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A B S T R A C T

Lubricants can exhibit significant viscoelastic effects due to the addition of high molecular weight polymers.
The overall behavior of the mixture is vastly different from a simpler Newtonian fluid. Therefore, understating
the influence of viscoelasticity on the load carrying capacity of the film is essential for lubricated contacts.
A new modeling technique based on lubrication theory is proposed to take into account viscoelastic effects.
As a result, we obtain a modified equation for the pressure, i.e. the viscoelastic Reynolds (VR) equation. We
have first examined a parabolic slider to mimic a roller bearing configuration. An increase of the load carrying
capacity is observed when polymers are added to the lubricant. Furthermore, our results are compared with
existing models based on the lubrication approximation and direct numerical simulations (DNS). For small
Weissenberg number (𝑊 𝑖), i.e. the ratio between the polymer relaxation time and the residence time scale,
VR predicts the same pressure of the linearized model, in which 𝜖𝑊 𝑖 is the perturbation parameter (𝜖 is the
ratio between the vertical length scale and the horizontal length scale). However, the difference grows rapidly
as viscoelastic effects become stronger. Excellent quantitative and qualitative agreement is observed between
DNS and our model over small to moderate Weissenberg number. While DNS is numerically unstable at high
values of the Weissenberg number, VR does not have the same issue allowing to capture the evolution of the
stress and pressure also when the viscoelastic effects are strong. It is shown that even in high shear flows,
normal stresses have the largest impact on load carrying capacity and thus cannot be neglected. Furthermore,
the additional pressure due to viscoelasticity comprises two components, the first one due to the normal stress
and the second one due to the shear stress. Afterwards, the methodology used for the parabolic slider is
extended to a plane slider where, instead, the load decreases by adding polymers to the fluid. In particular,
under the effect of the polymers surface slopes enhance the rate at which pressure gradients increase, whereas
curvature opposes this along the contact. Therefore, the increase of the load carrying capacity observed for
viscoelastic lubricants is due to its shape close to the inlet, which is steeper than the plane slider.
. Introduction

Lubrication is essential for the proper functioning of the mechanical
omponents susceptible to degradation due to friction and wear. Sur-
ace friction is in general an undesirable effect and leads to an excessive
nergy consumption. Additionally, excessive loading of surfaces leads
o unwanted contact between the sliding surfaces and possibly failure.
herefore, lubricants are carefully designed and selected in order to
atisfy the load carrying capacity and other aspects specific to their
pplication. Lubrication theory and models used to evaluate pressure,
tress and velocity in lubricated contacts have evolved greatly over
he years. While Newtonian lubricants are rather well understood
nder lubrication theory primarily because the underlying governing
quations are well defined [1,2], more complex non-linear rheological
ffects still need to be fully unveiled, such as the variation of viscosity
gainst pressure and temperature or non-Newtonian effects.
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The addition of polymers as viscous enhancers in lubricants to in-
crease the load carrying capacity is a common practice. However strong
non-Newtonian effects can occur due to this addition. For instance
polymeric lubricants were observed to present shear thinning effects [3,
4]. Another important non-Newtonian effect related with polymers is
viscoelasticity, which in the Tribology community has received much
less attention than shear thinning. It can manifest strongly in polymeric
lubricants if the Weissenberg number (𝑊 𝑖), i.e the ratio between the
polymer relaxation time and polymer deformation time scale, is large
enough. There is ample experimental and numerical evidence that load
enhancement occurs due to the elasticity of the lubricant [5,6]. The
general focus in lubrication has been towards shear thinning effects as
a result of the large shear stresses but evidences also suggest that the
normal stress gradients cannot be neglected [7,8].
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The continuum description of the polymers provides both explicit
and implicit constitutive equations that can capture the transport of
polymeric stress. For example, an explicit model is the Oldroyd-B
constitutive equation [9]. This model assumes constant viscosity and
describes the transport via a convective–derivative. Non-linear con-
stitutive models include Phan–Thien–Tanner (PTT) [10,11] and FENE
type models [12,13] for example. These models are able to predict
a wide range of phenomena associated with viscoelasticity, ranging
from the onset of so-called elastic instabilities [14] to the polymers
influence on turbulence transition [15]. However, there is a need of
robust numerical methods to solve the equations coupled with these
constitutive relations.

The most reliable continuum based solutions to the viscoelastic
problem will come from the direct numerical solution of the Navier–
Stokes equations coupled non-linearly with a valid constitutive relation.
Unfortunately a strong non-linear instability, not immediately notice-
able from the governing equations, appears. The problem is termed
as the high Weissenberg number problem (HWNP) and it emerges as
soon as 𝑊 𝑖 becomes large. There is no strict mathematical definition
of ‘large’ and it varies based on the nature of the problem. One of the
reasons postulated for this instability is the failure of the polynomial
based numerical schemes to accurately capture the exponential gradi-
ents of stress [16]. A direct result of which is that the conformation
tensor ceases to remain symmetric positive definite (SPD). This failure
leads to a larger growth rate of the stress and the inability of the
advective terms to remove stress effectively. Therefore, numerically we
have a net accumulation of stress which inhibits convergence. The first
remedy was offered by a transformation of the conformation tensor into
a logarithmic variable that converts the ordinary polynomial difference
schemes to an exponential one. The approach is termed as the Log-
Conformation-Representation (LCR) [16]. Higher order schemes can
be constructed and applied via the LCR [17] and different spatial
discretization techniques are also possible [18]. The first open source
implementation was made available in OpenFoam [19] by Habla et al.
[20]. Details regarding the efficiency of the numerical schemes, dis-
cretization and performance metrics can be found in the original work
of the authors.

Due to this numerical complexity, only simplified models are avail-
able in literature for lubricated contacts in which the necessary as-
sumptions restrict their use to weakly viscoelastic lubricants. The first
non-linear approach towards viscoelasticity in thin lubricating films
under pure rolling was conducted by Dowson [21] who derived a
generalized Reynolds (GR) equation. This model had the capacity to
include several rheological phenomena. Later it was shown that the
model can be greatly simplified under certain assumptions and coupled
with upper convective Maxwell [22,23]. Firstly, the normal stress of the
polymers was neglected in the momentum equations and only effects
due to shear stresses were considered. This is well suited for a shear
thinning fluid where it is assumed that viscosity becomes very small for
high shear rates. Secondly, if the surface slope is small, then only the
material derivative of the stress bears importance. The first GR-based
study to understand viscoelasticity in lubrication was by Peiran and
Shizhu [24] followed by Wolff and Kubo [25]. However, their analyses
were coupled with thermal and shear thinning effects. Although GR can
accurately describe effects that vary along the film thickness such as
viscosity dependence on temperature and shear stress, there is no con-
clusive evidence about its usefulness for purely viscoelastic cases. Other
similar constraints on the constitutive relations involved truncating all
the spatial differential operators entirely and only retaining the time
derivative only albeit under very specific conditions of low polymer
relaxation time and high shear rates [26]. An alternative formulation
for PTT was proposed by Akyildiz and Bellout [27] in which the normal
stress is not neglected. However in their model, they omit completely
the material derivative in the polymer constitutive equations retrieving
2

that the shear stress is linear along the wall-normal direction (as in GR).
The first linearized viscoelastic model for lubrication under pure
sliding was developed by Tichy [28]. The starting point for such an
approach is the reduced set of momentum equations obtained via the
thin film approximation. A key point to note is that normal stresses
are retained and the scaling factors under the thin film approximation
are obtained from the constitutive relation. The velocity and pressure
fields are up to the first order by using the Deborah number, i.e. the
ratio between the polymer relaxation time and residence time, as
perturbation parameters [29–31]. Note that the Deborah number is
related to the Weissenberg number, for the lubricated contact by the
thin film parameter 𝜖 = ℎ0

𝓁
, i.e. 𝐷𝑒 = 𝜖𝑊 𝑖, where ℎ0 and 𝓁 are the

ertical and horizontal length scales, respectively. Li [32] also found
he second order solution in the thin film parameter. This expansion in
𝑒, after some simplifications and algebraic manipulations, gives the
𝑒-order velocity and pressure fields. Additionally, linearized solutions
rove highly useful in analyzing different constitutive laws such as PTT
r FENE-P [33] which are generally non-linear in the stress.

While the linearized models can be accurate only at low 𝑊 𝑖, the
ssumptions made in GR to simplify the equations in order to avoid
umerical instabilities are too strict. This limits the range of parameters
n which accurate results are obtained to a narrow region. Therefore
here is a need of models that are (i) able to describe the non-linear
ehavior of viscoelastic lubricants in pure sliding contacts at moderate
nd large Weissenberg numbers without omitting any terms in the
olymer constitutive equations (as in GR or in Akyildiz and Bellout
27]) and (ii) flexible enough to account for changes in the constitutive
quation. In this study, we address this issue by proposing a new
pproach based on the fundamental lubrication theory. The paper is
rganized as follows, in Section 2 we briefly describe the available
odels and introduce a new model, i.e. the viscoelastic Reynolds (VR)

quation. In Section 3 we compare VR against existing models and the
irect numerical simulation (DNS) in modeling a parabolic slider, while
n Section 4 we extend the analysis to a plane slider. Section 5 presents

discussion regarding the contrasting results between the parabolic
nd plane slider. Finally, conclusions are drawn in Section 6 based on
ur findings.

. Models

This section is organized as follows. We will first introduce the thin
ilm equations for viscoelastic lubrication in Section 2.1. Afterwards
e describe the channel geometry in Section 2.2. In Section 2.3, a

ummary of the available models is presented, while in Section 2.4 we
riefly illustrate the methodology behind the direct numerical simula-
ions of viscoelastic lubricants. Finally, in Section 2.5 we describe the
iscoelastic Reynolds equation developed in this paper.

.1. Lubrication theory

We will start with the dimensional Navier–Stokes equations coupled
ith the Oldroyd-B constitutive equation for the polymers,

⋅ u∗ = 0, (1a)
𝐷
𝐷𝑡

(u∗) = −∇𝑝∗ + 𝜂𝑠∇2u∗ + ∇ ⋅ 𝝉∗ and (1b)

∗ + 𝜆
(

𝐷𝝉∗
𝐷𝑡∗

− L∗𝝉∗ − 𝝉∗L∗𝑇
)

= 2𝜂𝑝D∗, (1c)

where 𝑡∗ is the time, 𝐮∗(𝑢∗, 𝑣∗) is the velocity vector, 𝑝∗ is the scalar
pressure, 𝜂𝑠 is the solvent viscosity, 𝝉∗ is the polymeric stress tensor,
𝜂𝑝 is the polymer viscosity, 𝐋∗ is the velocity gradient tensor, 𝐃∗ is the
deformation tensor and 𝜆 is the polymer relaxation time. Note that the
𝑥∗ and 𝑦∗ represent the horizontal and vertical directions, respectively.

In this work we assume that the entrance height of the channel
ℎ0 is smaller than its length 𝓁 (ℎ0 ≪ 𝓁). For this reason we can

use a thin film approximation to simplify the governing equations.
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The appropriate non-Newtonian scaling factors are obtained from the
constitutive relation [28,34],

𝑥 = 𝑥∗

𝓁
, 𝑦 = 𝑦∗

ℎ0
, 𝑢 = 𝑢∗

𝑈 ,

𝑣 = 𝑣∗

𝜖𝑈 , 𝜖 = ℎ0
𝓁
, 𝑡 = 𝑡∗ 𝑈

ℎ0
,

𝜏𝑥𝑥 = 𝜏∗𝑥𝑥
ℎ20

(𝜂𝑠+𝜂𝑝)𝑈𝓁
, 𝜏𝑥𝑦 = 𝜏∗𝑥𝑦

ℎ0
(𝜂𝑠+𝜂𝑝)𝑈

,

𝜏𝑦𝑦 = 𝜏∗𝑦𝑦
𝓁

(𝜂𝑠+𝜂𝑝)𝑈
, 𝑝 = (𝑝∗ − 𝑝0)

ℎ20
(𝜂𝑠+𝜂𝑝)𝑈𝓁

,

(2)

here 𝑈 is the reference velocity. Note that the flow time scale is
easured using the vertical length scale ℎ0 instead of the horizontal

ength scale 𝓁 as in previous studies [27,28]. The definition of the
imensionless scalar components of the polymer stress is commonly
ound in literature pertaining to viscoelastic thin films [35]. We sub-
titute the scaling defined in Eq. (2) into the governing equations (Eqs.
1)) and eliminate the terms on the order of 𝑂(𝜖2) to obtain the thin

film equations,
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (3a)

𝜕𝑝
𝜕𝑥

= 𝛽 𝜕
2𝑢

𝜕𝑦2
+

𝜕𝜏𝑥𝑦
𝜕𝑦

+
𝜕𝜏𝑥𝑥
𝜕𝑥

, (3b)

𝜕𝑝
𝜕𝑦

= 0, (3c)

𝜏𝑥𝑥 + 𝜖𝑊 𝑖
(

𝐷𝜏𝑥𝑥
𝐷𝑡

− 2𝜏𝑥𝑦
𝜕𝑢
𝜕𝑦

− 2𝜏𝑥𝑥
𝜕𝑢
𝜕𝑥

)

= 0, (3d)

𝜏𝑥𝑦 + 𝜖𝑊 𝑖
(𝐷𝜏𝑥𝑦

𝐷𝑡
− 𝜏𝑦𝑦

𝜕𝑢
𝜕𝑦

− 𝜏𝑥𝑥
𝜕𝑣
𝜕𝑥

)

= (1 − 𝛽) 𝜕𝑢
𝜕𝑦

, (3e)

𝜏𝑦𝑦 + 𝜖𝑊 𝑖
(𝐷𝜏𝑦𝑦

𝐷𝑡
− 2𝜏𝑥𝑦

𝜕𝑣
𝜕𝑥

− 2𝜏𝑦𝑦
𝜕𝑣
𝜕𝑦

)

= 2(1 − 𝛽) 𝜕𝑣
𝜕𝑦

, (3f)

where 𝑊 𝑖 = 𝜆𝑈∕ℎ0 and 𝛽 = 𝜂𝑠∕(𝜂𝑠 + 𝜂𝑝) is the solvent viscosity
concentration. Note that in this paper if not specified otherwise we set
𝛽 = 0.8. We would like to emphasize that the terms on the 𝜖𝑊 𝑖-order
cannot be eliminated since we assume that the Weissenberg number is
large [27]. Finally, in this paper we will focus on the final steady-state
solution.

