decoder. Since its introduc-

tion, these methods, along with other numerous improvements, have generally

20

remained state of the art in polar coding [9]. Polar codes’ weight distribution

also can be improved by utilizing a convolutional pre-transformation [23]. At low

blocklengths, a novel polar coding method named polarization-adjusted convolu-

tional (PAC) codes significantly outperforms standard polar codes by benefiting

from a convolutional pre-transformation [13]. This section will go through PAC

codes in detail.

Four parameters (N,K,A, T) can be used to specify a PAC code:

• N is the length of the blocks in PAC codes, which, like polar codes, is a

power of two, i.e. N = 2n, n ≥ 1.

• K is the length of the data bits, which can be any integer from 1 to N .

• A is the data index set; it is a subset of {1, 2, · · · , N} with a size of |A| = K.

• T is an upper-triangular Toeplitz matrix made using a connection polyno-

mial c(t) = cmt
m + · · ·+ c1t+ c0, with c0 = cm = 1 represented as

T =



c0 c1 c2 · · · cm 0 · · · 0

0 c0 c1 c2 · · · cm
...

0 0 c0 c1
. . . · · · cm

...
... 0

.
...

...
.

...
...

. . . 0 c0 c1 c2
... 0 0 c0 c1
... · · · · · · · · · · · · 0 0 c0



. (2.28)

Figure 2.8 illustrates the PAC encoding scheme in block diagram form. Three

components comprise the PAC encoding process: data insertion, convolutional

encoder, and polar mapper.

• The data insertion block embeds the data vector d = (d1, · · · , dK)’s bits

into a data-carrier vector v = (v1, v2, · · · , cN) as vA = d and vAc = 0,

21

Data

insertion

Convolutional

encoder

Polar

mapper

Channel

d v u x

yd̂

PAC encoder

PAC decoder

Figure 2.8: PAC coding scheme

thus resulting in a coding rate of R = K/N . This procedure, alongside

with the selection of the index set A, is referred to as rate-profiling. Polar

rate-profiling and RM-polar rate-profiling are two construction methods for

obtaining this set A (using the same set A as explained in the preceding

subsection).

• In the convolutional encoder block, vector u = (u1, u2 · · · , uN) can be ob-

tained as u = vT for an upper-triangular Toeplitz matrix T . This generates

the vector u, each bit of which is a linear combination of at most (m + 1)

bits of the vector v calculated by the convolution operation.

• Finally, the vector u is encoded using the standard polar transformation

F⊗n.

For a specified matrix T and the index set A, we use PAC(N,K) notation to

show a PAC code with (N,K,A, T) parameters.

Example 5. As a small instance, consider a PAC(8, 4) code using polar code

construction as a rate-profiling and the matrix T made using the connection poly-

nomial c(t) = t2 + t+1. The rate-profiling inserts data vector d = (d1, d2, d3, d4)

into vector v = (v1, v2, · · · , v8) s.t. v = (0, 0, 0, d1, 0, d2, d3, d4). The convolutional

encoder block generates vector u = (0, 0, 0, d1, d1, d1+ d2, d2+ d3, d2+ d3, d4) from

22

the vector v as u = vT , i.e. ui = vi + vi−1 + vi−2 for i = 3, · · · , 8, u2 = v2 + v1,

and u1 = v1. As will be explained in the following sections, convolutional encoder

can be implemented in a linear order complexity. Finally, the polar transform

x = uF⊗n is computed to finish the encoding process.

2.3.1 List Decoding

List Decoding of Polar Codes

Even though polar codes achieve capacity asymptotically, empirical results indi-

cate that SC decoding of polar codes performs worse than the well-known turbo

and LDPC codes for short to moderate block lengths [9]. When we think about

why this is happening, we can come up with two probable explanations: either the

codes themselves are poor at these lengths, or there is a considerable performance

difference between SC and ML decoding. This section discusses a modification to

the SC decoder, specifically, an SCL decoder [9]. The SCL decoder is controlled

by a single integer parameter L, which represents the size of the list. Like an SC

decoder, the SCL decoder also decodes the input bits one by one. On the other

hand, the SCL decoder considers L paths at the same time at each decoding step.

In particular, the SCL decoder duplicates the number of potential decoding paths

for each information bit ui by two (pursuing both ui = 0 and ui = 1). It then

applies a pruning procedure to exclude all but the L most likely paths. Finally,

the most probable of the L decoding paths is chosen as the decoder output at

the completion of the decoding procedure. For several list sizes of SCL decoding,

Figure 2.9 displays the performance of a (128, 64) polar code with RM code con-

struction. As seen in this figure, increasing the list size improves the frame error

rate (FER) performance of polar code.

There is a distinction between SC and SCL decoding, where the SCL decoder

requires the selection of the L paths from a group of 2L children (only data bits

are bifurcated). What is required is a path metric in the decoding process. The

SCL decoder then selects the L paths that have the lowest partial path metric

23

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

L = 1

L = 2

L = 4

L = 8

L = 16

L = 32

Figure 2.9: Performance of polar codes under list decoding.

values [26]

PM(i) =
i∑

j=1

log2

(
1 + 2−Lj ·(−1)uj

)
. (2.29)

CRC-aided SCL decoding

Furthermore, the performance of polar codes is worse than that of LDPC and

turbo codes of equivalent length, even when ML decoding is used for decoding.

In simulations, it is noticed that the sent codeword is on the created list with

a high possibility, but it is not the most probable codeword on the list [9]. As

a result, it is not chosen as the decoder output. In this scenario, precoding

the transmitted codeword using a cyclic redundancy check (CRC) may assist

in identifying it. Polar codes’ performance under list decoding with CRC has

been shown to be superior to that of the state-of-the-art turbo and LDPC codes

in simulations. When considering a target FER of 10−4, experimental findings

reveal that polar coding with CRC-aided list decoding performs better than any

other code presently known for lengths 512 and 1024 [9].

24

List Decoding of PAC Codes

The idea of substituting CRC with CC has given rise to the development of

PAC codes. In this part, we demonstrate PAC codes’ performance by using a

list decoding algorithm [27]. The findings indicate that PAC codes outperform

polar codes. One benefit of the list decoding algorithm is that its complexity is

constant.

Similar to the SCL decoding of polar codes, the metric function for the SCL

decoding of PAC codes can be represented as

PM(i) = log2
(
1 + 2−Li·(−1)ui

)
, (2.30)

where

Li = log2

(
P (y,ui−1|ui = 0)

P (y,ui−1|ui = 1)

)
(2.31)

is the bit-channels likelihoods, and as depicted in Figure 2.8, vector u is the input

of the polar mapper. One distinction from polar codes is that for each path of

the list, L vectors with a size equal to the constraint length of the CC must be

created as the content of the memory registers of L auxiliary shift registers and

used to compute ui. To acquire L uis for (2.30), a 0 should be placed into each

shift register if it corresponds to a frozen bit or zero branch; otherwise, a 1 should

be loaded into each shift register. Figure 2.10 illustrates the FER performance

of PAC(128, 64) code constructed using RM rate profile.

2.4 Sequential Decoding of Convolutional Codes

This section discusses convolutional codes and their decoding through stack and

Fano sequential decoding.

25

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-6

10
-4

10
-2

10
0

F
E

R L = 1

L = 2

L = 4

L = 8

L = 16

L = 32

L = 64

L = 128

Figure 2.10: Performance of PAC codes under list decoding.

2.4.1 Convolutional Codes

A binary convolutional code (CC) is represented by the three-tuple (n, k,m),

corresponding to the encoder that produces n bits for every k received input bits.

Each current output vector of length n is a linear combination of the current input

vector of length k and the preceding m × k input bits. As m is the amount of

prior k-bit input blocks that the encoder have remember, m is referred to as the

CC’s memory order. A binary convolutional encoder can be easily constructed

as a combination of shift registers and modulo-2 adders. The output bits are

modular-two additions of the contents of selected shift registers and the current

input bits. The encoder comprises k shift registers, with m being their maximum

length.

+

v

+

u

Figure 2.11: Convolutional encoder example.

26

Example 6. The encoder of a binary (2, 1, 2) CC is shown in Figure 2.11. The

encoder’s shift registers are initialized to zero in the encoding operation. In accor-

dance with the shift-register structure, the k = 1 input bit from the input data is

supplied to the encoder, resulting in n = 2 outputs being generated. m = 2 zeros

are typically appended at the tail of every input data to set up the shift register

entire content at the end of each run of input blocks.

As shown in Figure 2.11, from a single input sequence v = (v1, v2, v3, v4, v5) =

(10111) the CC’s encoder generates two output sequences (1100101) and

(1001011), where v1 is supplied into the encoder first. After that, the encoder

interleaves two output sequences to produce

u = (u1,u2, · · · ,u7) = (11 10 00 01 10 01 11). (2.32)

Figure 2.12 shows a basic model of a communication system with CC and the

Viterbi decoding. Viterbi algorithm [35,36] is an ML decoder for CCs.

Convolutional

Encoder
Channel

v u y Viterbi

Decoder

û

Figure 2.12: Flowchart of the convolutional coding with Viterbi decoding.

Assume that the information sequence v = (v1, v2, · · · , vK) of length K is

encoded into code sequence u = (u1,u2, · · · ,uK+m) of length N = (K +m)× n.

Let the received sequence be y = (y1,y2, · · · ,yK+m), where the lth received block

is yl = (y
(1)
l , y

(2)
l , · · · , y(n)l).

An ML decoder determines the optimal path across the trellis based on the

path conditional probability

P (y|u) =
K+m∏
l=1

P (yl|ul), (2.33)

where

P (yl|ul) =
n∏

i=1

P (y
(i)
l |u

(i)
l) (2.34)

27

is the branch-conditional probability. The bit-conditional probabilities repre-

sented by P (y
(i)
l |u

(i)
l) are the channel transition probabilities.

Since logarithm is an increasing function and preserves maximality, maximizing

the conditional probability P (y|u) is equivalent to maximizing path metric

Γ(u;y) ≜ log2 P (y|u). (2.35)

The path metric can be expressed as a summation of branch metrics:

Γ(u;y) =
K+m∑
l=0

log2 P (yl|ul) =
K+m∑
l=0

Γ(ul;yl) (branch metric), (2.36)

and sum of bit metrics can be used to calculate the branch metric:

Γ(ul;yl) =
n∑

i=1

log2 P (y
(i)
l |u

(i)
l) =:

n∑
i=1

γ(u
(i)
l ; y

(i)
l) (bit metric). (2.37)

The chance of an error reduces exponentially as the length of the code con-

straint increases, but the computational complexity of Viterbi decoding increases

exponentially [35,37]. As a result, the chance of an error reduces only algebraically

as computational complexity increases. This scenario might be improved if we

use a method to forgo calculating the metric of each path in the trellis and instead

focus on those with higher metrics, which are more likely to contain the correct

path.

On the other hand, a sequential decoder uses

γ(ui; yi) = log2
P (yi|ui)

P (yi)
−R (2.38)

as the bit metric function, where P (yi) is the channel output probability and R is

the code rate [38]. This metric function has a bias that is essential for improving

the performance of any algorithm that does not examine every potential path but

must choose amongst paths of different lengths. Sequential decoding algorithms,

such as stack or Fano, compute the metric of paths by extending a previously

investigated path by just one branch, and the choice on which path to extend

is based only on the metrics of previously investigated paths. We explain both

stack and Fano algorithms in depth in the following subsections.

28

2.4.2 Stack Algorithm

The fundamental premise of sequential decoding is that we should consider just

the most promising pathways throughout the decoding process. If a path to a

node seems poor, we may reject all pathways originating from that node without

incurring any significant performance loss relative to an ML decode. The path

metric function guides a decoder to search for the most probable path to investi-

gate. This naturally leads us to the stack algorithm [18,19]. The stack algorithm

is perhaps the most fundamental sequential decoding algorithm and definitely the

easiest to explain. Due to the stack usage in the search for the optimum code-

word, the algorithm is referred to as the stack algorithm. The following steps

describe the stack algorithm for a rate b/n CC.

1. Calculate the path metric associated with the origin node. Stack its asso-

ciated path metric value (initialize with 0 metric).

2. Calculate the path metric values of all 2b immediate successor paths to the

top path in the stack. Delete the stack’s top path.

3. After adding the remaining successor paths to the stack, reorder the stack

in ascending order of partial path metric values.

4. The algorithm terminates if the top path in the stack terminates at a leaf

node in the decoding tree; otherwise, the algorithm proceeds to Step 2.

The algorithm generates a stack of previously explored paths of varying lengths

that are ordered descendingly by their metric values. At each step, the top-of-

the-stack’s path is replaced by its 2b successors that have been extended by one

branch, and the partial path metric is augmented with the corresponding branch

metrics. The algorithm continues in this manner until the decoding tree reaches

its end. For a message sequence of length K and CC with memory m, in step 2

of the algorithm, it is just necessary to branch the tree for the first K bits. For

the last m bits, it is necessary to compute only one new metric at step 2. As a

result, the tree code has only 2bK branches for a b/n CC. Similarly, the stack size

29

increases by b− 1 for the first K bits but remains unchanged for the last m zero

bits.

Example 7. Assume that the CC has a coding rate of 0.5 and the BSC has a

crossover probability of p = 0.045. We have p(yi) = 1/2 and

γ(ui; yi) =

log2(1− p) + 1−R = 0.4486, for yi = ui,

log2(p) + 1−R = −4.3365, for yi ̸= ui,
(2.39)

As a consequence, the bit metric has just two potential values: 0.4336 and

−3.9739. To keep things simple, we scale and round the bit metrics to get

γ(ui; yi) =

+0.5, for yi = ui,

−4.5, for yi ̸= ui,
(2.40)

Assume that the receiving vector is r = (11 11 00 01 11 01 11).

00

11
10

01 01

10

11

00
10

01

10

01

01

11

11

-9

1

-3

-3

-7

-7

-2

-12

-1

-11

-5

-5 -9

-4 -3

Figure 2.13: Partially explored binary tree by stack decoding algorithm.

In Figure 2.13, the partly investigated tree is shown with the partial path met-

rics. Each branch of the tree is labeled with the output bits that correspond to it.

At time 0, the decoder begins at the root and traverses the tree from left to right.

Whenever the corresponding information bit is 0, it selects the upper branch; when

it is 1, it chooses the lower branch. Also, the contents of the stack are shown in

30

Table 2.1 after each partial path metric reordering. Both the input bits and the

metrics associated with each path are stored in the stack. The algorithm is ended

after the ninth cycle. Note that the stack size is not increased at steps 7, 8, and 9

since these steps correspond to the 0 terminating bits, and the code tree does not

branch for them. The algorithm’s decision is the path 1011100 or the information

sequence 10111. This is indicated by a bold red path in the code tree. Notice that

the stack decoding algorithm’s significant challenges include needing a large stack

size in low SNR regimes and sorting at each cycle.

Table 2.1: The stack content and its partial path metric values after the ordering
in each decoding iteration.

Step 0 1 2 3

Stack
Content

- (0)
1 (0.5 + 0.5 = 1)
0 (−4.5− 4.5 = −9)

10 (1 + 0.5− 4.5 = −3)
11 (1− 4.5 + 0.5 = −3)
0 (−9)

101 (−3 + 0.5 + 0.5 = −2)
11 (−3)
0 (−9)
100 (−3− 4.5− 4.5 = −12)

Step 4 5

Stack
Content

1011 (−2 + 0.5 + 0.5 = −1)
11 (−3)
0 (−9)
1010 (−2− 4.5− 4.5 = −11)
101 (−12)

11 (−3)
10110 (−1− 4.5 + 0.5 = −5)
10111 (−1 + 0.5− 4.5 = −5)
0 (−9)
1010 (−11)
101 (−12)

Step 6 7

Stack
Content

10110 (−5)
10111 (−5)
110 (−3 = 4.5 + 0.5 = −7)
111 (−3 + 0.5− 4.5 = −7)
0 (−9)
1010 (−11)
101 (−12)

10111 (−5)
110 (−7)
111 (−7)
101100 (−5− 4.5 + 0.5 = −9)
0 (−9)
1010 (−11)
101 (−12)

When the channel noise is low, the sequential decoding algorithm has an advan-

tage over the Viterbi algorithm with constant computational complexity. Sequen-

tial decoding usually requires more computational complexity when the received

vector r is very noisy. For the input sequence u = (10111), over the BSC, the

received sequence in the previous example has 2 bits in error, and the stack al-

gorithm requires nine steps to decode it. For the same input, in the following

example, 3 number of bits are in error, and the stack algorithm requires 16 steps

to decode this. Notice that the proportion of errors in the receiving sequence r

is 3
14

= 0.2143 which is much higher than the channel crossover probability of

p = 0.045. As a result, excessively noisy received sequences need a large amount

31

Step 8 9

Stack
Content

101110 (−5 + 0.5 + 0.5 = −4)
110 (−7)
111 (−7)
101100 (−9)
101101 (−9)
0 (−9)
1010 (−11)
101 (−12)

1011100 (−4 + 0.5 + 0.5 = −3)
110 (−7)
111 (−7)
101100 (−9)
101101 (−9)
0 (−9)
1010 (−11)
101 (−12

of computation using a sequential decoder (this is recognized as the Pareto distri-

bution, and it will be described in further detail in the following chapter). Also,

since very noisy received sequences are uncommon, the average number of com-

putations executed by a sequential decoder is often substantially lower than the

fixed amount performed by the Viterbi decoding.

Example 8. Consider having the same code, channel crossover probability, and

metric function as in the preceding example, with r = (10 11 00 01 11 01 11)

as the receiving vector. The stack’s contents after every algorithm iterations are

presented in Table 2.2. After 16 decoding cycles, the algorithm terminates, and

the decoded information sequence is v = (10111).

Table 2.2: The stack content and its partial path metric values after the ordering
in each decoding iteration.

Step 0 1 2 3 4 5 6 7

Stack
Content

-, (0)
0 (-4)
1 (-4)

01 (-3)
1 (-4)
00 (-13)

1 (-4)
010 (-7)
011 (-7)
00 (-13)

010 (-7)
011 (-7)
10 (-8)
11 (-8)
00 (-13)

011 (-7)
10 (-8)
11 (-8)
0100 (-11)
0101 (-11)
00 (-13)

0110 (-6)
10 (-8)
11 (-8)
0100 (-11)
0101 (-11)
00 (-13)
0111 (-16)

01100 (-5)
10 (-8)
11 (-8)
0100 (-11)
0101 (-11)
00 (-13)
01101 (-15)
0111 (-16)

Step 8 9 10 11 12

Stack
Content

10 (-8)
11 (-8)
011000 (-9)
0100 (-11)
0101 (-11)
00 (-13)
01101 (-15)
0111 (-16)

101 (-7)
11 (-8)
011000 (-9)
0100 (-11)
0101 (-11)
00 (-13)
01101 (-15)
0111 (-16)
100 (-17)

1011 (-6)
11 (-8)
011000 (-9)
0100 (-11)
0101 (-11)
00 (-13)
01101 (-15)
1010 (-16)
0111 (-16)
100 (-17)

11 (-8)
011000 (-9)
10110 (-10)
10111 (-10)
0100 (-11)
0101 (-11)
00 (-13)
01101 (-15)
1010 (-16)
0111 (-16)
100 (-17)

011000 (-9)
10110 (-10)
10111 (-10)
0100 (-11)
0101 (-11)
110 (-12)
111 (-12)
00 (-13)
01101 (-15)
1010 (-16)
0111 (-16)
100 (-17)

Stack algorithm can also operate on a trellis; in this instance, the algorithm

checks whether any successor paths merge with an existing path in the stack.

