
HYPERGRAPH PARTITIONING AND
REORDERING FOR PARALLEL SPARSE
TRIANGULAR SOLVES AND TENSOR

DECOMPOSITION

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

computer engineering

By

Tuğba Torun

July 2021



Hypergraph Partitioning and Reordering for Parallel Sparse Triangular 
Solves and Tensor Decomposition 
By Tuğba Torun 
July 2021 

We certify that we have read this dissertation and that in our opinion it is fully 
adequate, in scope and in quality, as a dissertation for the degree of Doctor of 
Philosophy. 

Cevdet Aykanat (Advisor) 

Murat Mangu {ci;Advisor) 

Özgü� uı;J' 

Engin Demir 

Emrullah Fatih Yetkin 
Approved for the Graduate School of Engineering and Science: 

Ezhan Karaşan V. 
Director of the Graduate School 

11 

Özcan Öztürk

r 

5' 't)' ..ı:_ ... _ 

-



Copyright Information

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of Bilkent University’s products or services.

Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional pur-

poses or for creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html

to learn how to obtain a License from RightsLink. If applicable, University Mi-

crofilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.

Source of Chapter 6:

© 2018 IEEE. Reprinted, with permission, from S. Acer, T. Torun and C.

Aykanat, “Improving Medium-Grain Partitioning for Scalable Sparse Tensor De-

composition,” in IEEE Transactions on Parallel and Distributed Systems, vol.

29, no. 12, pp. 2814-2825, 1 Dec. 2018, doi: 10.1109/TPDS.2018.2841843.

Source of Chapter 4:

T. Torun, F. S. Torun, M. Manguoglu and C. Aykanat, “Partitioning and Re-

ordering for Spike-Based Distributed-Memory Parallel Gauss-Seidel”, in SIAM

Journal of Scientific Computing. Accepted subject to minor revision.

iii



ABSTRACT

HYPERGRAPH PARTITIONING AND REORDERING
FOR PARALLEL SPARSE TRIANGULAR SOLVES

AND TENSOR DECOMPOSITION

Tuğba Torun

Ph.D. in Computer Engineering

Advisor: Cevdet Aykanat

Co-Advisor: Murat Manguoğlu

July 2021

Several scientific and real-world problems require computations with sparse ma-

trices, or more generally, sparse tensors which are multi-dimensional arrays. For

sparse matrix computations, parallelization of sparse triangular systems intro-

duces significant challenges because of the sequential nature of the computations

involved. One approach to parallelize sparse triangular systems is to use sparse

triangular SPIKE (stSPIKE) algorithm, which was originally proposed for shared

memory architectures. stSPIKE decouples the problem into independent smaller

systems and requires the solution of a much smaller reduced sparse triangular sys-

tem. We extend and implement stSPIKE for distributed-memory architectures.

Then we propose distributed-memory parallel Gauss-Seidel (dmpGS) and ILU

(dmpILU) algorithms by means of stSPIKE. Furthermore, we propose novel hy-

pergraph partitioning models and in-block reordering methods for minimizing the

size and nonzero count of the reduced systems that arise in dmpGS and dmpILU.

For sparse tensor computations, tensor decomposition is widely used in the anal-

ysis of multi-dimensional data. The canonical polyadic decomposition (CPD)

is one of the most popular tensor decomposition methods, which is commonly

computed by the CPD-ALS algorithm. Due to high computational and mem-

ory demands of CPD-ALS, it is inevitable to use a distributed-memory-parallel

algorithm for efficiency. The medium-grain CPD-ALS algorithm, which adopts

multi-dimensional cartesian tensor partitioning, is one of the most successful dis-

tributed CPD-ALS algorithms for sparse tensors. We propose a novel hypergraph

partitioning model, CartHP, whose partitioning objective correctly encapsulates

the minimization of total communication volume of multi-dimensional cartesian

tensor partitioning. Extensive experiments on real-world sparse matrices and

tensors validate the parallel scalability of the proposed algorithms as well as the

effectiveness of the proposed hypergraph partitioning and reordering models.

iv



v

Keywords: Hypergraph partitioning, distributed-memory architectures, sparse

matrix, sparse tensor, sparse linear system solution, parallel sparse triangu-

lar solve, SPIKE algorithm, parallel Gauss-Seidel, incomplete LU factorization,

ILU(0), tensor decomposition, canonical polyadic decomposition (CPD), carte-

sian partitioning, communication volume.



ÖZET

PARALEL SEYREK ÜÇGENSEL SİSTEMLER VE
TENSÖR AYRIŞTIRMA İÇİN HİPERÇİZGE
BÖLÜMLEME VE YENİDEN SIRALAMA

YÖNTEMLERİ

Tuğba Torun

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Cevdet Aykanat

İkinci Tez Danışmanı: Murat Manguoğlu

Temmuz 2021

Bir çok bilimsel ve gerçek hayatta karşılaşılan problem, seyrek matris veya daha

genel haliyle çok boyutlu seyrek tensör hesaplamalarını gerektirmektedir. Seyrek

matris hesaplamaları için, içerdiği işlemlerin doğal seri yapısı sebebiyle, seyrek

üçgensel sistemlerin paralelleştirilmesi önemli zorluklar ortaya çıkarmaktadır.

Seyrek üçgensel sistemleri paralelleştirmek için bir yaklaşım, seyrek üçgensel

SPIKE (stSPIKE) algoritmasını kullanmaktır. İlk olarak paylaşımlı bellekler için

önerilmiş olan stSPIKE, problemi daha küçük bağımsız sistemlere ayrıştırır ve çok

daha küçük bir indirgenmiş seyrek üçgensel sistemin çözümünü gerektirir. Biz

bu çalışmada, stSPIKE algoritmasını dağıtık bellekli sistemler için genişleterek

yazılımını gerçekleştirdik. Daha sonra, stSPIKE algoritmasını kullanarak dağıtık

bellekli paralel Gauss-Seidel (dmpGS) ve ILU (dmpILU) algoritmalarını önerdik.

Ayrıca, dmpGS ve dmpILU çözümünde ortaya çıkan indirgenmiş sistemlerin

boyutunu ve sıfırdışı eleman sayısını en aza indirmek amacıyla özgün hiperçizge

bölümleme modelleri ve blok-içi yeniden sıralama yöntemleri önerdik. Diğer yan-

dan seyrek tensör hesaplamaları konusunda, tensör ayrıştırma, çok boyutlu veri-

lerin analizi için oldukça yaygın kullanılmaktadır. Kanonik çok öğeli ayrıştırma

(CPD), en sık kullanılan tensör ayrıştırma yöntemlerinden biridir ve yaygın olarak

CPD-ALS algoritması ile çözülür. CPD-ALS algoritmasının yüksek hesaplama

ve hafıza talepleri sebebiyle, dağıtık bellekli paralel bir algoritma kullanmak ver-

imlilik için kaçınılmazdır. Çok boyutlu kartezyen tensör bölümleme yöntemini

benimseyen orta ölçekli CPD-ALS algoritması, seyrek tensör ayrıştırması için

önerilmiş en başarılı dağıtık bellekli CPD-ALS algoritmalarından biridir. Biz,

çok boyutlu kartezyen tensör bölümlemesinin iletişim hacmini en aza indirgemeyi,

bölümleme hedefiyle doğru bir şekilde karşılayan özgün bir hiperçizge bölümleme

vi



vii

modeli (CartHP) öneriyoruz. Gerçek hayat problemlerinden elde edilmiş seyrek

matris ve tensörler üzerindeki geniş kapsamlı deneyler, önerilen algortimaların

paralel ölçeklenebilirliğini ve önerilen hiperçizge bölümleme ve yeniden sıralama

modellerinin etkinliğini doğrular niteliktedir.

Anahtar sözcükler : Hiperçizge bölümleme, dağıtık bellekli sistemler, seyrek ma-

tris, seyrek tensör, seyrek doğrusal sistem çözümü, paralel seyrek üçgensel sistem-

ler, SPIKE algoritması, paralel Gauss-Seidel, eksik LU faktörizasyonu, ILU(0),

tensör ayrıştırması, kanonik çok öğeli ayrıştırma (CPD), kartezyen bölümleme,

iletişim hacmi.



Acknowledgement

I would first like to thank my advisor Prof. Dr. Cevdet Aykanat for his

insightful and enlightening guidance throughout my Ph.D. studies. I would also

like to express my sincere gratitude to my co-advisor Prof. Dr. Murat Manguoğlu

for his generous assistance and kindness. It was a privilege for me to have the

chance to study with such leading professors.

I would like to thank the dissertation jury members Prof. Dr. Özcan Öztürk,

Prof. Dr. Özgür Ulusoy, Asst. Prof. Dr. Engin Demir and Asst. Prof. Dr.

Emrullah Fatih Yetkin for their valuable comments on the thesis. I would like

to acknowledge Dr. Seher Acer for her substantial contributions to the progress

of our joint work. I would also like to thank my colleagues from the Parallel

Computing Group, especially Dr. Ozan Karsavuran, for their cooperation. I

am grateful to my friends, mostly Fatma and Gamze, for their sincerity and

encouragement.

I owe thanks to my family for their continuous support and motivation. I am

indebted to my mom for her unbounded affection and devotion. I should thank

my grandparents Necla and Metin, and my aunt Esra, for believing in me and

making me who I am. I am deeply grateful to Hafize and Ali Torun for being

a second mother and father to me and providing me all kinds of support. I feel

so lucky to have such cheerful sisters and brothers, especially Gülşah who always

volunteers to play with Büşra so that I can study relievedly. I appreciate the times

that we spend with Gülten Torun, modeling us with her modesty and vigor.

I would like to say a special thank you to my pretty daughter Büşra. She

has spent her entire 4-year life being so understanding for letting her mom doing

research. I love her for being my precious treasure bringing joy to my life.

The person who deserves the most thanks is F. Şükrü Torun, for being a won-

derful husband, a diligent collaborator, and an excellent father to our daughter.

He beautifies and facilitates my life with his endless support and cherishment.

Computing resources used in this work were provided by the National Cen-

ter for High Performance Computing of Turkey (UHeM) under grant number

4007772020. We acknowledge PRACE for awarding us access to resource Hazel

Hen (Cray XC40) based in Germany at HLRS.

viii



To my lovely daughter, Büşra...

ix



Contents

1 Introduction 1

2 Background 8

2.1 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Hypergraph Partitioning (HP) . . . . . . . . . . . . . . . . 9

2.1.2 Sparse Matrix Partitioning with HP . . . . . . . . . . . . . 10

2.2 Linear System Solution Methods . . . . . . . . . . . . . . . . . . . 11

2.2.1 Gauss-Seidel(GS) . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Incomplete LU (ILU) decomposition . . . . . . . . . . . . 12

2.3 Sparse Triangular SPIKE (stSPIKE) Algorithm . . . . . . . . . . 13

2.4 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Matrix Kronecker, Khatri-Rao and Hadamard Products . . 17

2.4.2 Canonical Polyadic Decomposition (CPD) . . . . . . . . . 17

2.4.3 Medium-Grain CPD-ALS Algorithm . . . . . . . . . . . . 19

3 Related Work 22

3.1 Parallelization of Gauss-Seidel . . . . . . . . . . . . . . . . . . . . 22

3.2 Parallelization of ILU(0) . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Parallelization of Tensor Decomposition . . . . . . . . . . . . . . . 23

4 Partitioning and Reordering for Parallel Gauss-Seidel 25

4.1 Distributed-Memory Parallel Gauss-Seidel (dmpGS) . . . . . . . . 26

4.2 The Proposed Partitioning and Reordering Model . . . . . . . . . 29

4.2.1 Hypergraph Partitioning Model . . . . . . . . . . . . . . . 30

4.2.2 Reordering within Row Blocks . . . . . . . . . . . . . . . . 38

x



CONTENTS xi

4.2.3 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Partitioning Quality . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 In-Block Reordering Quality . . . . . . . . . . . . . . . . . 50

4.3.3 Parallel Scalability . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Partitioning and Reordering for Parallel Solution of Triangular

Systems in ILU(0) 58

5.1 Distributed-Memory Parallel ILU (dmpILU) . . . . . . . . . . . . 59

5.2 The Proposed Partitioning and Reordering Model for dmpILU . . 61

5.2.1 Hypergraph Partitioning Model . . . . . . . . . . . . . . . 62

5.2.2 Reordering within Row Blocks . . . . . . . . . . . . . . . . 74

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Partitioning Quality . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 In-Block Reordering Quality . . . . . . . . . . . . . . . . . 83

5.3.3 Parallel Scalability . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Hypergraph Partitioning for Scalable Sparse Tensor Decomposi-

tion 92

6.1 Communication Volume Requirement . . . . . . . . . . . . . . . . 93

6.2 CartHP: Proposed HP Model . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Correctness of CartHP . . . . . . . . . . . . . . . . . . . . 101

6.2.2 1D Factor Matrix Partitioning . . . . . . . . . . . . . . . . 103

6.2.3 Mode Processing Order . . . . . . . . . . . . . . . . . . . . 104

6.2.4 Extension to More Than Three Modes . . . . . . . . . . . 104

6.2.5 Balancing Constraint of CartHP . . . . . . . . . . . . . . . 105

6.3 deCartHP: Direct Extension of CBHP . . . . . . . . . . . . . . . 105

6.3.1 Deficiency of deCartHP . . . . . . . . . . . . . . . . . . . 108

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.3 Parallel CPD-ALS Results . . . . . . . . . . . . . . . . . . 112



CONTENTS xii

6.4.4 Partitioning Overhead and Amortization . . . . . . . . . . 118

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusion 120



List of Figures

2.1 Sparsity structure of L and resulting S and Ŝ matrices derived

from stSPIKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Sample slices and fibers of a tensor. . . . . . . . . . . . . . . . . . 16

2.3 A medium-grain partition for a 3× 3× 2 virtual mesh of processors. 20

4.1 Four-way row-wise partition of matrix A and vectors x and f for

dmpGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Net ni in HCN(A) is replicated as conn-net nci and lcn-net n`i to

form H. Net n`i in H is represented by a pair of nets n̂`i and ň`i in H′. 33

4.3 All cases for an lcn-net n`i and the corresponding net pair (n̂`i , ň
`
i)

after bipartition 〈V ′U ,V ′L〉. . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Sample 2-level RB showing lcn-nets and corresponding matrix par-

titioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Nonzero pattern of msc23052: (a) before ordering, (b) after HP

for K = 8, (c) after HP and in-block reordering; (d),(e),(f) the

respective Spike (S) matrices (the reduced system (Ŝ) nonzeros

are circled in red color). . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Nonzero pattern of ACTIVSg10K: (a) before ordering, (b) after HP

for K = 8, (c) after HP and in-block reordering; (d),(e),(f) the

respective Spike (S) matrices (the reduced system (Ŝ) nonzeros

are circled in red color). . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Nonzero pattern of mult dcop 01: (a) before ordering, (b) after

