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Abstract—We consider secure transmission over multi-input
multi-output multi-antenna eavesdropper (MIMOME) wiretap
channels with finite alphabet inputs. We use a linear precoder
to maximize the secrecy rate, which benefits from the general-
ized singular value decomposition to obtain independent streams
and exploits the function approximation abilities of deep neu-
ral networks (DNNs) for solving the required power allocation
problem. It is demonstrated that the DNN learns the optimal
power allocation without any performance degradation com-
pared to the conventional technique with a significant reduction
in complexity.

Index Terms—Deep neural networks, physical layer security,
MIMOME wiretap channels.

I. INTRODUCTION

W IRELESS communication systems have inherent secu-
rity problems due to the broadcast nature of the

wireless medium. A suitable model to address such security
issues at the physical layer is the wiretap channel introduced
in [1], which consists of a transmitter “Alice”, a legitimate
receiver “Bob” and an eavesdropper “Eve”. In [1], the secrecy
capacity, which is the maximum rate at which data can be
securely transmitted between Alice and Bob while keeping
Eve ignorant, is computed when Eve’s channel is a degraded
version of the legitimate channel. In [2], this result is gener-
alized to the case of non-degraded channels, and existence
of channel codes that simultaneously guarantee robustness
against errors and a certain degree of confidentiality is shown.
More recently, the physical layer security problem is con-
sidered for multi-input multi-output (MIMO) systems with
Gaussian inputs and precoding based on generalized singu-
lar value decomposition (GSVD) is performed [3]. In addition
to the use of the multiple antennas, injection of artificial noise
is used as another attractive technique to achieve secrecy [4].

In [3], it is proven that secrecy capacity can be achieved
with Gaussian inputs, however, in practical scenarios, finite
alphabet signals are used. With this motivation, precoding for
finite alphabet inputs is considered in [5]–[7]. The joint design
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of artificial noise and precoder is employed in [5]. The channel
decomposition technique of [3] is adopted to the case of finite
alphabet signals and an iterative algorithm based on dividing
the main optimization into subproblems and connecting them
through the minimization of a latent variable is proposed in [6].

Deep neural networks (DNNs) have recently attracted great
interest in various areas. Their unbeatable performance in
classification problems and excellent function approxima-
tion abilities widen the utilization of different deep learning
techniques. As such, there have been recent studies on commu-
nication systems which employ DNNs in many tasks including
precoding, decoding of linear codes and end-to-end com-
munication system design [8]–[10]. In [11], various signal
processing blocks at the transmitter and the receiver are
replaced with a single DNN based autoencoder, and an overall
end-to-end communication system is obtained. Furthermore,
the solution is implemented with software defined radios and
tested over the air.

Deep learning has been used in physical layer security prob-
lems as well [12]–[14]. Through the utilization of the DNNs in
all of the parties in a wiretap channel, and exploiting suitable
cost functions, constellation clusters that confuse Eve have
been learned at the transmitter in [12]. Deep learning is used
with quality of service (QoS) functions to increase the secrecy
rates in [13].

In this letter, we aim at designing a low complexity
precoder based on the use of DNNs to maximize the secrecy
rate of multi-input multi-output multi-antenna eavesdropper
(MIMOME) Gaussian wiretap channels with finite alphabet
inputs. Similar to the application in [6], we decompose chan-
nel into independent streams through singular vectors. And
then, we employ a specifically designed fully-connected DNN
using the generalized singular values and the available power
level to optimize the power allocation strategy as an alternative
to the iterative algorithm which has a very high complexity.
We show that the proposed DNN with a small number of
nodes and layers learns the optimal power allocation without
any performance degradation compared to the iterative solu-
tion while reducing the amount of computations to a suitable
level for real-time implementations.

The remainder of the letter is organized as follows. We
describe the system model and formulate the problem in
Section II. We give a summary of GSVD and conventional
iterative power allocation scheme in Section III. In Section IV,
we explain the proposed DNN based precoder and conduct a
complexity analysis. Section V provides a DNN example and
numerical results revealing the performance of the proposed
algorithms. Finally, we conclude the letter in Section VI.
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Throughout the letter, vectors are indicated with bold low-
ercase letters, and matrices shown by bold uppercase letters.
The notations, tr(.), (.)H , ||.||, and E are used for trace,
Hermitian, L2 norm, and expectation operations, respectively.
The operation (.)+ stands for max(0, x).