32

Step 13 14 15 16

Stack
Content

10110 (-10)
10111 (-10)
0100 (-11)
0101 (-11)
110 (-12)
111 (-12)
00 (-13)
01101 (-15)
1010 (-16)
0111 (-16)
100 (-17)
010000 (-18)

10111 (-10)
0100 (-11)
0101 (-11)
110 (-12)
111 (-12)
00 (-13)
101100 (-14)
01101 (-15)
1010 (-16)
0111 (-16)
100 (-17)
010000 (-18)

101110 (-9)
0100 (-11)
0101 (-11)
110 (-12)
111 (-12)
00 (-13)
101100 (-14)
01101 (-15)
1010 (-16)
0111 (-16)
100 (-17)
010000 (-18)

1011100 (-8)
0100 (-11)
0101 (-11)
110 (-12)
111 (-12)
00 (-13)
101100 (-14)
01101 (-15)
1010 (-16)
0111 (-16)
100 (-17)
010000 (-18)

Suppose it does, and the successor path’s partial path metric value is greater

than the partial path metric value of the existing path in the stack that traverses

different nodes but terminates at the merged node. In this case, the algorithm

modifies the existing path in the stack by substituting the successor path for its

sub-path and updates the newly modified path’s partial path metric value. Then,

the algorithm removes the successor path that overlaps with parts of the stack’s

paths.

Despite its simplicity, there are significant implementation issues with the stack

sequential decoding technique that restrict its broad adoption. The first issue is

that the amount of computation is a random variable and is similar to that of

other sequential decoding algorithms; we will examine it in detail for the Fano

algorithm. Since the decoder traverses the decoding tree somewhat randomly,

leaping from one node to another node, the decoder should have a buffer to

hold incoming received sequences when they wait to be decoded. Long searches

would cause the buffer to overflow, resulting in data loss or erasure depending on

the speed factor of the decoder (the ratio of the speed at which calculations are

conducted to the speed of the incoming data) is processed. One way to address

this issue is to restrict the amount of searching that the decoder can perform,

and we will study this for the Fano algorithm. In addition, certain systems can

tolerate a certain level of data erasure. Since erasure occurs most often when

the received sequence is extremely noisy, even if decoding is finished and the ML

path is acquired, there is a rather substantial possibility that the estimate will be

wrong. In many applications, erasing such a frame is preferable to erroneously

decoding it. A decoder such as the Viterbi algorithm will always decode a frame

even if it is likely to be decoded wrongly, but a sequential decoder swaps errors

33

for erasures by detecting noisy frames and then erasing them. This sequential

decoding capability can be used to decide when an automatic repeat request

(ARQ) transmission system should retransmit a frame.

A second issue is that any practical implementation of the stack decoding must

have a limited stack size. This means that there is always a chance that the stack

may become too large before decoding a particular frame is finished. The next

chapter will address this issue when we present a sequential decoding algorithm

based on the heap data structure. One approach is to simply enable the path

with the smallest path metric to be taken from the heap during the subsequent

decoding stage. This path is then permanently gone and cannot be rejoined to

the heap. Results show that with a sufficiently large heap size, the chance that a

path with the smallest path metric value would ever recover and reach the root

of the heap and be expanded is so low that the performance loss is negligible.

The third issue is with the stack reordering following each decoding step. This

may be rather time-intensive as the stack’s size increases, severely limiting the

decoding speed achievable using this simple algorithm. When a heap data struc-

ture, a maximally efficient priority queue, is used, the path with the highest path

metric is extracted in logarithmic time. Furthermore, we attempt to address this

problem in Section 5.3 for the stack decoding of polarized channels and the study

reveals that for the high SNR values, average stack size is 1.

2.4.3 Fano Algorithm

Because the Fano algorithm is unable to analyze path merging, it can only work

on a code tree. The Fano algorithm is an incredibly intelligent sequential decod-

ing technique and is widely regarded as the most practical sequential decoding

algorithm available [17]. It employs a sequence of thresholds separated by ∆

increments. Its most appealing aspect is that it analyzes a single path at a time,

obviating the need to store everything except one path and its metric. Essentially,

the algorithm will continue to explore farther along a particular path so long as

34

the metric value of the path increases. When the metric starts to reduce consid-

erably, it returns to earlier nodes on the previously traveled paths and searches

for alternate pathways that originate from them. This is done by varying the

size of a comparison threshold, T , in ∆-step amounts. When the metric grows

enough in a forward-searching, the threshold is tightened (increased by ∆) and

relaxed (reduced by ∆) throughout backward searching. This is performed in

such a manner that no node would ever be searched forward more than once with

the equal threshold setting; the threshold must always be smaller than the value

used before.

The Fano algorithm’s exact details can be understood by studying the

flowchart in Figure 2.14 (modified from Figure 6.6 in [37]). Initially, the de-

coder begins at the origin node with the threshold T and the metric value Γ both

equal to zero. Looking ahead on the better node is defined in the first block as

calculating both bit metrics and provisionally supplementing the current node

partial path metric by the larger of these two calculated metrics. If the superior

node was already searched and the running threshold, T , has been violated, the

forward look should be directed to the inferior node (this happens if the initial

block is reached from point A). In either instance, the node’s metric is compared

to T , and if it is more than T (the metric is satisfied), the searching pointer is

advanced to that node. The tests that follow determine if this node is reached for

its first time during the sequential decoding process. This is also where we must

check for the tree tail’s end and stop if it is reached. If that is true (first visit),

the metric of the preceding node violates T +∆ [34]. In this case, we may try to

tighten the threshold by raising the running threshold T by the integer multiples

of ∆ until Γ < T + ∆, and then looking forward once again. Suppose the node

has even been explored previously. In that case, it is critical that the algorithm

does not tighten the threshold before exploring again since this would cause the

system to create a closed-loop and repeatedly do the same movements.

If the new node has metric Γ < T obtained via forward search in the initial

block, we must switch to backward search mode. Taking the previous bit metric

and subtracting it from the current node metric is also accomplished in this step.

After determining if this meets T’s conditions, the pointer is pushed back one

35

Look forward to
better node or if

entering via A to

worse node

Look back from
search node

Move pointer
back

Did move
originate on
worse node?

T = T - �

Move pointer
forward

First visit to this
node?

Tighten threshold
if possible

� < T

� > T

No
No

� > T

Yes

� < T

(Forward search) (Backward search)

A

Initialize with threshold T = 0, � = 0

STOP
Yes

End of the tree?

Yes

Figure 2.14: Flowchart of the Fano sequential decoding algorithm for a binary
tree.

36

level; if the branch on which the backward moving was performed had the better

metric of two branches originating from the node that just reached, the inferior

node still needs to be explored. As a result, we are returned to the forward

exploration through A. If this was from the worse branch, there would be no

further forward branches from this node, and hence the algorithm should keep

continuing the backward search. We cannot go back if the current threshold T is

violated during a backward movement. When this happens, all paths reachable

from this node with the given T in operation have been examined and determined

to violate T . Thus, the threshold will be lowered by one ∆ (T = T − ∆), and

forward exploration is again tried. It should be noted that in the event of a

lookback from the origin node, we suppose that the previous node of origin has

a metric value of −∞, and the threshold is always dropped by ∆. It is worth

noting that if a node is checked multiple times, every time it is examined with a

reduced current threshold, avoiding endless cycles.

In [38], an example of the Fano algorithm with a detailed description of its

steps can be found.

2.5 Sequential Decoding of PAC Codes

Data

insertion

Convolutional

encoder

Polar

mapper

Channel

Polar

demapper

Sequential

decoder

Data

extraction

d v u x

yzi

ui-1^

v̂d̂

PAC encoder

PAC decoder

Polarized

channel

Figure 2.15: Flowchart of the sequential decoding algorithm for a binary tree.

37

We will investigate the sequential decoding of PAC codes in this section, and

the specifics may be understood by viewing the flowchart in Figure 2.15. As this

figure shows, a PAC decoder that employs a sequential algorithm is composed of

polar demapper and sequential decoder blocks. We will describe how to adopt a

sequential decoding algorithm to decode a PAC code.

Consider that the sequential decoder is proceeding to the ith node in a forward

direction (the stack algorithm can only have a forward move, while the Fano

algorithm can also have a backward move). The polar demapper, similar to the

SC decoder, receives channel output y and uses the hard decisions ûi−1 vector

provided by sequential decoder to calculate

zi ≜ log2

(
P (y, ûi−1|ui = 0)

P (y, ûi−1|ui = 1)

)
, (2.41)

as a soft output. It is important to note that the polar demapper does not approx-

imate ui but rather gives the soft zi values to the sequential decoder. Sequential

decoding yields v̂i by using zi in the metric function described in the next chap-

ter. Besides this, the sequential decoder retrieves ûi from v̂i and returns it to the

polar demapper through an encoder replica. The polar demapper then derives

zi+1 employing ûi, and the decoding procedure proceeds in this manner until v̂N

is found or a predetermined stopping rule terminates the decoding process.

As previously indicated, in a Fano algorithm, if the tentative path metrics of

both children are less than the running threshold T and the path metric of the

preceding node is greater than T , the Fano decoder needs to move backward.

Assume now that the Fano decoder is located at the ith node, moves back to

the (i − 1)th node, and feeds ûi−1 to the polar demapper through feedback. It

is necessary to save all intermediate LLR values to avoid the polar demapper

from restarting the demapping procedure from scratch when determining zi−1.

Thereby, the polar demapper would attempt its working from the common an-

cestor of the (i− 1)th and ith nodes in pursuance of deriving zi−1. Similarly, to

move backward from the ith node to the jth node when j < i, the polar demap-

per just has to start from the common ancestor of the jth and ith leaf nodes

of the polar demapper tree [14]. As a result, the polar demapper used in this

research saves all intermediate LLRs and has a memory of N log2N . A trade-off

38

exists between delay and the memory consumption of polar demapper. When

storing N − 1 intermediate LLR values, due to the backtracking nature of the

Fano algorithm, there is a significant amount of latency increment [14].

Unless otherwise stated, we use a memory of N log2N size to save all the

intermediate LLRs for Fano decoding of PAC codes in all the computational

complexity plots in this dissertation. The SCL decoding and other sequential

decoding algorithms use a memory of N − 1 to store the intermediate LLRs.

A sequential decoder (e.g., Fano or stack algorithms) searches the code tree

(tree corresponding to the PAC code) for the correct path. The complexity of

this search is a random variable that varies mainly based on the amount of noise.

The following chapters will quantify the complexity of sequential decoding using a

random variable Θ that counts the number of nodes in the decoding tree that the

sequential algorithm visits during a decoding process. We are particularly con-

cerned with the expectation of this random variable per bit (i.e., E(Θ)/N), which

we refer to as the average number of visits (ANV). We evaluate this expectation

by calculating the empirical mean over a sufficiently large number of simulation

runs (and to obtain the value of ANV, we divide it by the blocklength N). The

stack algorithm can visit each node of the code tree just once; however, since the

Fano decoding algorithm has a backtracking feature, it may visit certain nodes

many times, which Θ counts each of these visits. It should be noted that since

both algorithms essentially pick the same paths through the PAC decoding tree,

the set of nodes traversed by the Fano and stack algorithms are identical [21].

39

Chapter 3

On the Metric Function and

Complexity of Sequential

Decoding

This chapter addresses a metric function for sequential decoding of PAC codes

[14]. Additionally, we examine the relationship between the metric function in

an ensemble of PAC codes and the bit-channel capacities. Our empirical findings

indicate that when sequential decoding is used, the computational complexity of

decoding PAC codes is comparable to that of decoding CCs, with a significant

improvement in error-correction performance.

As with sequential decoding of CCs, our findings demonstrate that the com-

putational complexity of PAC codes follows the Pareto distribution and that for

high SNR values, the average number of computations per decoded codeword

converges to one. We limit the number of searches conducted by the sequential

decoder in order to lower the worst-case latency of the PAC sequential decoder.

The results demonstrate that, for PAC codes with a length of 128, search-limited

sequential decoding can obtain an error-correction performance comparable to

that of polar codes with SCL decoding with a list size of 64 and a CRC length of

11 while requiring significantly less computational complexity [28].

40

Additionally, this chapter adopts the heap data structure for sequential de-

coding of PAC codes and discusses the memory and computational complexity

requirements. Given that heap data structures perform operations in logarithmic

order and there is no backtracking, we provide memory-efficient algorithms for

storing intermediate LLR and check-sum values.

3.1 Metric Function

Since each output bit of the CC in a PAC code sees a synthesized channel created

by the polar transform, using a different metric function for sequential decoding

of PAC codes is required. In [28], fixed bias values for different code rates were

used in the metric function. In [39], because the CC in a PAC code is a one-

to-one transform, a fixed bias value equal to the CC rate was used, and an

heuristic metric function was introduced. Similar to the heuristic path metric

function of [39], an heuristic path metric function for decoding polar codes was

introduced in [40] with a different initial value. In [41], a metric function for

stack decoding of polar codes was introduced that only updates the path metric

function if the extended branch is an information bit; this update is obtained

by adding the logarithm of the probability of the bit-channel output for a given

bit-channel input. In [42], a path metric function for sequential decoding of

polar codes was introduced, which maximizes the most probable continuation of

a partially explored path. For this metric, the expected value of the logarithm

of the probability of the partially decoded correct path (obtained based on the

cumulative function of the evolving log-likelihood ratios (LLRs)) is subtracted

from the metric function, which makes the expectation of the metric (expectation

over the partially explored correct path) equal to zero.

In PAC codes, because of the channel polarization effect, the bit-channel cut-

off rates E0(1,W
(i)
N) are boosted close to the bit-channel capacities I(W

(i)
N) as

shown in Figure 2.7. We propose a suboptimal metric function, which, by us-

ing E0(1,W
(i)
N) or I(W

(i)
N) as bias values, maintains the superior error-correction

41

performance of PAC codes while requiring lower computational complexity com-

pared to the fixed bias values used in [13, 28, 39]. Our proposed metric function

is based on the known metric function for sequential decoding of CCs; however it

is adopted for polarized channels [17,34]. Additionally, we adopt the behavior of

the metric function in the ensemble of codes for polarized channels [34,37]. Using

our proposed metric function, the computational complexity of PAC sequential

decoding is comparable to the computational complexity of sequential decoding

of CCs.

Using metric bias values less than or equal to the bit-channel cutoff rates, we

then empirically obtain an upper bound with Pareto distribution for the com-

putational complexity of the PAC sequential decoder. Since the computational

complexity has a Pareto distribution, the PAC sequential decoder requires a high

computational complexity to decode a small fraction of the codewords. Search-

limited PAC sequential decoding can be employed [28] to address this drawback.

A sequential decoding algorithm’s purpose is to efficiently explore through the

nodes of the code tree, that is, without inspecting an excessive number of nodes,

in order to discover the optimal path. Each node investigated corresponds to

a path traversing a part of the code tree. The metric value associated with a

path determines whether it is likely to be included in the optimal path, where

the metric value measures the path’s proximity to the received data. The Fano

metric is the most often used metric for a sequential decoding algorithm in a

BI-DMC. As explained in the previous chapter, the metric function is described

as

γ(xi; yi) = log2
P (yi|xi)

P (yi)
− b, (3.1)

where P (yi) represents the channel output probability, P (yi|xi) represents the

channel transition probability, and b represents a constant bias. Initially found

using simulations, Massey [43] proved that the Fano metric is a locally optimal

metric for examining paths of various lengths for a BI-DMC.

Because demapping each bit on a polarized channel needs the results of all

formerly decoded bits, the polarized channel in a PAC code is a channel with

42

memory. As a result, the Fano metric must be changed to be befitting for decoding

on a tree code for a channel with memory. Furthermore, due to the frozen bits,

the tree code is an irregular tree, and the metric function should also consider

this. For the first i branches, the partial path metric is as follows:

Γ(ui;y) = log2

(
P (y|ui)

P (y)

)
−Bi, (3.2)

where the vector y is the channel output, the data vector ui corresponds to a

path from the origin of the tree to the ith level, and Bi expresses the partial path

bias value up to the ith bit.

It would be more simple to obtain the bit metric instead of the partial path

metric of (3.2) for every time a new branch in the tree is inspected. When

decoding uj, the decoder is aware of the channel output y as well as the prior

bits uj−1, which correspond to the input and output of the bit-channel W
(j)
N :

X −→ Y ×X j−1. By referring to γ(uj;y,u
j−1) as the jth bit metric, (3.2) would

be represented as

Γ(ui;y) =
i∑

j=1

γ(uj;y,u
j−1). (3.3)

Consequently,

γ(uj;y,u
j−1) = Γ(uj;y)− Γ(uj−1;y)

=

[
log2

(
P (y|uj)

P (y)

)
−Bj

]
−
[
log2

(
P (y|uj−1)

P (y)

)
−Bj−1

]
= log2

(
P (y|uj)

P (y|uj−1)

)
− (Bj −Bj−1)

= log2

(
P (y|uj)

P (y|uj−1)

)
− bj = log2

(
P (y,uj−1|uj)

P (y,uj−1)

)
− bj,

(3.4)

where bj ≜ Bj − Bj−1 is the jth bit-channel bias value. The bit metric can be

43

represented as

γ(uj;y,u
j−1) = log2

(
P (y,uj−1|uj)

P (y,uj−1)

)
− bj

= log2

(
P (y,uj−1|uj)

1
2
[P (y,uj−1|uj) + P (y,uj−1|uj ⊕ 1)]

)
− bj

= 1− log2

(
1 +

P (y,uj−1|uj ⊕ 1)

P (y,uj−1|uj)

)
− bj

= 1− log2

(
1 + 2

− log2

(
P (y,uj−1|uj)

P (y,uj−1|uj⊕1)

))
− bj

= 1− log2

(
1 + 2−zj ·(−1)uj

)
− bj

(3.5)

for a binary input channel with a uniform input distribution, where

zj = log2

(
P (y, ûj−1|uj = 0)

P (y, ûj−1|uj = 1)

)
. (3.6)

The metric function in the sequential decoding algorithm indicates which path

across the decoding tree should be followed. By intuition, the bit-metric function

value must always increase for every uj bit on the correct path to determine the

correct data vector u in a tree. As a result, the bit-metric value on a correct bit

uj at level j of the tree should be greater than the bit metric value on an incorrect

bit ũj at that level of the tree. It is challenging to quantify this perception for a

particular code. Alternatively, we examine an ensemble of PAC codes with the

specified channel and code length, simplifying the issue.

In the case of the ensemble of input bits uj and the ensemble of bit-channels

with output-input (y,uj−1;uj) pair, the expectation of (3.4) is

EUj ,(Y,Uj−1)

[
γ(Uj;Y,Uj−1)

]
=
∑
uj

q(uj)
∑

(y,uj−1)

P (y,uj−1|uj)γ(uj;y,u
j−1)

=
∑
uj

∑
(y,uj−1)

q(uj)P (y,uj−1|uj)

[
log2

(
P (y,uj−1|uj)

P (y,uj−1)

)
− bj

]
= I(W

(j)
N)− bj,

(3.7)

where I(W
(j)
N) denotes the symmetric capacity of the bit-channel W

(j)
N . As a

consequence, the heuristic result is that for bit-channel bias values less than the

44

bit-channel capacities, the average metric increment per bit of the correct path

all the time is positive.