HP for K = 8, (c) after HP and in-block reordering; (d),(e),(f) the

respective Spike (S) matrices (the reduced system (Ŝ) nonzeros are

circled in red color). . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



LIST OF FIGURES xiv

4.8 Performance profiles that compare GP, cnHP and the proposed HP

model in terms of the reduced system size. . . . . . . . . . . . . . 49

4.9 Performance profiles in terms of the dmpGS runtime using the

proposed model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Speedup curves of dmpGS with GP, cnHP and the proposed model

(for K=8, 16, 32 and 64) relative to mtGS on 1 node (40 cores). 56

5.1 Four-way row-wise partition of matrices and vectors for dmpILU. 59

5.2 Sample L-cut and U -cut nets. . . . . . . . . . . . . . . . . . . . . 65

5.3 Extension of a net in H to H′ for different states. . . . . . . . . . 66

5.4 All cases for a net ni in 0-cut-state and the corresponding net pair

(n̂i, ňi) after bipartition Π′2 = 〈V ′U ,V ′L〉. . . . . . . . . . . . . . . . 69

5.5 All cases for a net ni in L-cut-state and the corresponding net pair

(n̂i, ňi) after bipartition Π′2 = 〈V ′U ,V ′L〉. . . . . . . . . . . . . . . . 70

5.6 All cases for a net ni in U -cut-state and the corresponding net pair

(n̂i, ňi) after bipartition Π′2 = 〈V ′U ,V ′L〉. . . . . . . . . . . . . . . . 71

5.7 A sample row-wise partitioning of matrix A and a focus on a single

row block Brk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Performance profiles that compare GP, cnHP and the proposed

HP model in terms of the total reduced system size in lower and

upper stSPIKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Total reduced system size normalized with respect to the coefficient

matrix size (m) as averages of different matrix kinds. . . . . . . . 84

5.10 Total number of nonzeros in the lower and upper triangular re-

duced systems normalized with respect to the number of nonzeros

in the coefficient matrix as averages of different matrix kinds. . . 88

5.11 Speedup curves of dmpILU with GP, cnHP and the proposed model

(for K=8, 16, and 32) relative to mtILU on 1 node (40 cores). . 90

6.1 A 3D cartesian partition of a 3×4×3 tensor for a 2×3×2 virtual

processor mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Slice chunks obtained in phases φ1, φ2 and φ3 and (sub)subslices

of X (i, :, :), X (:, j, :) and X (:, :, k) divided by these chunks. . . . . 95



LIST OF FIGURES xv

6.3 CartHP on a 4× 4× 3 tensor X for a 2× 2× 2 virtual mesh of

processors. φ1: horizontal slices of X . φ2: lateral slices of X with

reordered mode-1 indices. φ3: frontal slices of X with reordered

mode-1 and mode-2 indices. Bottom: slices of X reordered along

all modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Phases φ2 and φ3 of deCartHP for the example given in Figure 6.3. 108

6.5 Strong scaling curves for medium-grain-parallel CPD-ALS ob-

tained by CartR and CartHP. . . . . . . . . . . . . . . . . . . . . 116



List of Tables

4.1 Properties of test instances grouped by different matrix kinds. . . 46

4.2 Averages of total communication volume and the reduced system

size in dmpGS, both normalized with respect to the number of rows. 47

4.3 Total height and nonzero count averages in the off-diagonal blocks

of the reduced system (Ŝ). The values are the ratios of the results

attained by the baseline over the proposed in-block reordering. . . 50

4.4 Average number of nonzeros in Ŝ − I normalized with respect to

the minimum possible nonzero count in Ŝ − I. . . . . . . . . . . . 52

4.5 The properties of the matrices to run dmpGS. The relative residual

and runtime results of mtGS are given for 500 iterations on 40

cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Relative residual of dmpGS obtained by applying the original and

the proposed ordering. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Average speedup obtained by dmpGS over mtGS on 40 cores. The

best speedup value obtained for each K is shown in bold. . . . . 54

5.1 Improvement averages of total reduced system size (rss) in upper

and lower stSPIKE, as ratios with respect to the original ordering,

i.e. the ratio of rss(org) / rss(model) where model ∈ {GP, cnHP,

prop}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Averages of total reduced system size in upper and lower stSPIKE

obtained by the partitioning models normalized with respect to

the proposed HP model. . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Averages of total reduced system size in lower and upper triangular

stSPIKE normalized with respect to the number of rows. . . . . . 82

xvi



LIST OF TABLES xvii

5.4 Improvement rates in terms of total number of nonzeros in the

reduced systems (rs nnz) in upper and lower stSPIKE, as ratios

with respect to the original ordering (after partitioned with the

proposed HP model), i.e. the ratio of rs nnz(org) / rs nnz(model)

where model ∈ {incr L, decr U, proposed}. . . . . . . . . . . . . 85

5.5 Averages of total nonzero counts in the off-diagonal blocks of ŜL

and ŜU normalized with respect to the nonzero count of the coef-

ficient matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 The properties of matrices to conduct parallel experiments. Run-

time results of mtILU are taken on 40 cores for 100 iterations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Properties of the test tensors. . . . . . . . . . . . . . . . . . . . . 111

6.2 Average results obtained by CartHP normalized with respect to

those obtained by CartR. . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Partition statistics and parallel runtime results obtained by CartR

and CartHP for one CPD-ALS iteration on 512 processors. . . . . 114

6.4 Detailed results obtained by CartHP normalized with respect to

those obtained by CartR. . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Comparison of partitioning overhead of CartHP against factoriza-

tion in terms of sequential runtime. . . . . . . . . . . . . . . . . . 118

6.6 Average number of CPD solutions that amortize the sequential

partitioning time of CartHP. . . . . . . . . . . . . . . . . . . . . . 119



Chapter 1

Introduction

A wide range of applications in science and engineering require the solution of a

sparse linear system of equations

Ax = f, (1.1)

where A ∈ Rm×m is a general large sparse nonsingular matrix; and x and f ∈ Rm

are the unknown and right hand side vectors, respectively. Depending on the

numerical and structural properties of the coefficient matrix, various solvers have

been proposed.

Direct solvers require a sequence of operations: reordering and partitioning,

symbolic factorization, numerical factorization, and finally obtaining the solution,

typically via forward and backward substitution. The reordering and partitioning

schemes are used both to reduce the amount of fill-in and to enhance the parallel

scalability. Symbolic factorization is used to determine the sparsity pattern of

the factors, and finally the numerical factorization (such as sparse LU [1], QR [2],

SVD [3] and WZ [4]) is computed. Direct solvers are robust and, in general, are

known to be very scalable during the factorization phase [5, 6], but not so much

during the triangular solution phase [7].

Iterative solvers, on the other hand, are known to be more scalable but not

as robust as direct solvers. Nevertheless, they are still preferred for large sparse

1



systems due to their lower memory requirements. Starting with an initial guess for

the solution vector, these methods improve the solution at each iteration. There

are two main types of iterative solvers: stationary and non-stationary methods.

Stationary methods have the general form x(k+1) = φ(x(k)) where x(k) is the

solution vector at the kth iteration and φ(·) is a function which does not change

during the iterations. For example, φ(x) = Bx+ g where B is a matrix and

g is a vector, define a stationary iterative method. Jacobi, Gauss-Seidel, Suc-

cessive Over Relaxation (SOR) and Symmetric SOR (SSOR) are some exam-

ples of stationary iterative solvers [2, 8]. Non-stationary methods have the form

x(k+1) =φ(k)(x(k)) in which the function φ(k)(·) changes at each iteration; for exam-

ple φ(k)(x)=x+α(k)y(k) where α(k) is a scalar and y(k) is a vector at kth iteration,

respectively. Projection methods, Krylov subspace methods and Chebyshev iter-

ations are some examples of non-stationary iterative methods [9, 8].

In practice, linear systems are preconditioned to reduce the required number of

iterations of the iterative solvers and to improve their robustness. There could be

a variety of choices of preconditioners, some are problem specific and others are

more general. General classical preconditioners include, incomplete factorization

based preconditoners (such as incomplete LU (ILU) [10, 8]), sparse approximate

inverse [11], algebraic multigrid (AMG) [12, 13], and others. We refer the reader to

[14] for a detailed survey of preconditioners. Among these preconditioners, AMG

has been widely used recently in many applications [15, 16, 17] which is a gen-

eralization of Geometric Multigrid (GMG) [18]. GMG requires some knowledge

of the physical problem and/or its geometry, while there is no such requirement

for AMG. AMG can be also used as a direct solver [19, 20]. Furthermore, AMG

typically uses another iterative method as a “smoother” which is required to re-

duce the error at each level and the smoother itself can also be preconditioned.

More recently a preferred smoother for AMG is Gauss-Seidel [21, 22, 23], as in

BoomerAMG [19] and Trilinos-ML [24].

Sparse triangular systems constitute an important kernel operation in sev-

eral applications such as LU, ILU, Cholesky, Gauss-Seidel, Jacobi, SOR, SSOR,

2



and approximate inverse preconditioners [1, 8]. However, solving triangular sys-

tems often constitutes a sequential bottleneck due to the dependencies between

unknowns in forward or backward substitution operations. This increases the

importance of finding efficient parallel solutions to sparse triangular systems.

In [25], a parallel banded triangular solver is proposed. This algorithm is

extended for solving banded linear systems [26, 27] and further improved by

implementing various alternatives in each step of the factorization including the

solution of the reduced system in [28, 29, 30]. At this point, the algorithm is

called SPIKE algorithm. For sparse linear systems, SPIKE is also proposed as a

solver for a banded preconditioner that is sparse within the band [31, 32], and it is

generalized for sparse linear systems [33, 34, 35]. In [36], a SPIKE-based parallel

solver for general tridiagonal systems is implemented for GPU architectures.

A recent study [37] proposes a multi-threaded parallel solver for sparse triangu-

lar systems by extending the SPIKE algorithm [25]. This sparse triangular SPIKE

(stSPIKE) algorithm decouples the triangular system into smaller systems which

can be solved concurrently and requires the solution of a much smaller reduced

sparse triangular system. We propose and implement a parallel sparse triangular

solver by extending the stSPIKE algorithm for distributed-memory architectures.

Gauss-Seidel (GS) is a well-known stationary iterative method which solves the

linear system (1.1) by splitting the coefficient matrix into its lower and strictly

upper triangular parts, A=L+U . Then the solution is obtained iteratively by

x(k+1) = L−1(f − Ux(k)).

In this formulation of GS, both a lower triangular system is required to be solved

and an upper triangular SpMV (sparse matrix-vector multiplication) is performed

at each iteration. It is known to be effective and preferred as a smoother for a

wide variety of problems [21, 38]. However, a true distributed-memory paral-

lelization of GS is considered to be a challenging task [21]. The main difficulty in

parallelizing GS inherits from the sequential nature of triangular solve included

in GS [38].

We propose a distributed-memory parallel GS (dmpGS) by using stSPIKE for

3



solving the sparse lower triangular system in GS. The reduced sparse triangular

system in stSPIKE constitutes a sequential bottleneck. In order to alleviate this

bottleneck and to reduce the communication overhead of dmpGS, we propose a

partitioning and reordering model consisting of two phases. The first phase is a

novel hypergraph partitioning model whose partitioning objective simultaneously

encodes minimizing the reduced system size and the communication volume. The

second phase is an in-block row reordering method for decreasing the nonzero

count of the reduced system. Extensive experiments on a dataset consisting of

359 sparse linear systems verify the effectiveness of the proposed partitioning

and reordering model in terms of reducing the communication and the sequential

computational overheads. Parallel experiments on 12 large systems using up

to 320 cores demonstrate that the proposed model significantly improves the

scalability of dmpGS.

Incomplete factorization techniques are known to be successful preconditioning

strategies for Krylov subspace methods. At each iteration of a Krylov subspace

method, incomplete LU (ILU) requires both a lower triangular and an upper

triangular system to be solved. There are various ways to form these factors

depending on the degree of fill-in allowed. Among them, incomlplete LU with

zero fill-in, namely ILU(0), is commonly used as a preconditioner for iterative

Krylov subspace-based methods in several studies [39, 40, 41]. This is because its

computation and storage demands are low, and it is known to be highly effective

for some important problem classes such as M-matrices or diagonally dominant

matrices [42]. It is shown in [43] that ILU(0) yields slower convergence but better

speedup than the other ILU preconditioners. We choose ILU(0) to study since it

does not allow fill-in, and hence the reordering on the coefficient matrix directly

determines the nonzero structure in the factorized triangular systems.

We propose a distributed-memory parallel algorithm, namely dmpILU, for

solving the triangular systems in ILU(0) by using stSPIKE. The reduced systems

in both lower and upper stSPIKE constitutes the sequential bottleneck. We

propose a two-phase partitioning and reordering model for reducing the size and

the nonzero count of these reduced systems simultaneously. The first phase is

a novel hypergraph partitioning model whose partitioning objective encodes the

4



minimization of the total reduced system size in lower and upper stSPIKE. The

second phase is an in-block row reordering method for decreasing the total nonzero

count of these reduced systems. Extensive experiments verify the effectiveness of

the proposed partitioning and reordering model.

Tensors are multi-dimensional arrays which can consist of three or more di-

mensions (modes). The applications that make use of sparse tensors often bene-

fit from tensor decomposition to discover the latent features of the modes. The

most popular tensor decomposition method achieving this feat is the canonical

polyadic decomposition (CPD) [44, 45, 46]. CPD is an extension of singular value

decomposition for tensors and approximates a given tensor as a sum of rank-one

tensors. One common method for computing CPD is the CPD-ALS algorithm,

which exploits the alternating least squares method [47]. CPD-ALS includes a

bottleneck operation called Matricized Tensor Times Khatri-Rao Product (MT-

TKRP), which requires significantly large amounts of computation and memory.

This necessitates an efficient distributed-memory implementation for the CPD-

ALS algorithm.

Recently, Smith and Karypis [48] have proposed a successful distributed-

memory implementation of CPD-ALS algorithm. Their algorithm adopts a

medium-grain model, in which a cartesian partition of the input tensor is utilized.