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider MIMOME wiretap channel for which Alice,
Bob and Eve have ma , mb and me antennas, respectively.
The received signals of Bob and Eve are expressed as

yb = Hbx + nb ,

ye = Hex + ne , (1)

where Hb ∈ C
mb×ma denotes the channel matrix between

Alice and Bob, and He ∈ C
me×ma represents the channel

between Alice and Eve. The elements of channel matrices are
modeled as zero mean and unit variance circularly symmet-
ric complex Gaussian random variables (i.e., Rayleigh fading),
and both Hb and He are assumed to be known at the transmit-
ter and their respective receivers. We note that the assumption
on the availability of both Bob’s and Eve’s CSI at Alice is valid
in many communication scenarios, for example, when both the
legitimate receiver and the eavesdropper are participants of a
wireless network (as in cellular systems), and it is adopted
in many studies on physical layer security, e.g., [6], [15]. nb

and ne denote additive circularly symmetric complex white
Gaussian noise terms with zero means and variances σ2

b and
σ2
e , respectively. x ∈ C

ma×1 is the transmitted signal given by

x = Ws, (2)

where W ∈ C
ma×ma is the precoder matrix and s ∈ C

ma×1

is the vector of data symbols with zero mean and unit vari-
ance, picked from a finite cardinality input. The input power
constraint is given by tr(E[xxH ]) ≤ PT . The secrecy rate is
calculated by using [7]

Rsec(W ) = (I (x ;yb) − I (x ;ye))+, (3)

where I (x ;y) denotes the mutual information between x
and y (computed under the assumption that the CSI is avail-
able). The objective is to solve for W that maximizes the
secrecy rate Rsec(W ) under the average power constraint
tr(E[xxH ]) ≤ PT .

III. LINEAR PRECODING BASED ON GENERALIZED

SINGULAR VALUE DECOMPOSITION

The maximization problem given in Section II is non-
convex, making it difficult to solve. Therefore, a linear
precoding scheme based on GSVD is proposed in [6] in which
the GSVD expression of [3] is used, i.e.,

Hb = ΨbΣb

k ma − k
[ ]Ω−1 0 ΨH

a ,

He = ΨeΣe

k ma − k
[ ]Ω−1 0 ΨH

a , (4)

where Ψb ∈ C
mb×mb , Ψe ∈ C

me×me and Ψa ∈ C
ma×ma

are unitary matrices consisting of singular vectors, and Ω is a
nonsingular matrix. Σb and Σe are diagonal matrices of the
singular values expressed as

Σb =

k − r − s s r⎡
⎣

⎤
⎦

0 0 0 mb − r − s
0 Db 0 s
0 0 I r

(5)

Σe =

k − r − s s r⎡
⎣

⎤
⎦

I 0 0 k − r − s
0 De 0 s
0 0 0 me − k + r

(6)

Here Db and De are s × s diagonal matrices with elements
arranged in ascending and descending orders, respectively. k,
r, and s denote the total number of degrees of freedom, the
number of streams serving Bob while nulling Eve, and the
number of layers serving both receivers, respectively.

In [6], the precoding matrix is selected as W = ΨaBP1/2,
where P is a diagonal power allocation matrix, and B is
given by

B =

k ma − k[ ]
Ω 0 k
0 0 ma − k

(7)

Through the use of this precoding structure, the channel is
decomposed into independent layers, and power is allocated
into the streams in a way to maximize the secrecy rate. The
mutual information of each stream is calculated as

I (xi , yi ) = log2(M )

− 1
M

M∑
u=1

E

{
log2

(
M∑

v=1

exp
(−fu,v + ‖ni‖2

σ2

))}
,

(8)

where fu,v = ||di

√
pi/wi (su − sv ) + ni ||2, M is the car-

dinality of the input alphabet, w is a vector obtained from
diagonal elements of ΩH Ω, and σ2 denotes the noise vari-
ance.1 Then, the overall secrecy rate is calculated as the sum
of the individual secrecy rates of the independent streams.

In [6], determination of the power allocated to each inde-
pendent stream is formulated as subproblems to maximize the
individual secrecy rates. A master problem which connects
the subproblems by a latent variable is used to satisfy the
total power constraint, and an iterative approach is adopted to
solve for the power allocations while minimizing the hidden
variable. This approach is effective, however, it has a high
computational complexity.

1Eq. 8 is given in a general form, thus di and ni are different for different
receivers. di and pi denote i-th diagonal elements of Σ and P matrices, and
wi , and ni are the i-th elements of w and n, respectively.
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Fig. 1. DNN design for power allocation to maximize Rsec .

IV. POWER ALLOCATION THROUGH DNNS

As power allocation algorithm of [6] requires a large
amount of computations, it may not be applicable for real-
time implementation. To address this limitation, we propose
a deep-learning based power allocation technique with a
significantly reduced complexity.