Suppose now that ũj is an incorrect bit with a metric of γ(ũj;y,u
j−1) at level

j. By averaging this bit metric value over the correct and incorrect branches, we

derive

EUj ,Ũj ,(Y,Uj−1)

[
γ(Ũj;Y,Uj−1)

]
=
∑
ũj

q(ũj)
∑
uj

q(uj)
∑

(y,uj−1)

P (y,uj−1|uj)γ(ũj;y,u
j−1)

=
∑
ũj

q(ũj)
∑

(y,uj−1)

P (y,uj−1)γ(ũj;y,u
j−1)

=
∑
ũj

∑
(y,uj−1)

q(ũj)P (y,uj−1)

[
log2

(
P (y,uj−1|ũj)

P (y,uj−1)

)
− bj

]

≤
∑
ũj

∑
(y,uj−1)

q(ũj)P (y,uj−1)

[
P (y,uj−1|ũj)

P (y,uj−1)
− 1

]
− bj

= −bj.

(3.8)

Note that we utilized log2(x) ≤ x − 1 inequality to derive (3.8). Because the

bias value is positive, the above expectation implies that the bit metric reduces

by a constant amount on average for each incorrect branch. When the decoder

traverses in the incorrect direction for multiple branches, based on the decrease of

the path-metric value, the decoder recognizes this and switches to another path

until the correct path is found.

Given the channel output y, the optimal metric (in terms of error probability)

at the ith level of decoding is the one that selects ûi as the vector ui by which

p(ui|y) is maximum. This probability may be determined by utilizing Bayes’ rule

as

p(ui|y) = p(y|ui)

p(y)
p(ui). (3.9)

Because the monotonically increasing log2(.) function maintains maximality,

45

an optimum metric maximizes

log2 p(u
i|y) = log2

p(y|ui)

p(y)
− log2

1

p(ui)

= log2
p(y|ui)

p(y)
−

i∑
j=1

log2
1

p(uj)
,

(3.10)

as well, where the final equality is attained by virtue of convolution block in the

PAC code being a one-to-one and deterministic operation.

Given that log2
1

p(uj)
is indeed the self-information provided regarding bit uj,

which then its average equals I(W
(j)
N), the path metric function proposed as

Γ(ui;y) = log2
p(y|ui)

p(y)
−

i∑
j=1

I(W
(j)
N) (3.11)

is a suitable estimate for maximizing the likelihood of error correction, and the

jth bit metric function becomes

γ(uj;y,u
j−1) = Γ(uj;y)− Γ(uj−1;y)

= log2

(
P (y,uj−1|uj)

P (y,uj−1)

)
− I(W

(j)
N).

(3.12)

For any bias value bj and bit-channel output (y,uj−1), notice that

γ(uj;y,u
j−1) ≥ γ(ũj;y,u

j−1) if and only if P (y,uj−1|uj) ≥ P (y,uj−1|ũj). This

occurs if and only if hj(y,u
j−1) = uj, where

hj(y,u
j−1) =

0, P (y,uj−1|0) ≥ P (y,uj−1|1),

1, otherwise,
(3.13)

denotes that for any bias value on a bit channel W
(j)
N , the bit-metric function

satisfies the bit-channel ML rule. This implies that advancing the path with a

greater bit metric enhances the likelihood that the expanded path is a component

of the PAC code’s optimum path.

Furthermore, when the input distribution is uniform, the bit metric is upper

46

bounded by

γ(uj;y,u
j−1) = log2

P (y,uj−1|uj)

P (y,uj−1)
− bj

= log2
P (y,uj−1, uj)

P (uj)P (y,uj−1)
− bj

= log2 P (uj|y,uj−1) + log2
1

P (uj)
− bj ≤ 1− bj.

(3.14)

This results in a locally optimal (ML) decision criterion with a positive bit metric

whenever the bias value is less than 1. Additionally, having a bias value less than

or equal to I(W
(j)
N) yields an average positive bit metric. The purpose of the next

section is to practically show the channel polarization effect on the computational

complexity and error-correction performance by devising a design rule for bj.

3.2 Results for Computational Complexity and

Error-Correcting Performance

As previously explained, we obtain

Correct path: bi ≤ I(W
(i)
N),

Wrong path: − bi ≤ 0,
(3.15)

conditions by averaging on the correct and incorrect paths.

It is important to keep in mind that using bi = E0(1,W
(i)
N) for the bit-channel

bias values strictly satisfies both (3.15) inequalities. As a result, for these bias

values, the partial path metric of the correct path should, on average, trend

positive. For K = 64 and N = 128, Figure 3.1 supports the latter statement and

compares it with the metric growth when using bi = I(W
(j)
N) as the bias value.

As a direct consequence, the computational complexity associated with bias bi =

E0(1,W
(i)
N) should be less than that associated with bias bi = I(W

(i)
N), with

negligible degradation in error performance. This reduction in computational

complexity is due to the polarization effect on both E0(1,W
(i)
N) and I(W

(i)
N),

where the distinction between the two situations is based on the polarization

47

1 32 64 99 128

Bit-channel index (i)

-1

0

1

2

3

4

5

6

7

Figure 3.1: Partial path metrics v. bit indices.

difference between the channel cutoff rate and channel capacity, as illustrated in

Figure 2.7. The bit-channel capacities and cutoff rates can be obtained before

the decoding process (offline) in the sequential decoding of PAC codes. A one-bit

quantization of these bias values may be used in a hardware implementation [20]

of sequential decoding of PAC code where

q(x, δ) :=

1, if x ≥ δ,

0, otherwise,

is the definition of a 1-bit quantization function q(x, δ).

Using the bias values bi = I(W
(i)
N) and bi = E0(1,W

(i)
N), Figure 3.2 compares

the FER and ANV of a PAC(128, 64) code. This figure corroborates our prior

assertion that, while E0(1,W
(i)
N) is somewhat less than I(W

(i)
N), the computational

complexity slightly increases when I(W
(i)
N) is used. The slight difference in the

FER performances happens only at very low SNR levels (very noisy channels).

Figure 3.3 also plots the ANV and FER of a quantized bit-channel cutoff rate bias

values with δ = 0.5, i.e. if E0(1,W
(i)
N) is more than or equal to 0.5, then bi = 1;

otherwise bi = 0. The FER of the dispersion approximation is also provided in

this figure [44].

48

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

0

10

20

30

40

50

60

A
N

V

Figure 3.2: Performance of PAC codes with I(W
(i)
N) and E0(1,W

(i)
N) biases in

terms of FER and ANV.

3.3 Bounded Complexity Sequential Decoder

Although a sequential decoding algorithm has a variable complexity, it is often

desired to have a fixed- or bounded-complexity decoding approach in many ap-

plications. We investigate setting a strict limitation on the complexity of the

sequential decoding algorithm in this section and examine its performance under

such a bound [28]. This requires examining the distribution of the computational

complexity measured by Θ (Θ is defined as the number of branches that the algo-

rithm searches divided by the blocklength N). For our purposes, we are mainly

concerned with its mean E(Θ), which we will refer to as the average number of

visits (ANV). We will estimate the ANV by calculating the empirical mean of Θ

over a suitably large number of simulation runs.

We conduct a simulation experiment and document the observed Θ values

for sequential decoding of the PAC(128, 64) code. Table 3.1 summarizes the

conclusions for SNR values ranging from 1 to 3.5 dB. The statistics in Table 3.1

demonstrate that the distribution of Θ is highly skewed (only a tiny percentage of

49

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

0

5

10

15

20

25

30

A
N

V

Figure 3.3: Performance of PAC codes with quantized bit-channel cutoff rate bias
values in terms of FER and ANV.

decoding occurrences demand a very high level of decoding complexity). Because

of this kind of distribution, when the number of visits reaches a certain maximum

value, we may consider terminating the sequential decoder and announcing a

decoder failure.

Table 3.1: Frequency distribution (number of visits of Θ)
Number of visits 1.0 dB (%) 1.5 dB (%) 2.0 dB (%) 2.5 dB (%) 3.0 dB (%) 3.5 dB (%)

Θ ≤ 23 64.1110 77.6720 87.6890 92.6490 95.6780 97.9090
23 < Θ ≤ 24 11.2100 7.3660 5.0010 3.6240 2.7070 1.5640
24 < Θ ≤ 25 9.0970 5.0290 2.9210 1.8100 0.9820 0.3690
25 < Θ ≤ 26 7.2300 3.6270 1.7890 0.9680 0.3790 0.1210
26 < Θ ≤ 27 5.2400 2.8520 1.1620 0.4940 0.1550 0.0280

27 < Θ 3.1120 3.4540 1.4380 0.4550 0.0990 0.0090

A further term used to represent the maximum number of visits (MNV) allowed

per codeword is the maximum number of nodes that the decoder is permitted to

visit within a single decoding session to have a search-limited PAC code.

With the search-limited PAC(128, 64) code with MNV = N ×27 in Figure 3.4,

we can see how well it performs when compared to the SCL decoding of the 5G

polar code with a list size of 64 and CRC length of 11. As shown in this figure,

50

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

0

2

4

6

8

10

12

A
N

V

5G Polar, FER

Limited PAC, FER

Limited PAC, ANV

Figure 3.4: With MNV = 214, search-limited PAC code is compared to polar code
with SCL decoding, with list size 64 and CRC length of 11.

the FER performance of PAC codes is nearly equal to that of polar codes, and

the ANV values of PAC codes are significantly smaller than the fixed polar code

complexity of list size of 64 for all SNR levels.

3.4 Distribution of Computational Complexity

This section examines the distribution of visits during the decoding of PAC codes.

As shown in [38], for sequential decoding of CCs, the distribution of computation

needed to advance each level in the tree is upper limited as

P (Ci > L) < AL−β, (3.16)

at rates below the cutoff rate, where A > 0 and β > 0 are constants and Ci is

the average number of visits per decoded bit. This means that the upper limit

on the complementary cumulative distribution function (CCDF) of the compu-

tation of sequential decoding of CC is Pareto distributed. Smaller quantities of

β correspond to the Pareto distribution’s wider tails, and the distribution has a

finite mean for values of β > 1 and a finite variance for values of β > 2.

51

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 dB

0.5 dB

1 dB
1.5 dB

2 dB

2.5 dB

3 dB

3.5 dB

4 dB

 = 1

Figure 3.5: CCDF of the number of node visits during sequential decoding of
PAC codes.

As an example, in a PAC code case, the CCDF of the number of nodes traversed

for all decoded codewords is presented in Figure 3.5 for decoding a PAC(128, 64)

code at various SNR levels. The findings indicate that: 1) P (Ci > L) < L−1 for

the SNR values greater than 2 dB, and as a result, the mean of the upper bound

distribution is finite; 2) For SNR values 3.5 dB and 4 dB, we have that β > 2,

which results in a finite variance for the upper bound distribution. Additionally,

Figure 3.5 depicts the trade-off involving outage probability (the likelihood that

Ci exceeds some limit L) and sequential decoding’s computational complexity.

At an SNR of 3.5 dB, as an example, there is a 1 percent chance that a decoded

codeword will take more than ten visits per branch, and the likelihood that the

number of visits for a decoded codeword will exceed L decreases as L grows. This

figure, in combination with Table 3.1, is a useful tool for determining how much

we may restrict the number of visits depending on the desired performance.

52

3.5 Sequential Decoding of PAC Codes Using

Heap Data Structure

This section presents a memory-efficient polar demapper and a sequential decod-

ing technique for PAC codes based on the heap [45] data structure. Heap data

structure is used in sequential decoding in [22, 46]. We investigate the suggested

algorithm’s error-correction performance, memory requirements, and complexity.

We employ partial path metrics as the key values in the heap data structure. The

satellite data in a heap are also the CC’s input vectors, CC’s states, intermediate

LLR, and check-sum values. The heap data structure operations are of logarith-

mic time, and we store intermediate LLR and check-sum values in a vector of

length N − 1 and N/2, respectively.

3.5.1 Data Structure

In this part, we utilize a max-heap priority queue due to the simplicity of the

design and the convenience of explanation (a similar implementation is possible

using a min-max heap priority queue). A max-heap is a complete binary tree

with the condition that, except for the leaf nodes, the parent node element is

bigger than both child node elements. In our context, the partial path metric is

the key of the heap priority queue. In this case, the root node of the max-heap

is the decoding tree node with the greatest partial path metric value, which the

sequential decoder should explore further. We just use the word ”heap” when

referring to the max-heap priority queue.

Maintaining the data structure is needed when decoding with a heap pri-

ority queue. We utilize the Heap-Insert operation to insert a new element,

which needs O(log2N) time. To have the best path from a priority queue, the

Extract-Max algorithm is used. Additionally, in the case of finite-size heaps,

when the heap is on the point of overflowing, the Delete-Min function will be

called, which requires O(N) time. Utilizing double-ended priority queue (DEPQ)

53

data structures, such as a min-max heap or a pairing heap, enables efficient (in

O(log2N) time) extraction of both the maximum and minimum values, based on

some ordering of the structure’s keys (items).

In decoding PAC codes, we define H to represent the heap data structure, and

each element of H is a five-attribute object. For the array H’s ith entry, H[i].m

returns the partial path metric for the ith element; H[i].v is the convolutional

encoder input sequence corresponding to the ith element; H[i].state, H[i].L, and

H[i].us denote the CC’s current state, intermediate LLR values, and intermediate

check-sum values, respectively. Our presented decoding algorithm use N − 1 and

N/2 memory sizes for the H[i].L, and H[i].us, respectively.

Our simulations present the decoding computation in terms of the average

number of cycles (ANC) per decoded bit. Each cycle includes one Extract-

Max execution, one Heap-Insert operation if the bit is frozen, and two

Heap-Insert operations if the bit is an information bit, each of which takes

O(log2(H.heap-size)) time, where H.heap-size is the number of elements in the

heap. Additionally, each cycle has one UpdateLLR operation. With aggregate

analysis, the running time for a heap member in UpdateLLR is no more than

2N − 2, both for computing the intermediate LLR and check-sum values.

For a finite heap size, if the heap is full, one call of Delete-Min is made if

the bit is frozen, and two calls are made if the bit is a data bit. The running time

of Delete-Min is O(H.heap-size), and the heap size determines the frequency

with which the operation is called.

3.5.2 Heap Sequential Decoding Algorithm

Algorithm 1 is the main function of the heap sequential decoding for the PAC

codes. The Main-Decoder algorithm makes use of the LLR values for the

channel output denoted by Ly, the code length N , the data index set A, the
connection polynomial c, and the vector of bit-channel bias values represented by

E0. We use the the max-cycles and max-heap-size input parameters to bound the

54

Algorithm 1: Main-Decoder

Input: Ly, N,A, c,E0,max-cycles,max-heap-size
Output: û, cycles, H.heap-size

1 H[1].m← 0
2 H[1].v ← NIL
3 H[1].state[1, · · · , |g| − 1]← [0, · · · , 0]
4 H[1].L[1, · · · , N − 1]← [0, · · · , 0]
5 H[1].us[1, · · · , N/2]← [0, · · · , 0]
6 [H.heap-size, cycles, n]← [1, 0, log2(N)]
7 while True do
8 if cycles = max-cycles then
9 break

10 else
11 cycles← cycles+ 1
12 end
13 [max, H]← Extract-Max(H)
14 cState← max.state
15 i← |max.v|+ 1
16 [L, us]← UpdateLLR(Ly,max.L, i− 1,max.us, n)
17 Li = L[N − 1]
18 if i ∈ Ac then
19 [u0, nState]← ConvEnc(0, cState, c)
20 M ← max.m+Calc-Met(Li, u0,E0(i))
21 v′ ← [max.v] + [0]
22 H ← Heap-Insert(H,M, v′, nextS, L, u, us)

23 else
24 [u0, nState]← ConvEnc(0, cState, c)
25 M ← max.m+Calc-Met(Li, u0,E0(i))
26 v′ ← [max.v] + [0]
27 H ← Heap-Insert(H,M, v′, nextS, L, u, us)
28 [u1, nState]← ConvEnc(1, cState, c)
29 M ← max.m+Calc-Met(Li, u1,E0(i))
30 v′ ← [max.v] + [1]
31 H ← Heap-Insert(H,M, v′, nextS, L, u, us)

32 end
33 if |H[1].v| = N then
34 break
35 end

36 end
37 û = H[1].v
38 return [H.heap-size, cycles, û]

55

amount of cycles and heap size. The last element of L is the ith bit’s updated

LLR value, which is assigned to Li on line 17. For the ith frozen bit, lines 19-22

compute the partial path metric using a one-bit convolutional encoder and metric

calculator function and insert it into the heap.

The number of times this algorithm’s main while loop is executed is a ran-

dom variable dependent on the noise level. Each iteration has one call to

Extract-Max, one call to UpdateLLR, one call to Heap-Insert for the

frozen bits, and two calls of it for the information bits.

Algorithm 2: ConvEnc

Input: v, currState, c
Output: u, nextState

1 u← v · c[1]
2 for i← 2 to |c| do
3 if c[i] = 1 then
4 u← u⊕ currState[i− 1]
5 end

6 end
7 nexState← [v] + currState[1, · · · , |c| − 1]
8 return [u, nexState]

The Algorithm 2 is a one-bit convolutional encoder with a running time of

O(|c|) that inputs the bit value, current state, and connection polynomial and

outputs the next state of the CC and the encoded bit.

The Algorithm 3 corresponds to Figure 2.15’s polar demapper block. This

algorithm inputs the channel output LLR values; the best path’s length, interme-

diate LLR, and check-sum values; and n = log2(N). sel = 1 and sel = 0 in this

algorithm correspond to the use of the f and g functions, respectively. Choosing

f or g functions are by find-first-bit-set (ffs) operation introduced in [47]. The

parameter s has a range of 0 to n− 1, with 0 indicating the leaf level of the tree.

For the first bit of the codeword, the algorithm should begin at the root level and

first call the f function. On line 5, the ffs function determines the level, and the

g function is picked.

The check-sum vector has a length of N/2, and line 10 determines if the bit

56

Algorithm 3: Update-LLR

Input: Ly, L, i, us, n
Output: L, us

1 N ← 2n

2 if i = 0 then
3 [s, sel]← [n− 1, 1]
4 else
5 [s, sel]← [ffs(i), 0]
6 end
7 if s > 0 and sel = 0 then
8 m← 1
9 while m ≤ 2s−1 do

10 if i > N/2 + 1 then
11 k ← i− 2s + 1 + ⌊2s−1

2m
⌋2m−N/2

12 else
13 k ← i− 2s + 1 + ⌊2s−1

2m
⌋2m

14 end
15 a← us[k, · · · k +m− 1]
16 b← us[k +m, · · · , k + 2m− 1]
17 us[k, · · · , k + 2m− 1]← [a⊕ b] + [b]
18 m← 2m

19 end

20 end
21 <Go to Algorithm 4>
56 return (L, us)

57

position is greater than N/2 + 1; if it is, it overwrites the existing check-sum

values. This while loop has a maximum execution time of O(log2N). If decoding

completes for one member of the heap, the overall running time of the check-sum

operation is 2N − 2 when the aggregate analysis is used.

When the corresponding check-sum values for the g function are selected in

line 26, lines 28-34 update the LLR values for the associated subtree. Line 37

contains the end and start indices of the associated subtree. Lines 38-44 choose

the check-sum values that will be utilized in the g function on line 51. Line 54

initializes the next level’s f function. Notably, if decoding completes for a single

path, N/2 of the bits will have s = 0, and the corresponding loop’s running

duration will be 1. The loops run on length two for N/4 of the bits and so on.