2.2. Geometry

In this study, we focus on two particular geometries: (i) a parabolic
slider and (ii) a plane slider, see Fig. 1a and Fig. 1b, respectively. We
choose a parabolic surface because is common for contact problems in
tribological applications since it represents a good approximation of
the contact region in bearings, gears and mechanical components in
general. The non-dimensional surface height for the parabolic slider is
defined by,

ℎ(𝑥) = 4(1 − 𝛼)𝑥2 + 4(𝛼 − 1)𝑥 + 1, (4)

where 𝛼 = ℎ𝑚𝑖𝑛∕ℎ𝑚𝑎𝑥 denotes the aspect ratio, i.e. the ratio of the
minimum and maximum height within the channel. We assume the
parabolic slider is externally pressurized and cavitation does not occur
in the diverging portion of the channel. The plane slider approximates a
thrust pad which is important for heavy machinery in several industrial
applications. Its surface height is defined by

ℎ(𝑥) = 1 − (1 − 𝛼)𝑥. (5)

For both geometries the top surface is stationary while the bottom
surface is moving. Since there is no vertical motion of the top or bottom
surface, our configuration is described as pure sliding. Note that we
have chosen the velocity of the lower boundary as reference velocity,
i.e 𝑢(𝑥, 0) = 1.

There is a general debate regarding the appropriate set of pressure
boundary conditions in the viscoelastic limit for lubricated contacts.
Arguments available in literature suggest imposing conditions on the
3

total stress tensor, rather than just the pressure. We refer the reader to
the discussion available in Tanner [36], Tichy and Bou-Saïd [37] and,
with more details, in Sawyer and Tichy [38].

In our work, the pressure at the boundaries of the film is expressed
as a combination of the normal stresses

𝑝∗ = 𝜃(𝜏∗𝑥𝑥 − 𝜏∗𝑦𝑦), (6)

here 𝜃 is a dimensionless scalar so that 0 ≤ 𝜃 ≤ 1. Substituting in
q. (6) the scaling factors of Eq. (2) we obtain

= 𝜃(𝜏𝑥𝑥 − 𝜖2𝜏𝑦𝑦). (7)

or small 𝜖, (7) becomes 𝑝 = 𝜃𝜏𝑥𝑥. Thus, it is equivalent to set the
ressure equal to a linear function in 𝜃 of the normal stress along the
low direction. However, we must use the average stress 𝜏𝑥𝑥 = ∫ ℎ

0 𝜏𝑥𝑥𝑑𝑦,
ince the pressure cannot vary across the channel at any 𝑥 (see Eq. (3c)).
herefore, we set at the film boundaries

= 𝜃𝜏𝑥𝑥. (8)

There are two limiting cases for the boundary conditions depending
n the value of 𝜃

1. 𝜃 = 0. This case corresponds to set the pressure equal to the
Newtonian boundary condition

𝑝 = 0. (9)

In this scenario we assume that the film is Newtonian at two
extremities. For this reason we refer to Eq. (9) as the New-
tonian boundary condition. Note that Eq. (9) is equivalent to
what Sawyer and Tichy [38] call the load carrying boundary
condition.

2. 𝜃 = 1. In this case we set the average normal stress along the
flow direction equal to the pressure

𝑝 = 𝜏𝑥𝑥. (10)

We refer to Eq. (10) as the normal stress boundary condition.

e would like to highlight that the most appropriate range of values of
is not known. The two limiting cases (i.e Newtonian and the normal

tress boundary conditions) are clearly contrasting and give different
esults. However, it is not the aim of this study to discuss the validity
f these boundary conditions leaving it as potential future work.

.3. Available models

There are two simplified models available for viscoelastic lubri-
ants: (i) the generalized Reynolds equation (see Section 2.3.1) and (ii)
he linearized viscoelastic Reynolds equation (see Section 2.3.2). We
resent a modified version of the two models since we use Oldroyd-
as constitutive equation, whereas the previous works focused on

he upper-convected Maxwell (UCM) model. The difference is that the
olvent viscosity concentration 𝛽 is taken into account in our modified
pproach.

.3.1. Generalized Reynolds equation (GR)
More details regarding the explicit derivation of GR can be found

n Wolff and Kubo [25] for a general flow across a thin lubricated
ontact. We obtain the parent equations that are used to derive GR from
qs. (3a)–(3f) by assuming that 𝜏𝑥𝑥 = 0 and 𝜏𝑦𝑦 = 0. We present the final
orm in terms of the solvent viscosity concentration 𝛽,

𝑑
𝑑𝑥

(

ℎ3

12
𝑑𝑝
𝑑𝑥

)

= 1
2
𝑑ℎ
𝑑𝑥

+ 𝜖𝑊 𝑖 𝑑
𝑑𝑥

(

−∫

ℎ

0

𝑦
ℎ ∫

ℎ

0

𝐷𝜏𝑥𝑦
𝐷𝑡

𝑑𝑦′𝑑𝑦 + ∫

ℎ

0 ∫

𝑦

0

𝐷𝜏𝑥𝑦
𝐷𝑡

𝑑𝑦′𝑑𝑦
)

, (11a)

𝜏𝑥𝑦 + 𝜖𝑊 𝑖
𝐷𝜏𝑥𝑦
𝐷𝑡

= (1 − 𝛽) 𝜕𝑢
𝜕𝑦

, (11b)

𝐷𝜏𝑥𝑦 =
𝜕𝜏𝑥𝑦 + 𝑢

𝜕𝜏𝑥𝑦 . (11c)

𝐷𝑡 𝜕𝑡 𝜕𝑥
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Fig. 1. (a) The parabolic slider for 𝛼 = 0.5 and (b) the plane slider for 𝛼 = 0.6.
w
d

ℎ

able 1
he boundary conditions for the (i) velocity, (ii) pressure and (iii) polymer stress
pplied to the GR. N/A stands for not applicable. Note that for GR we are forced
o use the Newtonian boundary condition for the pressure at the film extremities since
𝑥𝑥 is neglected.
Boundary 𝑥 = 0 𝑥 = 1 𝑦 = 0 𝑦 = ℎ(𝑥)

𝑝 𝑝 = 0 𝑝 = 0 N/A N/A
u N/A N/A u = (1, 0) u = (0, 0)
𝝉 (∇𝝉) ⋅ n = 0 (∇𝝉) ⋅ n = 0 N/A N/A

Table 1 summarizes the boundary conditions for the pressure and the
stress for GR. Note that GR requires an update to the horizontal velocity
field at each time step.

2.3.2. Linearized viscoelastic Reynolds equation (LIN)
The linearized model is derived via a perturbation analysis. The

scalar components of 𝐮 and 𝝉, and 𝑝 are expressed in terms of a
erturbation in 𝜖𝑊 𝑖,

𝑢 = 𝑢(0) + 𝜖𝑊 𝑖 𝑢(1) + 𝜖2𝑊 𝑖2 𝑢(2) + 𝑂(𝜖3𝑊 𝑖3), (12a)

𝑣 = 𝑣(0) + 𝜖𝑊 𝑖 𝑣(1) + 𝜖2𝑊 𝑖2 𝑣(2) + 𝑂(𝜖3𝑊 𝑖3), (12b)

𝑝 = 𝑝(0) + 𝜖𝑊 𝑖 𝑝(1) + 𝜖2𝑊 𝑖2 𝑝(2) + 𝑂(𝜖3𝑊 𝑖3), (12c)

𝜏𝑥𝑥 = 𝜏(0)𝑥𝑥 + 𝜖𝑊 𝑖 𝜏(1)𝑥𝑥 + 𝜖2𝑊 𝑖2 𝜏(2)𝑥𝑥 + 𝑂(𝜖3𝑊 𝑖3), (12d)

𝜏𝑥𝑦 = 𝜏(0)𝑥𝑦 + 𝜖𝑊 𝑖 𝜏(1)𝑥𝑦 + 𝜖2𝑊 𝑖2 𝜏(2)𝑥𝑦 + 𝑂(𝜖3𝑊 𝑖3), (12e)

𝜏𝑦𝑦 = 𝜏(0)𝑦𝑦 + 𝜖𝑊 𝑖 𝜏(1)𝑦𝑦 + 𝜖2𝑊 𝑖2 𝜏(2)𝑦𝑦 + 𝑂(𝜖3𝑊 𝑖3). (12f)

The perturbed variables (Eqs. (12a)–(12f)) are substituted in the thin
film Eqs. (3a)–(3f). We obtain explicit equations for the leading order
velocity, pressure and stress components

𝑢(0) = 1
2
𝑑𝑝(0)

𝑑𝑥
(

𝑦2 − 𝑦ℎ
)

+
(

1 −
𝑦
ℎ
)

, (13a)

𝑣(0) = 𝑑ℎ
𝑑𝑥

(

2 − 3
ℎ𝑚
ℎ

)( 𝑦3

ℎ3
−

𝑦2

ℎ2
)

(13b)

𝑑
𝑑𝑥

(

1
12

𝑑𝑝(0)

𝑑𝑥

)

= 𝑑ℎ
𝑑𝑥

, (13c)

(0)
𝑥𝑥 = 0, (13d)

(0)
𝑥𝑦 = (1 − 𝛽) 𝜕𝑢

(0)

𝜕𝑦
, (13e)

(0)
𝑦𝑦 = 2(1 − 𝛽) 𝜕𝑣

(0)

𝜕𝑦
. (13f)

The first order velocity, pressure and stress components are

𝑢(1) = 1 𝑑𝑝(1) (
𝑦2 − 𝑦ℎ

)

+ 1 𝑑ℎ
(

1 − 3
ℎ𝑚

)(

2 − 3
ℎ𝑚

)

(

𝑦2 − 𝑦ℎ
)

, (14a)
4

2 𝑑𝑥 ℎ 𝑑𝑥 ℎ ℎ
𝑣(1) = 1
2
𝑑2𝑝(1)

𝑑𝑥2

(

𝑦3

3
−

𝑦2ℎ
2

)

+ 1
2
𝑑𝑝(1)

𝑑𝑥

(

𝑦3

3
−

𝑦2

2
𝑑ℎ
𝑑𝑥

)

{

1
ℎ
𝑑2ℎ
𝑑𝑥2

(

1 − 3
ℎ𝑚
ℎ

)(

2 − 3
ℎ𝑚
ℎ

)

− 1
ℎ2

(

𝑑ℎ
𝑑𝑥

)2(

1 − 3
ℎ𝑚
ℎ

)

×
(

2 − 3
ℎ𝑚
ℎ

) } (

𝑦3

3
−

𝑦2ℎ
2

)

+ 9
ℎ
𝑑ℎ
𝑑𝑥

{(

ℎ𝑚
ℎ2

𝑑ℎ
𝑑𝑥

)(

1 − 2
ℎ𝑚
ℎ

)}(

𝑦3

3
−

𝑦2ℎ
2

)

(14b)

+ 1
ℎ
𝑑ℎ
𝑑𝑥

(

1 − 3
ℎ𝑚
ℎ

)(

2 − 3
ℎ𝑚
ℎ

)(

𝑦3

3
−

𝑦2

2
𝑑ℎ
𝑑𝑥

)

𝑑
𝑑𝑥

(

ℎ3

12(1 − 𝛽)
𝑑𝑝(1)

𝑑𝑥

)

= 1
ℎ

(

𝑑ℎ
𝑑𝑥

)2(

3
ℎ2𝑚
ℎ2

− 3
2
ℎ𝑚
ℎ

)

+ 𝑑2ℎ
𝑑𝑥2

(

−1
3
− 3

2
ℎ2𝑚
ℎ2

+ 3
2
ℎ𝑚
ℎ

)

, (14c)

𝜏(1)𝑥𝑥 = 2𝜏(0)𝑥𝑦
𝜕𝑢(0)

𝜕𝑦
, (14d)

𝜏(1)𝑥𝑦 = −
(

𝑢(0)
𝜕𝜏(0)𝑥𝑦

𝜕𝑥
+ 𝑣(0)

𝜕𝜏(0)𝑥𝑦

𝜕𝑦
− 𝜏(0)𝑦𝑦

𝜕𝑢(0)

𝜕𝑦

)

+ (1 − 𝛽) 𝜕𝑢
(1)

𝜕𝑦
, (14e)

𝜏(1)𝑦𝑦 = −
(

𝑢(0)
𝜕𝜏(0)𝑦𝑦

𝜕𝑥
+ 𝑣(0)

𝜕𝜏(0)𝑦𝑦

𝜕𝑦
− 2𝜏(0)𝑥𝑦

𝜕𝑣(0)

𝜕𝑥
− 2𝜏(0)𝑦𝑦

𝜕𝑣(0)

𝜕𝑦

)

+ 2(1 − 𝛽) 𝜕𝑣
(1)

𝜕𝑦
,

(14f)

here ℎ𝑚 is the height at the location of maximum pressure and is
efined as

𝑚 =
∫ 1
0 ℎ−2𝑑𝑥

∫ 1
0 ℎ−3𝑑𝑥

. (15)

For further details the reader is referred to Tichy [28] and Li [32]. The
boundary conditions for Eq. (14c) are 𝑝(1) = 𝜃𝜏𝑥𝑥 at 𝑥 = 0 and 𝑥 = 1.
Note that LIN provides the steady state solution.