A. Construction and Training of the DNN

The proposed DNN structure is shown in Fig. 1. It takes
real-valued Σb , Σe , w and PT as input, and tries to estimate
the power allocation at the output. The number of inputs is
equal to 3ma +1 and the output layer has ma +1 nodes. The
output dimension is taken as one more than the number of
antennas because the optimal solution may require the use of
less than the total available power due to the finite cardinality
inputs. There are four fully-connected hidden layers in the
DNN to learn the complex relationships among the singular
values, w, and PT and the power allocation vector.

Σb and Σe have their elements in the interval [0, 1], how-
ever w values and the available power can be incomparably
larger. In order to have a balance among different features, we
normalize the power term and w by dividing them with the
corresponding maximum value in the training set. The rec-
tified linear unit (ReLU) activation function is used in the
hidden layers, and the output activation is chosen as softmax.
Through the use of softmax, the output values are restricted to
the interval [0, 1], and they sum up to 1, which is consistent
with the true power allocation vector normalized with PT .

The DNN is trained in a supervised manner through a
labeled data generated with random channel realizations and
the use of the iterative power allocation algorithm of [6]. The
sum of the squared errors is used as the loss function to train
the DNN since the power allocation is a regression problem.
In order to have a generalized solution for different PT val-
ues, the training data capture samples from a wide range of
power levels of interest.

B. An Alternative Method of Training the DNN

The use of the softmax activation at the output of the DNN
is a successful approach for training the neural network, how-
ever, we also consider a second alternative. In this training
method, we first use ReLU activation at the output and add a
custom activation function on top of it, which ensures that the

sum of the output nodes equals to PT as expressed below

oi =
zi∑ma+1

j=1 zj
PT (9)

where zi and oi denote the i-th output node value after ReLU
activation and custom activation, respectively. Through the
application of the power normalization function, the output
values are allowed to be in [0,PT ] instead of being squeezed
in [0, 1]. Therefore, the effects of errors for high transmit
power cases are increased while keeping the labels as is (i.e.,
there is no normalization with PT ).

C. Complexity Analysis

In order to assess the computational complexity of the
proposed solution, the testing stage is considered as the train-
ing is performed off-line and only once before the utilization
of the DNN as part of a communication system. The operation
in each layer of the DNN is given by f (Ax + b) where f, A, x,
and b are the nonlinear activation function, the weight matrix,
the input vector, and the bias vector of the layer, respectively.
That is, the computational complexity of a DNN is directly
related to the number of nodes in each layer and the number
of layers. In this regard, the motivation in our proposed solu-
tion is to use a DNN with a small number of nodes and layers,
in an effort to reduce the computational complexity compared
to the conventional iterative algorithms. The number of nodes
in the input and the output layers are directly related to ma ,
and the number of nodes in the hidden layers are kept in
the order of the input dimensions to learn the general nonlin-
ear pattern without increasing the complexity unnecessarily.
Therefore, the size of the vectors and weight matrices may
slightly change for different antenna configurations, however,
they are guaranteed to be small as the number of antennas is
limited.

In the conventional iterative method for determining the
optimal powers, for each iteration and for each independent
stream, a function mmse(p) provided in [17] needs to be calcu-
lated, which requires a numerical integration and summation
over the constellation points. This operation can be simplified
by using a table look-up with the power levels and the cor-
responding MMSE values but the search for the minimum
value is still time-consuming since the density of the ele-
ments in the table directly affects the convergence to the true
value (for instance, approximately 5000 samples are needed
for PT = 10 units). Besides, a large number of iterations is
needed as the step size used for updating the latent variable
should be kept small for better convergence [16].

As a concrete example, consider a system with
(ma ,mb ,me) = (5, 5, 5), 16QAM symbol library, and
PT = 10 units. The conventional technique based on use of a
table look-up requires approximately 70 × 106 comparisons,
900 additions, and 21500 multiplications to calculate the
power allocation for each channel realization. On the other
hand, there are four hidden layers and one output layer
in the DNN as depicted in Table I, hence the proposed
power allocation method requires 5 matrix multiplications,
5 vector additions, and 5 activation operations. That is,
the proposed DNN requires less than 5000 multiplications,
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TABLE I
DNN STRUCTURE TO ESTIMATE POWER ALLOCATION VECTOR

Fig. 2. Sum of the squared errors versus epochs for training and validation
data (QPSK signaling, the low SNR region).

5000 additions, and 150 activation operations. Furthermore,
the computational complexity of the conventional technique
increases significantly when the number of antennas and
available power increase, however, the complexity changes
only slightly or stays the same with the proposed DNN-based
solution. Note also that, the DNN can be pruned to further
reduce the complexity without a loss in performance.