The Algorithm 5 returns the heap element with the highest partial path metric

value. Note that the extraction of the heap’s maximum involves maintaining the

heap structure and its execution time is in the order of O(log2N).

The Algorithm 6 inserts a new element into the heap and updates its structure;

its execution time is in the order of O(log2N).

3.5.3 Simulation Results

The FER performance, ANC values, and average heap sizes for decoding the

PAC(128, 64) code are shown in Figure 3.6. As illustrated in this figure, the

ANC varies just a little for different heap sizes, and for high SNR levels, the

ANC per decoded bit is almost equal to one for all presented plots. Additionally,

for high SNR levels, the average heap size approaches 64. Similar to the Figure

3.6, the Figure 3.7 also depicts the FER performance, ANC values, and average

heap sizes of the PAC(128, 99) code. This result can be compared with the stack

decoding of polar codes, which needs a stack size of 216 for a (128, 99) polar code

reported in [48].

58

Algorithm 4: Lines 23-55 in Algorithm 3

23 while s ≥ 0 do
24 if s = n− 1 then
25 if i > 0 and sel = 0 then
26 us′ ← us[i− 2s + 1, · · · , i]
27 end
28 for p← 1 to 2s do
29 if sel = 1 then
30 L[p]← f(Ly[p], Ly[2

s + p])
31 else
32 L[p]← g(Ly[p], Ly[2

s + p], us′[p])
33 end

34 end
35 sel ← 1

36 else
37 [κ1, κ2]← [2n − 2s+1, 2n − 2s+2]
38 if i > 0 and sel = 0 then
39 if i ≥ N/2 + 1 then
40 us′ ← us[i− 2s + 1−N/2, · · · , i−N/2]
41 else
42 us′ ← us[i− 2s + 1, · · · , i]
43 end

44 end
45 for p← 1 to 2s do
46 La ← L[κ2 + p]
47 Lb ← L[κ2 + 2s + p]
48 if sel == 1 then
49 L[κ1 + p]← f(La, Lb)
50 else
51 L[κ1 + p]← g(La, Lb, us

′[p])
52 end

53 end
54 sel ← 1

55 end
56 s← s− 1

57 end

59

Algorithm 5: Extract-Max

Input: the heap H
Output: the updated H,max

1 max← H[1]
2 H[1]← H[H.heap-size]
3 [i, j]← [1, 2]
4 while j < H.heap-size− 1 do
5 if H[j + 1].m > H[j].m then
6 j ← j + 1
7 end
8 if H[i].m < H[j].m then
9 exchange H[i] with H[j]

10 [i, j]← [j, 2j]

11 else
12 break
13 end

14 end
15 H.heap-size← H.heap-size− 1
16 return (max, H)

Algorithm 6: Heap-Insert

Input: H,M, v, state, L, u, us
Output: the updated H

1 H.heap-size← H.heap-size+ 1
2 H[H.heap-size].m←M
3 H[H.heap-size].v ← v
4 H[H.heap-size].state← state+ 1
5 H[H.heap-size].L← L
6 H[H.heap-size].u← u
7 H[H.heap-size].us← us
8 temp← H[H.heap-size]
9 i← H.heap-size

10 while i > 1 and temp.m > H[⌊i/2⌋].m do
11 H[i]← H[⌊i/2⌋]
12 i← ⌊i/2⌋
13 end
14 H[i]← temp
15 return H

60

1 1.5 2 2.5 3 3.5

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

1 1.5 2 2.5 3 3.5

SNR (dB)

1

2

3

4

5

6

7
A

N
C

1 1.5 2 2.5 3 3.5

SNR (dB)

0

50

100

150

200

250

300

350

400

A
v

er
ag

e
H

ea
p

 S
iz

e

Figure 3.6: PAC(128, 64) code performance.

61

4 4.5 5 5.5 6 6.5

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

F
E

R

4 4.5 5 5.5 6 6.5

SNR (dB)

0

0.5

1

1.5

2

2.5

3
A

N
C

4 4.5 5 5.5 6 6.5

SNR (dB)

0

50

100

150

200

250

300

A
v

er
ag

e
H

ea
p

 S
iz

e

Figure 3.7: PAC(128, 99) code performance.

62

Chapter 4

Computational Complexity of

Sequential Decoding of PAC

Codes

This chapter studies the upper and lower bounds on the computational complex-

ity of the sequential decoding of PAC codes. We apply guessing to obtain a lower

bound on the computational complexity of sequential decoding of PAC codes.

Sequential decoding is an algorithm that performs the decoding by attempting

to guess its path through an expanding tree of the most probable transmitted se-

quences. The computational complexity would be reduced in this manner. In the

case of sequential decoding of CCs, this generally comes at the cost of communi-

cating at rates strictly below capacity. The computational cutoff rate denotes the

region between rates whose average decoding computational complexity is finite

and those which is infinite. This chapter, benefiting from the polarized channels,

proves that the computational cutoff rate in sequential decoding of PAC codes

polarizes.

The FER performance of PAC codes is highly dependent on rate profiling. In

this chapter, a Monte-Carlo based rate-profile construction method is proposed

63

that can improve the error-correction performance of PAC codes while guaran-

teeing a low mean sequential decoding complexity for signal-to-noise ratio (SNR)

values beyond a target SNR value. This construction method is based on be-

ginning from a bigger data index set A and freezing one by one the indices that

result in the first bit error (FBE). This is similar to the offline version of the

bit-flipping technique used in SC-flip decoding of polar codes [49]. The SC-flip

decoder may identify wrongly decoded frames using a CRC check, and it can lo-

cate and freeze the FBE position using the log-likelihood ratio (LLR) values of the

decoded bits. When the SC-flip decoding algorithm is employed, the simulation

results demonstrate a slight improvement over the SC decoder.

The rate profiling of PAC codes also has been subjected to several different

improvements. In [50], the PAC coding rate profile is obtained by using a discrete

optimization approach based on simulated annealing. Their findings demonstrate

that PAC codes with this rate profile have a high error-correction performance.

In [51], a rate-profile construction method based on a reinforcement learning

algorithm is proposed. This approach uses a set of reward and update techniques

that aid in discovering the rate profile by the reinforcement learning agent. In [52],

it is shown that a PAC(256, 128) code can also achieve the theoretical bounds by

constructing the code rate profile using a genetic algorithm. A rate profile based

on the metaheuristic algorithms by targeting the FER performance can result

in a sequential decoding algorithm with a very high computational complexity.

In addition, in [53] a heuristic method based on maximum possible minimum

distance is proposed for the construction of PAC code rate profiles.

4.1 Application of Guessing to Sequential De-

coding of PAC codes

As discussed in the previous chapters, sequential decoding of PAC code has a

variable computational complexity and, like sequential decoding of conventional

CCs, suffers from the cutoff rate phenomenon. Furthermore, using polar codes in

64

the PAC codes makes the computational complexity of decoding different from

when conventional CCs are decoded sequentially. The main objective of this sec-

tion is to provide a lower bound on the computational complexity of sequential

decoding of PAC codes utilizing the guessing function approach of [54]. Arıkan

in [54] provides a tight lower bound on the average computation required for se-

quential decoding of conventional CCs by employing the relationship between the

computational complexity of the sequential decoding and the guessing function.

We address the computational complexity of sequential decoding of PAC codes

using this lower bound and channel polarization approach.

In information theory, guessing traces its origins to Massey’s work [55]. Massey

proved that by guessing the value of a random variable X in decreasing order of

the probabilities (p1 ≥ p2 ≥ · · ·), the number of guesses G(X) would have the

smallest average, where p1 is the most likely symbol in the space of the random

variable X, p2 is the second most likely and so on. In this manner, for entropy

H(X) ≥ 2

E[G(X)] =
∑
i=1

i.pi ≥
1

4
2H(X) + 1, (4.1)

where H(X) denotes the entropy function.

Arıkan [54] proved that for the random variable X with a finite alphabet X
of size M , by guessing the values in a decreasing order of the probabilities the

average number of successive guesses is upper and lower bounded as

[∑
x∈X

√
PX(x)

]2
≥ E[G(X)] ≥

[∑
x∈X

√
PX(x)

]2
1 + lnM

, (4.2)

where PX(.) is the probability distribution of X.

For a generalization that is useful in the channel coding problem [54], consider

a pair of discrete random variables (X, Y) of the input and output of the channel

where X has probability distribution PX and takes one of the values in X =

{1, 2, · · · ,M}, and the channel output alphabet Y can be continuous. For a

given Y , the number of successive guesses needed to guess the correct input X,

65

denoted by G(X|Y), has a lower bound on its average as

E[G(X|Y)] ≥

∑
y∈Y

[∑
x∈X

√
PX,Y (x, y)

]2
1 + lnM

. (4.3)

where PX,Y (x, y) is the joint probability distribution of (X, Y). Since PX has a

uniform distribution and the size of X is equal to M = eNR, the lower bound on

the average of G(X|Y) can be expressed as

E[G(X|Y)] ≥ eNR−R0(W)

1 +NR
, (4.4)

where R0(W) is the cutoff rate function for (X, Y) and is defined as

R0(W) = R0(X, Y) = − log
∑
y∈Y

[∑
x∈X

P (x)
√
P (y|x)

]2
. (4.5)

Since, E[G(X|Y)] is upper bounded by eNR−R0(W) [54], to denote the tight lower

bound, we use notation

E[G(X|Y)] ⪆ eNR−R0(W). (4.6)

Cutoff rate function is related to the Bhattacharyya parameter by

R0(W) = log2
2

1 + Z(W)
, (4.7)

and consequently polarizing the Bhattacharyya parameter results in polarized

cutoff rate.

To relate the number of guesses G(X|Y) to sequential decoding of a PAC code,

consider an arbitrary tree code of a PAC code and suppose that X is the set of

all nodes at a fixed but arbitrary level N of the tree, and X is a random variable

on X with a uniform distribution. We can think of X as the node in X which lies

on the transmitted path or equivalently as the channel input sequence of length

N . The number of paths from the origin of length N is equal to the number of

nodes at level N , and there is a one-to-one correspondence between them. In

this manner, the guessing function G(.|.) is the sum of the number of nodes in X
which are examined before, and the correct node X = x when y is received. No

guess will be repeated in guessing the channel input, and whenever the correct

66

W
N

W
NFN

xN
1

yN
1

uN
1

Figure 4.1: Polar code construction of length N .

channel input is guessed, the genie tells the decoder to stop. Thus, the number of

guesses G(X|Y) is a lower bound to the PAC decoder’s computation in decoding

the first N bits of the transmitted sequence. Then, the lower bound to the average

of guessing number G(X|Y) serves as a lower bound to average computation in

sequential decoding.

As Figure 4.1 illustrates, the combined channel WN that vector uN sees is

derived from a pre-processing on N parallel channels seen by the vector xN .

Using N copies of channel W , channel WN is obtained by the channel combining

phase explained in [2]. Input-output pair of the channelWN is (UN ;Y N) and with

Gallager’s parallel channel theorem the upper bound on the combined channel

cutoff rate [34, p. 149-150] we have

R0(WN) = R0(U
N ;Y N) ≤ NR0(W), (4.8)

Level N

N

correct path

code tree

Figure 4.2: Decoding tree of PAC codes.

Consider a (N,K,A, T) PAC code with the tree code shown in Figure 4.2. By

67

Figure 4.3: Recursive construction of polar code of length N .

using (4.6), the average number of guesses E[GN] has a lower bound

E[GN] ⪆ eNR−R0(UN ;Y N), (4.9)

and using (4.8), the lower bound on the average number of guesses becomes

E[GN] ⪆ eN(R−R0(W)). (4.10)

The overall recursion of the polar mapper is illustrated in Figure 4.3. We have

N parallel channels W : Xi → Yi, for 1 ≤ i ≤ N . Suppose that K− is the number

of information bits in vN/2 and K+ is the number of information bits in vN
N/2+1

s.t. K = K− +K+, and define

R− ≜
K−

N/2
, R+ ≜

K+

N/2
. (4.11)

Note that R− + R+ = 2R. Similarly, let us denote the first and second halves’

cutoff rates after one step of polarization by R0(W
−) and R0(W

+), respectively.

From the channel polarization theorem

R0(W
−) +R0(W

+) ≥ 2R0(W), (4.12)

which shows that after one step of polarization cutoff is boosted [56]. The main

idea of boosting the cutoff rate is to build correlated synthesized channels of

independent channels such that the sum of the cutoff rates of synthesized channels

becomes greater than the independent channels.

68

Suppose that the decoder in the tree code of Figure 4.4 wants to reach the

level N/2. We show the required average number of guesses by E[GN/2]. We also

show the average number of guesses needed to decode the second half of the code

as E[GN/2,N] assuming a genie gives us the uN/2.

Level N/2

N

K K
- +

correct path

code tree

Figure 4.4: Decoding tree of PAC codes after one step polarization.

Theorem 1. In sequential decoding of PAC codes, the computational cutoff rate

polarizes, meaning that the lower bound on the average number of guesses for

decoding the first and second halves of the codeword are exponential in N/2 as

E[GN/2] ⪆ e
N
2
(R−−R0(W−)),

E[GN/2,N] ⪆ e
N
2
(R+−R0(W+)).

(4.13)

Proof. In one step polarization, we obtain N/2 parallel bad channels as

W− : Si → (Yi, YN/2+i), (4.14)

for 1 ≤ i ≤ N/2. Suppose that the decoder in the tree code of Figure 4.4 wants to

reach the level N/2. The required average number of guesses has a lower bound

as

E[GN/2] ⪆ e(
N
2
R−−R0(UN/2;Y N)). (4.15)

Same as our first step, we have N/2 parallel copies of W−, and a FN/2 prepro-

cessing is performed on the channel inputs sN/2 to obtain uN/2. As a result, by

69

using the parallel channel theorem for the first half of the bit channels, we have

R0(U
N/2;Y N) ≤ N

2
R0(W

−). (4.16)

Consequently, the average number of guesses required to decode the first half of

the bits E[GN/2] has the lower bound

E[GN/2] ⪆ e
N
2
(R−−R0(W−)). (4.17)

Moreover, in one step polarization, we also obtain N/2 parallel good channels

W+ : SN/2+i → (Yi, YN/2+i, Si), (4.18)

for 1 ≤ i ≤ N/2. In the same manner, if a genie provides the uN/2, the cutoff

rate for the second half is obtained

R0(U
N
N/2+1;Y

N , UN/2) ≤ N

2
R0(W

+). (4.19)

With the genie aided decoding assumption for the first half, the average number

of guesses required to decode the second half has a lower bound

E[GN/2,N] ⪆ e(
N
2
R+−R0(UN

N/2+1
;Y N ,UN/2)). (4.20)

Therefore, the average number of guesses required to decode the second half of

the bits E[GN/2,N] has the lower bound

E[GN/2,N] ⪆ e
N
2
(R+−R0(W+)). (4.21)

Lower bound on the number of guesses in (4.10) is exponential in blocklength N ,

and after one step polarization (4.17) and (4.21) are exponential in N/2 which is

the gain in computational complexity of the PAC sequential decoder. This proves

that the computational cutoff rate polarizes.

Figure 4.5 extends above operation recursively for the levels of size N/4. K−−

denotes the number of information bits in the first N/4 bits and R−− is the corre-

sponding rate. K−+, K+−, andK++ are defined likewise with their corresponding

70

Level N/2

N

correct path

code tree

K
--

Level N/4 Level 3N/4

K
++

K+-K
-+

Figure 4.5: Decoding tree of PAC codes after two step polarization.

rates. From channel polarization we have

R0(W
−−) +R0(W

−+) ≥ 2R0(W
−), (4.22)

and

R0(W
+−) +R0(W

++) ≥ 2R0(W
+), (4.23)

which results in

R0(W
−−) +R0(W

−+) +R0(W
+−) +R0(W

++) ≥ 4R0(W). (4.24)

Following this procedure implies that the PAC code rate profile should be lower

than the channel cutoff rate profile in order to have a minimal lower bound.

It is worthwhile to impose an upper constraint BN on the number of visits of

sequential decoding during a decoding session in order to investigate the effect

of the cutoff rate and channel polarization on decoding PAC codes. Take, for

example, the assumption that decoding will be stopped if the total number of

visits exceeds BN . Similarly, presume that BN/2 is the upper constraint on the

number of visits to the first half of the decoding tree levels and that decoding will

be ended if the number of visits exceeds this upper bound. Continuing this way,

the upper bound to decode the first bit is B1. By extreme limits if 2Bi = Bi+1

and B1 = 1, the decoding is like SC decoding. Hence, this proves that the PAC

71

code with infinite blocklength and a similar decoding complexity as SC decoding

can achieve the channel capacity.

Table 4.1: Rate and cutoff rate after one and two steps of polarization for different
cutoff rate values of PAC(256, 128) code

W W− W+ W−− W−+ W+− W++

Cutoff rate, 1 dB 0.3838 0.1863 0.6394 0.0548 0.3455 0.4545 0.8881
Cutoff rate, 2 dB 0.4612 0.2613 0.7310 0.1058 0.4668 0.5680 0.9406
Polar rate profile 0.5 0.2422 0.7578 0.0625 0.4219 0.5781 0.9375

RM-polar 0.5 0.2656 0.7344 0.0781 0.4531 0.5781 0.8906

Table 4.1 compares the cutoff rate polarization at 1 and 2 dB SNR values

with polar and RM-Polar rate profiles used in a PAC(256, 128) code. As this

table shows, at 1 and 2 dB SNR values, the cutoff rates of a BI-AWGN channel

are respectively 0.3838 and 0.4612. From (4.10), the computational complexity of

sequential decoding of a code with a rate of 0.5 should increase exponentially with

the code length. After two steps of polarization, the rates R−−, R−+, R+−, R++

for the polar and RM-Polar rate profiles are becoming close to the cutoff rates

for 1 and 2 dB SNR values. Therefore, thanks to the polarization effect, the

computational complexity of a PAC code is constant for the SNR values beyond

the cutoff rate.

4.2 Upper Bound Estimation on the Distribu-

tion of Computation for Sequential Decod-

ing

Code rates should be less than the channel cutoff rate to achieve finite mean

computational complexity in sequential decoding of CCs. In the previous section,

we proved that it is required to have R− less than R0(W
−) to achieve a finite

mean computational complexity in sequential decoding of the first half of the

72

codewords. For decoding the second half of the codewords, the R+ < R0(W
+)

condition can result in a finite mean computational complexity. Motivated by

this, the requirement that CCs have a finite mean computational complexity

may well be adapted to PAC codes for all 1 ≤ l ≤ N in the form of [57]

lRl <

l∑
i=1

E0(1,W
(i)
N), (4.25)

where Rl =
λl

l
, and λl denotes the number of information bits in the first l bits

of v.

1 8 16 32 64 128

Bit index

0

10

20

30

40

50

60

70

80

90

R
a
te

 (
b
it

s)

Cutoff-rate-2.5dB

Cutoff-rate-2dB

RM

Figure 4.6: PAC(128, 64) rate profiles.

As illustrated in Figure 4.6, a PAC(128, 64) code utilizing the RM rate profile

can have a constant complexity for SNR values greater than 2.5 dB, while from

(4.25), by utilizing the polar rate profile a constant complexity may happen for

all SNR ranges. Figure 4.7 supports this by illustrating the computational com-

plexity of a PAC(128, 64) code for an RM and polar rate profiles. This verifies

our previous section’s results about polarizing the computational cutoff rate.