Cartesian partitioning has the nice property of confining the communications to

the layers of a virtual multi-dimensional processor mesh, thus providing upper

bounds on communication overheads. Hence, this algorithm outperforms the ear-

lier CPD-ALS implementations by achieving smaller parallel runtimes and better

scalability.

In order to obtain a cartesian partition of the tensor, the medium-grain al-

gorithm applies block partitioning on each mode, which is randomly permuted

beforehand to maintain balance on the number of tensor nonzeros assigned to

processors, hence their computational loads. However, this algorithm does not

utilize the sparsity pattern of the tensor to minimize the total communication

volume. The objective of this work is to fill this literature gap by proposing an

intelligent partitioning algorithm that utilizes the sparsity pattern for minimizing

5



the total communication volume of the medium-grain model. For this purpose,

we exploit the conceptual similarity between MTTKRP and sparse matrix vector

multiplication (SpMV), for which many partitioning models and methods with

different granularities are well-studied [49, 50, 51, 52]. The 2D cartesian parti-

tioning for parallel SpMV, which is known as checkerboard partitioning, was first

introduced by Hendrickson et al. [53] and its total communication volume is mini-

mized by a hypergraph partitioning (HP) model, CBHP, proposed by Çatalyürek

and Aykanat [54, 50]. Relying on the similarity between MTTKRP and SpMV,

extending CBHP for cartesian partitioning of tensors with more than two di-

mensions seems promising for minimizing the total communication volume of the

medium-grain CPD-ALS.

CBHP is a two-phase HP model, where row and column partitions are respec-

tively obtained in the first and second phases. The row partition obtained in the

first phase implies a division information in each column. However, this column

division information is not utilized in the topology of the hypergraph formed in

the second phase. On the contrary, in the case of more than two dimensions, a

slice’s division information obtained in a phase needs to be utilized in each of the

subsequent phases which further divide that slice. Note that this need does not

arise for the two-dimensional case since each row/column is divided in exactly

one phase. Since the direct extension of the CBHP model for tensor partitioning

does not keep division history, it fails to correctly encapsulate the objective of

minimizing the total communication volume.

In order to overcome the above-mentioned problem on extending the CBHP

model for more than two dimensions, we propose a new hypergraph partitioning

model in which hypergraph topologies contain the priori division information of

slices. The partitioning objective of our model encapsulates the minimization

of the total communication volume of the medium-grain CPD-ALS. To validate

the proposed model, we conduct parallel experiments on 12 real-world tensors

for up to 1024 processors. Compared to the baseline medium-grain model [48],

the proposed model achieves average reductions of 52%, 43% and 24% in total

communication volume, communication time and overall runtime of CPD-ALS,

respectively.

6



This thesis is organized as follows. Sections 2 and 3 provide the background in-

formation and the related work, respectively. We introduce the proposed dmpGS

and dmpILU algorithms along with the partitioning and reordering models for

their efficiency in Sections 4 and 5, respectively. The proposed hypergraph parti-

tioning model for sparse tensor decomposition is explained in Section 6. Finally,

Section 7 concludes the thesis.

7



Chapter 2

Background

In this chapter, we provide the background information related to hypergraphs,

linear system solution methods, sparse triangular SPIKE (stSPIKE) algorithm

and sparse tensors. Throughout the thesis, we use a semicolon as in MATLAB

notation, e.g., A(i, :), to refer to a varying index.

2.1 Hypergraphs

Hypergraphs can be defined as generalization of graphs in which a more general

form of edges called nets can connect any number of vertices. A hypergraph H=

(V ,N ) consists of a set of vertices V={vi}1≤i≤n and a set of nets N ={nj}1≤j≤m.

Each net nj ∈N connects a subset of vertices in V , which is referred to as the

pins of nj, and denoted by Pins(nj) or Pins(nj,H), depending on the necessity.

Each vertex vi is assigned a weight of w(vi) whereas each net nj is assigned a cost

of c(nj). Π = {V1,V2, . . . ,Vk} is a K-way partition of H, if parts are mutually

disjoint and exhaustive. The weight of a part is the sum of the weights of vertices

in that part. For a given partition, if a net connects at least one vertex in a part,

it is said to connect that part. Connectivity λ(nj) of net nj is the number of

parts connected by nj. If a net nj connects multiple parts (i.e. λ(nj)> 1), it is

8



called cut; and internal, otherwise (i.e. λ(nj)=1). The set of cut nets is denoted

by Ncut. The cutsize of Π is defined in various ways. Two most commonly used

cutsize definitions are the cut-net and the connectivity metrics [55], which are

respectively defined as

cscutn(Π) =
∑

n∈Ncut

c(n), and (2.1)

csconn(Π) =
∑

n∈Ncut

(λ(n)−1)c(n). (2.2)

2.1.1 Hypergraph Partitioning (HP)

The Hypergraph partitioning (HP) problem is defined as finding a K-way partition

Π of a given hypergraph H with the objective of minimizing the cutsize and

the constraint of maintaining balance on the weights of the parts. The balance

criterion is formulated as

Wmax≤Wavg(1+ε), (2.3)

where ε denotes the given maximum allowable imbalance ratio; and Wmax and

Wavg respectively denote the maximum and average part weights.

In the case of multi-constraint hypergraph partitioning with C constraints, the

cth constraint for c = 1, 2, . . . , C is formulated as

Wc(Vk) ≤ W tot
c (1 + ε)/K. (2.4)

Here, Wc(Vk) and W tot
c denote the sums of the cth weights of the vertices in Vk

and V , respectively.

HP with fixed vertices ensures to assign some preassigned vertices which are

called fixed vertices to the respective parts. The rest of the vertices, namely free

vertices, are free to be assigned to any part.

The recursive bipartitioning (RB) is a widely used paradigm to obtain a K-way

HP. It first partitions the hypergraph into two and then each part is further

bipartitioned recursively until reaching the desired number of parts K. In order to

9



encode the cut-net and connectivity metrics, cut-net removal and cut-net splitting

methods are utilized in the RB-based HP, respectively [55].

2.1.2 Sparse Matrix Partitioning with HP

Several HP models and methods have been proposed and successfully utilized

for obtaining matrix partitioning [56, 57, 58, 59, 60, 61, 62, 63, 64]. Among

these, the most relevant one is the column-net model [55] that represents a given

sparse matrix A as a hypergraph HCN(A) in which nets and vertices respectively

represent columns and rows. In this model, vertex vi is added to the pin list of

net nj for each nonzero A(i, j) in A. Throughout the thesis, row ri and column

cj respectively denote both the vector and the index of row i and column j

interchangeably, depending on the context.

A K-way ordered partition Π = 〈V1,V2, . . . ,VK〉 of the column-net model

HCN(A) is decoded as a partial reordering of the rows of A in such a way that the

rows corresponding to vertices in Vk are ordered before the rows corresponding to

the vertices in V` for k<`. This is a partial reordering since the rows correspond-

ing to the vertices in the same part can be ordered arbitrarily. Let Brk denote the

kth row block which contains the rows corresponding to the vertices in Vk. We

consider a symmetric row-column reordering that yields a 2D grid structure of

A. The submatrix consisting of the rows of Brk and columns of `th column block

Bc` is referred as block-(k, `) of A. A column is said to link a row block Brk if it

contains at least one nonzero in Brk. A column is called a linking column if it

links more than one row block. For a matrix with nonzero diagonal entries, each

column links a diagonal block and becomes a linking column if it links at least

one off-diagonal block.

In the column-net model with unit net cost, the partitioning objective using the

connectivity (2.2) and cut-net metrics (2.1) respectively encode the minimization

of the number of nonzero column segments in off-diagonal blocks and the number

of linking columns. The former partitioning objective is successfully utilized in

encoding the minimization of the row parallel SpMV operations [55].

10



2.2 Linear System Solution Methods

There are numerous methods proposed to solve sparse linear systems. Here, we

present the ones that are relevant to this thesis work involving sparse triangular

system solution.

2.2.1 Gauss-Seidel(GS)

Gauss Seidel is an iterative method to solve the linear system (1.1) by decom-

posing the coefficient matrix A into its lower triangular component L and its

strictly upper triangular component U such that A = L+ U . The equations can

be rewritten as
Ax = f

(L+ U)x = f

Lx = f − Ux

x = L−1(f − Ux).

(2.5)

The Gauss-Seidel algorithm iteratively solves

x(k+1) = L−1(f − Ux(k)), (2.6)

where x(k) is the approximate value of x at kth iteration. Note that at each it-

eration, a sparse matrix-vector product is done for Uxk and a triangular solve is

needed for L−1. GS is guaranteed to converge if A is strictly or irreducibly diag-

onal dominant [65] or symmetric positive definite [2]. In practice, the iterations

of GS are continued until reaching a sufficient state of convergence, which can be

checked in different ways. One way is to check the residual (‖f − Ax(k)‖) or the

relative residual (‖f − Ax(k)‖/‖f‖) drops less than a pre-determined threshold.

However, it requires to compute Ax(k) at each iteration, which could be costly.

Another alternative is to check whether ‖x(k+1) − x(k)‖ drops less than a certain

threshold, which we adapt in this work.

11



2.2.2 LU decomposition

LU decomposition is a direct method for solving the linear system (1.1) by fac-

torizing the coefficient matrix as the product A = LU , where L and U are lower

and upper triangular matrices, respectively. It requires solving two triangular

systems such that

y = L−1f

x = U−1y. (2.7)

This triangular systems are usually solved with forward and backward substitu-

tion schemes which are naturally hard to parallelize due to dependencies between

the unknowns. For sparse matrices, L and U factors in the LU decomposition

may have much more nonzeros than the original matrix, which are called fill-in.

2.2.3 Incomplete LU (ILU) decomposition

The memory requirements of using a direct solver due to high fill-in may con-

stitute a bottleneck when solving sparse linear systems. Incomplete LU (ILU)

decomposition seeks triangular matrices L and U such that A ≈ LU rather than

A = LU . Due to small (or none) fill-in rates, the system LUx = f can be

solved faster but does not yield the exact solution for Ax = f . Therefore, the

matrix M = LU is instead used as a preconditioner in iterative methods such

as the conjugate gradient method or the generalized minimal residual (GMRES)

method.

A common method is to choose L and U with the sparsity pattern same as

the sparsity pattern of the coefficient matrix, which is called ILU(0) since there

is no allowed fill-in. The complexity of ILU(0) is low with respect to the other

ILU methods due to its sparsity pattern. The L and U factors are computed as

in the Gaussian Elimination, but the computation is done only for the nonzero

pattern of A. This factorization is computed only once and the upper and lower

triangular systems with L and U as in (2.7) are solved at each iteration of the

12



Algorithm 1 Incomplete LU (ILU) Factorization

1: for i← 2 to m do
2: for k ← 1 to i− 1 where (i, k) ∈ Z do
3: aik ← aik/akk
4: for j ← k + 1 to m where (i, j) ∈ Z do
5: aij ← aij − aikakj

iterative Krylov subspace methods.

The pseudocode of the ILU factorization is given in Algorithm 1. The algo-

rithm overwrites on A matrix so that U is stored in the upper triangular part

including the diagonal and L is stored in the lower triangular part excluding the

diagonal since diagonal of L is assumed to consist of ones. Here, Z denotes the

allowable nonzero pattern of the resulting factors. In the case of ILU(0), Z is

same as the nonzero pattern of the A matrix.

2.3 Sparse Triangular SPIKE (stSPIKE) Algo-

rithm

We describe stSPIKE for lower triangular systems since the algorithm for the up-

per triangular case is similar. Given a lower triangular linear system of equations

Ly = b, (2.8)

a DS factorization of sparse lower triangular matrix L is computed as L=DS,

where D is the lower block diagonal of L and S is the Spike matrix. These blocks

are assumed to be obtained by matrix partitioning. Multiplying both sides of

(2.8) from the left by D−1, we obtain a modified system

Sy = g, (2.9)

where g=D−1b and S=D−1L. By splitting L=D+R, we obtain S=I+G where

G = D−1R, and R is the block off-diagonal part of L. The sparse triangular

system DG=R with multiple right hand side vectors can be solved for the block

rows of G independently with perfect parallelism.

13



The nonzero column segments of R constitute dense column segments (called

spikes) in the off-diagonal blocks of S. The block diagonal of S is identity.

Additional nonzeros (fill-in) are introduced within the off-diagonal blocks of S

only in the locations below the top nonzero (having the smallest row index)

for each nonzero column segment of R. The submatrix consisting of rows and

columns C of S, namely Ŝ=S(C, C), constitutes an independent reduced system

where C is the set of nonzero columns of R, i.e., linking columns of L. Then the

reduced system is of the form

Ŝŷ = ĝ, (2.10)

where ĝ = g(C) and ŷ = y(C), which can be solved independent from the rest

of the unknowns in y. After solving the reduced system, the only remaining

computation for retrieving the solution of the original system is

y = g −D−1(R̂ŷ), (2.11)

which can be obtained in perfect parallelism where R̂=R(:, C). We only partially

compute S just to form Ŝ, since forming S explicitly is expensive and requires a

large amount of memory.

The pseudocode of the parallel stSPIKE algorithm for lower triangular case

is given in Algorithm 2. Partial computation of S constitutes the factorization

phase (lines 2-5), whereas computation of ĝ, solving (2.10) and (2.11) constitutes

the solution phase (lines 6-13) of stSPIKE.

An example L matrix and the corresponding S and Ŝ matrices are shown in

Figure 2.1. The reduced system indices C = {1, 3, 4, 6, 7, 9, 11} are colored in

red and circled. The nonzeros that constitute the reduced system are bold and

colored in red. The background colors of the original nonzeros and possible fill-

in are green and blue, respectively. Depending on the sparsity pattern of the

corresponding column and block diagonal, spikes may not fill the entire column

segment. For example, nonzero L(4, 1) in block-(2,1) of L leads to the spike

consisting of three nonzeros in the first column of block-(2,1) of S.