2.3.3. Numerical method for GR and LIN
We summarize the numerical method used to solve GR (Eq. (11a))

and LIN (Eq. (14c)). The ordinary differential equation for pressure
appearing in both models can be generalized as
𝑑
𝑑𝑥

(

𝛿
𝑑𝑝
𝑑𝑥

)

= 𝑓, (16)

where 𝛿 and 𝑓 are functions defined in Table 2. We discretize the
differential operators via a cell centered finite difference method and
use a central difference approximation. The right hand side is either
a known function of 𝑥 or can be discretized via a central difference
scheme as well. The discretized equations take the form then
𝑊𝑖−1𝑝𝑖−1 + 𝐶𝑖𝑝𝑖 + 𝐸𝑖+1𝑝𝑖+1 = 𝑓𝑖, (17)
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Table 2
The functions appearing on the left hand side (𝛿) and right hand side (𝑓 ) of the GR
and the LIN models.

Model 𝛿 𝑓

GR ℎ3

12
1
2

𝑑ℎ
𝑑𝑥

+ 𝜖𝑊 𝑖 𝑑
𝑑𝑥

(

− ∫ ℎ
0

𝑦
ℎ
∫ ℎ
0

𝐷𝜏𝑥𝑦
𝐷𝑡

𝑑𝑦′𝑑𝑦 + ∫ ℎ
0 ∫ 𝑦

0
𝐷𝜏𝑥𝑦
𝐷𝑡

𝑑𝑦′𝑑𝑦
)

LIN ℎ3

12(1−𝛽)
1
ℎ

(

𝑑ℎ
𝑑𝑥

)2(

3 ℎ2
𝑚

ℎ2 − 3
2

ℎ𝑚

ℎ

)

+ 𝑑2ℎ
𝑑𝑥2

(

− 1
3
− 3

2
ℎ2
𝑚

ℎ2 + 3
2

ℎ𝑚

ℎ

)

where 𝑊𝑖−1 = 𝛿𝑖+𝛿𝑖−1
2𝛥𝑥2 , 𝐸𝑖+1 = 𝛿𝑖+𝛿𝑖+1

2𝛥𝑥2 , 𝐶 = −(𝐸 + 𝑊 ) and 𝛥𝑥 is the
uniform grid spacing. The algebraic system of equations Eq. (17) can
be solved via a fast tridiagonal matrix algorithm.

Note that for GR, (i) the shear stress is known when solving for
the pressure, thus we can easily evaluate the integrals numerically by
trapezoidal rule and (ii) the pressure must be obtained at each time
step since the velocity field must be recomputed based on the pressure.
On the other hand for LIN, the solution for 𝑝(1) is obtained only once
for a given profile.

2.4. Direct numerical simulation (DNS)

The most reliable numerical solutions will be obtained from the
solution of the Navier–Stokes equations coupled with the Oldroyd-B
constitutive equation (Eqs. (1a)–(1c)). However, earlier efforts avail-
able in literature demonstrate a strong non-linear instability inherent
in this coupling. The LCR was the first robust method that enabled
simulations at high 𝑊 𝑖 [16]. We provide a brief overview of the
method.

We introduce the conformation tensor 𝐂

𝝉∗ = 𝐺(𝐂 − 𝐈), (18)

where 𝐺 is the shear modulus and express the constitutive relation
(Eq. (1c)) in terms of 𝐂,
𝜕𝐂
𝜕𝑡∗

+ (𝐮∗ ⋅ ∇∗)𝐂 − 𝐋∗𝑇𝐂 − 𝐂𝐋∗ = 1
𝜆
(𝐈 − 𝐂). (19)

The logarithm of the conformation tensor is defined by

𝝍 = log(𝐂). (20)

he constitutive equation for 𝐂 is recast, via the methodology described
y Fattal and Kupferman [16], into a constitutive equation for 𝝍 ,
𝜕𝝍
𝜕𝑡∗

+ (𝐮∗ ⋅ ∇∗)𝝍 − 𝝈∗𝝍 + 𝝍𝝈∗ − 2𝐁∗ =
exp−𝝍

𝜆
(𝐈 − exp𝝍), (21)

here 𝐁∗ and 𝝈∗ arise from a decomposition of 𝐋∗

∗ = 𝜴∗ + 𝐁∗ + 𝐍∗𝝈∗−1. (22)

he decomposed tensors 𝜴∗, 𝐁∗ and 𝐍∗ are determined by diagonal-
zing 𝐋∗, see Fattal and Kupferman [16] for more details. Therefore,
he key is to solve Eq. (21) (i.e. for the logarithm of the conformation
ensor) instead of Eq. (19) for the conformation tensor. This logarithmic
ransformation ensures that the conformation and the stress tensor
emain symmetric positive definite.

The DNS in this work is performed via OpenFOAM using LCR which
s efficiently implemented by Pimenta and Alves [39]. Although the
ethod is robust, solutions reported in literature at high 𝑊 𝑖 still break
own. There remains a possibility that the breakdown is linked with
n intrinsically unstable set of equations at high 𝑊 𝑖 (i.e. HWNP).
owever, efforts have been largely directed towards developing special
lgorithms and numerical schemes that can provide numerical stability.
ore importantly, a mesh refinement also did not improve the conver-

ence characteristics [40], indicating that there may be a possible limit
o this approach [41]. Furthermore, the thin film approximation does
ot prevent the onset of the HWNP, see Appendix A for details. This
oints out the need of a simplified model for lubrication type problems
ble to avoid the computational instability associated to HWNP.
5

w

able 3
he boundary conditions for velocity, pressure and polymer stress applied to the DNS
Boundary 𝑥∗ = 0 𝑥∗ = 𝓁 𝑦∗ = 0 𝑦∗ = ℎ∗(𝑥∗)

𝑝∗ 𝑝∗ = 0 𝑝∗ = 0 (∇∗𝑝∗) ⋅ n = 0 (∇∗𝑝∗) ⋅ n = 0
u∗ (∇∗u∗) ⋅ n = 0 (∇u∗) ⋅ n = 0 u∗ = (𝑈, 0) u∗ = (0, 0)
𝝉∗ (∇∗𝝉∗) ⋅ n = 0 (∇∗𝝉∗) ⋅ n = 0 (∇∗𝝉∗) ⋅ n = 0 (∇∗𝝉∗) ⋅ n = 0

The boundary conditions for DNS are given in Table 3. In DNS we
use only the Newtonian boundary condition for the pressure at 𝑥∗ = 0
and 𝑥∗ = 𝓁 (i.e. 𝜃 = 0). Note that the stress is not directly solved
but computed after the intermediate log-transformed variable has been
obtained. A zero-gradient condition is assumed for the stresses on all
boundaries. A no slip boundary condition is used for the stationary top
surface and a fixed velocity is applied at the sliding surface.

2.5. Viscoelastic Reynolds equation (VR)

In this section we introduce (i) the VR model and its assumptions
(Section 2.5.1), (ii) discuss the role of the polymer pressure 2.5.2 and
(iii) conclude with a brief overview of the numerical procedure used in
this study (Section 2.5.3).

2.5.1. Derivation of the VR equation
The need for a new viscoelastic model for lubricants arises by

examining the limiting assumptions of GR and LIN (both introduced in
Section 2.3). These restrictions do not allow accurate results, especially
at large 𝑊 𝑖. Hence, we propose a new model able to capture strong
viscoelastic effects with better accuracy and imposing no restrictions
on the polymer stress. First the model is derived and then the core
assumptions are provided. The details of the procedure are provided
in Appendix B.

The process starts by integrating twice the 𝑥-momentum (Eq. (3b))
long 𝑦 and utilizing the boundary conditions at the top and the rolling
urfaces defined in Section 2.2. After some calculations, we arrive at the
ollowing expression for the horizontal velocity field,

(𝑥, 𝑦) = 1
2𝛽

𝑑𝑝
𝑑𝑥

(

𝑦2 − 𝑦ℎ
)

+
(

1 −
𝑦
ℎ

)

+ 1
𝛽

(

𝑦
ℎ ∫

ℎ

0
𝜏𝑥𝑦𝑑𝑦 − ∫

𝑦

0
𝜏𝑥𝑦𝑑𝑦

′
)

+ 1
𝛽

(

𝑦
ℎ ∫

ℎ

0 ∫

𝑦

0

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑦′𝑑𝑦 − ∫

𝑦

0 ∫

𝑦

0

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑦′𝑑𝑦
)

. (23)

Note that the solvent viscosity concentration appears in the denom-
inator which can create a strong singularity for very small values.
However, our aim is to decouple the pressure equation from the consti-
tutive relation. Hence the velocity found in Eq. (23) only serves as an
intermediate step in deriving VR. The horizontal velocity is substituted
into the continuity equation (Eq. (3a)) and the Leibnitz theorem is
applied, to obtain the viscoelastic Reynolds equation,

𝑑
𝑑𝑥

(

ℎ3

12
𝑑𝑝
𝑑𝑥

)

=
𝛽
2
𝑑ℎ
𝑑𝑥

+ 𝑑
𝑑𝑥

(

∫

ℎ

0

𝑦
ℎ ∫

ℎ

0 ∫

𝑦

0

𝑑𝜏𝑥𝑥
𝑑𝑥

𝑑𝑦′′𝑑𝑦′𝑑𝑦

− ∫

ℎ

0 ∫

𝑦

0 ∫

𝑦

0

𝑑𝜏𝑥𝑥
𝑑𝑥

𝑑𝑦′′𝑑𝑦′𝑑𝑦
)

+ 𝑑
𝑑𝑥

(

∫

ℎ

0

𝑦
ℎ ∫

ℎ

0
𝜏𝑥𝑦𝑑𝑦

′𝑑𝑦 − ∫

ℎ

0 ∫

𝑦

0
𝜏𝑥𝑦𝑑𝑦

′𝑑𝑦
)

. (24)

Eq. (24) together with Eq. (23) and the thin film approximation
f the Oldroyd-B constitutive relation (Eq. (3d)–(3f)) form a closed
ystem of integral–differential equations. This system involves a non-
inear coupling between the unknown quantities and, then, it requires
n iterative algorithm to reach a solution. However, the HWNP hinders
onvergence starting from moderate 𝑊 𝑖, even for the thin film approx-
mated system (see Appendix A). To overcome this issue, we assume
hat the dependence of the velocity field 𝐮(𝑢, 𝑣) on the Wiessenberg
umber is negligible compared to that of the film pressure. In this
ay we decouple the pressure from the constitutive equation because
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the velocity field only depends on a constant leading order pressure
(Eq. (13c)).

We need to check the validity of this assumption. Firstly, we define
two additional quantities, i.e. the leading and first order volume flow
rates as

𝑄(0) = ∫

ℎ

0
𝑢(0)(𝑥, 𝑦)𝑑𝑦 and (25a)

(1) = ∫

ℎ

0
𝑢(1)(𝑥, 𝑦)𝑑𝑦. (25b)

he first order volume flow rate (𝑄(1)) has an analytical expression
given by Li et al. [31] which explicitly shows the influence of both the
entrance and exit heights of the channel

𝑄(1) =
{

3
8
ℎ2𝑚

(

1
ℎ41

−1
)

− 1
2
ℎ𝑚

(

1
ℎ31

−1
)

+ 1
6

(

1
ℎ21

−1
)}

∫

ℎ

0

1
ℎ3

𝑑𝑥, (26)

where ℎ1 = ℎ(𝑥 = 1) and ℎ0 = ℎ(𝑥 = 0) = 1. We immediately note
that, for channels having ℎ1 = 1, the value of 𝑄(1) is exactly zero.
Since the 𝜖𝑊 𝑖-order velocity field 𝑢(1) is a quadratic function on 𝑦 (see
Eq. (14a)), it must vanish everywhere to have 𝑄(1) = 0. In this case,
the horizontal velocity (𝑢) experiences no significant change versus 𝑊 𝑖.
However, viscoelasticity could affect more significantly the velocity
field in asymmetric channels.

We show the strength of the viscoelastic effect in Fig. 2a for the
parabolic slider by computing the following quantities.