Because CCs have memory, each bit of message may impact up to b(m + 1)

73

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

0

5

10

15

20

25

A
N

V

RM, FER

polar, FER

RM, ANV

polar, ANV

Figure 4.7: PAC(128, 64) rate profiles.

bits of the output vector, and a bit error can cause a burst error of up to b(m+1)

length for a CC with a memory size m and a rate 1/b [16, p. 416]. Likewise, PAC

codes may have burst errors up to length N owing to the presence of a polarized

channel with a memory of N . In this connection, consider this scenario: If a

first-bit error (FBE) occurs at index i, it is quite likely that the subsequent bits

from i+ 1 to N would be decoded incorrectly as well.

In the case of a PAC(256, 128) code, Figure 4.8 depicts the average proportion

of the succeeding bits after the FBE that is decoded incorrectly. These statistics

are based on 104 decoding failures of the PAC(256, 128) code using polar and

RM-Polar rate profiles. The polar rate profile is constructed by selecting the

K highest reliable indices at a Eb/N0 = 2.5 dB level. For the RM-Polar code

construction, first, we select all the 93-row indices whose row has a weight of

more than 32. After this, among the 70 rows of F⊗8 with a weight of 16, the

35-row indices with the best reliabilities are chosen. Compared to the RM-polar

construction described in Chapter 2, this construction results in a slightly better

FER performance. Specifically, as seen in this figure, for all simulated SNR levels,

almost over half of the succeeding bits of FBE are decoded incorrectly for both

74

1 1.5 2 2.5

Eb/No dB

50

50.5

51

51.5

re
la

ti
v

e
fr

eq
u

en
cy

 (
%

)

Polar

RM-Polar

Figure 4.8: Error frequency of subsequent bits of FBE for PAC(256, 128) code.

rate profiles, regardless of the SNR value.

Taking into account the constraint (4.25) and the findings of Figure 4.8, it is

theoretically possible to create a rate profile A that results in reasonably excellent

error-correction performance while also assuring low mean decoding complexity

for SNR values that are higher than the target SNR value. In order to accomplish

this, we suggest the following Monte-Carlo (MC) approach for a PAC code with

a blocklength N , a code rate R, and a quantization level δ:

1. Select a desired SNR value that meets the condition

NR <

N∑
i=1

q(E0(1,W
(i)
N), δ).

2. Initiate a rate profile A such that index i for i = 1, · · · , N is included inside

it if q(E0(1,W
(i)
N), δ) = 1.

3. Define an all-zero vector h = (h1, · · · , hN) for the purpose of storing FBE

index frequencies.

4. Conduct a Monte-Carlo simulation of a PAC(N, |A|,A, T) code and, at the

75

completion of each iteration, pick j such that j = min(i) : vi ̸= v̂i and alter

h by hj ← hj + 1.

5. Determine the index j of the largest element in h and delete it from A.

6. If |A| > K, continue to step 3.

7. Return A.

We define a 1-bit quantization function q(x, δ) as

q(x, δ) :=

1, if x ≥ δ,

0, otherwise,

where 0 < δ < 1.

When the SNR value is larger than the desired SNR, step 1 (in accordance with

(4.25)) guarantees a low mean computational complexity for the PAC sequential

decoder. Aiming to improve error-correction performance, Step 4 is motivated

by the findings of Figure 4.8 and tries to do so by avoiding assigning messages to

those components of data carrier vector v that are most likely to be FBE (as a

result, the frequency of burst error incidence is decreased).

Let us define Bi as the event of the occurrence of FBE at the ith bit:

Bi = {(u,y) : ûi−1 = ui−1, ûi ̸= ui}, (4.26)

and Ci as the event of the occurrence of an error at the ith bit:

Ci = {(u,y) : ûi ̸= ui}. (4.27)

It is obvious that the Bi events for i = 1, 2, · · · , N are disjoint and the block error

event E is the union of Bi events. Hence,

P (E) =
∑
i∈A

P (Bi). (4.28)

Moreover, we can write [31]

P (E) =
∑
i∈A

P (Bi) ≤
∑
i∈A

P (Ci) ≤
1

2

∑
i∈A

Z(W
(i)
N), (4.29)

76

where the first inequality is because Bi ⊆ Ci for i = 1, 2, · · · , N , and, as proved

in [58], the last inequality is true for any arbitrary symmetric channel. A Gaussian

approximation code construction [32] method looks for Z(W
(i)
N) values, whereas

a density evolution code construction [31] method looks for P (Ci) values. As a

consequence, the density evolution approach may provide slightly superior error

correction performance. On the other hand, our suggested approach for con-

structing a code based on MC searches for Bi events whose probabilities yield

the code’s accurate error probability. This explains why our construction can

outperform the density evolution code construction.

Simulation results

This subsection presents simulation results using the rate profiles obtained by our

proposed technique for PAC(256, 128) and PAC(64, 32) codes over a BI-AWGN

channel.

With δ = 0.5 and Eb/N0 = 1.5, 2.5 and 3 dB, we produced three alternative

rate profiles for the PAC(256, 128) code using our suggested construction ap-

proach. |A| is 144, 165, and 176 at step 2 of the algorithm for the aforementioned

SNR values; the method runs for 16, 37, and 48 iterations in order to achieve the

final rate profile for these three SNR values, and the resultant rate profiles are

included in Table 4.2. The rate profiles are as binary vector forms of length N of

the hexadecimal vector α, where in its binary format αi = 1 if i ∈ A and αi = 0,

otherwise, for 1 ≤ i ≤ N . This allows for a more compact representation of the

rate profiles.

Table 4.2: Rate profiles.
(N,K) Eb/N0 (dB) Rate profile α (hexadecimal)

(256, 128)

1.5 00000000000001170001013F037F7FFF0001017F077F7FFF177F7FFF7FFFFFFF

2.5 000000010001011F0001013F077FFFFF0001037F177F7FFF011F1FFF7FFFFFFF

3 000000010001013F0001037F077FFFFF0001077F177F7FFF013F1FFF177F7FFF

(64, 32)
3 0001017F017F7FFF

5 0007077F031F17FF

The acquired rate profiles (labeled with MC-) are compared to the rate profiles

77

of bit-channel cutoff rates at Eb/N0 = 1 and 2 dB in Figure 4.9. As can be seen in

this figure, owing to the first step of the algorithm, the produced rate profiles are

always lower than the cutoff-rate profiles at the desired SNR values. However,

the final rate profiles may be lower than the cutoff-rate profiles at an even lower

SNR value, according to step 5, based on the values of N and K. For instance,

when 48 indices are removed from a 3 dB cutoff-rate profile, the MC-3dB profile

drops below the 2 dB cutoff-rate profile, indicating that the computational cutoff

rate of the PAC decoder has been improved. Additionally, this figure depicts the

RM-Polar rate profile built at Eb/N0 = 2.5 dB, which coincides with the 1 dB

cutoff rate profile.

1 16 32 64 128 256

Bit index

0

20

40

60

80

100

120

140

160

R
a
te

 (
b
it

s)

Cutoff-rate-2dB

Cutoff-rate-1dB

RM-Polar-2.5dB

MC-1.5dB

MC-2.5dB

MC-3dB

Figure 4.9: PAC(256, 128) code rate profiles.

Figure 4.10 shows a comparison of the FER and ANV performances of

PAC(256, 128) codes generated at three different Eb/N0 = 1.5, 2.5 and 3 dB val-

ues. The random-coding union (RCU) bound is also displayed on this graph [44].

It is demonstrated that the MC-1.5dB rate profile achieves a FER performance

comparable to that of the RM-Polar rate profile. In addition, when the construc-

tion SNR advances, the number of potential indices in step 2 expands as well,

78

1 1.5 2 2.5 3

Eb/No (dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

RM-Polar-2.5dB

MC-1.5dB

MC-2.5dB

MC-3dB

RCU

1 1.5 2 2.5 3

Eb/No (dB)

0

200

400

600

800

1000

1200

1400

1600

A
N

V

Figure 4.10: Error-correction performance and complexity of PAC(256, 128)
codes.

79

1 8 16 32 64

Bit index

0

10

20

30

40

R
a
te

 (
b

it
s)

Cutoff-rate-3dB

Cutoff-rate-1.1dB

MC-5dB

MC-3dB

RM-Polar-2.5dB

Figure 4.11: PAC(64, 32) code rate profiles.

providing a wider choice of indices for step 4 to assess. As a result, raising the

construction SNR of a PAC code helps to improve the code’s error-correcting

capability. This is why MC-2.5dB performs notably better than MC-1.5dB, and

MC-3dB outperforms the other two. When compared to the RM-Polar rate pro-

file, the MC-3dB rate profile has a gain of over 0.5 dB at FER = 10−3.

Increasing the construction SNR, for understandable reasons, may cause the

low mean computational decoding area to shift to higher SNR values. The ANV

curves in Figure 4.10 provide an illustration of this impact. Due to the fact

that RM-Polar and MC-1.5dB both sit on the cutoff-rate profile at 1 dB (Figure

4.9), they both lead to a low mean computational complexity over and above

Eb/N0 = 1 dB, which is consistent with the previous findings. MC-2.5dB and

MC-3dB, on the other hand, are located below the cutoff-rate profile at 2 dB

(Figure 4.9) and so have a low ANV for SNR values greater than Eb/No = 2 dB.

With δ = 0.5 and Eb/N0 = 3 and 5 dB, two alternative rate profiles for the

PAC(64, 32) code are generated by utilizing the MC construction approach. |A|

80

1 2 3 4

Eb/No (dB)

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

Fano, RM-Polar-2.5dB

Fano, MC-5dB

Fano, MC-3dB

RCU

L16, RM-Polar-2.5dB

L16, MC-5dB

L32, RM-Polar-2.5dB

L32, MC-5dB

1 2 3 4

Eb/No (dB)

0

1

2

3

4

5

6

7

8

9

A
N

V

Figure 4.12: Error-correction performance and complexity of PAC(64, 32) codes.

is 42 and 53 at step 2 of the algorithm, and to acquire the final rate profile, the

process is repeated for 10 and 21 rounds, respectively. The resultant rate profiles

are shown in Table 4.2. The produced rate profiles are shown and compared to the

rate profiles of bit-channel cutoff rates at Eb/N0 = 1.1 and 3 dB in Figure 4.11.

Despite the fact that MC-5dB is created with Eb/N0 = 5, the final rate profile

is lower than the cutoff-rate profile at 3 dB due to the elimination of 21 indices

from the original rate profile during the construction process. The RM-Polar and

MC-3dB rate profiles placed just below the cutoff rate profile at Eb/N0 = 1.1 dB.

A comparison of the FER and ANV performances of PAC(64, 32) codes pro-

duced at Eb/N0 = 3 and 5 dB is shown in Figure 4.12, and it is observed that

the MC-3dB and the RM-Polar rate profiles have comparable FER and ANV

performances. They both lead to a low mean computational complexity above

Eb/N0 = 1.1 dB as they both sit on the cutoff-rate profile at 1.1 dB (Figure

4.11). Compared with MC-3dB, the FER performance of MC-5dB is pretty close

81

to the RCU bound; however, this gain in FER performance comes at the expense

of greater decoding complexity. In addition, the MC-5dB has a low ANV for

SNR values greater than Eb/No = 3dB since its rate profile is located below the

cutoff-rate profile at 3 dB.

It should be noted that the ANV values of the PAC(64, 32) code are much

lower when compared to PAC(256, 128). Therefore, decoding PAC(64, 32) code

by using an SCL decoding with a small list size is achievable in this case. We

utilize the algorithm proposed in [27] to implement the list decoder for PAC codes.

According to this study, the FER performance of list decoding of PAC(64, 32)

code approaches that of Fano decoding of PAC(64, 32) code for both the MC-5dB

and RM-Polar rate profiles when the list size grows. When employing MC-5dB,

the list decoding of PAC(64, 32) code has roughly 0.5 dB gain at FER = 10−3,

which is similar to the coding gain of the Fano decoding algorithm.

82

Chapter 5

SCL and Stack Decoding for

Polarized Channels

This chapter addresses an improvement to the SCL decoding for polarized chan-

nels, reducing the number of sorting operations involved without degrading the

code’s error-correction performance. We present an optimal metric function and

prove that, on average, the correct path’s partial path metrics should equal the

bit-channel capacities partial summations. Likewise, we prove that the average

bit metric values of the incorrect bits can be at most 0, implying that the partial

path metric values of the wrong paths deviate from the bit-channel capacities

partial summations. We take advantage of this by introducing an approach to

reject the potential erroneous paths based on the departure of their bit metrics

from the bit-channel mutual information. This approach avoids sorting on many

branches while causing no frame error rate (FER) performance loss.

For the noiseless bit channels, we prove that the bit-channel metric value should

be zero for the correct branch and −∞ for the wrong branch. In this way, in the

polarized channels, we would be able to identify incorrect branches and eliminate

them from the list of metrics that should be sorted. One result indicates that

when a list size of 4 is used, our suggested algorithm requires the decoder to do

almost 92% fewer sorting operations than the conventional SCL algorithm while

83

decoding a (1024, 512) polar code at a 3 dB SNR value.

Similar to the SCL decoding, we introduce an improvement to the stack al-

gorithm that makes use of the bit-metric values and results in a stack size that

is, on average, much smaller than the one used by the conventional stack algo-

rithm. The results show that our proposed algorithm utilizes a much smaller

stack size (over 90% is possible at a 3.5 dB SNR value) for a PAC(128, 64) code

while maintaining the same error-correction performance.

Finally, we prove that, for a threshold lower than the bit-channel cutoff rate,

the probability of pruning the correct path from that bit of the decoding tree

decreases exponentially by the given threshold, allowing us to suggest a tech-

nique for dynamically determining the threshold value. The dynamic threshold

considerably reduces stack size (or, in the case of SCL decoding, the amount of

sorting operations) for low SNR values.

5.1 Path Metric Function for SCL Decoder

In the SCL decoding, whenever the ith bit is an information bit, the decoding tree

will consider both bifurcated paths and will choose L paths among all paths [9].

The decoder requires a partial path metric function, and it will determine the

most likely path based on that function. For a given channel output y, the optimal

metric function in the terms of error probability is to choose ûi as the sequence

ui for which the value of P (ui|y) is maximized in the ith level of decoding (MAP

rule). Note that the SC decoder has a likelihood value for frozen bits as well

and that given a wrong path, the decoder may recommend a nonzero value for a

frozen bit. This may assist the SCL decoder in determining that this path is one

of the wrong paths, so the metric function should consider both the frozen and

information bit likelihoods into account.

By using Bayes’ rule, P (ui|y) may be expressed as

P (ui|y) = P (y|ui)

P (y)
P (ui). (5.1)

84

Notice that the P (ui) term is same for all the paths and can be avoided in

calculating the path metrics. The fact that every monotonically growing function

retains maximality means that an optimal metric also maximizes

Φ(ui;y) ≜ log2
P (y|ui)

P (y)
, (5.2)

where we call it partial path metric. Therefore, in the ith level of the decoding

tree, the bit metric function can be obtained as

ϕ(ui;y,u
i−1) ≜ Φ(ui;y)− Φ(ui−1;y)

= log2
P (y|ui)

P (y)
− log2

P (y|ui−1)

P (y)

= log2
P (y,ui−1|ui)

P (y,ui−1)
.

(5.3)

For any given output (y,ui−1) of a bit-channel W
(i)
N , we have ϕ(ui;y,u

i−1) ≥
ϕ(ũi;y,u

i−1) if and only if P (y,ui−1|ui) ≥ P (y,ui−1|ũi). That is, when dealing

with a bit channel W
(i)
N , the bit metric ϕ is calculated according to the local ML

rule as well.

The bit metric can be represented as

ϕ(ui;y,u
i−1) = log2

(
P (y,ui−1|ui)

P (y,ui−1)

)
= log2

(
P (y,ui−1|ui)

1
2
[P (y,ui−1|ui) + P (y,ui−1|ui ⊕ 1)]

)
= 1− log2

(
1 +

P (y,ui−1|ui ⊕ 1)

P (y,ui−1|ui)

)
= 1− log2

(
1 + 2

− log2

(
P (y,ui−1|ui)

P (y,ui−1|ui⊕1)

))
= 1− log2

(
1 + 2−Li·(−1)ui

)

(5.4)

for a binary input channel with a uniform input distribution, where

Li = log2

(
P (y,ui−1|ui = 0)

P (y,ui−1|ui = 1)

)
. (5.5)

85

Therefore, for a 0 branch or a frozen bit, the bit metric would be 1 −
log2

(
1 + 2−Li

)
and for a 1 branch the bit metric is 1− log2

(
1 + 2Li

)
.

Note that whenever x ≥ 0, 1 in log2 (1 + 2x) is negligible and it can be

approximated by x, and whenever x < 0, 2x term can be neglected and

log2 (1 + 2x) ≈ log2(1) = 0. Therefore, for a 0 branch or a frozen bit, the corre-

sponding bit metric can be approximated as

1− (−Li)·1{−Li>0}, (5.6)

where 1 is the indicator function (an event’s indicator function is a random vari-

able that equals 1 when the event occurs and 0 when the event does not). For a

1 branch the corresponding metric can be approximated as

1− (Li)·1{Li>0}. (5.7)

Rather of maximizing the path metric

Φ(ui;y) =
i∑

j=1

ϕ(uj;y,u
j−1), (5.8)

the path metric
i∑

j=1

log2

(
1 + 2−Lj ·(−1)uj

)
(5.9)

is minimized in the literature [26].

In a decoding algorithm, the metric function determines which direction

through the decoding tree should be chosen. As a matter of intuitive under-

standing, the bit-metric function value must always grow for every ui bit on the

correct path in order to detect the correct data vector u. It is impossible to

place a measure on this point of view for a certain code. Studying an ensemble

of codes with the specified channel and blocklength may make the problem easier

to understand.

The following discusses and examines the metric function of SCL decoding,

similar to how the metric function of sequential decoding has been addressed

86

before. In the case of the ensemble of bit channels with output-input (y,ui−1;ui)

pair, the expectation of (5.3) is

EUi,(Y,Ui−1)

[
ϕ(Ui;Y,Ui−1)

]
=
∑
ui

q(ui)
∑

(y,ui−1)

P (y,ui−1|ui)ϕ(ui;y,u
i−1)

=
∑
ui

∑
(y,ui−1)

q(ui)P (y,ui−1|ui)

[
log2

(
P (y,ui−1|ui)

P (y,ui−1)

)]
= I(W

(i)
N),

(5.10)

where I(W
(i)
N) denotes the symmetric capacity of the bit-channel W

(i)
N . As a

consequence, the heuristic result is that for the bit channels the average metric

increases all the time for the correct branches.

Suppose now that ũi is a wrong bit with a metric of ϕ(ũi;y,u
i−1) at level i.

By averaging this bit-metric value over the correct and incorrect branches, we

derive

EUi,Ũi,(Y,Ui−1)

[
ϕ(Ũi;Y,Ui−1)

]
=
∑
ũi

q(ũi)
∑
ui

q(ui)
∑

(y,ui−1)

P (y,ui−1|ui)ϕ(ũi;y,u
i−1)

=
∑
ũi

q(ũi)
∑

(y,ui−1)

P (y,ui−1)ϕ(ũi;y,u
i−1)

=
∑
ũi

∑
(y,ui−1)

q(ũi)P (y,ui−1)

[
log2

(
P (y,ui−1|ũi)

P (y,ui−1)

)]

≤
∑
ũi

∑
(y,ui−1)

q(ũi)P (y,ui−1)

[
P (y,ui−1|ũi)

P (y,ui−1)
− 1

]
= 0.