In the lower triangular stSPIKE algorithm, spikes occur in the lower part of

the highest nonzero for each column segment in the blocks. Conversely for the

14



Algorithm 2 Sparse Triangular SPIKE (stSPIKE)

Require: Matrix L = R +D and right hand side vector b
1: Choose an initial guess y
2: do in parallel :
3: G← D−1R
4: Ŝ ← Ĝ+ I
5: Gather Ŝ matrix at processor P1

6: do in parallel :
7: g ← D−1b
8: Gather g vector at processor P1

9: ŷ ← Ŝ−1ĝ B solve reduced system
10: Scatter ŷ to processors
11: do in parallel :
12: z ← R̂ŷ
13: y ← g −D−1z
14: return x

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 

2  

3  

4  

5   

6 

7   

8  

9   

10   

11   

12   

13    

14    

(a) Matrix L

① 2 ③④ 5 ⑥⑦ 8 ⑨ 10 ⑪ 12 13 14
① 1

2 1

③ 1

④  1

5   1

⑥ 1

⑦   1

8  1

⑨   1

10    1

⑪   1

12   1

13    1

14     1

(b) Matrix S

①③④⑥⑦⑨⑪

① 1

③ 1

④  1

⑥ 1

⑦   1

⑨   1

⑪   1

(c) Matrix Ŝ

Figure 2.1: Sparsity structure of L and resulting S and Ŝ matrices derived from
stSPIKE.

15



X(i,:,:)

X(:,:,k)
X(:, j,:)

X(i,:,k)

X(i, j,:)
X(:, j,k)

horizontal 
slice

lateral slice 
frontal slice 

fiber 

fiber 

fiber 

Figure 2.2: Sample slices and fibers of a tensor.

upper triangular stSPIKE, spikes occur in the upper part of the lowest nonzero

for each column segment in the blocks.

2.4 Tensors

In the rest of this chapter, we denote tensors, matrices and vectors respectively

by calligraphic (X ), bold capital (A) and bold lowercase (a) letters. To denote

indices, we use lowercase letters ranging from 1 to their capital version, e.g.,

q = 1, . . . , Q.

A tensor with M dimensions is called an M -mode tensor and mode m refers

to the mth dimension. Unless specified, X is assumed to be a three-mode tensor

of size I×J×K. The tensor element with indices i, j, k is denoted by X (i,j,k).

Slices and fibers are defined as the subtensors obtained by holding one and two

indices constant, respectively. X (i,:,:), X (:,j,:) and X (:,:,k) respectively denote

the ith horizontal (mode-1), jth lateral (mode-2) and kth frontal (mode-3) slices.

The intersection of two slices along different modes (e.g., X (i,:,:) and X (:,j,:))

constitutes a fiber (e.g., X (i,j,:)). Figure 2.2 illustrates slices X (i, :, :), X (:, j, :)

and X (:, :, k) and fibers X (i, j, :), X (:, j, k) and X (i, :, k).

An M -mode tensor is called rank-one if it can be written as an outer product

16



of M vectors. For instance, (a◦b◦c) is a rank-one tensor. The matrix consisting

of the mode-m fibers of a tensor X as its columns (in the increasing order of the

other modes) is called the matricization of X in mode m, and is denoted by X(m).

2.4.1 Matrix Kronecker, Khatri-Rao and Hadamard

Products

Given an I × J matrix A = (aij) and a K × L matrix B = (bkl), the Kronecker

product of A and B, which is of size IK × JL, is defined as

A⊗B =


a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

...
. . .

...

aI1B aI2B · · · aIJB

 .
Given an I ×K matrix A and a J ×K matrix B, the Khatri-Rao product of A

and B, which is of size IJ ×K, is defined as

A�B =
[

a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
,

where ai and bi respectively denote the ith columns of A and B. Given two I×J
matrices A and B, the Hadamard product of A and B, which is of size I × J , is

defined as

A ∗B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ

 .

2.4.2 Canonical Polyadic Decomposition (CPD)

CPD with F components factorizes a given tensor X as a sum of F rank-one

tensors:

X ≈
F∑
f=1

(āf ◦ b̄f ◦ c̄f ), (2.12)

17



where āf , b̄f and c̄f are column vectors of size I, J and K, respectively. Here

F is very small with respect to the largest of the values I, J and K. Then, the

factor matrices are defined as Ā = [ā1 . . . āF ], B̄ = [b̄1 . . . b̄F ] and C̄ = [c̄1 . . . c̄F ].

The columns of the factor matrices are stored as normalized to length one.

That is, the norms λAf = ‖āf‖, λBf = ‖b̄f‖, λCf = ‖c̄f‖ are computed and the

columns are updated as af = āf/λ
A
f , bf = b̄f/λ

B
f , cf = c̄f/λ

C
f for f = 1, 2, ..., F .

Then, CPD of X is written as

X ≈ [[λ; A,B,C]] =
F∑
f=1

λf (af ◦ bf ◦ cf ), (2.13)

where λ = [λ1 . . . λF ] and λf = λAf λ
B
f λ

C
f .

CPD-ALS is an iterative algorithm whose pseudocode is given in Algorithm 3.

At each iteration, it solves a linear least squares problem to find a factor matrix,

by fixing the other two factor matrices. For example in order to find A, CPD-ALS

solves minA||X(1) −A(C�B)T ||2F for fixed B and C by computing

X(1)(C�B)(CTC ∗BTB)−1, (2.14)

where � and ∗ denote Khatri-Rao and Hadamard products, respectively. Here,

M = CTC ∗BTB is a small F × F dense matrix. In theory, finding the Moore-

Penrose pseudoinverse [66] of M is sufficient [46]. The pseudoiverse is equal to

the conventional matrix inverse when M is invertible, and it exists even when

M is not invertible. Yet in practice, M is almost always symmetric positive-

definite, and the Cholesky factorization can be applied to find its inverse [48]. At

the beginning of the CPD-ALS algorithm, the A, B, C matrices are initialized

randomly as recommended by several studies [46, 48, 67, 68].

In Algorithm 3, Â = X(1)(C�B), B̂ = X(2)(C�A) and Ĉ = X(3)(B�A) are

the Matricized Tensor Times Khatri-Rao Product (MTTKRP) operations, which

constitute the bottleneck operations of CPD-ALS due to large sizes of matrices

involved. In MTTKRP operation Â = X(1)(C � B), each row Â(i, :) can be

computed as

Â(i, :) =
∑

X (i,j,k)6=0

X (i, j, k)(B(j, :) ∗C(k, :)). (2.15)

18



Algorithm 3 CPD-ALS(X )

1: Initialize matrices A, B and C randomly

2: while not converged do
3: A← X(1)(C�B)(CTC ∗BTB)−1

4: Normalize columns of A into λ
5: B← X(2)(C�A)(CTC ∗ATA)−1

6: Normalize columns of B into λ
7: C← X(3)(B�A)(BTB ∗ATA)−1

8: Normalize columns of C into λ

9: return [[λ; A,B,C]]

The computation of Â(i, :) only involves the nonzeros in slice X (i, :, :) and for

each nonzero X (i, j, k) in that slice it requires rows B(j, :) and C(k, :).

2.4.3 Medium-Grain CPD-ALS Algorithm

The medium-grain CPD-ALS algorithm [48] is based on a 3D cartesian partition

of a given tensor X for a virtual 3D mesh of P =Q×R×S processors. In this

partition, horizontal, lateral and frontal slices of X are partitioned among Q,

R and S parts, respectively. These partitions are used for reordering the slices

into Q horizontal, R lateral and S frontal chunks in such a way that the slices

belonging to the same part are ordered consecutively (in any order) to form a

chunk. The qth horizontal, rth lateral and sth frontal chunks are respectively

denoted by Xq,:,:, X:,r,: and X:,:,s. The intersection of Xq,:,:, X:,r,: and X:,:,s forms

subtensor Xq,r,s. Similarly, the qth horizontal, rth lateral and sth frontal layers

of the virtual processor mesh are respectively denoted by pq,:,:, p:,r,: and p:,:,s.

Chunks Xq,:,:, X:,r,: and X:,:,s are respectively distributed among the processors of

layers pq,:,:, p:,r,: and p:,:,s in such a way that subtensor Xq,r,s is assigned to pq,r,s.

A cartesian tensor partition induces a conformal partition of the rows of each

factor matrix into chunks, e.g., A1, . . . ,AQ. The rows in the chunks Aq, Br and

Cs are exclusively needed and updated by the processors in layers pq,:,:, p:,r,: and

p:,:,s, respectively. The factor-matrix rows owned by processor pq,r,s are assumed

to be contiguous and denoted by Aq,r,s, Bq,r,s and Cq,r,s.

19



X2,3,1

A1

A2

A3

B1 B2 B3

C1

C2

C2,3,1

B2,3,1

A2,3,1

Figure 2.3: A medium-grain partition for a 3× 3× 2 virtual mesh of processors.

Fig. 2.3 displays an example medium-grain partition with 3 horizontal, 3 lateral

and 2 frontal chunks. Subtensor X2,3,1 as well as factor-matrix rows in A2,3,1, B2,3,1

and C2,3,1, which are all assigned to processor p2,3,1, are highlighted with a darker

shade. Note that p2,3,1 may need to use the rest of the rows in A2, B3 and C1

during the MTTKRP operations.

The parallel medium-grain CPD-ALS algorithm consists of three phases at

each iteration. The mth phase involves the computations and communications

performed for computing the factor matrix along mode m. We only summarize

the first phase since the other phases are similar. First, the MTTKRP operation

is performed in a distributed fashion where each processor multiplies its nonzeros

with the corresponding B- and C-matrix rows and produces partial results for

the corresponding Â-matrix rows as given in equation (2.15). Here, Â and A

have conformal partitions.

After performing the local MTTKRP operation, each processor pq,r,s sends

its partial results for non-local Â-matrix rows to their owner processors, which

reside in layer pq,:,:. In a dual manner, pq,r,s receives the partial results for its local

Â-matrix rows (Âq,r,s) from the processors in the same layer and sums them to

finalize Âq,r,s. We refer to this communication step as the fold step. Then,

pq,r,s multiplies Âq,r,s with (CTC ∗BTB)−1 and obtains Aq,r,s. A is finalized by

normalizing its columns using an all-to-all reduction on local norms. Then, ATA

is obtained by another all-to-all reduction on locally computed ATA matrices.

20



Finally, each processor pq,r,s sends the updated rows in Aq,r,s to the processors

that need these rows in the following two phases where B and C are computed.

These processors are the ones that pq,r,s receives partial results from in the fold

step. In a dual manner, pq,r,s receives the updated A-matrix rows that it needs

in the following two phases from their owner processors. These processors are

the ones that pq,r,s sends partial results to in the fold step. We refer to this

communication step as the expand step.

The communications in the fold and expand steps are confined to the processor

layers. In the first, second and third phases, pq,r,s communicates with at most

R×S−1, Q×S−1 and Q×R−1 processors residing in layers pq,:,:, p:,r,: and p:,:,s,

respectively.

For testing the convergence, at the end of each iteration the residual is com-

puted as √
〈X ,X〉+ 〈Y ,Y〉 − 〈X ,Y〉, (2.16)

where X is the original tensor and Y = [[λ; A,B,C]] is its CPD approximation.

Here, 〈X ,X〉 is the sum of squares of the nonzero elements of X , which can be

computed once before the iterations. The norm of Y = [[λ; A,B,C]] is

〈Y ,Y〉 = λT (ATA ∗BTB ∗CTC)λ, (2.17)

which is not costly since ATA, BTB, and CTC are already computed within the

CPD-ALS iterations. Finally, the inner product 〈X ,Y〉 is

F∑
f=1

λf

 ∑
X (i,j,k)6=0

X (i, j, k)A(i, f)B(i, f)C(i, f)

 , (2.18)

which can be equivalently computed in practice as
∑P

i=1 1T (Âpi ∗ Api)λ, where

Api denotes the chunk of A owned by processor pi and 1 is the vector consisting

of ones.

21



Chapter 3

Related Work

3.1 Parallelization of Gauss-Seidel

In the literature, parallel GS implementations are proposed either to solve the

original problem (1.1) [69, 70, 71] or to use it as a smoother in multigrid schemes

[72, 73, 74]. A commonly-used method to parallelize GS by finding independent

sub-tasks is the red-black coloring strategy [75, 76, 77], which has been extended

to multi-coloring [78, 79, 80] to attain more parallelism for complicated regu-

lar problems. However, multi-colored GS is not feasible for some cases such as

unstructured finite element applications since the number of colors becomes too

large [70]. Another approach is to use a processor-localized GS in which each

processor performs GS as a subdomain solver, but its convergence rate is low and

may diverge for a large number of processors [21]. A distributed-memory parallel

GS is proposed in [71] which partitions the coefficient matrix into row blocks,

however its parallel scalability is poor due to load imbalance among processors.

The main factor affecting the performance of parallel GS is the communication

delay in the distributed-memory architectures [81].

22



3.2 Parallelization of ILU(0)

A common method to parallelize ILU(0) is to use the Red-Black colouring strategy

whose degree of parallelism is m/2 where m is the number of unknowns [82].

However, the convergence of the ILU(0) preconditioner obtained with Red-Black

coloring is observed to be poor [83]. The available parallelism is generally bounded

by the level of dependent tasks and often very low for the original ordering.

Especially for unsymmetric problems, matrix reordering techniques significantly

improve the performance of the ILU-preconditioned Krylov subspace solvers [14].

[41] shows that reordering on unstructured grids improves the performance of

GMRES using ILU(0) to solve the compressible Navier–Stokes equations.

ILU(0) is also useful as approximate subdomain solvers for domain

decomposition-based preconditioners, e.g., Additive Schwarz Method (ASM) [84].

Studies indicate that the performance of ILU(0) may change depending on the

problem types. The experimental results in [40] reveals that ILU(0) subdomain

solver yields good scalability of ASM for Poisson’s equation, but poor scalability

for convection dominated problems.

In [85], ILU(0) is used as a preconditioner for the parallel GMRES algorithm

and shown to achieve faster convergence than the baseline algorithms. It is

demonstrated that using ILU(0) yields three times smaller number of GMRES

iterations. Although the runtime of the proposed algorithm is shorter than the

parallel program using PETSc, it does not scale for larger than 8 processors due

to increasing communication overheads.

3.3 Parallelization of Tensor Decomposition

For sparse tensor computations, CPD is successfully utilized in a large variety

of applications from different domains, such as chemometrics [86], telecommuni-

cations [87], medical imaging [88, 89], image compression and analysis [90], text

mining [91, 92], knowledge bases [93] and recommendation systems [94]. Kolda

23



and Bader [46] provide an extensive survey on tensor decomposition methods and

their applications.

There are several distributed-memory CPD-ALS parallelization approaches

for sparse tensors, varying on how they define and distribute atomic tasks.

DFacTo [95] obtains a coarse-grain partition of the tensor by performing an in-

dependent one-dimensional block partitioning along each mode and is reported

to be significantly faster than two earlier alternatives, Tensor Toolbox [96] and

GigaTensor [97], when compared in a sequential setting. However, DFacTo is not

memory scalable since it needs to store the matricized tensor along each mode as

well as all factor matrices at each processor.