𝑅(𝑄) = 𝜖𝑊 𝑖𝑄(1)∕𝑄(0), (27a)

(𝑢) = max |𝜖𝑊 𝑖𝑢(1)|∕max |𝑢(0)|, (27b)

(𝑣) = max |𝜖𝑊 𝑖𝑣(1)|∕max |𝑣(0)|, (27c)

(𝑝) = max |𝜖𝑊 𝑖𝑝(1)|∕max |𝑝(0)|, (27d)

hich measure the increase in the maximum of the volume flow rate,
elocity field and pressure due to viscoelasticity in LIN. In order to
btain the last quantity (Eq. (27d)), we must solve for the pressure
s described in Section 2.3.2. We set 𝑊 𝑖 = 100 to study the case

in which presumably the viscoelastic effects are strongest between
the configurations analyzed in this paper. In particular we vary the
exit location 𝑥𝑒 of the parabolic slider represented by Eq. (4) As 𝑥𝑒
approaches unity, i.e. the case studied in this work, then (i) the change
in the horizontal and vertical velocities becomes smaller and smaller
and it can be considered negligible, (ii) on the other hand the change in
pressure is very strong and reaches a maximum when 𝑥𝑒 = 1. Parabolic
profiles are used to mimic the contact in roller or journal bearings.
For this reason these profiles for practical applications are in general
perfectly (or almost) symmetric. While it is true that non-linear effects
on the velocity cannot be excluded a priori for slightly asymmetric
profiles, we can assume, also for this kind of geometries, that neglecting
the effect of viscoelasticity on the velocity and focusing on its effect on
the pressure is a reasonable approach.

On the other hand the plane slider is an asymmetric channel with a
minimum always occurring at the channel exit, i.e. ℎ(𝑥 = 1) = ℎ1 = 𝛼.
In Fig. 2 we show the same quantities of Fig. 2a but as a function of
the parameter 𝛼. In this case, we observe that viscoelasticity induces
a finite change in the quantities for 𝑊 𝑖 = 100. However, note that
(i) the change in pressure is always stronger than the change in the
velocity, (ii) the change in the horizontal (and as a consequence the
flow rate) and vertical velocities is not significant (the maximum values
are around 5% and 11%, respectively) and approaches to zero for large
𝛼 and (iii) the change in pressure also goes to zero as 𝛼 increases. This
implies that the viscoelastic effect for the plane slider is negligible as 𝛼
is close to 𝛼 = 1. Moreover as 𝛼 decreases the effect on the pressure is
stronger than on the velocity, which strengthens our assumption also
for the plane slider. Nevertheless, it is important again to highlight
that this observation is an outcome of the thin film approximation
combined with a perturbation in 𝜖𝑊 𝑖. There is no guarantee that the
order 𝑂(𝜖2𝑊 𝑖2)-terms are not significant at large 𝑊 𝑖, i.e. when 𝑊 𝑖
approaches 1∕𝜖.
6

2.5.2. Polymer pressure
The pressure equation (Eq. (24)) in the VR model bears similarity to

the classical Reynolds equation (Eq. (13c)) for Newtonian lubrication.
However, there are three distinct forcing functions appearing on the
right-hand-side of Eq. (24). The separation of these terms allows a
linear decomposition of the film pressure and, consequently, the load
𝐿 = ∫ 1

0 𝑝(𝑥)𝑑𝑥. Therefore, the film pressure is expressed as a sum of the
contributions due to the solvent and the polymers,

𝑝 = 𝑝𝑠 + 𝑝𝑥𝑥 + 𝑝𝑥𝑦, (28)

where 𝑝𝑠 is the pressure due to the Newtonian solvent, 𝑝𝑥𝑥 is the
pressure term due to the normal stress 𝜏𝑥𝑥 and 𝑝𝑥𝑦 is the pressure term
due to the shear stress 𝜏𝑥𝑦. The total load is decomposed similar to
Eq. (28),

𝐿 = 𝐿𝑠 + 𝐿𝑥𝑥 + 𝐿𝑥𝑦 = ∫

1

0
𝑝𝑠𝑑𝑥 + ∫

1

0
𝑝𝑥𝑥𝑑𝑥 + ∫

1

0
𝑝𝑥𝑦𝑑𝑥, (29)

where 𝐿𝑠 is the load due to the Newtonian solvent, 𝐿𝑥𝑥 is the load due
to the polymer normal stress and 𝐿𝑥𝑦 is the load due to the polymer
shear stress. Henceforth, for simplicity we will refer to 𝑝𝑥𝑥 as the normal
pressure, 𝑝𝑥𝑦 as the shear pressure, 𝐿𝑥𝑥 as the normal load and 𝐿𝑥𝑦 as
the shear load.

For a VR-type model, we assume that the normal and the shear stress
are polynomials in 𝑦,

𝜏𝑥𝑥 =
𝑛
∑

𝑖=1
𝑇 (𝑖)
𝑥𝑥 (𝑥, 𝑡)𝑦

𝑖−1 and (30a)

𝜏𝑥𝑦 =
𝑛+1
∑

𝑖=1
𝑇 (𝑖)
𝑥𝑦 (𝑥, 𝑡)𝑦

𝑖−1. (30b)

Substituting Eq. (30) into Eq. (24) and evaluating the integrals we
obtain

𝑑
𝑑𝑥

(

ℎ3

12
𝑑𝑝
𝑑𝑥

)

=
𝛽
2
𝑑ℎ
𝑑𝑥

+ 𝑑
𝑑𝑥

(

ℎ2

24
𝑑ℎ
𝑑𝑥

𝑛
∑

𝑖=1
𝜅𝑖
𝜕𝑇 (𝑖)

𝑥𝑥 (𝑥, 𝑡)
𝜕𝑥

+ ℎ3

24

𝑛
∑

𝑖=1
𝜔𝑖𝑇

(𝑖)
𝑥𝑥 (𝑥, 𝑡)

)

+ 𝑑
𝑑𝑥

(

ℎ2

12

𝑛+1
∑

𝑖=1
𝛾𝑖𝑇

(𝑖)
𝑥𝑦 (𝑥, 𝑡)

)

, (31)

where 𝜔𝑖, 𝜅𝑖 and 𝛾𝑖 are known coefficients arising from the integration.
By examining the RHS of Eq. (31) we find three different terms

which control the pressure distribution across the contact. The first
term is due to the Newtonian solvent, the second term is due to the
normal stress and the last term is due to the shear stress. The exact
values of the coefficients of the latter two terms depend on the degree
of the polynomial approximations. For instance, if we choose 𝑛 = 2,
i.e. a linear polynomial for 𝜏𝑥𝑥 and quadratic for 𝜏𝑥𝑦, we can obtain a
simple but inaccurate analytical expression. The resulting inaccuracy
in the model, owing to a linear approximation for 𝜏𝑥𝑥 does not provide
definitive conclusions. For this reason we have to choose 𝑛 > 2 and we
need to adopt a numerical treatment of Eq. (31).

An explicit equation for 𝑝𝑥𝑥 and 𝑝𝑥𝑦 can be obtained by substituting
Eq. (28) into Eq. (31). The shear pressure is defined as

𝑑
𝑑𝑥

(

ℎ3

12
𝑑𝑝𝑥𝑦
𝑑𝑥

)

= 𝑑
𝑑𝑥

(

ℎ2

12

𝑛+1
∑

𝑖=1
𝛾𝑖𝑇

(𝑖)
𝑥𝑦 (𝑥, 𝑡)

)

. (32)

Similarly, the normal pressure (𝑝𝑥𝑥) is defined as

𝑑
𝑑𝑥

(

ℎ3

12
𝑑𝑝𝑥𝑥
𝑑𝑥

)

= 𝑑
𝑑𝑥

(

ℎ2

24
𝑑ℎ
𝑑𝑥

𝑛
∑

𝑖=1
𝜅𝑖
𝜕𝑇 (𝑖)

𝑥𝑥 (𝑥, 𝑡)
𝜕𝑥

+ ℎ3

24

𝑛
∑

𝑖=1
𝜔𝑖𝑇

(𝑖)
𝑥𝑥 (𝑥, 𝑡)

)

. (33)

However, note that in the absence of viscoelastic effects, i.e. 𝑊 𝑖 = 0,
we can still have a finite concentration of polymers if we choose 𝛽 < 1.
This means polymers can exhibit a Newtonian stress that must be taken
into account by the shear pressure (𝑝𝑥𝑦). Therefore, to examine also the
non-Newtonian part, we divide the shear pressure into two components

(𝑁) (𝑁𝑁)
𝑝𝑥𝑦 = 𝑝𝑥𝑦 + 𝑝𝑥𝑦 , (34)
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Fig. 2. The percentage change (𝑅) in (red) the volumetric flow rate 𝑅(𝑄), (black) the horizontal velocity 𝑅(𝑢), (blue) the vertical velocity 𝑅(𝑣) and (green) the pressure 𝑅(𝑝) due
o viscoelastic effects for the (a) parabolic slider as a function of the channel exit location (𝑥𝑒) and (b) plane slider as ℎ(𝑥 = 1) = 𝛼. The Weissenberg number is set 𝑊 𝑖 = 100 for
oth figures.
here 𝑝𝑁𝑥𝑦 (𝑝𝑁𝑁
𝑥𝑦 ) is the Newtonian (non-Newtonian) shear pressure.

ote that the normal pressure has no Newtonian component because
he normal strain rate (�̇�𝑥𝑥) is negligible due to the thin film approxi-
ation. The Newtonian portion is simply

𝑑
𝑑𝑥

(

ℎ3

12
𝑑𝑝(𝑁)

𝑥𝑦

𝑑𝑥

)

=
1 − 𝛽
2

𝑑ℎ
𝑑𝑥

, (35)

and the non-Newtonian portion 𝑝(𝑁𝑁)
12 can be retrieved via Eq. (34).

Finally, the additional pressure due to viscoelastic effects denoted by
𝑝𝑣𝑒 is retrieved by summing 𝑝𝑥𝑥 and 𝑝(𝑁𝑁)

𝑥𝑦

𝑣𝑒 = 𝑝𝑥𝑥 + 𝑝(𝑁𝑁)
𝑥𝑦 . (36)

his decomposition will allow us to compare in Section 3.3 the ad-
itional pressure due to viscoelasticity in VR to the LIN first order
ressure (Eq. (14c)) as an additional step to validate our model at small
𝑊 𝑖.

.5.3. Numerical method
The system of the equations of the new viscoelastic model consists

f (i) the pressure equation (Eq. (31)) and (ii) the thin film constitutive
quations (Eqs. (3d)–(3f)). We prefer to use the purely differential form
f VR (Eq. (31)) instead of the integro-differential form (Eq. (24)) since
t is simpler to solve. However, both equations are equally valid. Firstly,
he polynomial approximations (Eqs. (30)) are used to solve the thin
ilm equations. Based on several numerical trials, we have observed
hat (i) a cubic polynomial for 𝜏𝑥𝑦 (i.e. 𝑛 = 3) is sufficient for small
o moderate 𝑊 𝑖 but (ii) 𝑛 = 4 is a more suitable choice for moderate
o large 𝑊 𝑖. For this reason we assume that 𝑛 = 4 to get

𝑥𝑥(𝑥, 𝑦, 𝑡) = 𝑇 (𝐼)
𝑥𝑥 (𝑥, 𝑡) + 𝑇 (𝐼𝐼)

𝑥𝑥 (𝑥, 𝑡)𝑦 + 𝑇 (𝐼𝐼𝐼)
𝑥𝑥 (𝑥, 𝑡)𝑦2 + 𝑇 (𝐼𝑉 )

𝑥𝑥 (𝑥, 𝑡)𝑦3, (37a)
𝜏𝑥𝑦(𝑥, 𝑦, 𝑡) = 𝑇 (𝐼)

𝑥𝑦 (𝑥, 𝑡) + 𝑇 (𝐼𝐼)
𝑥𝑦 (𝑥, 𝑡)𝑦

+ 𝑇 (𝐼𝐼𝐼)
𝑥𝑦 (𝑥, 𝑡)𝑦2 + 𝑇 (𝐼𝑉 )

𝑥𝑦 (𝑥, 𝑡)𝑦3 + 𝑇 (𝑉 )
𝑥𝑦 (𝑥, 𝑡)𝑦4 and (37b)

𝜏𝑦𝑦(𝑥, 𝑦, 𝑡) = 𝑇 (𝐼)
𝑦𝑦 (𝑥, 𝑡) + 𝑇 (𝐼𝐼)

𝑦𝑦 (𝑥, 𝑡)𝑦

+ 𝑇 (𝐼𝐼𝐼)
𝑦𝑦 (𝑥, 𝑡)𝑦2 + 𝑇 (𝐼𝑉 )

𝑦𝑦 (𝑥, 𝑡)𝑦3 + 𝑇 (𝑉 )
𝑦𝑦 (𝑥, 𝑡)𝑦4, (37c)

where 𝑇 (𝑘)
𝑖𝑗 (𝑥, 𝑡) are unknown functions at a given position 𝑦 across the

film. The temporal dependency is explicitly stated because we solve a
transient problem.

In order to determine the stress polynomials, we must solve for each
of the functions 𝑇 (𝑘)

𝑖𝑗 , see Appendix C for details. Briefly, we only require
the discretization of the temporal (𝜕∕𝜕𝑡) and spatial (𝜕∕𝜕𝑥) operators
7

appearing in Eqs. (3d)–(3f) since we can calculate analytically the
derivative in 𝑦 of the polynomials (Eqs. (37a)–(37c)). The temporal
derivative is discretized using an explicit Euler scheme. The time step 𝛥𝑡
was set to 𝛥𝑡 = 0.002𝑠 to have stable simulations. To minimize numer-
ical complexity, we use a finite difference approximation to discretize
the spatial derivative with appropriate first-order upwind (downwind)
if 𝑢(𝑥) > 0 (𝑢(𝑥) < 0) discretizations for the advective terms. Once we
have the solution for the stress polynomials, we simply discretize the
LHS of Eq. (31) via a cell-centered finite difference approximation and
solve for the pressure, see Section 2.3.3. After several tests, we observed
that a number of grid points 𝑁𝑥 = 512 was suitable for having grid
independence also at high values of the Weissenberg number.