V. NUMERICAL RESULTS

We now present several simulation results to assess the
performance of the proposed algorithm. The DNN structure in
Table I is used to solve for the power allocations for different
scenarios in Figs. 3 and 4. The implementation of the DNN is
performed on Python by KERAS, and Adam optimizer with a
learning rate of 0.005 is used [18], [19]. In the alternative DNN
approach, the learning rate is chosen as 0.001 as the output
values are allowed to be in [0,PT ]. In order to obtain a bet-
ter convergence, the SNR range is split into two parts as low
and high SNR regions ([−9dB, 15dB] and [12dB, 19.5dB]),
i.e., two different DNNs are employed (one for each SNR
range). Training is performed for 500 epochs over the data
set including 5000 samples from each SNR level chosen with
1.5dB intervals between the minimum and the maximum SNR
levels. 10% of the data is utilized for the validation of the train-
ing process. It should be noted that for changing input library
(e.g., with QPSK or 16QAM signaling) the DNN requires a
new dataset and optimization of network variables.

Firstly, a MIMOME wiretap channel with (ma ,mb ,me) =
(5, 5, 5) is considered. As an example of the training process,

Fig. 3. Average secrecy rate versus SNR for (ma ,mb ,me ) = (5, 5, 5)
configuration.

errors over the validation data and training data are given in
Fig. 2. Training has not proceeded any further as the losses
are small, i.e., on the order of 10−4 − 10−3. In Fig. 3, the
trained network is used for power allocation for an independent
test data including 2000 samples for each power level. The
performance of the GSVD-based linear precoder with optimal
power allocation, the GSVD-based equal power precoder, and
the DNN-based solution with the alternative activation func-
tion are also depicted in the same figure. In the GSVD-based
precoder with equal power allocation, the entire transmission
power is used for transmitting streams that are more favor-
able to Bob (i.e., those corresponding to the diagonal elements
of Σb that are larger than the corresponding element of Σe )
since using a precoder favoring Eve compared to Bob is not an
opportunistic strategy to improve security [6]. It is observed
that the performance of the equal power precoder deteriorates
rapidly in the high SNR regime since there are no streams
directed only to Bob (i.e., Eve’s detection capability improves
through the use of excess power while Bob’s performance
changes only slightly as it has already reached its saturation
level). It is also observed that both of the designed DNNs are
capable of solving for the optimal power allocation with a
small complexity.

In Fig. 4, a system with (ma ,mb ,me) = (5, 5, 3) is con-
sidered. As the number of Eve’s antennas is smaller than that
of Bob, the subspace only directed to Bob is expected to be
nonempty, which changes the optimal power allocation strat-
egy, especially in the high SNR regime. That is, using all the
remaining power on the streams directed only to Bob can be
employed instead of using only a fraction of the total power.
That is why, the performance of the equal power precoder does
not decay rapidly as opposed to the previous case in which
there are no streams directed only to Bob [6]. However, we still
keep the dimension of the output layer the same, and allow the
DNN to learn the optimal solution by the given training data.
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Fig. 4. Average secrecy rate versus SNR for (ma ,mb ,me ) = (5, 5, 3)
configuration.

As expected, the proposed DNN manages to learn the chang-
ing behavior for the entire SNR range, and the optimal power
allocation is achieved even with independent test samples.

Through the given examples, we observe that a DNN with
a small number of nodes and layers can learn a general solu-
tion applicable to a wide SNR range for a highly nonlinear
power allocation scheme. In the given examples, two different
solutions: 1) requiring the use of only a portion of the avail-
able power, and 2) consuming the entire remaining power on
streams directed only to Bob, are learned in the high SNR
regime while maintaining similar solutions in the low SNR
regime. Note also that we have not performed any hyper-
parameter optimization for the number of nodes or layers.
Therefore, the number of network variables may be further
reduced without any degradation in the system performance.

VI. CONCLUSION

In this letter, a power allocation strategy is considered to
design a precoder to maximize the secrecy rate of a MIMOME
wiretap channel with finite alphabet inputs. GSVD vectors
are utilized as precoders and the required power allocation
is determined by a newly developed deep neural network with
a small number of nodes, instead of the computationally costly
iterative algorithm. The proposed DNN is trained off-line and
only once in a supervised manner by a labeled dataset con-
taining samples from a large SNR range of interest, and it
is shown that a single DNN is effective for a wide range of

SNRs. Numerical experiments show that the function approx-
imation abilities of DNNs offer promising alternative to the
iterative techniques for power allocation in precoder designs.
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