(5.11)

It should be noted that we used the log2(x) ≤ x − 1 inequality to obtain

(5.11). The expectation stated above means that, on average, the bit metric is

a negative or 0 value for each wrong branch. When the decoder travels in the

wrong direction for numerous branches, as a result of not raising the path metric

value, the decoder detects this and may possibly eliminate the wrong path from

the list of possible paths.

87

The above discussion is about the behaviour of the bit-channel metric on av-

erage. Polarization attempts to obtain K noiseless bit channels out of all N bit

channels. Lets assume that we achieve to this goal and the ith bit channel is

noiseless. In this case, if we have transmitted ui bit and ũi = ui ⊕ 1, we have

ϕ(ui;y,u
i−1) = log2

P (y,ui−1|ui)

P (y,ui−1)

= log2
P (y,ui−1|ui)

1
2
P (y,ui−1|ui) +

1
2
P (y,ui−1|ũi)

= log2
1

1
2
+ 0

= 1.

(5.12)

This is in consist with (5.10) as for the noiseless bit channel, its bit-channel

mutual information is 1. Also for the ith wrong branch, we have its bit-metric

function as

ϕ(ũi;y,u
i−1) = log2

P (y,ui−1|ũi)

P (y,ui−1)

= log2
0

0 + 1
2

= −∞.

(5.13)

As a result of this finding, any pathways that include the wrong branch of a

noiseless bit channel can never belong to a correct path. Also, from (5.11) we

know that the bit metric of the wrong branch should be a negative number on

average. Based on this discussion, if the branch metric is a big negative number,

the branch is the wrong one, and in the SCL decoding, there is no need to consider

this branch in the L survivor branches, and we can consider this bit channel as

a noiseless bit channel. As explained, ideally (when the noise is small and the

blocklength is large enough), the bit metric of the wrong branch should be −∞ (

the only way to get a noiseless bit channel is if the code block length is increased

to infinity). It would be interesting to see whether we can take advantage of this

in the case of short to moderate block length codes. We will put this to the test

using both polar and PAC codes using SCL or stack decoding algorithms.

88

5.2 Improving SCL Decoding for Polarized

Channels

The primary downside of SCL decoding is that, given a list size of L, it is necessary

to discover the L biggest metric values out of 2L paths in each branching level

of the decoding tree. There are many algorithms for determining the L biggest

path metric values, and this stage of the SCL decoding process is often referred

to as sorting [9]. This section proposes an improvement to the SCL decoding

algorithm (PSCL) that omits the sorting step for many of the decoding tree’s

branching levels.

1 128 256 512 1024

Bit-channel index (i)

0

100

200

300

400

500

600

700

Figure 5.1: Comparison of the partial path metric corresponding to the correctly
decoded codewords of list decoding of (1024, 512) polar code with the capacity
rate profile over BI-AWGN at 2.5 dB SNR.

As proved in the preceding section, the bit metric for the correct branch at

the ith level of the decoding tree is I(W
(i)
N) on average, whereas the bit metric

for an erroneous branch at this level on average would be less than 0. Figure

5.1 compares the average metric profiles for the correctly decoded codewords

(104 codewords) to the capacity rate profile of a (1024, 512) polar code over a

BI-AWGN with an SNR of 2.5 dB. As this figure shows, for the almost noise-

less bit channels (mostly the bit-channels that are at the end), the slope is 1

89

(I(W
(i)
N) ≈ 1). From this figure, it can be deduced that a wrong branch may be

recognized from the correct branch when traversing through the decoding tree.

To accomplish this, we propose modifying the SCL decoding algorithm as follows:

1. At a branching level i, out of 2L paths, discard paths having a bit-metric

ϕ(ui;y,u
i−1) less than the threshold mT , where mT < I(W

(i)
N).

2. If the number of remaining paths exceeds the list size L, sort them and

choose the L ones with the highest metric values; otherwise, no sorting is

required.

3. Declare a decoding failure and end the decoding procedure if all 2L paths

are rejected.

4. If i = N , select the path with the highest metric value.

Note that the sorting of a typical SCL decoding technique is a function of 2L,

whereas the number of elements that may be sorted in our proposed algorithm

can be much less than 2L.

In Figure 5.2, the FER performance of our proposed algorithm with the bit-

metric threshold mT = −5 for a (1024, 512) polar code is compared to the perfor-

mance of a conventional SCL decoding technique both with a list size of L = 4.

As this figure demonstrates, there is no degradation in the FER performance.

Table 5.1: Average number of executed sorting for decoding (1024, 512) polar
code.

SNR [dB] 0.0 0.5 1.0 1.5 2.0 2.5 3.0

of sorting (L = 4, mT = −5) 132.23 116.11 89.23 58.49 37.18 37.22 40.63

The corresponding number of sorting operations performed in our proposed

algorithm is listed in Table 5.1. Note that the conventional SCL decoding tech-

nique requires 510 sorting operations to decode a (1024, 512) polar code with a

L = 4 list size. When the SNR is 3 dB, our suggested decoding technique re-

duces the number of sorting operations to about 40 without affecting the FER

performance.

90

0 0.5 1 1.5 2 2.5 3

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

Figure 5.2: Comparison of the conventional SCL decoding with our proposed
SCL decoding algorithm for a list size of L = 4 of a (1024, 512) polar code with
mT = −5.

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

SCL, L = 32

PSCL, L = 32

Figure 5.3: Comparison of the conventional list decoding with our proposed list
decoding algorithm of a PAC(128, 64) code when mT = −10.

91

Also, for a list size of L = 32, the FER performance of our proposed method

for a PAC(128, 64) code is compared to the performance of a conventional SCL

decoding technique in Figure 5.3. As this figure illustrates, no loss in FER per-

formance occurs.

Table 5.2: Average number of executed sorting for decoding PAC(128, 64) code.
SNR [dB] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

of sorting (L = 32, mT = −10) 37.96 36.95 35.93 35.15 34.24 33.29 31.83 28.14

Table 5.2 lists the amount of sorting operations conducted by our proposed

technique corresponding to the plot of Figure 5.3. The conventional SCL decod-

ing technique requires 59 sorting operations to decode a PAC(128, 64) code with

a L = 32 list size. As an instance, when the SNR is 3.5 dB, our proposed de-

coding approach decreases the number of sorting operations to about 28 without

compromising the FER performance.

In the following, we compare our proposed technique to two similar works. A

pruning technique is suggested in [59] which is applied after the sorting step in

the SCL algorithm and is based on the metric value of the best path. Finding

the best path at each level i is costly, and our proposed algorithm avoids this by

comparing the metric to the channel capacity profile, which is a priori information

to the decoder. Similarly, in [60] the pruning step is also after the sorting step of

SCL decoding. A stack containing the information of the L best paths (among

those paths that are pruned, the paths in the stack have the highest metric values)

that are already pruned is updated at every level of the decoding. At each level

i, a path will survive if its metric is better than the metric of the stack top;

otherwise, the path will be pruned. If the path is pruned and its metric is better

than the metric of the worst path in the stack, the path will be inserted into the

stack, and that worst path will be deleted out from the stack. If the decoder is at

the ith level and a path is pruned at level j (j < i) with metric value Γ̃j, in [60]

it is proposed to add Γ̃j with an upper bound on the metric to be able to use

it at the level i. We suggest updating the metric value of this pruned path as

Γ̃j+
∑i

k=j+1 I(W
(i)
N) which gives a better estimate of this path if it was not pruned

and would be decoded correctly up to the ith level (stack contains L paths with

such these updated metrics). The interesting thing about using this stack is that

92

in [60], they are trying to compare paths with different lengths. In a sequential

decoding algorithm, the optimal way to compare the paths with different lengths

is using a bias, and in [14] it is proved that the optimal bias should be the bit-

channel capacities. Sorting 2L paths in the SCL decoding process and sorting and

updating the stack are costly operations. The primary purpose of our approach

is to do as few sorting operations as possible. They can eliminate the sorting step

in these works by comparing the pathways to the bit-channel capacity profile

(instead of the best path).

Probability of error

We make the assumption that the list size is infinite and that the failure to get

correct decoding is solely due to the pruning strategy that we are proposing (this

is the case for the stack decoding, which is explained in the next section). We

fail to successfully decode a received vector if the bit metric of the correct path

is less than the threshold mT at the ith level for i from 1 to N . Responding to

this issue is equal to determining an upper bound for

P
{
ϕ(ui;y,u

i−1) ≤ mT

}
, (5.14)

where mT < I(W
(i)
N) (in our simulations we use mT < 0). To accomplish this, we

use the Chernoff bound:

Chernoff bound. For a random variable X, if m < E[X], we have

P{X ≤ m} ≤ 2−smg(s); s < 0, (5.15)

where g(s) is the moment-generating function (MGF) of X. ■

Theorem 2. For the bit-metric function ϕ(ui;y,u
i−1) and constant threshold mT

we have

P
{
ϕ(ui;y,u

i−1) ≤ mT

}
≤ 2mT−E0(1,W

(i)
N), (5.16)

where mT < I(W
(i)
N).

93

Proof. We found the mean of the random variable ϕ(Ui) ≜ ϕ(Ui;Y,Ui−1) as

I(W
(i)
N), and in the following, we derive an upper bound for its MGF when −1 <

s < 0.

g(s) ≜ E[2sϕ(Ui)] = E

[
2
s log2

(
P (Y,Ui−1|Ui)

P (Y,Ui−1)

)]

= E
[(

P (Y,Ui−1|Ui)

P (Y,Ui−1)

)s]
=
∑
ui

q(ui)
∑

(y,ui−1)

P (y,ui−1|ui)

(
P (y,ui−1|ui)

P (y,ui−1)

)s

=
∑

(y,ui−1)

P (y,ui−1)−s︸ ︷︷ ︸
a

∑
ui

q(ui)P (y,ui−1|ui)
1+s

︸ ︷︷ ︸
b

.

(5.17)

By defining r = −s and considering −1 < s < 0 and using the Hölder’s

inequality (H) inequality:∑
ab ≤

(∑
a

1
r

)r (∑
b

1
1−r

)1−r

, (5.18)

we have

g(s)
H

≤


∑

(y,ui−1)

P (y,ui−1)

︸ ︷︷ ︸
= 1


r

 ∑
(y,ui−1)

[∑
ui

q(ui)P (y,ui−1|ui)
1−r

] 1
1−r

1−r

= 2
(1−r) log2

[∑
(y,ui−1)[

∑
ui

q(ui)P (y,ui−1|ui)
1−r]

1
1−r

]

= 2−(1−r)E0(
r

1−r
,W

(i)
N) = 2−(1+s)E0(

−s
1+s

,W
(i)
N).

(5.19)

Therefore (to simplify), for s = −1/2 we have

P{ϕ(Ui) ≤ mT} ≤ 2−smT g(s)

≤ 2−smT 2−(1+s)E0(
−s
1+s

,W
(i)
N)

= 2
mT−E0(1,W

(i)
N

)

2 .

(5.20)

94

This says that if the threshold is less than the bit-channel cutoff rate, the proba-

bility of pruning the correct path at the ith level of decoding goes exponentially

to zero by mT .

Based on the obtained upper bound, in the next section, we propose a dynamic

threshold for the pruning technique, and we will see that the technique extremely

reduces (up to 90%) the required stack size for decoding on polarized channels.

5.3 Improving Stack (Heap) Decoding for Po-

larized Channels

According to [14], the ith bit-channel metric function (3.4) when using bit-channel

cutoff rates as the bias values results in a sequential decoding with a low com-

putational complexity, where ui is the ith transmitted bit. Similar to what we

described in the previous section for SCL decoding, also in the stack (heap) algo-

rithm, the bit metric of an incorrect branch in a noiseless bit channel converges

to −∞ (channel polarization is used to locate noiseless bit channels). As a re-

sult of this finding, any pathways that include the wrong branch of a noiseless

bit channel would never reach the top of the stack. Ideally, in the noiseless bit

channel, there is no need to insert the path of the wrong branch into the stack at

all, and the stack size may therefore be kept very small. The only way to get a

noiseless bit channel is to increase the code block length to infinity. It would be

interesting to see whether we can take advantage of this in the case of short block

length codes. We will put this to the test using a PAC(128, 64) stack decoding.

Assume that the bit-metric value of less than mT = −20 (instead of −∞) cor-

responds to the bit-metric value of a wrong branch. For the bit channels with a

bit-metric value smaller than −20, Table 5.3 displays the levels of the decoding

tree, the associated bit-channel cutoff rates, and the bit-channel metric values of

both corresponding branches in a single decoding trial at 2.5 dB SNR. This table

has 54 rows, indicating that the stack size would not need to expand in this 54

times compared to the conventional stack algorithm.

95

Table 5.3: Levels, reliabilities, and bit-metric values of both branches (up and
down branches) of noiseless bit channels at 2.5 dB SNR.

i E0(1,W
(i)
N) up down

32 0.9978 0.00 -38.96
46 0.9367 0.06 -22.94
47 0.9612 -25.00 0.04
48 0.9997 -55.91 0.00
52 0.9531 0.05 -23.89
54 0.9786 0.02 -33.29
55 0.9876 0.01 -35.21
56 1.0000 0.00 -73.56
58 0.9921 -32.25 0.01
59 0.9954 -37.69 0.00
60 1.0000 0.00 -77.40
61 0.9975 -41.48 0.00
62 1.0000 0.00 -91.17
63 1.0000 0.00 -Inf
64 1.0000 -191.64 0.00
78 0.9904 0.01 -22.10
79 0.9946 0.01 -23.38
80 1.0000 0.00 -59.10
86 0.9977 -34.53 0.00
87 0.9988 0.00 -32.41
88 1.0000 -79.83 0.00
90 0.9992 -27.72 0.00
91 0.9995 0.00 -38.39
92 1.0000 0.00 -79.27
93 0.9998 0.00 -41.88
94 1.0000 -87.67 0.00
95 1.0000 -Inf 0.00
96 1.0000 0.00 -209.46
100 0.9987 -25.97 0.00
102 0.9995 -47.14 0.00
103 0.9997 -46.93 0.00
104 1.0000 -103.52 0.00
106 0.9998 -36.09 0.00
107 0.9999 0.00 -28.38
108 1.0000 0.00 -81.81
109 1.0000 -Inf 0.00
110 1.0000 -Inf 0.00
111 1.0000 0.00 -Inf
112 1.0000 0.00 -249.96
114 1.0000 -50.76 0.00
115 1.0000 -45.28 0.00
116 1.0000 -106.58 0.00
117 1.0000 0.00 -Inf
118 1.0000 -Inf 0.00
119 1.0000 0.00 -Inf
120 1.0000 0.00 -283.56
121 0.9999 0.00 -51.19
122 1.0000 0.00 -Inf
123 1.0000 0.00 -Inf
124 1.0000 -Inf 0.00
125 1.0000 0.00 -Inf
126 1.0000 -Inf 0.00
127 1.0000 -Inf 0.00
128 1.0000 0.00 -641.35

96

Figure 5.4 compares the FER performance of our proposed stack algorithm

(Pstack) as we do not insert the paths containing the wrong branches (a branch

with the bit-metric value less than mT = −20) with a conventional stack (heap)

algorithm for a PAC(128, 64) code. As this figure shows, there is no loss in the

error-correction performance. This figure also compares the corresponding aver-

age number of stack sizes. Our proposed stack algorithm needs a much smaller

stack size compared to the conventional stack algorithm. The average stack size

is reduced from 67.04 to 6.55 at 3.5 dB SNR.

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

1

50

100

150

200

250

300

350

400

A
v

er
ag

e
n

u
m

b
er

 o
f

st
ac

k
 s

iz
e

Figure 5.4: FER and average number of stack size performance comparison of
PAC(128, 64) codes with mT = −20.

5.3.1 Dynamic Threshold

In the preceding section, we proved that the probability of error due to pruning

decreases exponentially with mT . If the FER performance at 3.5 dB is about 10−6

in the stack decoding with no pruning technique, it would be reasonable to use

mT = −23 (2−23 ≈ 10−7) at this SNR value (to make the performance loss due

97

to the pruning negligible). In this manner, we may choose an appropriate value

for mT for all other desired SNR values. The dispersion approximation yields a

theoretical best attainable performance for every finite block-length code [44]. If

the FER performance achieved by the dispersion approximation for a particular

code is D at a specified SNR value, we use

mT = ⌊log2(D/10)⌋ (5.21)

as the dynamic bit-metric threshold for that SNR value. In this way, for a

(128, 64) code and SNR vector of (0, 0.5, · · · , 3.5), the corresponding threshold

values are as

mT = (−5,−6,−7,−9,−11,−14,−18,−23).

Figure 5.5 compares the FER performance and average stack size of the con-

ventional stack algorithm with our proposed algorithm when employing this dy-

namic threshold settings (PstackD). When compared to the Pstack approach, the

PstackD technique results in a further reduction in the stack size for low SNR

levels. For example, at a 1 dB SNR value, the average stack size of the conven-

tional stack algorithm is 364, the average stack size of the Pstack approach is

233, and the average stack size of PstackD is around 134.

98

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

0 0.5 1 1.5 2 2.5 3 3.5

SNR (dB)

1

50

100

150

200

250

300

350

400

A
v

er
ag

e
n

u
m

b
er

 o
f

st
ac

k
 s

iz
e

Figure 5.5: FER and average number of stack size performance comparison of
PAC(128, 64) codes with dynamic threshold.

99

Chapter 6

Weight Distribution of PAC

Codes

This chapter investigates the weight distribution of PAC codes. By benefiting

from cyclic shift matrices, we give a new proof to a result of [23] which says that

dmin for PAC codes is greater than or equal to the dmin for polar codes. The usage

of cyclic shifts in our work is motivated by the work of [61], which designs and

analyzes a particular permutation set of polar codes relying on a N/4-cyclic shift

for practical applications [24]. In our study, we generalize this algebraic result

to the m-cyclic shift for 1 ≤ m ≤ N , offer an explicit proof, and demonstrate

how the findings may be applied to be used in the PAC codes. In [23], they also

proved that the sum of gi (ith row of F⊗n for 1 ≤ i < N) with some rows below

it (we represent this by g
i
) has a weight greater than or equal to the weight of gi.

We generalize this and prove that the summation of an odd number of clockwise

cyclic shifts of g
i
has also a weight greater than or equal to the weight of gi. Also,

we prove that summation of a row of the matrix F⊗n with a row below it is equal

to some clockwise cyclic shifts of that row, and we use this to prove that the dmin

for PAC codes is greater than or equal to dmin for the polar codes. The weight

distribution of linear codes dictates the performance of ML decoding, which can

be well estimated by the union bound, particularly at high SNRs. This implies

that PAC codes outperform polar codes in terms of error-correction performance.

100

6.1 PAC Codes v. Polar Codes

Assume gi be the ith row of the matrix Gn ≜ F⊗n for 1 ≤ i ≤ N . The

weight of gi is w(gi) = 2
∑n

m=1 im , where i − 1 = inin−1 · · · i1 =
∑n

m=1 im2
m−1

is the bit-index representation of index i − 1 [2]. Let Cj
N be the N × N

clockwise cyclic shift matrix in j places s.t. giC
j
N = (gi,1, gi,2, · · · , gi,N)Cj

N =

(gi,N−j+1, gi,N−j+2, · · · gi,N , · · · , gi,N−j).