To detect when the system reaches the steady state, we use the
following criteria for each of the stress components

𝐸 = ‖𝜏𝑡+𝛥𝑡𝑖𝑗 − 𝜏𝑡𝑖𝑗‖
2 < 10−8, (38)

where 𝐸 is the Euclidean norm of the stress difference between two
consecutive time steps. In the most numerically complex cases (e.g
for 𝑊 𝑖 = 100), we needed 3836 time steps to reach the steady state
meaning that the required computational time was equal to 43 s.

3. Parabolic slider

In this section, we present the results for the parabolic slider intro-
duced in Section 2.2. The results comprise of (i) the load variation in
Section 3.1, (ii) the effect of the solvent concentration in Section 3.2,
(iii) a detailed look into the additional pressure due to viscoelasticity
in Section 3.3, (iv) a description of the growth of the polymer stress
along the channel in Section 3.4 and, finally (v) an analysis about the
effect of the boundary conditions in Section 3.5.1.

3.1. Model comparison

In this section we present a comparison between LIN, GR, VR and
DNS for the parabolic slider with 𝛼 = 0.5 by using the Newtonian
boundary conditions (Eq. (6)). In particular, Fig. 3a shows the total
pressure along the lubricated contact for 𝑊 𝑖 = 40. A pressure increase
is predicted by all the models except GR. This increase occurs along
the first half of the contact showing a significant departure from the
Newtonian profile obtained by solving the classical Reynolds equation
(RE), see Eq. (13c). Furthermore, a shift in the negative pressure region
is also observed enlarging the positive pressure region. Although the

apparent difference in pressure may not appear significant at first
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Fig. 3. (a) Pressure profiles for 𝑊 𝑖 = 40 and (b) load versus 𝑊 𝑖 for the parabolic slider (𝛼 = 0.5). RE: Newtonian Reynolds equation (Eq. (13c)), LIN: linearized viscoelastic model
(Eq. (14c)), GR: generalized Reynolds equation (Eq. (11a)), VR: viscoelastic Reynolds equation with 𝑛 = 4 (Eq. (31)) and DNS: direct numerical simulation (Eqs. (1a)–(1c)). The
gray band highlights the uncertainty in the results obtained from DNS.
at
Table 4
A comparison of computational time taken by different models for the parabolic slider.
N/A stands for not applicable, since (i) VR and LIN are one dimensional models and
(ii) DNS diverge at 𝑊 𝑖 = 100.

Model 𝑁𝑥 𝑁𝑦 Computational time at
𝑊 𝑖 = 20 (s)

Computational time
𝑊 𝑖 = 100 (s)

LIN 512 N/A << 1 << 1
GR 512 64 24 347
VR 512 N/A 8 43
DNS 512 32 > 3600 N/A

glance, one should note that film pressure in the contact is several
MPa in magnitude. Therefore, small shifts and increments represent
significant changes in the film pressure from a practical perspective.

Fig. 3b shows the maximum load carrying capacity in function
of the Weissenberg number for all the analyzed models. Overall, all
models predict an increase in the load carrying capacity. In particular
a significant change due to the polymer addition can be observed even
at small 𝑊 𝑖 (but excluding GR). To enable a comparison between the
models, we establish the DNS as a benchmark values. However, it
should be noted that DNS solutions for fine meshes did not converge
beyond 𝑊 𝑖 > 20 due to the HWNP. Convergence was achieved for
coarser meshes (until 𝑊 𝑖 < 50) but with some discrepancy in the load
value. This failure prevents the successful use of DNS in predicting
viscoelastic effects at high 𝑊 𝑖. A tolerance region was estimated based
on several coarse mesh solutions and is shown by the gray band in
Fig. 3b. The tolerance region grows gradually with 𝑊 𝑖.

The LIN model predicts a linear increase in the load and performs
well for 𝑊 𝑖 < 20 after which it overestimates the load enhancement.
Since the departure from DNS occurs around 𝑊 𝑖 = 20, we assume that
the range of suitable 𝑊 𝑖 for LIN is rather small compared to the value
suggested by Tichy [28], i.e. 𝑊 𝑖 ≊ 125. However, from a numerical
perspective it is computationally cheap (see Table 4) and suitable for
scenarios where 𝑊 𝑖 is small.

In fact, GR is the least accurate model especially at high 𝑊 𝑖. In
particular, it greatly deviates from the indicated trend observed for
small 𝑊 𝑖. Negative loads were obtained for 𝑊 𝑖 = 30 and hence such
solutions are considered completely inaccurate. The reason for this
failure is that GR neglects the effect of the normal stresses. While this
may be true for 𝜏𝑦𝑦 under the thin film approximation, it does not hold
true for 𝜏 . This implies that the effect of the normal stress cannot
8

𝑥𝑥
Fig. 4. Total load 𝐿 contours for in the plane (1 − 𝛽, 𝛼) at 𝑊 𝑖 = 60 for the parabolic
slider.

be neglected for any value of 𝑊 𝑖. Consequently, the polymer shear
stress does not dominate over the normal stresses despite the shear
strain rate being several orders of magnitude larger than the axial
strain rate. Moreover, GR tends to predict a load decrease below the
base Newtonian load indicating an increase in the negative pressure
region.

Finally, our proposed VR model compares favorably with the bench-
mark values. It shows excellent qualitative and quantitative agreement
for 𝑊 𝑖 ≤ 20 and the solution remains within the estimated tolerance
region of the DNS. Therefore, for values of 𝑊 𝑖 greater than 50, where
the benchmark is not available, VR is the best candidate to accurately
predict the trend in load. A maximum value for the load is observed
close to 𝑊 𝑖 ≈ 60, showing that the beneficial effect of the polymers
saturates at large 𝑊 𝑖. Moreover, VR shows that the variation in load
versus 𝑊 𝑖 is highly non-linear despite a linear constitutive relation.
There are several advantages of VR: (i) it captures non-linear trends in
the load, (ii) VR does not exhibit that HDNP problem for the values
of 𝑊 𝑖 considered in this work, likely due to the decoupling of the
velocity field from the pressure and the stress, (iii) coupling other
constitutive relations is trivial, since VR simplifies the thin film consti-
tutive equation via polynomial approximations rather than alter it, (iv)
non-uniform meshes can be easily treated since we have shown that
fourth degree polynomial approximations are sufficient at moderate to
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Fig. 5. (a) The shear pressure and (b) the non-Newtonian portion of the shear pressure along the channel for different 𝑊 𝑖. (c) Shear pressure distribution close to the inlet and
(d) shear pressure distribution close to the outlet regions of the channel for different 𝑊 𝑖. (e) The normal pressure 𝑝𝑥𝑥 along the channel for different 𝑊 𝑖. (f) A comparison of the
load components versus 𝑊 𝑖 for the parabolic slider: (i) the Newtonian solvent load (𝐿𝑠), (ii) the shear load (𝐿𝑥𝑦), (iii) the normal load (𝐿𝑥𝑥) and (iv) the net load 𝐿.
high values of 𝑊 𝑖 and therefore cross-film derivatives of stress can be
easily computed, (v) VR is computationally cheap and can therefore be
easily extended to simulate complex geometries requiring very fine
meshes.

To this regard a comparison of computational time for each model
is provided in Table 4. The total time for DNS for 𝑊 𝑖 = 20 is very
large despite the efficient implementation of fast numerical algorithms
(such as the multigrid method [42]) in OpenFOAM [43]. From a
numerical perspective, the GR model requires a two dimensional mesh
and a full non-linear coupling of the velocity, pressure and shear stress
which is more computationally expensive compared to LIN and VR
(see Table 4). Although the simulation time depends strongly on the
9

numerical techniques and algorithms, LIN and VR are faster mainly
because they are one-dimensional models. It may be possible to further
improve efficiency via more sophisticated techniques but they are not
pursued in this study.

3.2. Influence of the solvent concentration and the aspect ratio

The effect of varying 𝛽 and 𝛼 for the parabolic slider on the total
load is shown in Fig. 4 by using the VR model. Increasing the viscous
fraction of polymers (1−𝛽) linearly enhances the load. This is expected



Journal of Non-Newtonian Fluid Mechanics 292 (2021) 104524H. Ahmed and L. Biancofiore
because the Oldroyd-B constitutive relation does not factor shear thin-
ning of the polymer. On the other hand as 𝛼 decreases, the load is
enhanced since the velocity gradients along the channel increase.

Note that the VR model can account for 𝛽 = 0 which poses
numerical problems for DNS, since the momentum equations (Eq. (1b))
lose their elliptical characteristics and become increasingly hyperbolic.
This may require advanced numerical techniques for both spatial and
temporal discretization [44,45]. On the contrary, VR can assume a fully
viscoelastic fluid with 𝛽 = 0 without any complications.

3.3. Viscoelastic pressure

In this section, we present the components of the pressure and the
load: starting with (i) the shear pressure and the shear load followed
by (ii) the normal pressure and the normal load and finally (iii) the
additional pressure due to viscoelasticity (see Eq. (36)).

Fig. 5a shows the shear pressure (𝑝𝑥𝑦) distribution for different
values of 𝑊 𝑖. The shape of the distribution of 𝑝𝑥𝑦 is not altered
significantly but translates towards the negative axis, causing both the
maximum and the minimum pressure locations to move closer to the in-
let. On the other hand, 𝑝(𝑁𝑁)

𝑥𝑦 does not exhibit the same behavior as 𝑊 𝑖
increases, see Fig. 5b. We only observe an increase in the absolute value
of the maximum and minimum. In Fig. 5c and Fig. 5d, we highlight the
inlet and the outlet regions of 𝑝(𝑁𝑁)

𝑥𝑦 , respectively. At the inlet, 𝑝(𝑁𝑁)
𝑥𝑦

decreases immediately which indicates that viscoelasticity comes into
immediate effect for all the values of 𝑊 𝑖. On the contrary, the shear
pressure gradually decreases to its Newtonian value regardless of the
value of 𝑊 𝑖 towards the channel outlet. This decrease at the outlet is
preceded by a small but noticeable overshoot in 𝑝(𝑁𝑁)

𝑥𝑦 . This overshoot
moves towards the exit as 𝑊 𝑖 increases. This strong reaction at the
entrance implies that polymers suddenly deform at the contact inlet,
while at the exit the polymers will go back smoothly to the undeformed
state.

The normal pressure (𝑝𝑥𝑥) can be analyzed similarly to the shear
pressure (𝑝𝑥𝑦). Fig. 5e shows the normal pressure for several values
of the Weissenberg number. The normal pressure increases with 𝑊 𝑖
mainly in the central portion of the channel, while it remains unaffected
at the outlet. Conversely, at the entrance, a decrease in 𝑝𝑥𝑥 is observed
indicating that viscoelasticity comes into immediate effect similarly to
what is observed for 𝑝𝑥𝑦. This confirms the hypothesis that the polymers
undergo sudden deformation as soon as they enter.

Fig. 5f shows the different components of the load in function of
the Weissenberg number. The shear load 𝐿𝑥𝑦 is slightly damped for
low 𝑊 𝑖 but decreases exponentially beyond 𝑊 𝑖 ≈ 30. This is due to
the significant distortion in the symmetry of 𝑝𝑥𝑦 as shown in Fig. 5a.
This means that the viscoelastic polymer lowers the effective resistance,
since the load is due to the viscous resistance of the film. This decrease
in resistance indicates a strong deformation of the entangled polymer
chains that stretch and align with the flow [46]. On the other hand, the
normal load is always increasing causing the overall load enhancement
at small and moderate 𝑊 𝑖. The saturation occurring around 𝑊 𝑖 = 60 is
given by the opposed effect of 𝐿𝑥𝑦 and 𝐿𝑥𝑥. We are not surprised then
by the failure of GR since it does neglect the part of the load due to
the normal stress, i.e. the main reason of the increase in load due to
viscoelasticity.

Finally, the viscoelastic pressure obtained from LIN and VR are
compared in Fig. 6. The discrepancy between the two models begins
from 𝑊 𝑖 = 10. Both models capture qualitatively the increasing trend
in 𝑝𝑣𝑒. Particularly, a good agreement towards the channel exit is
observed. This is not surprising since a linearized approximation of
the pressure can be sufficient for capturing weak viscoelastic effects as
those observed close to the exit. Conversely, the disagreement between
the models at the entrance is large, where VR predicts a negative
additional pressure as opposed to LIN. Moreover, 𝑝𝑣𝑒 is symmetric for
LIN, whereas the proposed VR model predicts a strong asymmetry with
10

the maximum of 𝑝𝑣𝑒 moving in the direction of the flow. Therefore, the
Fig. 6. Distribution of the LIN (dashed line) and VR (solid line) viscoelastic pressure
𝑝𝑣𝑒 = 𝜖𝑊 𝑖𝑝(1) and 𝑝𝑣𝑒 = 𝑝𝑥𝑥 + 𝑝(𝑁𝑁)

𝑥𝑦 , respectively for different 𝑊 𝑖 along the channel.

over prediction of the load by LIN is due to an underestimation of the
advective terms. Evidently, another advantage of VR is that it allows to
distinguish between the influence of the normal and shear stresses on
the pressure.