Kaya and Uçar [98] propose HP models that exploit the sparsity pattern of

the tensor to minimize the total communication volumes of coarse- and fine-grain

tensor partitionings. The coarse-grain HP model does not lead to a significant

reduction in the total communication volume compared to block partitioning.

This is due to the inherent limitation of coarse-grain partitioning, where each

processor may need all factor-matrix rows in the non-partitioned modes. The

fine-grain HP model overcomes this problem by distributing the tensor nonzeros

individually, obtaining a multi-dimensional partition. The major drawback of the

fine-grain model is the overhead of partitioning a large hypergraph containing

vertices at least as many as the number of tensor nonzeros. The fine-grain HP

model also suffers from inducing high number of messages, which is a consequence

of disturbing the slice coherences.

To overcome these performance bottlenecks of coarse- and fine-grain models,

Smith and Karypis [48] propose a successful medium-grain model which is based

on multi-dimensional cartesian tensor partitioning. This cartesian tensor parti-

tioning is also used by Austin et al. [99] for parallel Tucker decomposition.

24



Chapter 4

Partitioning and Reordering for

Parallel Gauss-Seidel

We propose a distributed-memory parallel GS (dmpGS) by implementing and

using a distributed-memory version of the stSPIKE algorithm. stSPIKE enables

obtaining the solution of the system by solving independent sparse triangular

subsystems and a smaller reduced triangular system. Solving this reduced sys-

tem constitutes a sequential computational bottleneck in dmpGS. The size of

this reduced system is equal to the number of nonzero columns in the lower off-

diagonal blocks of the coefficient matrix. The computational cost of solving the

reduced system is proportional to its nonzero count. The communication volume

of dmpGS is equal to the number of nonzero column segments in the off-diagonal

blocks plus the reduced system size. Both of these communication and computa-

tional overheads highly depend on the sparsity pattern of the coefficient matrix.

One way to alleviate the cost of solving the reduced system is to further par-

allelize the solution of the reduced system which has been done iteratively [28]

or recursively [33, 29] in the context of the general banded and sparse Spike al-

gorithms. Instead, we propose to minimize the size and the nonzero count of

the reduced system, together with the communication volume, and show that the

resulting reduced system is so small that further parallelization of the solution of

25



the reduced system is often no longer needed. For minimizing the size and the

nonzero count of the reduced system and the communication volume of dmpGS,

we propose a partitioning and reordering model that exploits the sparsity of the

coefficient matrix. The proposed model consists of two phases. The first phase

is a row-wise partitioning of the coefficient matrix, whereas the second phase is

a row reordering within the row blocks induced by the partition obtained in the

first phase.

For the first phase, we propose a novel hypergraph model that extends and

enhances the conventional column-net model for simultaneously decreasing the

reduced system size and the communication volume. We introduce vertex fixing,

net anchoring and net splitting schemes within the recursive bipartitioning frame-

work to encode the minimization of the number of nonzero column segments in

the lower triangular part of the resulting partition.

For the second phase, we propose an intelligent in-block row reordering method

with the aim of decreasing the computational costs of both forming the coeffi-

cient matrix of the reduced system once and solving the reduced system at each

iteration.

The rest of the chapter is organized as follows. In Section 4.1, we discuss

the dmpGS algorithm along with its communication and computational costs.

The proposed partitioning and reordering model for dmpGS is introduced in

Section 4.2. We provide the experimental results in Section 4.3 and summarize

in Section 4.4.

4.1 Distributed-Memory Parallel Gauss-Seidel

(dmpGS)

The pseudo-code of dmpGS is given in Algorithm 4 for processor Pk in a

K-processor system. Matrix A is assumed to be partitioned into K row blocks,

where mk denotes the number of rows in the kth row block. In the algorithm, Rk,

26



Figure 4.1: Four-way row-wise partition of matrix A and vectors x and f for
dmpGS

Dk and Uk respectively denote the kth row block of the strictly block lower trian-

gular, lower triangular part of the block diagonal, and strictly upper triangular

parts of A as shown in Figure 4.1. The number of columns in Rk, Dk and Uk are

respectively
∑k−1

i=1 mi, mk and
∑K

i=kmi. fk, gk, xk, hk, wk and zk denote the local

subvectors of size mk that are computed by Pk. These subvectors are partitioned

conformably with row-wise partitioning of A as shown in Figure 4.1. Ŝ, x̂ and

ĝ respectively denote the |C|×|C| coefficient matrix, |C|×1 unknown and |C|×1

right hand side vectors of the reduced system in stSPIKE.

In Algorithm 4, lines 2-7 denote the factorization phase of stSPIKE which

computes Ŝ. This phase is done only once after which we proceed with the GS

iterations in lines 8-24. Each dmpGS iteration involves two SpMVs at lines 11

and 22, two vector subtraction operations at lines 12 and 24, an independent

sparse triangular solve at line 13, and a reduced system solution at line 18, which

enables independent sparse triangular solves at line 23. The upper and lower

triangular SpMV operations are incurred by the GS and stSPIKE algorithms, re-

spectively. These two SpMV operations incur communication of x-vector entries

depending on the sparsity patterns of the upper triangular U and lower trian-

gular L matrices, respectively. Conformable partitioning of the vectors avoids

communication during vector subtraction operations.

At lines 9–10, communication operations are performed for local SpMV

(line 11). After Pk receives all necessary non-local x-vector entries, it forms

27

------------
Xı fı Pı 

------------

X 
X2 h P2 

------------
X3 h P3 

------------
X4 f4 P4 

------------
A X f 



Algorithm 4 Distributed-Memory Parallel Gauss Seidel (dmpGS) for processor
Pk

Input: Submatrices Rk, Dk, Uk, and right-hand side subvector fk
Output: Subvector xk

1: Choose an initial guess for xk
2: if 2≤k≤K−1 then
3: Gk ← D−1

k Rk B local partial sparse triangular solve with multiple RHS

4: Form and send Ĝk to processor P1

5: if k = 1 then
6: Receive Ĝ` from P` for 2≤`≤K−1 to form Ĝ
7: Ŝ ← Ĝ+ I

8: while not converged do
9: Send required local xk entries to respective processors in {P1, . . . , Pk−1}
10: Receive non-local x` entries from processors in {Pk+1, . . . , PK} to form x̆k
11: hk ← Ukx̆k B local SpMV
12: hk ← fk − hk
13: gk ← D−1

k hk B local sparse triangular solve
14: if 2≤k≤K−1 then
15: Send {gk(i)}i∈C to processor P1

16: if k = 1 then
17: Receive {g`(i)}i∈C from P` for 2≤`≤K−1 to form ĝ

18: x̂← Ŝ−1ĝ B solve reduced system
19: Send x̂ entries to requiring processors

20: if k 6= 1 then
21: Receive required x̂-entries to form x̄k

22: zk ← Rkx̄k B local SpMV
23: wk ← D−1

k zk B local sparse triangular solve
24: xk ← gk − wk

28



its augmented vector x̆. Each processor sends the selected entries of its gk vector

to P1 (line 15) to form the right hand side vector ĝ (line 17) for the sequential

solution of the reduced system to obtain x̂ (line 18). Here x̂ corresponds to those

unknowns in x which are at the interface of the partitioning of L and obtaining

them decouples the global lower triangular system into independent much smaller

systems. P1 sends only those x-vector entries that are required by other proces-

sors (line 19) so that each processor Pk forms its x̄ vector (line 21) to perform

local SpMV (line 22).

The communication overhead in each iteration of dmpGS is as follows. The

communication volume incurred by h = Ux̆ (line 11) and z = Rx̄ (line 22) are

equal to the number of nonzero column segments in the off-diagonal blocks of

U and L, respectively. Thus the communication volume required by these two

SpMVs is equal to the total number of off-diagonal nonzero column segments

in A, which we refer to as offD nzCol seg(A). The volume of communication

incurred at line 17 is equal to the size of the reduced system, |C|. Therefore, the

total communication volume of dmpGS is

commVol = offD nzCol seg(A) + |C|. (4.1)

Note that the different row blocks (Rk) seem to vary in the number of columns

because of the triangular structure of the problem. On the other hand, this

disadvantage is alleviated by the proposed partitioning model which also gathers

most of the nonzeros to the diagonal blocks.

4.2 The Proposed Partitioning and Reordering

Model

We propose a two-phase model for reducing the communication overhead of

dmpGS while maintaining computational balance as well as reducing the sequen-

tial computational overhead incurred by solving the reduced system at each it-

eration. This computational overhead is proportional to the number of nonzeros

29



in the off-diagonals of Ŝ. In Section 4.2.1, we propose a novel HP model as the

first phase which simultaneously encodes the minimization of the reduced system

size |C| and the communication volume. Decreasing |C| is important not only be-

cause it directly contributes to reducing the communication volume, but it also

relates to decreasing the computational overhead. In Section 4.2.2, we propose an

in-block reordering method as the second phase which refines the improvement

further by decreasing the number of nonzeros in Ŝ. We provide the illustrations

showing the effect of the proposed partitioning model and the reordering method

on a few real sparse matrices in Section 4.2.3.

4.2.1 Hypergraph Partitioning Model

The partitioning objective in this phase is minimizing the sum of communication

volume overhead (4.1) and sequential overhead costs with proper scaling:

PartObj = commVol + (α−1)|C|

= (offD nzCol segs(A) + |C|) + (α−1)|C|

= offD nzCol segs(A) + α|C| (4.2)

Here α denotes the scaling factor between the effect of the reduced system size

and the number of off-diagonal nonzero column segments on the overall overhead.

4.2.1.1 Definitions and Layout

We define a column as L-linking if it links at least one off-diagonal block in the

lower triangular part. That is, a column ci in kth column block Bck is L-linking if

it links a row block Br` with `>k. Since L-linking columns of A are the nonzero

columns of R, the number of L-linking columns (L-link cols(A)) is equal to

the reduced system size, |C|. Therefore, the partitioning objective (4.2) can be

rewritten as

PartObj = offD nzCol segs(A) + α(L-link cols(A)). (4.3)

30



Let HCN(A)=(V ,N ) be the column-net hypergraph of an m×m sparse matrix

A with nonzero diagonal entries. An ordered partition ΠK = 〈V1,V2, . . . ,VK〉
of HCN(A) is decoded as a partial symmetric row and column reordering of A

as explained in Section 2.1.2. Each net ni of HCN(A) connects vertex vi since

A(i, i) 6= 0 for each 1≤ i≤m. A net ni with vi∈Vk is called L-cut if it connects

at least one vertex part V` such that `> k. The set of L-cut nets is denoted as

NLcut. We define a new type of cutsize, which we call the L-cut-net metric, as

csLcut(ΠK) =
∑

n∈NLcut

c(n). (4.4)

Finally, the cost of partition ΠK is defined as the sum of connectivity metric with

unit net cost and L-cut-net metric with net cost α, i.e.,

costconn+Lcut(ΠK) =
∑

n∈Ncut

(λ(n)−1) + α|NLcut|. (4.5)

Here, each cut net n incurs λ(n)−1, and each L-cut net incurs α to the cutsize.

Lemma 4.2.1. A column ci of A is L-linking if and only if net ni of HCN(A) is

L-cut.

Proof. Due to symmetric row-column ordering, ci is in Bck if and only if ri is in Brk,
which corresponds to vi∈Vk. Furthermore, ci links Br` if and only if ni connects

V`. Therefore, ci in Bck links Br` if and only if ni with vi∈Vk connects V`, where

`>k.

Proposition 4.2.2. Minimizing costconn+Lcut(ΠK) for a K-way partition ΠK of

HCN(A) corresponds to minimizing the partitioning objective (4.3).

Proof. By Lemma 4.2.1, the number of L-cut nets in HCN(A) is equal to the

number of L-linking columns in A. Thus α|NLcut|= α(L-link cols(A)). Fur-

thermore, it is known by [55] that
∑

n∈Ncut
(λ(n)−1)=offD nzCol segs(A).

Each vertex is associated with a weight equal to the number of nonzeros in

the respective row of the matrix, i.e., w(vi)=nnz(A(i, :)). Thus, the partitioning

constraint of maintaining balance on part weights approximately encodes the

31



computational load balance during aggregate two triangular SpMVs (lines 11

and 22) and two triangular solves (lines 13 and 23).

The cut-net splitting technique has been successfully used within the RB

framework to encode the minimization of the connectivity metric [55]. How-

ever to the best of our knowledge, there exists no tool or model for encoding

the minimization of the L-cut-net metric in the literature. We propose to use

the RB framework with novel net anchoring and splitting schemes to encode the

minimization of the L-cut-net metric.

4.2.1.2 Recursive Bipartitioning Model for dmpGS

At each RB step, an ordered bipartition Π2 =〈VU ,VL〉 of V is decoded as ordering

the vertices of VL after those of VU . Here VU and VL denote the upper and lower

vertex parts, respectively. In RB, the concept of L-cut net takes a special form.

In a bipartition Π2 = 〈VU ,VL〉, a net ni is L-cut if vi is assigned to VU and ni

connects at least one vertex vj such that vj ∈VL. The partitioning objective at

each RB step is to minimize

costRB(Π2) = |Ncut|+ α|NLcut|. (4.6)

For encapsulating the connectivity and L-cut net metrics simultaneously, each

net ni in HCN(A) is replicated as two different kinds of nets, namely conn-net

nci and lcn-net n`i . Here, conn-nets encapsulate the connectivity metric whereas

lcn-nets encapsulate the L-cut-net metric. The motivation for net replication is

the requirement of different net splitting and net removal procedures for encoding

the connectivity and L-cut-net metrics at each RB step. In order to encapsulate

the RB objective (4.6), we assign unit cost to the conn-nets and cost α to the

lcn-nets. We refer to the hypergraph formed by these replicated nets as H.

We extend H=(V ,N ) into a hypergraph H′=(V ′,N ′) so that minimizing the

number of conventional cut nets in H′ encodes minimizing (4.6). We introduce

new fixed vertices vU ∈ VU and vL ∈ VL to form the extended vertex set V ′ =

32



Figure 4.2: Net ni in HCN(A) is replicated as conn-net nci and lcn-net n`i to form
H. Net n`i in H is represented by a pair of nets n̂`i and ň`i in H′.