Example 9. Let N = 8, j = 3, and i = 6.

C3
8 =



0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0


For g6 = (1, 1, 0, 0, 1, 1, 0, 0),

g6C
3
8 = (1, 0, 0, 1, 1, 0, 0, 1).

For any nonzero binary vector u = (0, · · · , 0, 1, ui+1, ui+2, uN), where the first

1 is in its ith location, uGn = gi⊕ ui+1gi+1 + · · · ⊕ uNgN . We use g
i
notation to

show the summation of vector gi with some other specified rows below it.

In the following proposition, we prove that adding an odd number of clockwise

cyclic shifts of any row of the matrix Gn that is added with some rows below it

(i.e., g
i
for the ith row of the matrix Gn) cannot decrease the weight of that row.

In our proof we partition the generator matrix Gn+1 into upper and lower parts

as Gn+1 =

[
H1

H2

]
s.t. the rows of H1 and H2 can be represented as (hi,0) and

(hk,hk), respectively, where both hi and hk are rows of matrix Gn.

101

Proposition 1. For any vector (ui+1, ui+2, · · · , uN) ∈ {0, 1}N−i,

w
(
g
i

∑
C l

N

)
≥ w(gi), (6.1)

where 1 ≤ i ≤ N and g
i
= gi ⊕ ui+1gi+1 + · · · ⊕ uNgN for any l = 1, 3, 5, · · · and

in mod N there are odd number of distinct number of cyclic shifts.

Proof. The proof is by induction on n. For n = 1 the statement obviously holds.

By induction suppose that the statement holds for n. We want to show that for

any row gi of Gn+1,

w
(
g
i

∑
C l

2N

)
≥ w(gi), (6.2)

where 1 ≤ i ≤ 2N . We divide the proof into two cases based on whether the row

index i is bigger than N or not.

Case 1: i > N .

In this case we can write the the vector g
i
as (hi−N ,hi−N), where hi−N is the

(i−N)th row of matrix Gn. Hence,

w
(
g
i

∑
C l

2N

)
= w

(
(hi−N ,hi−N)

∑
C l

2N

)
= w

(
hi−N

∑
C l

N ,hi−N

∑
C l

N

)
= 2w

(
hi−N

∑
C l

N

)
≥ 2w(hi−N)

= w(hi−N ,hi−N) = w(gi),

(6.3)

where the inequality is by induction. Notice that in the third equality it is just

possible for even number of shifts get equal (l and l+N) and again the inequality

will hold.

Case 2: i ≤ N .

In this case the ith row of the matrix Gn+1 can be written as gi = (h,0) s.t.

h is the ith row of matrix Gn. We have

g
i
= (h,0)⊕ (y,y), (6.4)

102

where (y,y) is a zero vector or is the jth row of matrix Gn+1 s.t. j > N . We

have

g
i

∑
C l

2N = (h,0)
∑

C l
2N ⊕ (y,y)

∑
C l

2N

= (h,0)
∑

C l
2N ⊕

(
y
∑

C l
N ,y

∑
C l

N

)
.

(6.5)

Suppose γ ≜
(
y
∑

C l
N

)
k
. Also note that the kth bit(

h
∑

C l
N

)
k
=
(
(h,0)

∑
C l

2N

)
k︸ ︷︷ ︸

α

⊕
(
(h,0)

∑
C l

2N

)
k+N︸ ︷︷ ︸

β

(6.6)

is equal to 1 if (α, β) = (1, 0) or (α, β) = (0, 1) and we can have one of the

following four cases:

If γ = 0 and (α, β) = (0, 1), then
(
g
i

∑
C l

2N

)
k+N

= 1.

If γ = 1 and (α, β) = (0, 1), then
(
g
i

∑
C l

2N

)
k
= 1.

If γ = 0 and (α, β) = (1, 0), then
(
g
i

∑
C l

2N

)
k
= 1.

If γ = 1 and (α, β) = (1, 0), then
(
g
i

∑
C l

2N

)
k+N

= 1.

So

w(g
i

∑
C l

2N) ≥ w(h
∑

C l
N) ≥ w(h) = w(gi), (6.7)

where the last inequality is by induction.

The following lemma is useful in the proof of the Theorem 3.

Lemma 1. For 1 ≤ m ≤ N − 1 and 1 ≤ k ≤ N , if k +m > N ,

gk = gk

∑
1≤l≤N−1 s.t.
gm+1,l+1=1

C l
N , (6.8)

where gk and gm+1 are the kth and (m+ 1)th rows of the matrix Gn.

Example 10. For n = 3, k = 6, and m = 3, we have that m + k = 9 > N .

So for gk = (1, 1, 0, 0, 1, 1, 0, 0) and gm+1 = (1, 1, 1, 1, 0, 0, 0, 0) we have gk =

gk(C
1 ⊕ C2 ⊕ C3).

103

Proof. The proof is by induction. Suppose that Lemma 1 is true for n and we

prove it for n+ 1 case. We divide the proof into two cases based on whether k is

greater than N or not.

Case 1: k > N .

The kth row of matrix Gn+1 can be written as gk = (hk−N ,hk−N), where hk−N

is the (k−N)th row of matrix Gn. If k+m > 2N , then k+m−N > N and by

induction we have that

hk−N = hk−N

∑
1≤l≤N−1 s.t.
hm+1,l+1=1

C l
N . (6.9)

From this we have

gk

∑
1≤l≤2N−1 s.t.
gm+1,l+1=1

C l
2N

= (hk−N ,hk−N)
∑

1≤l≤2N−1 s.t.
gm+1,l+1=1

C l
2N

= (hk−N

∑
1≤l≤N−1 s.t.
hm+1,l+1=1

C l
N ,hk−N

∑
1≤l≤N−1 s.t.
hm+1,l+1=1

C l
N)

= (hk−N ,hk−N) = gk.

(6.10)

Case 2: k ≤ N .

Suppose that gk = (hk,0) is the kth row of matrix Gn+1 and k+m > 2N , where

hk is the kth row of matrix Gn. Because k ≤ N , we can write m as m = j +N

s.t. j < N . From j +N + k > 2N , we have j + k > N and by induction we have

hk = hk

∑
1≤l≤N−1 s.t.
hj+1,l+1=1

C l
N . (6.11)

Also note that for any vector x of length N and 1 ≤ l ≤ N − 1 we have

(x, 0)(C l
2N ⊕ C l+N

2N) = (xC l
N ,xC

l
N). (6.12)

104

So we have

gk

∑
1≤l≤2N−1 s.t.
gm+1,l+1=1

C l
2N = (hk,0)

∑
1≤l≤N−1 s.t.

(hj+1,l+1,hj+1,l+1)=(1,1)

C l
2N

= (hk

∑
1≤l≤N−1 s.t.
hj+1,l+1=1

C l
N ,hk

∑
1≤l≤N−1 s.t.
hj+1,l+1=1

C l
N)

= (hk,hk) = gk,

(6.13)

where the second equality is by (6.12) and the third equality is by induction.

Let us define an N ×N upper-triangular bidiagonal matrix DN as

DN ≜



1 1 0 . . . 0

0 1 1
...

... 0
.

... 1 1

0 0 . . . 1


, (6.14)

which is an upper-triangular Toeplitz matrix that has 1 in its main diagonal and

upper diagonal elements (its first row has 1 in the first and second positions),

with all other entries being zero.

We also define matrix Dm
N ≜ (DN)

m which is an upper-triangular Toeplitz

matrix that its first row has 1 in the first and (m + 1)th positions, where 1 ≤
m ≤ N − 1.

The following theorem relates the matrix Dm
N to clock-wise cyclic shift matrices

C l
N .

Theorem 3. For any m ≤ N − 1,

Dm
NGn = Gn

∑
1≤l≤N−1 s.t.
gm+1,l+1=1

C l
N . (6.15)

This is equivalent to saying that if i = k +m ≤ N , then

gk ⊕ gi = gk

∑
1≤l≤N−1 s.t.
gi−k+1,l+1=1

C l
N , (6.16)

105

and if k +m > N , then

gk = gk

∑
1≤l≤N−1 s.t.
gm+1,l+1=1

C l
N (6.17)

Example 11. For n = 2,

Gn =


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

 , D2 =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 , C2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,

D2Gn = GnC
2 =


0 0 1 0

0 0 1 1

1 0 1 0

1 1 1 1

 . (6.18)

Example 12. For n = 2,

Gn =


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

 , D3 =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 ,

C1 =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 , C2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , C3 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 ,

D3Gn = Gn(C
1 ⊕ C2 ⊕ C3) =


0 1 1 1

1 1 0 0

1 0 1 0

1 1 1 1

 . (6.19)

Proof. The Lemma 1 is used to show the equation (6.17), and we provide a proof

for the case i = k +m ≤ N . Proof is by induction and we assume that (6.16) is

true for Gn and we prove it for Gn+1. In this respect, we have i = k +m ≤ 2N .

We divide the proof into 6 cases based on the values of i and k. First case is

106

for k > N , the second case is when i, k ≤ N , and the other four cases are when

k ≤ N and i > N .

Case 1: k > N .

We have

gk ⊕ gi = (hk−N ⊕ hi−N ,hk−N ⊕ hi−N), (6.20)

where hk−N and hi−N are (k−N)th and (i−N)th rows of matrix GN , respectively.

By induction we have

gk ⊕ gi = (hk−N ⊕ hi−N ,hk−N ⊕ hi−N)

= (hk−N

∑
1≤l≤N−1 s.t.
hi−k+1,l+1=1

C l
N ,hk−N

∑
1≤l≤N−1 s.t.
hi−k+1,l+1=1

C l
N)

= (hk−N ,hk−N)
∑

1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N

= gk

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N .

(6.21)

As an example for N = 8, k = 12, and i = 15, the 12th and 15th rows of matrix

G4 are

g12 = (h4,h4) = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),

g15 = (h7,h7) = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0).

By knowing that i− k + 1 = 4 we have

g12 ⊕ g15 = g12(C
1
16 ⊕ C2

16 ⊕ C3
16).

Case 2: k ≤ N and i ≤ N .

The kth and ith rows of the matrix Gn+1 can be written as gk = (hk,0) and

gi = (hi,0), respectively, where hk and hi are the corresponding rows of the

matrix Gn. By induction we have

hk ⊕ hi = hk

∑
1≤l≤N−1 s.t.
hi−k+1,l+1=1

C l
N . (6.22)

Note that hk has its last 1 at the kth position and shifting based on the vector

hi−k+1 can shift that last 1 up to i − k position. As a result, the last 1 of the

107

vector hk can be shifted up to the ith position which is less that or equal to N .

Considering this we have

gk ⊕ gi = (hk,0)⊕ (hi,0) = (hk ⊕ hi,0)

= (hk

∑
1≤l≤N−1 s.t.
hi−k+1,l+1=1

C l
N ,0)

= (hk,0)
∑

1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N = gk

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N ,

(6.23)

where the third equality is by induction and the fourth equality is by the discus-

sion above.

As an example for N = 8, k = 2, and i = 8, the 2nd and 8th rows of matrix

G4 are

g2 = (h2,0) = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

g8 = (h8,0) = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0).

By knowing that i− k + 1 = 7 we have

g2 ⊕ g8 = g2(C
2
16 ⊕ C4

16 ⊕ C6
16).

Case 3: k ≤ N , i = j +N and j ≥ k.

The kth, jth, and the ith rows of the matrixGn+1 are as gk = (hk,0), gj = (hj,0),

and gi = (hj,hj), respectively, where hk and hj are the corresponding rows of

the matrix Gn. By induction, in shifting based on the r = j−k+1 row of matrix

Gn, we have

hk ⊕ hj = hk

∑
1≤l≤N−1 s.t.
hj−k+1,l+1=1

C l
N . (6.24)

Note that the shifts are by the positions greater than or equal to 2 of the vector hr

which we show as (×, hr,2, hr,3, · · · , hr,N). In general, we say that shifting vector

hk based on vector (×, hr,2, hr,3, · · · , hr,N) results in hk⊕hj as an alternative way

to (6.24).

Note that from case 2, we know that with shifting hk by row j−k+1, the last

1 element of hk will be shifted at most to the Nth position. From this we can say

108

that shifting (hk,0) based on (×, hr,2, hr,3, · · · , hr,N ,0) is (hk ⊕ hj,0). Similarly,

shifting the kth row (hk,0) based on (0,×, hr,2, hr,3, · · · , hr,N) is (0,hk ⊕ hj).

Also, note that shifing a vector (x1, x2, · · ·xN ,0) based on a vector that only has

1 at its (N + 1)th position is (0, x1, x2, · · ·xN), i.e.

(x1, x2, · · ·xN ,0)C
N
2N = (0, x1, x2, · · ·xN). (6.25)

As a results, shifting the kth row (hk,0) based on vector

(×, hr,2, hr,3, · · · , hr,N , 1, hr,2, hr,3, · · · , hr,N)

results in (hk ⊕ hj,hk ⊕ (hk ⊕ hj)) = (hk ⊕ hj,hj). This means that

gk

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N

= (hk,0)
∑

1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N

= (hk ⊕ hj,0)⊕ (0,hk)⊕ (0,hk ⊕ hj)

= (hk ⊕ hj,hj) = gk ⊕ gi.

(6.26)

As an example, for N = 8, k = 7, and i = 16, the 7th and the 16th rows of

matrix G4 are

g7 = (h7,0) = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

g16 = (h8,h8) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

As j = 8 and j−k+1 = 2, the shift is based on (×, h2,2, · · · , h2,8, 1, h2,2, · · · , h2,8) =

(×, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0). So

g7 ⊕ g16 = g7(C
1
16 ⊕ C8

16 ⊕ C9
16).

Case 4: k ≤ N , i = j +N , j ≤ k, and j > N/2.

We have N/2 < k ≤ N and N + N/2 < i. The kth and ith rows of the matrix

Gn+1 can be written as gk = (hk,0) = (x,x,0,0) and gi = (hj,hj) = (y,y,y,y),

respectively, where hk and hj are the corresponding rows of the matrix GN , and

x and y are corresponding rows of the matrix GN/2.

109

We have

hk−N/2 ⊕ hj = (x,0)⊕ (y,y) = (x⊕ y,y), (6.27)

and by induction

(x⊕ y,y) = (x,0)
∑

1≤l≤N−1 s.t.
hj−k+N/2+1,l+1=1

C l
N . (6.28)

Notice that j − k + N/2 + 1 ≤ N/2. So gj−k+N/2+1 = (r,0,0,0), where r is

a row of matrix GN/2. In this way, i − k + 1 = (j − k + N/2 + 1) + N/2 and

gi−k+1 = (r, r,0,0).

From (6.28) we can see that shifting (x,0,0,0) by (×, r2, · · · , rN/2,0,0,0) is

(x⊕ y,y,0,0).

Moreover, shifting (x,0,0,0) by (0, 1, r2, · · · , rN/2,0,0) is (0,x ⊕ (x ⊕
y),y,0) = (0,y,y,0).

Likewise, shifting (0,x,0,0) by (×, r2, · · · , rN/2,0,0,0) is also (0,x⊕y,y,0).

Finally, shifting (0,x,0,0) by (0, 1, r2, · · · , rN/2,0,0) is (0,0,x⊕ (x⊕y),y) =

(0,0,y,y).

By considering these four shifting together, the shifting of (x,x,0,0) by

(×, r2, · · · , rN/2, 1, r2, · · · , rN/2,0,0) is (x ⊕ y,y,0,0) ⊕ (0,y,y,0) ⊕ (0,x ⊕
y,y,0)⊕ (0,0,y,y) = (x⊕ y,x⊕ y,y,y). So, we conclude that

gk

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N = (x,x,0,0)

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N

= (x⊕ y,x⊕ y,y,y)

= (x,x,0,0)⊕ (y,y,y,y) = gk ⊕ gi.

(6.29)

As an example, for N = 8, k = 8, and i = 15, the 8th and 15th rows of matrix

G4 are

g8 = (h8,0) = (x,x,0,0) = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

g15 = (h7,h7) = (y,y,y,y) = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0).

110

As i − k + 1 = 8, Shifting is based on the vector gi−k+1 =

(×, r2, · · · , rN/2, 1, r2, · · · , rN/2,0,0) = (×, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0). So

g8 ⊕ g15 = g8(C
1 ⊕ C2 ⊕ · · · ⊕ C7).

Case 5: k ≤ N , i = j +N , j ≤ k, and 1 ≤ j ≤ N/2 and k > N/2.

We have that N < i ≤ N + N/2 and 1 ≤ i − k + 1 ≤ N . The kth and the

ith rows of the matrix Gn+1 can be written as gk = (hk,0) = (x,x,0,0), and

gi = (hj,hj) = (y,0,y,0), respectively, where hk and hj are the corresponding

rows of the matrix GN , and x and y are corresponding rows of the matrix GN/2.

Also hk−N/2 = (x,0) and hi−N/2 = (y,y). By induction we have that

(x,0)
∑

1≤l≤N−1 s.t.
hi−k+1,l+1=1

C l
N = hk−N/2

∑
1≤l≤N−1 s.t.
gi−k+1,l+1=1

C l
N

= hk−N/2 ⊕ hi−N/2 = (x⊕ y,y).

(6.30)

As i− k + 1 ≤ N , gi−k+1 = (r,0).

From (6.30) we have that shifting (x,0,0,0) by (×, r2, · · · , rN ,0) is (x ⊕
y,y,0,0).

Also shifting (0,x,0,0) by (×, r2, · · · , rN ,0) is (0,x⊕ y,y,0).

By considering these two shifting together, the shifting of (x,x,0,0) by

(×, r2, · · · , rN ,0) is (x ⊕ y,y ⊕ (x ⊕ y),y,0) = (x ⊕ y,x,y,0). So we conclude

that

gk

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N = (x,x,0,0)

∑
1≤l≤N−1 s.t.
gi−k+1,l+1=1

C l
2N

= (x⊕ y,x,y,0)

= (x,x,0,0)⊕ (y,0,y,0) = gk ⊕ gi.

(6.31)

Case 6: k ≤ N , i = j +N , j ≤ k, and 1 ≤ j ≤ N/2 and k ≤ N/2.

We have that N < i ≤ N + N/2 and N/2 < i − k + 1 ≤ N . The kth and the

ith rows of the matrix Gn+1 can be written as gk = (hk,0) = (x,0,0,0), and

gi = (hj,hj) = (y,0,y,0), respectively, where hk and hj are the corresponding

111

rows of the matrix GN , and x and y are corresponding rows of the matrix GN/2.

Also hk = (x,0) and hi−N/2 = (y,y). By induction we have that

(x,0)
∑

1≤l≤N−1 s.t.
hi−N/2−k+1,l+1=1

C l
N = hk

∑
1≤l≤N−1 s.t.

hi−N/2−k+1,l+1=1

C l
N

= hk ⊕ hi−N/2 = (x⊕ y,y).

(6.32)

Note that 1 < i − N/2 − k + 1 ≤ N/2 and N/2 < i − k + 1 ≤ N . So

gi−k+1 = (r, r,0,0).

From (6.32), shifting (x,0,0,0) by gi−N/2−k+1 = (×, r2, · · · , rN/2,0,0,0) is

(x⊕ y,y,0,0).