3.4. Polymer stress

In this section we present the distribution of the shear and the
normal stress. In general, the stress gradients are very important since
the pressure gradients along the channel strictly depend on them (see
Eq. (3b)). Moreover, we can explain the distribution of the stresses in
the contact by examining the terms in the constitutive relation (Eqs.
(3d)–(3f)). In general, these terms include the advective transport,
i.e. the material derivative of the stress and the interaction of the
velocity gradient with the other stress components. The latter can be
interpreted as source (sink) terms.

Fig. 7a-c (Fig. 7d-f) show the distribution of the polymer shear
stress, material derivative and the source (sink) terms appearing in
Eq. (3e) for 𝑊 𝑖 = 30 (𝑊 𝑖 = 60) at 𝑦 = ℎ, 𝑦 = ℎ∕2 and 𝑦 = 0,
respectively. The primary source term is due to the shear strain rate
(green) which is also the Newtonian part of the polymer shear stress. As
𝑊 𝑖 increases, the total shear stress departs from its initial Newtonian
distribution due to the advection and source terms. At the stationary
surface, this deviation from the Newtonian distribution is due to the
source (blue) terms which eventually subside towards the moving
surface. Conversely, at the bottom surface the viscoelastic effect is due
to the advection which vanishes moving towards the stationary surface.
Furthermore, both these mechanisms strengthen as 𝑊 𝑖 increases as
observed in the discrepancy between the green and black lines (i.e
Newtonian and viscoelastic 𝜏𝑥𝑦, respectively), in Fig. 7d–f.

In a similar manner, we examine in Fig. 8 the normal stress that
produces the dominant normal load (𝐿𝑥𝑥) and pressure (𝑝𝑥𝑥). In par-
ticular, Fig. 8a-c (Fig. 8d-f) illustrate the different terms of the normal
stress balance (Eq. (3d)) for 𝑊 𝑖 = 30 (𝑊 𝑖 = 60) at 𝑦 = ℎ, 𝑦 = ℎ∕2
and 𝑦 = 0, respectively. Therefore, viscoelastic polymers also undergo
a significant elongation when a large shear strain rate is applied.
Furthermore, the source term remains dominant across the contact
height and is strongest (weakest) at the stationary (moving) boundary
indicative of stress accumulation (dissipation). This growth (decay) is
due to the presence of weak (strong) advection at the top (bottom)
surface. Finally, as viscoelastic effects increase, all the terms increase
in magnitude and the overall normal stress increases which is observed

by comparing Fig. 8a–c to Fig. 8d–f.
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.5. Influence of the boundary conditions

In this section we show the influence of the boundary conditions
ntroduced in Section 2.2. In particular the limiting case of 𝜃 = 1,
.e. the normal stress boundary condition, is discussed in Section 3.5.1.
fterwards, in Section 3.5.2, we take into consideration the influence
f the parameter 𝜃.

.5.1. Normal stress boundary condition
In this section we show the influence of the normal stress boundary

ondition (Eq. (7)) on the load carrying capacity for the parabolic
lider. Fig. 9a shows the pressure distribution along the channel at
𝑖 = 40. The finite normal stress at the inlet creates a net vertical shift

n the total pressure profile which is captured by both LIN and VR.
s a result of this shift, we find that the bulk pressure has increased
nd the region of negative pressure has reduced. Thus, we observe a
arge overall increase in the pressure. In Fig. 9b we compare the load
ariation versus 𝑊 𝑖 for different models. An increasing trend similar
o Fig. 3b is observed. However the trend seems more linear for these
oundary conditions and, thus, the region of agreement between LIN
nd VR dramatically increases.

However, this increase is mainly due to a large finite pressure at the
oundaries. We can divide the load in two components: (i) the load due
o pressure variation at the boundaries 𝐿𝑏 = 𝑝(0)+𝑝(1)

2 and (ii) the load
ue the pressure variation along the channel 𝐿𝑐 = 𝐿−𝐿𝑏. In Fig. 9c we

show the evolution of 𝐿𝑏 and 𝐿𝑐 compared to 𝐿. The linear increase of
the pressure at the boundaries is greater than its non-linear variation
in the middle of channel causing the almost linear behavior of the total
load 𝐿. However it should be observed that the evolution of 𝐿𝑐 follows
closely the evolution of the load for the Newtonian boundary conditions
11

i

(see Fig. 3b). Furthermore, the increase in load due to 𝐿𝑏 is several
times larger than 𝐿𝑐 for moderate to large 𝑊 𝑖.

.5.2. Influence of 𝜃
Fig. 10 shows how the load dependence on 𝜃 for 𝑊 𝑖 = 40. While

𝑏 varies linearly with 𝜃, 𝐿𝑐 is almost unaffected by this parameter.
he sum of the two components 𝐿 is then obviously linear as 𝐿𝑏.
imilar trends were obtained for different values of 𝑊 𝑖 and 𝛼. The
inear trend is not surprising since we defined that the pressure at the
oundaries varies linearly with 𝜃 (see Eq. (8)). While this result cannot
larify which value is the best choice for 𝜃 to have a quantitatively
ccurate value for the load, we can conclude that analyzing the limiting
ases is still worthwhile since the most appropriate boundary condition
ould be a ‘‘mix’’ of the Newtonian and the normal stress boundary
onditions.

. Plane slider

In this section we analyze the plane slider described in Section 2.2
see Fig. 1a). The main goal is to check the quality of our new approach
or a different geometry and examine the effect of the surface geometry
n the polymer pressure. In section we start the analysis 4.1 with
pplying the Newtonian boundary conditions. Afterwards, we introduce
n Section 4.2 the normal stress boundary conditions. In this section,
e also present a comparison with results available for the plane slider
sing a second order fluid model [38], which is a constitutive relation
alid only at small 𝜖𝑊 𝑖 [47]. Finally, the influence of the parameter 𝜃
s analyzed in Section 4.3.
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Fig. 8. Spatial distribution of the normal stress (black), the material derivative (red) and source terms (blue) in the normal stress balance (Eq. (3d)) at 𝑊 𝑖 = 30 (a) 𝑦 = ℎ, (b)
𝑦 = ℎ∕2, (c) 𝑦 = 0 and 𝑊 𝑖 = 60 (d) 𝑦 = ℎ, (e) 𝑦 = ℎ∕2, (f) 𝑦 = 0 for the parabolic slider.
w
t
v
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4.1. Newtonian boundary condition

In Fig. 11a the pressure distribution along the contact is reported
for RE, LIN and VR (𝑊 𝑖 = 40) by using the Newtonian boundary
condition (Eq. (6)). We compare only these three models because we
have seen that for the parabolic slider (Section 3) GR cannot capture
the load accurately, whereas DNS does not converge for moderate to
high 𝑊 𝑖. Both LIN and VR predict a decrease in the film pressure,
which rises to a maximum and decays sharply towards the exit. Note
that the maximum pressure point does not shift, instead it decreases
gradually with 𝑊 𝑖. The observed pressure decrease occurs mainly along
the center of the channel, close to the peak pressure. Although, the
discrepancy between the pressure distribution is graphically small, the
prevailing film pressure is several MPa in magnitude. Hence, this small
difference is very important from a practical perspective.

Fig. 11b shows the load variation for the plane slider for 𝛼 = 0.6.
The plane slider experiences a gradual decrease in the load carrying
capacity. Furthermore, LIN provides accurate quantitative estimates for
load at small 𝑊 𝑖 but fails to capture the non-linear trend observed at
high 𝑊 𝑖.

Fig. 12a illustrates the shear pressure for different 𝑊 𝑖 for the plane
slider. In contrast to the parabolic slider, 𝑝𝑥𝑦 gradually increases due to
a constant increase in 𝑝(𝑁𝑁)

𝑥𝑦 as viscoelastic effects increase, see Fig. 12b.
Therefore, the polymers enhance the shear resistance of the film. The
increase in pressure with 𝑊 𝑖 is gradual as opposed to the parabolic
slider (Fig. 5) where a strong variation in the shear pressure is observed
beyond 𝑊 𝑖 ≈ 30. In Fig. 12c the distribution of the normal pressure
(𝑝𝑥𝑥) is shown for several values of 𝑊 𝑖 along the contact. Contrary to
the parabolic slider (Section 3), the normal pressure is negative along
the channel and causes a reduction of the total pressure. Therefore, as
12
the polymer stretches we find that it acts to reduce the films resistance
for the linear surface.

In Fig. 12d we report the solvent load (𝐿𝑠), the shear load (𝐿𝑥𝑦)
and the normal load (𝐿𝑥𝑥). The solvent load is constant because it is
purely Newtonian. We find that the shear load rises gradually with 𝑊 𝑖
exhibiting a weak response to the polymer addition. Therefore, we note
that the load is always decreasing, at least within the range of examined
Weissenberg numbers. On the other hand, the normal load is negative
and larger in magnitude, due to which the total load diminish.

4.2. Normal stress boundary condition

In this section we examine the normal stress boundary conditions
given by Eq. (7). We first start with a comparison of VR and LIN with
those available in literature for the second order fluid [38] as further
validation of our proposed approach. The second order fluid is defined
as

𝝉∗ = 𝜂𝐀∗ − 𝜂𝜆𝐁∗ + 𝜂𝜆00𝐀∗2, (39)

here 𝐀∗ (𝐁∗) is the first (second) Rivlin–Ericksen tensor and 𝜆00 is
he polymer retardation time. The tensors are expressed in terms of the
elocity gradient tensor 𝐋∗ as
∗ = 𝐋∗ + 𝐋∗𝑇 , (40a)
∗ = 𝐷𝐀∗

𝐷𝑡∗
− 𝐋∗𝐀∗ − 𝐀∗𝐋∗𝑇 . (40b)

The second order model approximates the polymer stress as a function
of the Newtonian strain rate. Therefore, it is a linearization of the
stress tensor and can lead to error as the 𝑊 𝑖 number grows. However,
the approach presented in this work uses the Oldroyd-B model which
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Fig. 9. (a) Pressure along the channel at 𝑊 𝑖 = 40, (b) load versus 𝑊 𝑖 for different models and (c) the load due to variation of the pressure (i) at the (𝐿𝑏) and along the channel
(𝐿𝑐 ) for the parabolic slider. In all these figures the normal stress boundary conditions are applied.
Fig. 10. Load due to the pressure variation at (i) the boundaries (𝐿𝑏), (ii) along the
channel (𝐿𝑐 ) and (iii) their sum (𝐿) versus 𝜃 for the parabolic slider at 𝑊 𝑖 = 40.

does not restrict the polymer stress in any manner. For further details
regarding the second order fluids, the reader is referred to Phan-Thien
and Mai-Duy [48].

Fig. 13a (Fig. 13b) compares the pressure distribution along the
channel obtained by LIN (dotted green lines), VR (continuous blue
lines) and second order fluid (dashed red lines) for different 𝑊 𝑖, at
𝛼 = 0.8 (different 𝛼, at 𝑊 𝑖 = 50) and for 𝛽 = 0. Note that the second
13
order fluid’s pressure distribution are extracted from [38]. We find (i)
that the pressure increases with 𝑊 𝑖 and 𝛼 and (ii) VR and LIN can
retrieve the solution given by the second order fluid model. Since the
plane slider at 𝛼 = 0.8 is not steep, we observe in general only a small
change in the pressure due to the polymer addition. At 𝛼 = 0.6 we
begin to observe a difference between the models towards the outlet of
the slider. In general, for large values of 𝛼 a linearized approach seems
sufficient for the plane slider with normal stress boundary conditions
since it is not sensitive to the non-linear effects due to viscoelasticity.

Fig. 13c compares the load versus 𝑊 𝑖 for 𝛼 = 0.6 showing a net
increase in the load for all the models. This is due to a positive pressure
at the inlet and outlet of the channel. Again VR and LIN show a similar
behavior since viscoelastic effects are weak for the plane slider with
normal stress boundary conditions.

Fig. 13d compares the contribution of the load due to the variation
of the pressure (i) at the boundaries 𝐿𝑏 and (ii) along the channel 𝐿𝑐
calculated with VR. We find an almost linear change in 𝐿𝑏 which hides
the non-linear variation along the channel. Thus, the large increase
of the pressure at the boundaries suppresses the comparatively small
decrease along the channel. Similar to the parabolic slider, we find a
large difference between 𝐿𝑏 and 𝐿𝑐 . In fact, from Fig. 13b, we find that
the polymers significantly enhance the pressure (and consequently the
load) also for a flat slider. In particular for this parallel bearing, this
large increase in the load due to 𝐿𝑏 may not be physical [36].