V ∪{vU , vL}. We represent each lcn-net n`i in H as a pair of nets n̂`i and ň`i in H′.
n̂`i is same as n`i except it is U -anchored (connects vU). ň`i is a 2-pin L-anchored

net which connects vL and vi. That is, for each net ni in HCN(A), H′ contains

nets nci , n̂
`
i and ň`i , where

Pins(nci ,H′) = Pins(ni,HCN(A)),

P ins(n̂`i ,H′) = Pins(ni,HCN(A)) ∪ {vU} and

Pins(ň`i ,H′) = {vi, vL}.

The nets in the extended hypergraph for a sample 3-pin net are shown in Fig-

ure 4.2.

We form H′ at the beginning and apply RB steps until reaching the desired

part count, K. The resultingK-way partition Π′K ofH′ induces aK-way partition

ΠK of HCN(A). H is an in-between hypergraph introduced for the sake of clarity

of presentation and is not constructed during implementation. We explain the

proposed net splitting and removal methods on H, and show the correspondence

onH′. We consider that each bipartition Π′2 =〈V ′U ,V ′L〉 ofH′ induces a bipartition

Π2 =〈VU ,VL〉 ofH. HereH andH′ refer to the respective hypergraphs just before

the current RB step. New hypergraphs HU and HL are constructed according to

Π2 = 〈VU ,VL〉 as follows. For both conn- and lcn-nets, each internal net in VL
and VU is respectively included in NL and NU as is. In the net splittings, a new

conn- or lcn-net is added to the net list of HU or HL only if it has more than one

pin. The single-pin nets are discarded since they cannot contribute to the cutsize

in the following RB steps.

33

in 1-lcN(A) in 1-l 



For cut conn-nets, we apply the conventional cut-net splitting procedure [55]

to encapsulate the connectivity metric. If a conn-net nci is cut, then nci is split

into two pin-wise disjoint nets in HU and HL such that

Pins(nci ,HU) = Pins(nci ,H) ∩ VU , (4.7)

Pins(nci ,HL) = Pins(nci ,H) ∩ VL. (4.8)

For lcn-nets, we introduce a hybrid cut-net splitting/removal method in order

to correctly encapsulate the L-cut-net metric. At each RB step, for each net pair

(n̂`i , ň
`
i) in a bipartition Π′, we consider the state of n`i in Π where Pins(n`i ,H)=

Pins(n̂`i ,H′)−{vU} for ease of understanding. If an lcn-net n`i is not internal,

then it can be L-cut or “cut but not L-cut”.

If n`i is L-cut, then we apply cut-net removal for ni. This is because when ni is

L-cut in an RB step, it also becomes L-cut in the final K-way partition. Hence

there is no need to track this net anymore and we do not include it in further

bipartitions.

If n`i is cut but not L-cut, then we apply net removal towards

HU and net-L-splitting towards HL. That is, n`i is added to HL as

Pins(n`i ,HL)=Pins(n`i ,H)∩VL. This is because n`i cannot be L-cut in further

bipartitionings of HU but it has the potential of becoming L-cut in further bipar-

titionings of HL. In the extended hypergraph context, this corresponds to adding

lcn-net pair (n̂`i , ň
`
i) to H′L such that

Pins(n̂`i ,H′L) = (Pins(n`i ,H′) ∩ V ′L) ∪ {vU}, (4.9)

Pins(ň`i ,H′L) = {vi, vL}. (4.10)

Figure 4.3 shows all possible cases for a sample lcn-net. The first, second, third

and last horizontal layers respectively show the bipartition Π′2 of H′; the corre-

sponding bipartition Π2 of H; HU and HL induced by Π2; and the corresponding

H′U and H′L induced by Π′2. If n`i is L-cut in H as in Figure 4.3a, both n̂`i and ň`i

are cut in Π′2. If n`i is cut but not L-cut as in Figure 4.3b, or if n`i is internal to

VL as in Figure 4.3d, then only n̂`i is cut. Otherwise, if n`i is internal to VU as in

Figure 4.3c, then only ň`i is cut.

34



(a) n`i is L-cut (b) n`i is cut, but
not L-cut

(c) n`i is internal
to part VU

(d) n`i is internal
to part VL

Figure 4.3: All cases for an lcn-net n`i and the corresponding net pair (n̂`i , ň
`
i)

after bipartition 〈V ′U ,V ′L〉.

35



Lemma 4.2.3. Consider the bipartition Π2 = 〈VU ,VL〉 of H induced by a bipar-

tition Π′2 = 〈V ′U ,V ′L〉 of H′ in an RB step. If a net is L-cut in Π2, then it incurs

2 cut nets in Π′2. Conversely, if a net is not L-cut in Π2, then it incurs 1 cut net

in Π′2.

Proof. If n`i is L-cut in Π2 of H, then vi ∈VU and n`i connects a vertex vj such

that vj ∈VL. In Π′2 of H′, n̂`i is cut since it connects vi∈V ′U and vj ∈V ′L; and ň`i

is also cut since it connects vi∈V ′U and vL∈V ′L.

If n`i is not L-cut and vi ∈VL in Π2, then n̂`i is cut in Π′2 because it connects

vU ∈V ′U and vi∈V ′L; but ň`i is not cut since both vi and vL are in V ′L.

If n`i is not L-cut and vi∈VU in Π2, then n`i should be internal to VU , because

otherwise any pin in VL would make n`i to be L-cut. In Π′2, net n̂`i is internal to

V ′U since both vi and vU are in V ′U ; but ň`i is cut since it connects vi ∈ V ′U and

vL∈V ′L.

Proposition 4.2.4. Minimizing the conventional cut-net metric for the biparti-

tion Π′2 of H′ encodes minimizing costRB(Π2) defined in (4.6).

Proof. By Lemma 4.2.3, each L-cut net in Π2 incurs 2 cut nets in Π′2, whereas

all remaining nets in Π2 incur 1 cut net in Π′2. Since the cost of lcn-nets is α,

the cutsize incurred by lcn-nets in Π′2 is α(|NLcut|+|N |). Since conn-nets are of

unit cost, they incur |Ncut| to the cutsize of Π′2. Hence the total cutsize of Π′2 is

|Ncut|+α|NLcut|+α|N |. Since α|N | is constant, minimizing the cutsize of Π′2 is

equivalent to minimizing |Ncut|+α|NLcut|, which is costRB(Π2).

Figure 4.4 shows an example 2-level RB in terms of lcn-nets in H and the

corresponding 4-way matrix partitioning. The L-cut nets n`1, n`2 and n`6 and the

corresponding L-linking columns c1, c2, and c6 of A are colored in red back-

ground. n`2 is L-cut in the first level RB and discarded in the future bipartitions.

This is because column c2 is already counted as L-linking due to nonzero A(6, 2)

and should not be counted as L-linking again due to nonzero A(4, 2) in further

bipartitions.

36



Figure 4.4: Sample 2-level RB showing lcn-nets and corresponding matrix parti-
tioning.

Note that the L-cut net definition can be considered to be similar to the left-

cut net defined in [100] for encapsulating the profile minimization, but the net

splitting and removal strategies are quite different for encapsulating the objective

of our problem.

Theorem 4.2.5. Recursively bipartitioning H′ by minimizing the cutsize ac-

cording to the cut-net metric and applying the proposed net splitting and re-

moval strategies until reaching K parts encodes minimizing the partitioning ob-

jective (4.3).

Proof. By Proposition 4.2.4, recursively bipartitioning H′ by minimizing the con-

ventional cut-net metric encodes minimizing costRB(Π2) at each RB step. We

show that this encodes minimizing costconn+Lcut(ΠK). Proposed net splitting and

removal strategies ensure that an L-cut net in ΠK is also L-cut in Π2 in ex-

actly one RB step. Since an L-cut net contributes α to both costRB(Π2) and

costconn+Lcut(ΠK), minimizing α|NLcut| in each bipartition Π2 encodes minimiz-

ing α|NLcut| in ΠK . Furthermore, minimizing the number of cut nets |Ncut| at

each RB step and applying the cut-net splitting procedure encodes minimizing

the connectivity metric
∑

n∈Ncut
(λ(n)−1) [55]. Therefore, minimizing the cutsize

for each bipartition Π′2 of H′ encodes minimizing costconn+Lcut(ΠK); hence by

Proposition 4.2.2, this corresponds to the partitioning objective (4.3).

37



4.2.2 Reordering within Row Blocks

Consider the K-way block structure of A (as in Figure 4.1) induced by the partial

symmetric row-column permutation obtained by the HP model (Section 4.2.1).

We perform row reordering within the kth row block of A by considering nonzeros

of the kth row block Rk of R. The resulting row reordering within the kth row

block of A is symmetrically applied to the columns of the kth column block of A.

Rk is an mk×zk matrix where zk =
∑k−1

i=1 mi. For simplicity, we assume a local

indexing for the rows of Rk so that Rk consists of rows ri with 1≤ i≤mk. Let Ck
be the subset of C corresponding to the row indices in Rk.

Recall that in stSPIKE, fill-in may arise below the top nonzero of each spike

in Rk. The top nonzero of a spike cj in Rk is the nonzero with row index

top(cj, Rk)=min{i : Rk(i, j) 6=0, 1≤ i≤mk}. (4.11)

We define the height of a spike cj in Rk as the number of reduced system row

indices between top(cj, Rk) and mk inclusively, i.e.,

height(cj, Rk) = |{i : top(cj, Rk)≤ i≤mk, i∈Ck}|, (4.12)

since only the rows with indices in Ck may contribute to the nonzero count of

Ŝ. The height of a spike in Rk constitutes an upper bound on the nonzero count

(including the fill-in) of the corresponding column in Ŝ. In Figure 2.1b, the heights

of the spikes are as follows: height(c1, R2)=3, height(c3, R2)=2; height(c1, R3)=1,

height(c4, R3)=2, height(c6, R3)=1, height(c7, R3)=2. The height of a non-spike

column is assumed to be zero. The objective of in-block reordering is to minimize

the total height
K−1∑
k=2

zk∑
j=1

height(cj, Rk), (4.13)

which constitutes an upper bound on the nonzero count in off-diagonal blocks

of Ŝ. The last block RK does not contribute nonzeros to Ŝ since CK is empty.

Reordering within different blocks are completely independent and can be done

concurrently.

38



One straightforward approach is placing the rows whose indices are not among

Ck to the bottom of Rk to avoid the nonzeros of the rows that are not in Ck to

contribute to (4.13). Let Rk=Rk(Ck, :) be the |Ck|×zk submatrix of Rk consisting

of the rows with indices in Ck. Then the problem is reduced to reorder only those

rows of Rk since the rest of the rows on the bottom of Rk do not have an impact

on (4.13).

The reordering objective for each Rk is to minimize
∑zk

j=1 height(cj, Rk), with

a simplified height definition, height(cj, Rk)= |Ck|+1−top(cj, Rk). This is equiv-

alent to maximize
∑zk

j=1 top(cj, Rk), since
∑zk

j=1(|Ck|+1) is constant. Notice here

the resemblance of this problem with the profile minimization problem [101, 102],

which is known to be NP-Hard [103, 104]. The objective of profile minimization is

symmetrically reordering a symmetric matrix T ∈Rn×n with nonzero diagonal en-

tries to minimize
∑n

j=1(j−top(cj, T )), or equivalently to maximize
∑n

j=1 top(cj, T ),

since
∑n

j=1 j is constant. Since the column reordering itself has no effect on the

sum
∑n

j=1 top(cj, T ), profile minimization is a special case of our problem for

symmetric matrices assuming a symmetric row-column reordering. Therefore,

the profile minimization problem can be reduced to the total height minimization

problem in polynomial time; and could be solved in polynomial time if there had

been a polynomial-time solution to the total height minimization problem. But

since the profile minimization is NP-Hard, then so is the total height minimization

problem.

We propose a heuristic for minimization of the total height whose pseudocode

is presented in Algorithm 5. Its efficient implementation requires accessing the

nonzeros of both rows and columns of Rk, so it is stored both in CSR (Compressed

Sparse Row) and CSC (Compressed Sparse Column) formats. Cols(ri) denotes

the set of columns in row ri, whereas Rows(cj) denotes the set of rows in column

cj. Degree of a row or column is defined as the number of nonzeros in that row or

column, i.e., deg(ri)= |Cols(ri)| and deg(cj)= |Rows(cj)|. In lines 3-6, we define

the load of each row ri as the sum of degrees of columns cj such that Rk(i, j) 6=0.

The greedy choice utilized in the proposed heuristic is to order the rows with

39



Algorithm 5 Proposed in-block reordering for Rk where 2≤k≤K−1

Input: Rk ∈ Rmk×zk and set of reduced-system row indices Ck of Rk.
Output: the permutation vector perm of Rk.

1: Place the rows ri with i /∈Ck to the last mk−|Ck| indices in any order
2: Consider submatrix Rk=Rk(Ck, :) of Rk consisting of rows ri with i∈Ck
3: for each row ri of Rk do
4: load(ri)← 0
5: for each column cj ∈ Cols(ri) do
6: load(ri)← load(ri)+deg(cj)

7: for d← 0 to max row deg do
8: S(d)← {ri : deg(ri) = d}
9: indx← 0

10: while indx < |Ck| do
11: d∗ ← min{d : S(d) 6= ∅}
12: ri∗ ← argmaxri∈S(d∗) load(ri) B Select ri∗∈S(d∗) with maximum load
13: indx← indx+1
14: perm(indx)← ri∗
15: S(d∗)← S(d∗)− {ri∗}
16: for each column cj ∈ Cols(ri∗) do
17: Rows(cj)← Rows(cj)− {ri∗}
18: Cols(ri∗)← Cols(ri∗)− {cj}
19: for each row ri′ ∈ Rows(cj) do
20: Cols(ri′)← Cols(ri′)− {cj}
21: load(ri′)← load(ri′)−deg(cj)
22: S(deg(ri′))← S(deg(ri′))− {ri′}
23: deg(ri′)← deg(ri′)−1
24: S(deg(ri′))← S(deg(ri′)) ∪ {ri′}

40



smaller degrees to upper positions of Rk since placing denser rows to upper po-

sitions incurs more height in (4.13). We further improve our greedy approach

by using dynamic row degrees during the row selection process. When a row is

selected, the degree of each unselected row is decremented by the number of its

nonzeros having the same column index with the nonzeros in the selected row.

Since the nonzeros in a selected row already determine the heights of the respec-

tive columns, we do not need to consider the rest of the nonzeros of these columns

in future row selections. When selecting a row among rows with the same degree,

load values of the rows are used as a tie-breaking strategy. A row with a higher

load is preferred to be selected since it will lead to a larger amount of decrease

on the degrees of unselected rows.