Likewise, shifting (x,0,0,0) by (0, 1, r2, · · · , rN/2,0,0) is (0,x⊕ (x⊕y),y,0).

By considering these two shifting together, the shifting of (x,0,0,0) by

(×, r2, · · · , rN/2, 1, r2, · · · , rN/2,0,0) is (x⊕ y,0,y,0).

So we conclude that

gk

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N = (x,0,0,0)

∑
1≤l≤2N−1 s.t.
gi−k+1,l+1=1

C l
2N

= (x⊕ y,0,y,0)

= (x,0,0,0)⊕ (y,0,y,0) = gk ⊕ gi.

(6.33)

Assume that the matrix TN is an N ×N upper-triangular Toeplitz matrix and

that the elements on each diagonal of the matrix are same. We can see that

TN =
∑

m Dm
N for some values of m and by Theorem 3, Dm

NGn = Gn

∑
l C

l
N for

some values of l. Therefore, for a data word v,

vTNGn = v
∑
m

Dm
NGn = vGn

∑
s

Cs
N , (6.34)

where the second equality is by Theorem 3.

112

Assume that the data vector v has its first 1 at its ith location, i.e. vGn = g
i
,

where gi is the ith row of the matrix Gn. From (6.34) we have

w(vTNGn) = w(vGn

∑
s

Cs
N) = w(g

i

∑
s

Cs
N) ≥ w(gi), (6.35)

where the inequality is by Proposition 1. By noticing that the dmin of polar code

is the minimum row weight of GN,A, this proves that dmin for PAC codes is greater

than or equal to dmin for the polar code.

6.2 On the Weight Distribution of PAC Codes

For an (N,K) code with a weight distribution {A0 = 1, A1, A2, · · · , AN = 1}, the
union upper bound of the probability of error is

PE ≤
2K∑
k=2

Z(W)wk =
∑

wd≥dmin

AdZ(W)wd , (6.36)

where Z(W) is the Bhattacharyya parameter of the channel W , wk is the weight

of the codeword k, and dmin is the minimum non-zero codeword weight [34].

When the error is low, we can approximate the probability of error with the first

term of the upper bound as

PE ≈ Admin
Z(W)wdmin . (6.37)

There is an algebraic formula to calculate the weight distribution of second-order

binary (N,K) RM codes [62], and in the previous section we proved that a pre-

multiplication of an upper-triangular Toeplitz matrix to the polar codes generator

matrix, the minimum distance will not decrease.

By approximation of the error probability for low error rates in (6.37), de-

creasing Admin
is equivalent to improving the low error rate performance. In the

PAC codes, the pre-multiplication of the Toeplitz matrix tries to improve the

weight distribution of the code by summing the row i of the polar transformation

matrix with the rows below it. Our simulation results on the first 1200 nontrivial

113

connection polynomials show that for an RM(2, 5) code, pre-multiplication of a

Toeplitz matrix will result in 4 different weight distributions listed in Table 6.1,

where Di is the set of all connection polynomials with the weight distribution of

type i. Connection polynomial 3, 3165, and identity matrix are examples of D4.

The sets {7, 3253}, {13, 133, 3207}, and {1131, 3211} are connection polynomial

examples of D3, D2, and D1, respectively. From Table 6.1, it can be seen that a

good connection polynomial can decrease Admin
from 620 (for the RM(2, 5) codes)

to 236 (for the PAC(32, 16) codes).

We use the polynomials of D1 as the connection polynomials for the

PAC(128, 29) codes (corresponding to an RM(2, 7)). For RM(2, 7) codes, Admin
=

10668, while by using the connection polynomial 3211 in the PAC(128, 29) codes,

Admin
decreases to 324. A good choice of connection polynomial with improving

the weight distribution will result in better error-correction performance. The

effect of different connection polynomials on FER performance of PAC(128, 29)

codes is shown in Figure 6.1. All the connection polynomials used in this figure

result in almost the same ANV.

Table 6.1: Weight Distributions of the PAC(32, 16) codes with different polyno-
mial connections.

D1 D2 D3 D4

w A(w) w A(w) w A(w) w A(w)

0 1 0 1 0 1 0 1
8 236 8 364 8 492 8 620
10 3072 10 2048 10 1024 12 13888
12 3136 12 6720 12 10304 16 36518
14 21504 14 14336 14 7168 20 13888
16 9638 16 18598 16 27558 24 620
18 21504 18 14336 18 7168 32 1
20 3136 20 6720 20 10304
22 3072 22 2048 22 1024
24 236 24 364 24 492
32 1 32 1 32 1

114

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

F
E

R

poly-D4 = 3

poly-D3 = 7

poly-D2 = 133

poly-D1 = 1131

poly-D1 = 3211

RCU

Figure 6.1: PAC codes with different polynomials.

115

Chapter 7

Summary and Conclusions

From a practical standpoint, short block-length codes with a low complexity

and good error-correction probability are desirable. Over BI-AWGN channels,

PAC codes with sequential decoding [13] are shown to have an error-correction

performance close to the dispersion approximation. In this dissertation, we have

studied the error-correction and computational complexity performances of PAC

codes both from theoretical and experiential aspects. We studied stack, Fano,

and SCL decoding of PAC codes and provided an in-depth review of each.

Then, we studied the metric function of sequential decoding. We provided a

metric function for sequential decoding of PAC codes that employs bit-channel

mutual information and cutoff rate values as the bias. This benefits in a fa-

vorable trade-off between computational complexity and error-correction perfor-

mance. Additionally, we demonstrated that sequential decoding of PAC codes

has a Pareto distribution upper bound on its computational complexity when

bias values are smaller than the bit-channel cutoff rates. As a result, the proba-

bility of encountering a high level of computational complexity is negligible. Also

shown was the possibility for superior error-correction performance of the PAC

codes under sequential decoding compared to the 5G polar codes under CRC-

aided SCL decoding with similar computational complexity. The main drawback

of sequential decoding is its variable complexity. We addressed this problem by

116

introducing a bound on the complexity of sequential decoding.

The amount of computation of sequential decoding of PAC codes is a random

variable. We addressed the lower bound on the amount of computation by the

guessing technique and channel polarization approach, and we proved that for

the PAC codes, the computational cutoff rate polarizes. Additionally, we pre-

sented a technique for constructing rate profiles for PAC codes that allows for

a trade-off between decoding complexity and error-correction performance. This

approach tries to enhance the FER performance of PAC codes while ensuring a

low mean sequential decoding complexity above a predetermined SNR. In com-

parison to RM-Polar rate profiles, numerical results indicated that our proposed

rate profiles resulted in a 0.5 dB coding gain at FER = 10−3 for PAC(64, 32) and

PAC(256, 128) codes. Our suggested approach for constructing rate profiles can

be applied to any pre-transformed polar code by substituting the desired matrix

for the CC generator (Toeplitz) matrix.

In another line of investigation, we analyzed the optimal metric function of

the SCL decoding algorithm for polar and PAC codes. On average, the path

metric of the correct path should be equal to the sum of the bit-channel mutual

information, and the path metric of the incorrect branch can be no more than

0. We took advantage of this by introducing an approach to reject the erroneous

paths based on the departure of their path metric from the bit-channel mutual

information. This approach avoids sorting on many branches while causing no loss

in the FER performance. Moreover, we proposed a similar approach to the stack

algorithm based on the bit-metrics of the polarized channels. For the noiseless

bit channels, we proved that the bit-channel metric value should be zero for the

correct branch and −∞ for the wrong branch. This way, the decoding algorithm

can identify the incorrect branch and avoid adding it to the stack. This reduces

the needed stack size up to 90% in our simulation results. Additionally, we proved

that the probability of pruning the correct path exponentially approaches zero for

a threshold value smaller than the bit-channel cutoff rate, allowing us to suggest

a technique for determining the threshold value.

Finally, we investigated the weight distribution of PAC codes. We proved that

117

the summation of an odd number of clockwise cyclic shifts of any row of the matrix

F⊗n could not decrease the weight of that row. Also, we prove that summation

of a row of the matrix F⊗n with a row below it is equal to some clockwise cyclic

shifts of that row, and we used this to prove that the dmin for PAC codes is

greater than or equal to dmin for the polar codes. The weight distribution of linear

codes dictates the performance of ML decoding, which can be well estimated by

the union bound, particularly at high SNR values. This implies that PAC codes

outperform polar codes in terms of error-correction performance. We also studied

the impact of different connection polynomial c(x) on the performance of PAC

codes through its effect on the multiplicity Admin of minimum-distance codewords.

The simulation findings indicate that a good connection polynomial may result

in significantly better FER performances.

118

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell system

technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[2] E. Arıkan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[3] R. Gallager, “Low-density parity-check codes,” IRE Transactions on infor-

mation theory, vol. 8, no. 1, pp. 21–28, 1962.

[4] D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices,”

in IMA International Conference on Cryptography and Coding, pp. 100–111,

Springer, 1995.

[5] D. J. MacKay and R. M. Neal, “Near shannon limit performance of low

density parity check codes,” Electronics letters, vol. 32, no. 18, p. 1645,

1996.

[6] M. Sipser and D. A. Spielman, “Expander codes,” IEEE transactions on

Information Theory, vol. 42, no. 6, pp. 1710–1722, 1996.

[7] D. A. Spielman, “Linear-time encodable and decodable error-correcting

codes,” IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 1723–

1731, 1996.

119

[8] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-

correcting coding and decoding: Turbo-codes. 1,” in Proceedings of ICC’93-

IEEE International Conference on Communications, vol. 2, pp. 1064–1070,

IEEE, 1993.

[9] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on

Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[10] I. Dumer and K. Shabunov, “Recursive list decoding for Reed-Muller codes,”

arXiv preprint arXiv:1703.05304, 2017.

[11] I. Dumer, “On decoding algorithms for polar codes,” arXiv preprint

arXiv:1703.05307, 2017.

[12] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Commu-

nications Letters, vol. 16, no. 10, pp. 1668–1671, 2012.

[13] E. Arıkan, “From sequential decoding to channel polarization and back

again,” arXiv preprint arXiv:1908.09594, 2019.

[14] M. Moradi, “On sequential decoding metric function of polarization-

adjusted convolutional (PAC) codes,” IEEE Transactions on Communica-

tions, vol. 69, no. 12, pp. 7913–7922, 2021.

[15] M. Moradi and A. Mozammel, “A Monte-Carlo based construction

of polarization-adjusted convolutional (PAC) codes,” arXiv preprint

arXiv:2106.08118, 2021.

[16] J. M. Wozencraft, “Sequential decoding for reliable communication,” Tech.

Rep. 325, Research Laboratory of Electronics, MIT, Cambridge, 1957.

[17] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Transac-

tions on Information Theory, vol. 9, no. 2, pp. 64–74, 1963.

[18] K. Zigangirov, “Some sequential decoding procedures,” Problemy Peredachi

Informatsii, vol. 2, no. 4, pp. 13–25, 1966.

[19] F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM journal

of research and development, vol. 13, no. 6, pp. 675–685, 1969.

120

[20] A. Mozammel, “Hardware implementation of Fano decoder for polarization-

adjusted convolutional (PAC) codes,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 69, no. 3, pp. 1632–1636, 2022.

[21] J. M. Geist, “Algorithmic aspects of sequential decoding,” tech. rep., 1970.

[22] O. Shalvi, N. Sommer, and M. Feder, “Signal codes: Convolutional lattice

codes,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5203–

5226, 2011.

[23] B. Li, H. Zhang, and J. Gu, “On pre-transformed polar codes,” arXiv

preprint arXiv:1912.06359, 2019.

[24] H. Luo, G. Zhang, J. Wang, R. Li, Y. HuangFu, H. Zhang, Y. Chen, and

J. Wang, “Polar code transmission method and apparatus,” in US Patent

App, pp. 16/673,581, IEEE, 2020.

[25] M. Moradi and A. Mozammel, “Concatenated Reed-Solomon and

polarization-adjusted convolutional (PAC) codes,” arXiv preprint

arXiv:2106.08822, 2021.

[26] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based succes-

sive cancellation list decoding of polar codes,” IEEE Transactions on Signal

Processing, vol. 63, no. 19, pp. 5165–5179, 2015.

[27] H. Yao, A. Fazeli, and A. Vardy, “List decoding of Arıkan’s PAC codes,”

Preprints: 2021050235, 2021.

[28] M. Moradi, A. Mozammel, K. Qin, and E. Arikan, “Performance

and complexity of sequential decoding of PAC codes,” arXiv preprint

arXiv:2012.04990, 2020.

[29] S. Lin and D. J. Costello, Error control coding, vol. 2. New York: Prentice

hall, 2001.

[30] E. Arikan, “A performance comparison of polar codes and Reed-Muller

codes,” IEEE Communications Letters, vol. 12, no. 6, pp. 447–449, 2008.

121

[31] R. Mori and T. Tanaka, “Performance and construction of polar codes on

symmetric binary-input memoryless channels,” in 2009 IEEE International

Symposium on Information Theory, pp. 1496–1500, 2009.

[32] D. Wu, Y. Li, and Y. Sun, “Construction and block error rate analysis of

polar codes over AWGN channel based on Gaussian approximation,” IEEE

Communications Letters, vol. 18, no. 7, pp. 1099–1102, 2014.

[33] B. Li, H. Shen, and D. Tse, “A RM-polar codes,” arXiv preprint

arXiv:1407.5483, 2014.

[34] R. G. Gallager, Information theory and reliable communication, vol. 2. New

York: Wiley, 1968.

[35] A. Viterbi, “Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm,” IEEE Transactions on Information Theory,

vol. 13, no. 2, pp. 260–269, 1967.

[36] G. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3,

pp. 268–278, 1973.

[37] A. J. Viterbi and J. K. Omura, Principles of digital communication and

coding. New York: McGraw-Hill, 1979.

[38] I. M. Jacobs and J. Wozencraft, Principles of communication engineering.

New York: John Wiley and Sons, 1965.

[39] M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolutional

(PAC) codes: Sequential decoding vs list decoding,” IEEE Transactions on

Vehicular Technology, vol. 70, no. 2, pp. 1434–1447, 2021.

[40] M.-O. Jeong and S.-N. Hong, “SC-Fano decoding of polar codes,” IEEE

Access, vol. 7, pp. 81682–81690, 2019.

[41] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics letters,

vol. 48, no. 12, pp. 695–697, 2012.

122

[42] P. Trifonov, “A score function for sequential decoding of polar codes,” in 2018

IEEE International Symposium on Information Theory (ISIT), pp. 1470–

1474, IEEE, 2018.

[43] J. Massey, “Variable-length codes and the Fano metric,” IEEE Transactions

on Information Theory, vol. 18, no. 1, pp. 196–198, 1972.

[44] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite

blocklength regime,” IEEE Transactions on Information Theory, vol. 56,

no. 5, pp. 2307–2359, 2010.

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

algorithms. MIT press, 2009.

[46] N. Sommer, M. Feder, and O. Shalvi, “Closest point search in lattices using

sequential decoding,” in Proceedings. International Symposium on Informa-

tion Theory, 2005. ISIT 2005., pp. 1053–1057, IEEE, 2005.

[47] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross,

“Hardware implementation of successive-cancellation decoders for polar

codes,” Journal of Signal Processing Systems, vol. 69, no. 3, pp. 305–315,

2012.

[48] P. Trifonov, “Performance and complexity of the sequential successive can-

cellation decoding algorithm,” arXiv preprint arXiv:2012.08139, 2020.

[49] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity im-

proved successive cancellation decoder for polar codes,” in 2014 48th Asilo-

mar Conference on Signals, Systems and Computers, pp. 2116–2120, IEEE,

2014.

[50] S. Seyedmasoumian and T. M. Duman, “Approximate weight distribu-

tion of polarization-adjusted convolutional (PAC) codes,” arXiv preprint

arXiv:2202.12885, 2022.

[51] S. K. Mishra, D. Katyal, and S. A. Ganapathi, “A modified Q-learning algo-

rithm for rate-profiling of polarization adjusted convolutional (PAC) codes,”

arXiv preprint arXiv:2110.01563, 2021.

123

[52] T. Tonnellier and W. J. Gross, “On systematic polarization-adjusted con-

volutional (PAC) codes,” IEEE Communications Letters, vol. 25, no. 7,

pp. 2128–2132, 2021.

[53] S. K. Mishra, D. Katyal, and S. A. Ganapathi, “A heuristic algorithm for

rate-profiling of polarization adjusted convolutional (PAC) codes,” 2021.

[54] E. Arıkan, “An inequality on guessing and its application to sequential decod-

ing,” IEEE Transactions on Information Theory, vol. 42, no. 1, pp. 99–105,

1996.

[55] J. L. Massey, “Guessing and entropy,” in Proceedings of 1994 IEEE Inter-

national Symposium on Information Theory, p. 204, IEEE, 1994.

[56] E. Arıkan, “On the origin of polar coding,” IEEE journal on Selected Areas

in Communications, vol. 34, no. 2, pp. 209–223, 2015.

[57] M. Moradi, “On the metric and computation of PAC codes,” arXiv preprint

arXiv:2012.05511, 2020.

[58] T. Richardson and R. Urbanke, Modern coding theory. Cambridge university

press, 2008.

[59] K. Chen, K. Niu, and J. Lin, “A reduced-complexity successive cancella-

tion list decoding of polar codes,” in 2013 IEEE 77th Vehicular Technology

Conference (VTC Spring), pp. 1–5, 2013.

[60] K. Chen, B. Li, H. Shen, J. Jin, and D. Tse, “Reduce the complexity of list

decoding of polar codes by tree-pruning,” IEEE Communications Letters,

vol. 20, no. 2, pp. 204–207, 2016.

[61] H. Luo, G. Zhang, A. Maevskiy, V. Gritsenko, Y. Zhou, Y. Chen, R. Li,

Y. Ge, J. Wang, and J. Wang, “Analysis and application of permuted polar

codes,” in 2018 IEEE Global Communications Conference (GLOBECOM),

pp. 1–5, IEEE, 2018.

[62] N. Sloane and E. Berlekamp, “Weight enumerator for second-order Reed-

Muller codes,” IEEE Trans. Inf. Theory, vol. 16, no. 6, pp. 745–751, 1970.

124

	Introduction
	Organization of the Dissertation
	Notation

	Polar and PAC Codes
	Polar Codes and SC Decoding
	On the Construction of Polar Codes
	PAC codes
	List Decoding

	Sequential Decoding of Convolutional Codes
	Convolutional Codes
	Stack Algorithm
	Fano Algorithm

	Sequential Decoding of PAC Codes

	On the Metric Function and Complexity of Sequential Decoding
	Metric Function
	Results for Computational Complexity and Error-Correcting Performance
	Bounded Complexity Sequential Decoder
	Distribution of Computational Complexity
	Sequential Decoding of PAC Codes Using Heap Data Structure
	Data Structure
	Heap Sequential Decoding Algorithm
	Simulation Results

	Computational Complexity of Sequential Decoding of PAC Codes
	Application of Guessing to Sequential Decoding of PAC codes
	Upper Bound Estimation on the Distribution of Computation for Sequential Decoding

	SCL and Stack Decoding for Polarized Channels
	Path Metric Function for SCL Decoder
	Improving SCL Decoding for Polarized Channels
	Improving Stack (Heap) Decoding for Polarized Channels
	Dynamic Threshold

	Weight Distribution of PAC Codes
	PAC Codes v. Polar Codes
	On the Weight Distribution of PAC Codes

	Summary and Conclusions