4.3. Influence of 𝜃

Fig. 14 shows the influence of 𝜃 on (i) the total load 𝐿, (ii) the
load due to the pressure variation at the boundary 𝐿 and (iii) the
𝑏
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Fig. 11. (a) Pressure distribution for different models along the channel (Fig. 1a) for 𝑊 𝑖 = 40 and (b) the load 𝐿 versus 𝑊 𝑖 for the plane slider.
Fig. 12. (a) Polymer shear pressure (i.e. 𝑝𝑥𝑦 = 𝑝(𝑁)
𝑥𝑦 +𝑝(𝑁𝑁)

𝑥𝑦 ), (b) the non-Newtonian portion of the shear pressure (𝑝(𝑁𝑁)
𝑥𝑦 ), (c) the pressure due to the normal stress (𝑝𝑥𝑥) for different

values of 𝑊 𝑖 along the plane slider. (d) A comparison of the load components versus 𝑊 𝑖: (i) the Newtonian solvent load (𝐿𝑠), (ii) the shear load (𝐿𝑥𝑦), (iii) the normal load (𝐿𝑥𝑥)
and (iv) the net load for the plane slider.
load due to the pressure variation along the channel 𝐿𝑐 . We find,
again unsurprisingly, that the load varies linearly since the boundary
conditions are a linear function of 𝜃 (see Eq. (8)). 𝐿𝑏 is much more
affected by variations in 𝜃 than 𝐿𝑐 , since its value directly depends
on the boundary conditions. Despite these results do not shed light
on the validity of the boundary conditions, we conclude that it is still
worthwhile to analyze the two limiting cases since we can understand
more clearly the behavior of the two loads, 𝐿𝑏 and 𝐿𝑐 , since they are
dominant at 𝜃 = 1 and 𝜃 = 0, respectively.
14
5. Discussions about the surface geometry

We observed in the previous two sections that, overall, the results
for the plane slider are in stark contrast to the parabolic slider, indicat-
ing a strong dependence of the viscoelastic pressure components on the
contact shape. Particularly, in Section 3.1 (Section 4.1) we obtained an
increase (decrease) in the load carrying capacity due to the addition
of the polymers to the lubricant with using the Newtonian boundary

conditions. A similar behavior was found in the evolution of 𝐿𝑐 , see
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Fig. 13. The variation of the pressure along the channel for different models and 𝛽 = 0 as (a) the 𝑊 𝑖 number is varied for 𝛼 = 0.8, (b) 𝛼 is varied for 𝑊 𝑖 = 50 where the red
curves represent the second order fluid results [38]. (c) The load versus 𝑊 𝑖 for different models and 𝛼 = 0.6, and (d) comparison of the load calculated with VR due to the
variation of the (i) pressure boundary values (𝐿𝑏) and (ii) pressure along the channel (𝐿𝑐 ) for 𝛼 = 0.6. In all these figures the normal stress boundary conditions are applied.
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Fig. 14. Load due to the pressure variation at (i) the boundaries (𝐿𝑏), (ii) along the
channel (𝐿𝑐 ) and their sum (𝐿) versus 𝜃 for the plane slider at 𝑊 𝑖 = 40.

Sections 4.2 and 3.5.1. In the present section we explain this difference
in the viscoelastic response.

While VR is indeed accurate for moderate to high 𝑊 𝑖, however it
does not provide explicit expressions for the pressure as a function of
the surface profile and its derivatives. Therefore, we opt to examine the
forcing terms appearing in the LIN model (i.e. the RHS in Eq. (14c))
since it has a qualitative behavior at small 𝑊 𝑖 similar to VR. We assign
15

b

the forcing functions 𝐹1 and 𝐹2 based on the RHS of Eq. (14c) as

𝐹1 =
1
ℎ

(

𝑑ℎ
𝑑𝑥

)2(

3
ℎ2𝑚
ℎ2

− 3
2
ℎ𝑚
ℎ

)

, and (41a)

𝐹2 =
𝑑2ℎ
𝑑𝑥2

(

−1
3
+ 3

2
ℎ2𝑚
ℎ2

− 3
2
ℎ𝑚
ℎ

)

. (41b)

The forcing terms mainly influence the second derivative of 𝑝(1) which
determines how rapidly the pressure gradient will rise or drop. 𝐹1 (𝐹2)
depends mainly on the first (second) derivative of the surface shape
ℎ(𝑥).

In Fig. 15a we show the forcing term 𝐹1, while 𝐹2 = 0 for the
lane slider. Note that 𝐹1 is always positive since ℎ < 2ℎ𝑚 for all 𝑥.
urthermore, the (i) first order pressure distribution and its (ii) first
nd (iii) second derivatives are illustrated in Fig. 15b for the plane
lider. Since 𝐹1 > 0, the initially negative pressure gradient rises
radually until the channel exit. Hence, 𝑝(1) decreases to a minimum
ithin the channel due to the negative pressure gradient and recovers

o the boundary value (i.e. 𝑝(1) = 0) as the pressure gradient reverses.
his change in sign occurs far from the inlet which prevents 𝑝(1) from
cquiring a positive value even when the pressure gradient is positive.

Similarly, we show in Fig. 16 the distribution of (a) the forc-
ng terms and (b) the first order pressure and its derivatives for the
arabolic slider. Note that 𝐹1 is again always positive since ℎ < 2ℎ𝑚
ut this time is strong enough to make the first order pressure gradient
ositive immediately after the inlet. However, 𝐹2 becomes significantly
egative and exceeds the positive 𝐹1 causing the decrease of the first
rder pressure gradient. This forces 𝑝(1) to reduce and arrive at its
oundary value at the exit (i.e. 𝑝(1) = 0). Hence, the second derivative
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Fig. 15. Distribution of (a) the forcing term (𝐹1) and (b) the normalized first order pressure 𝑝(1) = 𝑝(1)∕max |𝑝(1)|, its first 𝑑𝑝(1)

𝑑𝑥
= 𝑑𝑝(1)

𝑑𝑥
∕max

(

|

|

|

𝑑𝑝(1)

𝑑𝑥
|

|

|

)

and second derivative of the

first order pressure 𝑑2𝑝(1)

𝑑𝑥2
= 𝑑2𝑝(1)

𝑑𝑥2
∕max

(

|

|

|

𝑑2𝑝(1)

𝑑𝑥2
|

|

|

)

for the plane slider shown in Fig. 1b. Note that the first order pressure and its derivatives are normalized by their own maximum
value.
Fig. 16. Distribution of (a) the forcing terms (𝐹1, 𝐹2 and (𝐹1 + 𝐹2)) and (b) the first order pressure 𝑝(1) = 𝑝(1)∕max |𝑝(1)|, its first 𝑑𝑝(1)

𝑑𝑥
= 𝑑𝑝(1)

𝑑𝑥
∕max

(

|

|

|

𝑑𝑝(1)

𝑑𝑥
|

|

|

)

and second derivative
𝑑2𝑝(1)

𝑑𝑥2
= 𝑑2𝑝(1)

𝑑𝑥2
∕max

(

|

|

|

𝑑2𝑝(1)

𝑑𝑥2
|

|

|

)

along the parabolic slider shown in Fig. 1a. Note that the first order pressure and its derivatives are normalized by their own maximum value.
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f the surface opposes the surface slope diminishing the rate at which
he pressure gradient increases (i.e. reducing the second derivative of
he pressure) along the channel.

In conclusion, the surface slope in either case enhances the rate at
hich the first order pressure accumulates within the channel. How-
ver, for the same channel length, the plane slider has a constant and
omparatively small slope, close to the inlet, which prevents the rapid
rowth of the pressure gradient which is observed for the parabolic
lider. Therefore, we observe a rapid rise of the first order pressure in
he parabolic slider which is eventually offset by the negative effect due
o 𝐹2, i.e. higher surface gradients (𝑑2ℎ∕𝑑𝑥2).

. Conclusions

In this paper a viscoelastic Reynolds (VR) equation is introduced
howing a good quantitative and qualitative agreement with the DNS
t low and moderate Weissenberg numbers. The good accuracy of VR
s reached by (i) preserving the non-linear nature in 𝑊 𝑖 of the thin
ilm approximated polymer constitutive equations (in contrast to the
inearized models) and (ii) by keeping all the terms in such equations
differently from the other non-linearized models found in literature).
e do not incur the HWNP in VR since we decouple the velocity

ield from the pressure equation and the polymer stress. A further
dvantage of VR is that, by using this decomposition, we can also
ind the additional viscoelastic pressure and load, similarly to LIN. In
16

ddition, we can decompose the load due to the polymers into (i) a
hear (i.e. due to the shear stress) and (ii) normal (i.e. due to the normal
tress) component.

Furthermore, we have clearly shown the limits of (i) DNS and (ii)
he most common models available in literature based on lubrication
heory, such as GR and LIN, in describing viscoelastic lubricants. Al-
hough modeling viscoelastic effects in lubricated contacts via DNS is
he most accurate method, the onset of HWNP occurs at a very small
alues of 𝑊 𝑖. For this reason either convergence cannot be obtained
r the solution’s accuracy is questionable. We can use LCR to attain
olutions for relatively small 𝑊 𝑖 but eventually HWNP emerges again
aking impossible to achieve accurate results for 𝑊 𝑖 > 20. On the other
and, simplified models, such as GR, cannot predict the load accurately
ue to inherently restrictive assumptions regarding the normal stress.
IN can predict the load for small values of 𝑊 𝑖 but fails to capture the

strong non-linear trend at high 𝑊 𝑖. We show by comparison with DNS
and VR that this limit on LIN is close to 𝑊 𝑖 ≈ 15 for the parabolic slider
analyzed in this study when using Newtonian boundary conditions.

In this work, we show that viscoelasticity has a strong influence on
the lubricant film pressure even at small values of the Weissenberg
number. By comparing two different geometries (i.e. a parabolic vs
plane slider) we observed that, as 𝑊 𝑖 increases, the load due the
pressure variation along the channel is noticeably enhanced for the
quadratic surface, while it reduces for the linear surface. This difference
between the parabolic and plane slider is due to the presence (or
absence) of higher surface derivatives. The first (second) derivative of

the surface enhances (reduces) the rate at which pressure gradients
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change along the channel. Since the parabolic slider allows for larger
surface slopes close the inlet, the viscoelastic pressure rises rapidly in
this region.

In this paper we have also examined the effect of both the solvent
concentration and the aspect ratio. Their influence would be more
interesting in a constitutive model that is non-linear in the polymer
stress, such as FENE-P or PTT . Moreover, polymers are added to lubri-
cants to offset the decrease in viscosity as temperature increases [49].
Therefore, the influence of temperature on the load carrying capacity
for a viscoelastic lubricant can be studied more accurately with VR.
Additional effects such as piezoviscosity [50] or compressibility [51]
can also interact with viscoelasticity. The combination of these effects
will enhance the non-linear nature of the equations and might prove
to be too expensive for DNS. Furthermore, novel methods to improve
load carrying capacity such as surface texturing in the presence of
polymer enhanced lubricants [52] may require very fine meshes and
accurate results at high 𝑊 𝑖. For this reason the proposed VR offers a
simplified approach to couple viscoelastic, geometric and rheological
effects without increasing the numerical complexity.

Finally, we observed that the total increase in the load for the
parabolic slider was due to a shift in the negative pressure region, and
a net increase in the pressure. This shift may be of vital importance if
the pressure falls below the saturation pressure allowing the formation
of a cavitation bubble as usual in bearings [53,54]. Recently, Gamaniel
et al. [55] have studied the influence of polymers in cavitating contacts
by using a linearized model. However, we have shown that such
models are not accurate beyond a small range of 𝑊 𝑖. Therefore, one
may require the proposed VR to investigate cavitation for polymeric
lubricants at large values of the Weissenberg number.
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Appendix A. Numerical stability under the thin film approxima-
tion

The criteria for numerical stability of the Oldroyd-B constitutive
relation is provided in Ref. [56]. Particularly two conditions must be
satisfied by the tensor  = − 1

2𝜆 𝐈 + 𝐋

r() = − 1
𝜆
< 0 and (42a)

det () = 1
4𝜆2

− 𝑑2 + 𝜔2 < 0, (42b)

here the parameters 𝑑2 = −det (𝐋 + 𝐋𝑇 )∕4 and 𝜔2 = det (𝐋 − 𝐋𝑇 )∕4
re functions of the velocity gradient tensor 𝐋 and its transpose 𝐋𝑇 .

It is clear that det () is determined only by the velocity gradient
tensor [18]. While Eq. (42a) is always satisfied, we need to check the
validity of Eq. (42b).

By using Eq. (2), we can find 𝐋+𝐋𝑇 and 𝐋−𝐋𝑇 under the thin film
assumption

𝐋 + 𝐋𝑇 = 𝑈
𝓁

{

2 𝜕𝑢
𝜕𝑥

1
𝜖
𝜕𝑢
𝜕𝑦 + 𝜖 𝜕𝑣

𝜕𝑥
1
𝜖
𝜕𝑢
𝜕𝑦 + 𝜖 𝜕𝑣

𝜕𝑥 2 𝜕𝑣
𝜕𝑦

}

and

𝐋 − 𝐋𝑇 = 𝑈
𝓁

{

0 1
𝜖
𝜕𝑢
𝜕𝑦 − 𝜖 𝜕𝑣

𝜕𝑥
1 𝜕𝑢 𝜕𝑣

}

.

(43)
17

− 𝜖 𝜕𝑦 + 𝜖 𝜕𝑥 0 𝜏
As a result 𝑑2 and 𝜔2 are

𝑑2 = − 𝓁
4𝑈

(

4 𝜕𝑢
𝜕𝑥

𝜕𝑣
𝜕𝑦

−
[

1
𝜖
𝜕𝑢
𝜕𝑦

+ 𝜖 𝜕𝑣
𝜕𝑥

]2)

and (44a)

𝜔2 = 𝓁
4𝑈

[

1
𝜖
𝜕𝑢
𝜕𝑦

− 𝜖 𝜕𝑣
𝜕𝑥

]2
, (44b)

respectively. Upon simplification, the difference 𝜔2 − 𝑑2 is given as

𝜔2 − 𝑑2 = 𝓁
𝑈

(

𝜕𝑢
𝜕𝑥

𝜕𝑣
𝜕𝑦

− 𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

)

, (45)

which is independent of 𝜖. This is also intuitively observed from Eqs.
(3d)–(3f), which do not simplify after the thin film approximation and
retains the numerically problematic convective–derivative. In conclu-
sion, the lubrication approximation does not induce any numerical
stability and the solution of Eqs. (3d)–(3f) will incur in the HWNP
as well. Note also that the HWNP is caused by a restriction on the
minimum grid spacing due to a polynomial approximation of the
Oldroyd-B, see Section 2.4. This restriction is greatly relaxed via the
LCR but not entirely eliminated [16]. Therefore, we should still expect
a numerical failure at high 𝑊 𝑖 also for the thin film equations solved
by a LCR.