In Algorithm 5, S(d) denotes the set of rows with degree d. Due to dynamic

row degrees, at each iteration we find the minimum degree d∗ (line 11). Then

we choose the row ri∗ in S(d∗) with the maximum load (line 12). After ri∗ is

selected, all remaining nonzeros in each column cj with Rk(i
∗, j) 6= 0 are deleted

as in lines 17-20. For each unselected row ri′ with Rk(i
′, j) 6= 0, we dynamically

update the load and degree of ri′ , and the respective degree sets (lines 21-24).

Recall that forming Ŝ in dmpGS requires the computation of nonzeros up to

the largest reduced system row index and any entry beyond that is not required

to be computed for each row block. Hence the total height (4.13) also gives the

computational cost of forming Ŝ since we place Rk at the top of Rk for each

1<k<K.

4.2.3 Illustration

We provide the illustrations showing the effect of the proposed partitioning model

and the reordering method on three real sparse matrices from the SuiteSparse Ma-

trix Collection [105]. Figures 4.5, 4.6 and 4.7 illustrate the effect of applying the

proposed partitioning and reordering model for K=8 on the matrices msc23052,

ACTIVSg10K, and mult dcop 01 respectively. The nonzero pattern of the original

matrix, the pattern obtained after applying the proposed HP model and the final

41



0 0.5 1 1.5 2

104

0

0.5

1

1.5

2

104

(a) A: original

0 0.5 1 1.5 2

104

0

0.5

1

1.5

2

104

(b) A: HP ordering

0 0.5 1 1.5 2

104

0

0.5

1

1.5

2

104

(c) A:HP&in-block ordering

0 0.5 1 1.5 2

104

0

0.5

1

1.5

2

104

(d) S: original
nnz(Ŝ−I) = 277,113

0 0.5 1 1.5 2

104

0

0.5

1

1.5

2

104

(e) S: HP ordering
nnz(Ŝ−I) = 3,593

0 0.5 1 1.5 2

104

0

0.5

1

1.5

2

104

(f) S: HP&in-block ordering
nnz(Ŝ−I) = 811

Figure 4.5: Nonzero pattern of msc23052: (a) before ordering, (b) after HP for
K = 8, (c) after HP and in-block reordering; (d),(e),(f) the respective Spike (S)

matrices (the reduced system (Ŝ) nonzeros are circled in red color).

pattern after the proposed in-block reordering are shown in order. Below each

ordering of A, the resulting Spike matrix (S) is shown, including the nonzeros

of the reduced system (Ŝ) which are highlighted with red circles. As seen in the

figure, the proposed partitioning and reordering model significantly reduces the

nonzero count of the reduced system. For example, the number of nonzeros in

Ŝ−I in Figures 4.5d, 4.5e, and 4.5f are 277,113, 3,593, and 811, respectively. Note

that these numbers may seem to be much larger than the ones appearing in the

figures because of the overlapping red circles.

Notice that the proposed HP model gathers most of the nonzeros to the diago-

nal blocks so that the off-diagonal blocks become very sparse. Then, the proposed

42



0 0.5 1 1.5 2

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

104

(a) A: original

0 0.5 1 1.5 2

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

104

(b) A: HP ordering

0 0.5 1 1.5 2

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

104

(c) A:HP&in-block ordering

0 0.5 1 1.5 2

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

104

(d) S: original
nnz(Ŝ−I) = 3,678

0 0.5 1 1.5 2

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

104

(e) S: HP ordering
nnz(Ŝ−I) = 256

0 0.5 1 1.5 2

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

104

(f) S:HP&in-block ordering
nnz(Ŝ−I) = 8

Figure 4.6: Nonzero pattern of ACTIVSg10K: (a) before ordering, (b) after HP for
K = 8, (c) after HP and in-block reordering; (d),(e),(f) the respective Spike (S)

matrices (the reduced system (Ŝ) nonzeros are circled in red color).

43



0 0.5 1 1.5 2 2.5

104

0

0.5

1

1.5

2

2.5

104

(a) A: original

0 0.5 1 1.5 2 2.5

104

0

0.5

1

1.5

2

2.5

104

(b) A: HP ordering

0 0.5 1 1.5 2 2.5

104

0

0.5

1

1.5

2

2.5

104

(c) A:HP&in-block ordering

0 0.5 1 1.5 2 2.5

104

0

0.5

1

1.5

2

2.5

104

(d) S: original
nnz(Ŝ−I) = 28,063

0 0.5 1 1.5 2 2.5

104

0

0.5

1

1.5

2

2.5

104

(e) S: HP ordering
nnz(Ŝ−I) = 232

0 0.5 1 1.5 2 2.5

104

0

0.5

1

1.5

2

2.5

104

(f) S:HP&in-block ordering
nnz(Ŝ−I) = 116

Figure 4.7: Nonzero pattern of mult dcop 01: (a) before ordering, (b) after HP
for K = 8, (c) after HP and in-block reordering; (d),(e),(f) the respective Spike

(S) matrices (the reduced system (Ŝ) nonzeros are circled in red color).

44



in-block reordering method gathers the reduced-system nonzeros within each off-

diagonal block to the upper left corner of the respective off-diagonal block (Figure

4.5f). This is because we agglomerate the reduced system row indices to the top

within each block, and we apply the resulting row reordering to the columns

symmetrically. Within each off-diagonal block, gathering the rows with reduced-

system indices to the top corresponds to agglomerating the columns with these

indices, which are actually all the columns having nonzeros, to the left. An ex-

ception is the first column block since no row reordering is performed for the first

row block.

4.3 Experiments

We use the HSL software package MC64 [106] for scaling and permuting the

coefficient matrices to avoid a singular L. We select the MC64 option that max-

imizes the product of the diagonal entries and then scales to make the absolute

value of diagonal entries one and the off-diagonal entries less than or equal to

one. For symmetric matrices, in order not to destroy the symmetry, we apply the

symmetric MC64 if the main diagonal is already zero-free. Otherwise, we apply

the nonsymmetric MC64 to obtain a zero-free main diagonal. For unsymmetric

matrices, we just apply the nonsymmetric MC64.

The experiments are conducted on an extensive dataset obtained from the

SuiteSparse Matrix Collection [105]. For sufficiently coarse-grained parallel pro-

cessing, we select real square matrices that have more than 20,000 rows and

between 100,000 and 20,000,000 nonzeros. There are 199 symmetric and 208

unsymmetric matrices in SuiteSparse satisfying these properties at the time of

experimentation. 44 symmetric and 4 unsymmetric matrices are eliminated be-

cause they are singular. The remaining are 155 symmetric and 204 unsymmetric,

a total of 359 sparse matrices on which we conduct experiments. Table 4.1 shows

the number of instances for each matrix kind. Kinds are sorted in decreasing order

of instance count. The kinds having less than 5 instances in our dataset (acous-

tics, chemical oceanography, counter-example and data analytics) are grouped as

45



Table 4.1: Properties of test instances grouped by different matrix kinds.

kind
ID

kind
name

number of instances avg
size

avg
nnz

sym unsym total

1 structural 48 4 52 139,490 6,130,225
2 circuit simulation 2 46 48 176,964 1,032,036
3 economic 1 33 34 40,917 317,049
4 semiconductor device 0 33 33 99,011 1,341,221
5 computational fluid dynamics 6 27 33 79,052 1,700,320
6 2D/3D 19 9 28 105,005 1,448,801
7 power network 14 13 27 72,873 1,399,642
8 optimization 20 3 23 29,590 922,477
9 model reduction 13 3 16 114,294 6,574,878

10 chemical process simulation 0 15 15 52,025 1,668,867
11 theoretical/quantum chemistry 14 0 14 113,299 1,616,691
12 electromagnetics 6 4 10 92,019 593,073
13 thermal 5 4 9 134,034 1,123,944
14 materials 2 4 6 42,358 1,124,164
15 weighted graph 1 5 6 179,045 2,277,744
16 acoustics, oceanography, counter-ex., analytics 4 1 5 136,591 2,089,456

All 155 204 359 92,079 1,484,609

one kind.

4.3.1 Partitioning Quality

We tested the performance of the proposed partitioning algorithm described in

Section 4.2.1 against the partitioning quality of the conventional column-net HP

with connectivity metric (cnHP) and graph partitioning (GP) models. For both

cnHP and GP, vertex weights are set as the number of nonzeros in the respective

rows whereas nets and edges are assigned unit cost. In cnHP, the objective is

to minimize the number of nonzero off-diagonal column segments. In GP, the

objective is to minimize the number of nonzeros in the off-diagonal blocks. For

unsymmetric matrices, GP is applied on |A|+ |AT |. The well-known partitioning

tools METIS [107] and PaToH [58] are used for GP and cnHP models, respectively.

In the proposed model, we use PaToH as the HP tool in each bipartitioning

step. Experiments are conducted with different scaling factors α= 1, 2, 5 and 10

for lcn-net cost assignment. We set the maximum allowable imbalance ratio in

46



Table 4.2: Averages of total communication volume and the reduced system size
in dmpGS, both normalized with respect to the number of rows.

proposed HP model (Sec. 4.2.1)

K GP cnHP α = 1 α = 2 α = 5 α = 10

C
om

m
.
vo
l.

8 0.158 0.132 0.140 0.139 0.139 0.145
16 0.253 0.217 0.223 0.224 0.224 0.232
32 0.380 0.329 0.332 0.332 0.337 0.347
64 0.547 0.477 0.479 0.479 0.491 0.505

128 0.767 0.681 0.679 0.680 0.697 0.719
256 1.062 0.955 0.948 0.953 0.977 1.012

R
ed
.
sy
s.

si
ze

8 0.048 0.041 0.033 0.032 0.029 0.029
16 0.075 0.066 0.051 0.049 0.045 0.045
32 0.109 0.094 0.074 0.070 0.065 0.064
64 0.149 0.129 0.102 0.097 0.090 0.088

128 0.197 0.174 0.136 0.129 0.119 0.116
256 0.252 0.227 0.177 0.168 0.154 0.149

each bipartitioning as ε = 0.05. As both METIS and PaToH involve random-

ized algorithms in the coarsening phase, five partitioning runs are performed for

each instance with different seeds and the averages are reported. We conduct

experiments for K=8, 16, 32, 64, 128 and 256 parts (processors).

Table 4.2 shows the results of the comparison experiments in terms of the

communication volume and the reduced system size metrics for dmpGS utilizing

the partitions generated by GP, cnHP and the proposed model. For each test

instance, these metrics are normalized with respect to the number of rows and

the average for all matrices are given for each K. Here and hereafter, all averages

are given as geometric means.

As seen in Table 4.2, cnHP achieves considerably low communication volume

and reduced system size than GP as expected. The average improvement of cnHP

over GP is approximately 10% for both metrics on K = 256. In fact, cnHP is

equivalent to the proposed HP model for α = 0. As seen in the table, there is

a trade-off between the reduced system size and the communication volume for

varying values of α for the proposed HP model. Yet the rate of increase in the

communication volume is observed to be larger than the rate of decrease in the

reduced system size with increasing α. For example for K=64, compared to the

47



cnHP model, the proposed model slightly increases the communication volume

by 0.4%, 0.5%, 2.9% and 5.9% whereas it significantly decreases the reduced

system size by 21.5%, 25.2%, 30.7% and 32.0% for α=1, 2, 5 and 10, respectively.

Here, α = 2 seems to be a balanced choice since it significantly decreases the

reduced system size while it slightly increases the communication volume. This

is reflected in the parallel scalability of the proposed algorithm as will be shown

in Section 4.3.3, thus we set α=2 in the upcoming results.

In Figure 4.8, we provide the performance profiles comparing GP, cnHP and

the proposed model in terms of the reduced system size. A performance profile

[108] shows the comparison of different models relative to the best performing

one for each data instance. On a profile, a point (x, y) means that the respective

model is within x factor of the best result for a fraction y of the instances. For

example, the point (1.20, 0.60) on the curve of cnHP means that cnHP yields 20%

more reduced system size than the smallest reduced system size achieved for 60%

of the dataset. Therefore, the model closest to the top left corner is interpreted

as the model with best performance.

As seen in Figure 4.8, the proposed model outperforms the baseline algorithms

in terms of the reduced system size in the majority of the test instances. As K

increases, the performance gap between GP and cnHP decreases, whereas the

performance gap between the proposed model and both of the baseline models

increases significantly. The proposed model yields the best performance for 69%,

71%, 75%, 82%, 85% and 86% of the dataset for K = 8, 16, 32, 64, 128 and 256,

respectively.

The proposed HP model yields very sparse off-diagonal blocks. For example,

the number of nonzeros in any lower off-diagonal block Rk is at most 0.51%,

0.44%, 0.35%, 0.26%, 0.19%, and 0.13% of the total nonzero count of A for

K=8, 16, 32, 64, 128, and 256 parts on the average, respectively. As the HP

model maintains balance on the nonzero counts of the whole row blocks, these

low nonzero counts in off-diagonal blocks do not disturb the computational load

balance among processors considerably.

48



1 1.2 1.4 1.6 1.8 2

Reduced system size relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n 

of
 te

st
 in

st
an

ce
s

proposed
cnHP
GP

(a) K = 8

1 1.2 1.4 1.6 1.8 2

Reduced system size relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

proposed
cnHP
GP

(b) K = 16

1 1.2 1.4 1.6 1.8 2

Reduced system size relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

proposed
cnHP
GP

(c) K = 32

1 1.2 1.4 1.6 1.8 2

Reduced system size relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n 

of
 te

st
 in

st
an

ce
s

proposed
cnHP
GP

(d) K = 64

1 1.2 1.4 1.6 1.8 2

Reduced system size relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

proposed
cnHP
GP

(e) K = 128

1 1.2 1.4 1.6 1.8 2

Reduced system size relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

proposed
cnHP
GP

(f) K = 256

Figure 4.8: Performance profiles that compare GP, cnHP and the proposed HP
model in terms of the reduced system size.