Appendix B. VR equation derivation

The viscoelastic Reynolds equation follows the same steps of the
classical Reynolds equation. However, we make no attempt to remove
the integrals similar to the derivation of GR [25]. We integrate the thin
film momentum equation (Eq. (3b)) twice along the film thickness to
obtain
𝑑𝑝
𝑑𝑥

𝑦2

2
+ 𝑐1𝑦 + 𝑐2 = (1 − 𝛽)𝑢 + ∫

𝑦

0
𝜏𝑥𝑦𝑑𝑦 + ∫

𝑦

0 ∫

𝑦

0

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑦′𝑑𝑦. (46)

If we apply the boundary conditions, 𝑢 = 1 at 𝑦 = 0 and 𝑢 = 0 at 𝑦 = ℎ,
we get

𝑐1 = −ℎ
2
𝑑𝑝
𝑑𝑥

+ 1
ℎ

(

∫

𝑦

0
𝜏𝑥𝑦𝑑𝑦+ ∫

𝑦

0 ∫

𝑦

0

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑦′ − 𝛽
)

, and 𝑐2 = 𝛽. (47)

he velocity field is obtained by substituting the integration constants
Eq. (47)) into Eq. (46)

= 1
2𝛽

𝑑𝑝
𝑑𝑥

(

𝑦2 − 𝑦ℎ
)

+
(

1 −
𝑦
ℎ

)

+ 1
𝛽

(

𝑦
ℎ ∫

ℎ

0
𝜏𝑥𝑦𝑑𝑦 − ∫

𝑦

0
𝜏𝑥𝑦𝑑𝑦

′
)

(48)

+ 1
𝛽

(

𝑦
ℎ ∫

ℎ

0 ∫

𝑦

0

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑦′𝑑𝑦 − ∫

𝑦

0 ∫

𝑦

0

𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑦′𝑑𝑦
)

.

To obtain the VR equation we substitute the velocity field into the
continuity Eq. (3a), apply the Leibnitz theorem and simplify by noting
that the 𝑣 = 0 at the walls

𝜕
𝜕𝑥 ∫

ℎ

0
𝑢𝑑𝑦 + 𝑑ℎ

𝑑𝑥
𝑢|𝑦=ℎ + 𝑣|𝑦=ℎ − 𝑣|𝑦=0 = 0. (49)

fter integrating over the channel height the VR equation is obtained

𝑑
𝑑𝑥

(

ℎ3

12
𝑑𝑝
𝑑𝑥

)

=
𝛽
2
𝑑ℎ
𝑑𝑥

+ 𝑑
𝑑𝑥

(

∫

ℎ

0

𝑦
ℎ ∫

ℎ

0 ∫

𝑦

0

𝑑𝜏𝑥𝑥
𝑑𝑥

𝑑𝑦′′𝑑𝑦′𝑑𝑦 (50)

− ∫

ℎ

0 ∫

𝑦

0 ∫

𝑦

0

𝑑𝜏𝑥𝑥
𝑑𝑥

𝑑𝑦′′𝑑𝑦′𝑑𝑦
)

+ 𝑑
𝑑𝑥

(

∫

ℎ

0

𝑦
ℎ ∫

ℎ

0
𝜏𝑥𝑦𝑑𝑦

′𝑑𝑦 − ∫

ℎ

0 ∫

𝑦

0
𝜏𝑥𝑦𝑑𝑦

′𝑑𝑦
)

.

Appendix C. Polynomial approximation and discretization of the
viscoelastic stresses

The stress polynomials are written in terms of the unknown func-
tions of 𝑇 (𝑘)

𝑖𝑗 (𝑥, 𝑡). If we choose to evaluate the polynomials at a chosen
, each 𝑇 (𝑛)

𝑖𝑗 can be expressed in terms of the stress

(𝐼) (𝐼𝐼) (𝐼𝐼𝐼) 2 (𝐼𝑉 ) 3

𝑥𝑥(𝑥, 𝑦, 𝑡) = 𝑇𝑥𝑥 (𝑥, 𝑡) + 𝑇𝑥𝑥 (𝑥, 𝑡)𝑦 + 𝑇𝑥𝑥 (𝑥, 𝑡)𝑦 + 𝑇𝑥𝑥 (𝑥, 𝑡)𝑦 , (51a)
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𝑇

w
l

𝑇

𝑇

𝑇

𝜏

𝜏

𝜏𝑥𝑦(𝑥, 𝑦, 𝑡) = 𝑇 (𝐼)
𝑥𝑦 (𝑥, 𝑡) + 𝑇 (𝐼𝐼)

𝑥𝑦 (𝑥, 𝑡)𝑦 + 𝑇 (𝐼𝐼𝐼)
𝑥𝑦 (𝑥, 𝑡)𝑦2

+ 𝑇 (𝐼𝑉 )
𝑥𝑦 (𝑥, 𝑡)𝑦3 + 𝑇 (𝑉 )

𝑥𝑦 (𝑥, 𝑡)𝑦4, and (51b)

𝜏𝑦𝑦(𝑥, 𝑦, 𝑡) = 𝑇 (𝐼)
𝑦𝑦 (𝑥, 𝑡) + 𝑇 (𝐼𝐼)

𝑦𝑦 (𝑥, 𝑡)𝑦 + 𝑇 (𝐼𝐼𝐼)
𝑦𝑦 (𝑥, 𝑡)𝑦2

+ 𝑇 (𝐼𝑉 )
𝑦𝑦 (𝑥, 𝑡)𝑦3 + 𝑇 (𝑉 )

𝑦𝑦 (𝑥, 𝑡)𝑦4, (51c)

For instance, if we want to determine 𝜏𝑥𝑥(𝑥, 𝑦, 𝑡) at equidistant stencils,
i.e. 𝑦 = {0, ℎ∕3, 2ℎ∕3, ℎ}, then the unknown coefficients for 𝜏𝑥𝑥(𝑥, 𝑦, 𝑡)
are

𝑇 (𝐼)
𝑥𝑥 = 𝜏(0)𝑥𝑥 , (52a)

𝑇 (𝐼𝐼)
𝑥𝑥 = 1

2ℎ
(

−11𝜏(0)𝑥𝑥 + 18𝜏(ℎ∕3)𝑥𝑥 − 9𝜏(2ℎ∕3)𝑥𝑥 + 2𝜏(ℎ)𝑥𝑥
)

, (52b)

(𝐼𝐼)
𝑥𝑥 = 9

2ℎ
(

2𝜏(0)𝑥𝑥 − 5𝜏(ℎ∕3)𝑥𝑥 + 4𝜏(2ℎ∕3)𝑥𝑥 − 𝜏(ℎ)𝑥𝑥
)

, and (52c)

𝑇 (𝐼𝑉 )
𝑥𝑥 = 9

2ℎ
(

−𝜏(0)𝑥𝑥 + 3𝜏(ℎ∕3)𝑥𝑥 − 3𝜏(2ℎ∕3)𝑥𝑥 + 𝜏(ℎ)𝑥𝑥
)

, (52d)

here {𝜏(0)𝑥𝑥 , 𝜏
(ℎ∕3)
𝑥𝑥 , 𝜏(2ℎ∕3)𝑥𝑥 , 𝜏(ℎ)𝑥𝑥 } are the normal stresses at the stencil

ocations. We can determine 𝜏(𝑘)𝑥𝑥 (𝑥, 𝑦, 𝑡) by writing explicit equations
for the four stencil points.

Similarly for 𝜏𝑥𝑦, by choosing an equidistant stencil, i.e. 𝑦 =
{0, ℎ∕4, ℎ∕2, 3ℎ∕4, ℎ},

𝑇 (𝐼)
𝑥𝑦 = 𝜏(0)𝑥𝑦 , (53a)

𝑇 (𝐼𝐼)
𝑥𝑦 = 1

210ℎ
(

−1435𝜏 (0)𝑥𝑦 + 1920𝜏(ℎ∕4)𝑥𝑦 − 9𝜏(ℎ∕2)𝑥𝑦 − 896𝜏(3ℎ∕4)𝑥𝑦 + 420𝜏(ℎ)𝑥𝑥

)

, (53b)

(𝐼𝐼𝐼)
𝑥𝑦 = 1

210ℎ
(

2905𝜏 (0)𝑥𝑦 − 5440𝜏(ℎ∕4)𝑥𝑦 + 57𝜏(ℎ∕2)𝑥𝑦 + 4928𝜏(3ℎ∕4)𝑥𝑦 + −2450𝜏 (ℎ)𝑥𝑥

)

,

(53c)
(𝐼𝑉 )
𝑥𝑦 = 16

105ℎ
(

−70𝜏 (0)𝑥𝑦 + 150𝜏(ℎ∕4)𝑥𝑦 − 3𝜏(ℎ∕2)𝑥𝑦 − 182𝜏(3ℎ∕4)𝑥𝑦 + 105𝜏(ℎ)𝑥𝑥

)

, and (53d)

(𝑉 )
𝑥𝑦 = 8

105ℎ
(

35𝜏(0)𝑥𝑦 − 80𝜏 (ℎ∕4)𝑥𝑦 + 3𝜏 (ℎ∕2)𝑥𝑦 + 112𝜏 (3ℎ∕4)𝑥𝑦 − 70𝜏 (ℎ)𝑥𝑦

)

. (53e)

The equations for the coefficient functions 𝜏(𝑘)𝑦𝑦 are identical to those
appearing in 𝜏𝑥𝑦, since we chose to use the (i) same stencil and (ii) the
4th degree polynomial approximation. Finally, we substitute Eqs. (52)
and (53) at the chosen film locations into the thin film equations (Eqs.
(3d)–(3f)) and solve for the coefficient functions that depend only on
𝑥 and 𝑡.

Below, we show the discretization for each stress component at
𝑦 = 0,

𝜏(0)𝑥𝑥 |
𝑡+𝛥𝑡
𝑖 = 1

𝜖𝑊 𝑖
(

−𝜏(0)𝑥𝑥 |
𝑡
𝑖
)

− 𝛥𝑡
( 𝜏(0)𝑥𝑥 |

𝑡
𝑖 − 𝜏(0)𝑥𝑥 |

𝑡
𝑖−1

𝛥𝑥

− 2 𝜕𝑢
𝜕𝑦

|

|

|𝑖
𝜏(0)𝑥𝑦 |

𝑡
𝑖 − 2 𝜕𝑢

𝜕𝑥
|

|

|𝑖
𝜏(0)𝑥𝑥 |

𝑡
𝑖

)

+𝜏(0)𝑥𝑥 |
𝑡
𝑖, (54a)

(0)
𝑥𝑦 |

𝑡+𝛥𝑡
𝑖 = 1

𝜖𝑊 𝑖
(

(1 − 𝛽) 𝜕𝑢
𝜕𝑦

|

|

|𝑖
− 𝜏(0)𝑥𝑦 |

𝑡
𝑖
)

− 𝛥𝑡
( 𝜏(0)𝑥𝑦 |

𝑡
𝑖 − 𝜏(0)𝑥𝑦 |

𝑡
𝑖−1

𝛥𝑥
− 𝜕𝑢

𝜕𝑦
|

|

|𝑖
𝜏(0)𝑦𝑦 |

𝑡
𝑖 −

𝜕𝑣
𝜕𝑥

|

|

|𝑖
𝜏(0)𝑥𝑥 |

𝑡
𝑖

)

+𝜏(0)𝑥𝑦 |
𝑡
𝑖, (54b)

(0)
𝑦𝑦 |

𝑡+𝛥𝑡
𝑖 = 1

𝜖𝑊 𝑖
(

2(1 − 𝛽) 𝜕𝑣
𝜕𝑦

|

|

|𝑖
− 𝜏(0)𝑦𝑦 |

𝑡
𝑖
)

− 𝛥𝑡
( 𝜏(0)𝑦𝑦 |

𝑡
𝑖 − 𝜏(0)𝑦𝑦 |

𝑡
𝑖−1

𝛥𝑥
− 𝜕𝑣

𝜕𝑦
|

|

|𝑖
𝜏(0)𝑦𝑦 |

𝑡
𝑖 −

𝜕𝑣
𝜕𝑥

|

|

|𝑖
𝜏(0)𝑥𝑦 |

𝑡
𝑖

)

+ 𝜏(0)𝑦𝑦 |
𝑡
𝑖, (54c)

where 𝛥𝑡 is the time step and 𝛥𝑥 is the grid spacing. Similarly, we
have to write explicit equations for the remaining film locations. Note,
however, that the spatial derivatives (𝑑∕𝑑𝑥 and 𝑑∕𝑑𝑦) do not vanish
for the interior film locations. Additionally, note that for 𝑊 𝑖 = 0,
Eqs. (54a)–(54c) cannot be solved due to the presence of 𝑊 𝑖 in the
denominator. For values of 𝑊 𝑖 ≪ 1, time-integration via the explicit
Euler scheme causes a significant delay in arriving to the steady state
solution. However, the solution for such cases may not be required,
since the solutions are indistinguishable from the Newtonian case.
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