49



Table 4.3: Total height and nonzero count averages in the off-diagonal blocks of
the reduced system (Ŝ). The values are the ratios of the results attained by the
baseline over the proposed in-block reordering.

kind
ID

K = 8 K = 16 K = 32 K = 64 K = 128 K = 256

height nnz height nnz height nnz height nnz height nnz height nnz
1 1,470.1 518.5 554.1 233.6 263.6 143.1 115.9 67.6 65.9 41.1 37.2 25.4
2 71.9 125.2 63.1 100.6 30.5 61.6 15.8 35.0 8.8 18.7 5.5 11.6
3 1,219.2 331.4 321.2 271.5 296.8 197.2 167.8 152.7 88.2 82.9 46.1 47.8
4 27.7 3.8 16.8 5.3 9.9 5.7 8.8 6.2 6.5 4.5 4.6 3.1
5 260.0 10.0 142.6 9.1 90.3 7.6 63.5 6.3 37.6 4.7 24.5 4.0
6 600.0 123.2 298.3 101.5 148.6 61.3 73.5 37.0 38.7 22.3 22.0 13.6
7 131.8 10.1 67.3 7.4 36.7 5.7 22.8 4.7 14.0 3.8 8.5 3.2
8 513.5 97.3 260.4 59.4 92.2 30.9 48.9 18.5 23.8 11.3 17.0 8.2
9 1,547.9 1,101.3 1,010.9 1,221.2 556.7 641.8 248.6 315.4 102.0 141.6 50.7 70.0

10 29.0 4.8 32.9 10.9 15.0 5.6 12.8 5.2 8.6 3.6 6.0 2.7
11 375.3 619.3 213.3 213.3 112.8 136.6 68.8 89.0 43.2 54.1 25.6 32.0
12 241.2 170.7 121.4 109.1 59.9 66.8 31.8 41.2 18.1 25.2 10.6 14.7
13 18.2 2.7 17.7 3.1 12.7 2.7 13.4 2.6 10.1 2.6 8.2 2.8
14 217.7 231.1 116.5 149.6 59.2 94.0 33.0 54.4 19.1 30.6 12.2 17.7
15 610.4 228.9 277.9 164.6 122.0 91.6 61.8 50.9 31.5 28.3 18.0 16.4
16 15.8 62.2 8.5 31.5 6.0 18.9 4.4 11.9 3.4 7.8 2.7 5.3
All 238.1 57.2 127.1 43.0 65.0 27.8 39.0 18.7 22.7 12.1 14.3 8.3

4.3.2 In-Block Reordering Quality

To our knowledge, no in-block reordering method has been proposed or tested

for stSPIKE in the literature. Therefore, we compare the improvement gained

by applying the proposed in-block ordering method against an algorithm that

does not apply an in-block reordering, which is our baseline algorithm. In this

comparison, both the proposed and the baseline reordering methods utilize the

partitions obtained by the HP model (Section 4.2.1). Two quality metrics used

in this comparison are total height and nonzero count in the off-diagonal blocks

of Ŝ.

Table 4.3 shows the ratios of these quality metrics of the in-block reorderings

generated by the baseline to those of the proposed method. For each K value,

the results are given as averages grouped by different matrix kinds, and the last

row shows the average of all instances in the dataset.

As seen in Table 4.3, the proposed reordering method achieves significant im-

provement in terms of both quality metrics against the baseline reordering. For

50



example for K = 64, on overall average, the proposed method achieves 39× and

18.7× improvement against the baseline ordering in terms of height and nonzero

counts, respectively. The improvement rate attained in height does not always

directly reflect to the improvement rate in the nonzero counts since height is an

upper bound for fill-in and the fill-in also depends on the sparsity of the diagonal

blocks.

Although the improvement of the proposed reordering against the baseline

ordering tends to degrade with increasing K, this is expected since there are fewer

rows per block and there is less room for improvement. For example on overall

average, the proposed in-block reordering method achieves 57.2×, 43.0×, 27.8×,

18.7×, 12.1× and 8.3× decrease in the nonzero count for K = 8, 16, 32, 64, 128

and 256, respectively.

Note that the reduced system size and the communication volume are deter-

mined by the partitioning of the coefficient matrix and do not change with the

in-block reordering. This is because the reduced system size is equal to the num-

ber of nonzero columns in R, and the communication volume is the sum of the

reduced system size and the number of nonzero column segments in A, which

are dependent on the block partitioning of A. The in-block reordering algorithm

switches the locations of the nonzeros only within the same block, so the num-

ber of nonzero columns and column segments remain unchanged. Therefore, the

results in Table 4.2 are still valid after applying the in-block reordering method.

The proposed partitioning and reordering model yields very small reduced sys-

tems whose nonzero counts are significantly low relative to the original system.

For example, the average ratios of the nonzero count of the reduced system over

the nonzero count of the coefficient matrix, i.e. nnz(Ŝ)/nnz(A), are 0.05%, 0.12%,

0.26%, 0.49%, 0.87%, and 1.48% for K=8, 16, 32, 64, 128, and 256 parts, respec-

tively. These low nonzero counts of the reduced systems verify the effectiveness

of the proposed partitioning and reordering model in terms of alleviating the

sequential computational overhead of dmpGS.

Table 4.4 shows the number of nonzeros in Ŝ−I obtained by applying the

51



Table 4.4: Average number of nonzeros in Ŝ − I normalized with respect to the
minimum possible nonzero count in Ŝ − I.

method K=8 K=16 K=32 K=64 K=128 K=256

baseline 74.80 58.05 37.81 25.34 16.27 10.98
proposed 1.33 1.34 1.35 1.34 1.33 1.32

baseline and the proposed methods normalized with respect to the minimum

possible nonzero count in Ŝ−I after applying HP, as averages of different part

counts. As seen in the table, the nonzero count obtained by the proposed method

is at most 35% more than the minimum achievable nonzero count of Ŝ−I.

4.3.3 Parallel Scalability

Parallel experiments are performed on the Sariyer cluster of UHEM (National

Center for High Performance Computing) [109] using up to 320 cores over 8

distributed nodes, each containing 40 cores (two Intel Xeon Gold 6148 CPUs)

and 192GB memory. The nodes are connected by an InfiniBand EDR 100 Gbps

network.

We implement an MPI+OpenMP hybrid parallel dmpGS to demonstrate the

effectiveness of using stSPIKE and the proposed model. Throughout this section,

the proposed model refers to the proposed partitioning and in-block reordering

model (Section 4.2) applied to dmpGS. The number of MPI processes is the same

as the number of parts (K) in a partition. For dmpGS, we experimented with

different configurations of number of processes and threads. We found that the

best configuration is 8 processes per node and 5 threads per process. Therefore,

we conduct parallel experiments for dmpGS using 1, 2, 4 and 8 nodes corre-

sponding to 40, 80, 160 and 320 cores and K=8, 16, 32 and 64 parts (processes),

respectively.

To the best of our knowledge, there is no publicly available true distributed-

memory parallel GS implementation. For comparing the performance of dmpGS,

52



Table 4.5: The properties of the matrices to run dmpGS. The relative residual
and runtime results of mtGS are given for 500 iterations on 40 cores.

Matrix
Kind

ID
Sym Size Nnz

Relative
Residual*

mtGS
time (s)

msdoor 1 X 415,863 19,173,163 1.9× 10−4 23.1
af shell1 1 X 504,855 17,562,051 8.2× 10−4 23.4
af 1 k101 1 X 503,625 17,550,675 1.1× 10−4 23.4
CoupCons3D 1 416,800 17,277,420 4.0× 10−9 21.8
Freescale1 2 3,428,755 17,052,626 3.0× 10−4 72.7
circuit5M dc 2 3,523,317 14,865,409 1.9× 10−12 72.7
CurlCurl 3 9 X 1,219,574 13,544,618 2.8× 10−4 35.4
memchip 2 2,707,524 13,343,948 5.4× 10−5 57.5
BenElechi1 6 X 245,874 13,150,496 6.5× 10−5 15.2
pwtk 1 X 217,918 11,524,432 1.5× 10−4 13.6
bmw3 2 1 X 227,362 11,288,630 1.9× 10−4 13.6
bmwcra 1 1 X 148,770 10,641,602 6.0× 10−4 11.9

we also implemented a multi-threaded GS (mtGS) by using the multithreaded

sparse triangular system solver (mkl sparse d trsm) and sparse matrix vector mul-

tiplicator (mkl sparse d mv) of Intel Math Kernel Library (MKL) [110]. As a

baseline, we obtain the results of mtGS on 40 threads/cores (1 node) by using

the GP reordering since it is shown in [37] that the triangular solution with MKL

benefits most from GP.

We tested the parallel scalability of dmpGS for a subset of the dataset since we

have limited core hours on the HPC platform. From the dataset, we considered

the matrices with at least 100,000 rows and 10,000,000 nonzeros, for which GS

converges with a relative residual of less than 10−3 in 500 iterations with initial

guess x=[0, . . . , 0]T and right-hand side vector f = [1/m, 2/m, . . . , 1]T . Then

we select only those instances with different sparsity patterns from each matrix

group. There were exactly 12 such matrices in our dataset satisfying these criteria.

The properties of those matrices are shown in Table 4.5, sorted in decreasing order

of nonzero counts. The sixth and the last column respectively show the relative

residual and runtime of mtGS after 500 iterations.

Table 4.6 presents the relative residual values of dmpGS on 40, 80 and 160

cores (K=8, 16 and 32) for 500 iterations obtained by applying the original and

the proposed ordering on the coefficient matrix. The results suggest that the

53



Table 4.6: Relative residual of dmpGS obtained by applying the original and the
proposed ordering.

K=8 K=16 K=32

matrix original proposed original proposed original proposed

msdoor 2.04× 10−4 1.92× 10−4 2.04× 10−4 1.90× 10−4 2.04× 10−4 1.89× 10−4

af shell1 6.04× 10−4 9.80× 10−4 6.04× 10−4 1.06× 10−3 6.04× 10−4 1.10× 10−3

af 1 k101 9.60× 10−5 1.09× 10−4 9.60× 10−5 1.11× 10−4 9.60× 10−5 1.12× 10−4

CoupCons3D 1.91× 10−9 4.39× 10−9 1.91× 10−9 4.40× 10−9 1.91× 10−9 4.47× 10−9

CurlCurl 3 3.21× 10−4 2.75× 10−4 3.21× 10−4 2.75× 10−4 3.21× 10−4 2.76× 10−4

BenElechi1 6.09× 10−5 6.65× 10−5 6.09× 10−5 6.57× 10−5 6.09× 10−5 6.60× 10−5

pwtk 1.43× 10−4 9.61× 10−5 1.43× 10−4 9.65× 10−5 1.43× 10−4 9.97× 10−5

bmw3 2 2.01× 10−4 2.07× 10−4 2.01× 10−4 2.08× 10−4 2.01× 10−4 2.09× 10−4

bmwcra 1 4.16× 10−4 4.45× 10−4 4.16× 10−4 4.62× 10−4 4.16× 10−4 4.76× 10−4

proposed reordering is successful in terms of sustaining the accuracy.

Table 4.7 shows the average speedup values obtained by dmpGS with GP,

cnHP and the proposed model over mtGS. We run dmpGS with the proposed

model for α=1, 2, 5 and 10 to observe the effect of scaling factor (α) on the par-

allel performance. As seen in the table, the proposed model achieves significantly

higher speedup for dmpGS over the baseline models for all α. The speedup per-

formance gap between the proposed and baseline models increase with increasing

K, thus confirming the effectiveness of the proposed model.

Figure 4.9 depicts the performance profiles comparing the dmpGS runtime

using the proposed model for varying α As can be seen in the figure, the relative

performance of α = 2 is better for larger part counts. For example for K=64,

Table 4.7: Average speedup obtained by dmpGS over mtGS on 40 cores. The
best speedup value obtained for each K is shown in bold.

K
number of

GP cnHP
proposed model

nodes cores α = 1 α = 2 α = 5 α = 10

8 1 40 9.87 8.71 14.85 14.71 14.77 14.51
16 2 80 14.65 13.58 29.07 28.51 28.47 28.25
32 4 160 17.41 16.11 47.28 47.86 47.24 45.89
64 8 320 15.79 17.60 54.96 55.54 50.21 50.65

54



1 1.05 1.1 1.15 1.2

dmpGS runtime relative to the best

0

0.2

0.4

0.6

0.8

1
F

ra
ct

io
n 

of
 te

st
 in

st
an

ce
s

=1
=2
=5
=10

1 1.05 1.1 1.15 1.2

dmpGS runtime relative to the best

0

0.2

0.4

0.6

0.8

1

=1
=2
=5
=10

1 1.05 1.1 1.15 1.2

dmpGS runtime relative to the best

0

0.2

0.4

0.6

0.8

1

=1
=2
=5
=10

1 1.05 1.1 1.15 1.2

dmpGS runtime relative to the best

0

0.2

0.4

0.6

0.8

1

=1
=2
=5
=10

Figure 4.9: Performance profiles in terms of the dmpGS runtime using the pro-
posed model.

even in the cases that α= 2 does not give the best result, its performance is at

most 1.18× worse than the best one.

We choose α=2 for better scalability of dmpGS since it yields the best per-

formance for larger part counts (K = 32 and 64) as seen in both Table 4.7 and

Figure 4.9. The proposed model yields average of 1.5×, 1.9×, 2.7× and 3.2×
higher speedup relative to the best of the baseline models for K = 8, 16, 32 and

64, respectively.

Figure 4.10 shows the results of the strong scaling experiments as speedup

curves of dmpGS with GP, cnHP and the proposed model. The proposed model

significantly enhances the scalability of dmpGS so that dmpGS scales up to 320

cores on all instances. As seen in the figure, the proposed model outperforms GP

and cnHP models for all of the test instances, significantly so in 9 out of 12. It

is observed that the remaining 3 of them, namely Freescale1, circuit5M dc,

and memchip, are the only matrices among the test instances that have less than

5 nonzeros per row/column on the average. The closeness of the performances

between the proposed and the baseline algorithms for such very sparse matrices

was expected since there is less room for improvement. dmpGS using the proposed

model achieves up to 122.2 speedup (for memchip) on 320 cores over mtGS on 40

cores.

55



13,2

25,6

47,3

68,4

0

20

40

60

80

1 node 2 nodes 4 nodes 8 nodes

af_shell1
Proposed GP cnHP

Sp
ee

du
p 

w
.r.

t m
tG

S
 (

40
 c

or
es

)

11.8

22.9

41.1

49.7

0

10

20

30

40

50

60

1
40

2
80

4
160

8
320

msdoor

#nodes:
#cores:

13.2

25.6

47.3

68.4

0

10

20

30

40

50

60

70

80

1
40

2
80

4
160

8
320

af_shell1

#nodes:
#cores:

13.2

25.4

50.8

64.5

0

10

20

30

40

50

60

70

1
40

2
80

4
160

8
320

af_1_k101

#nodes:
#cores:

Sp
ee

du
p 

w
.r.

t m
tG

S
 (

40
 c

or
es

)

11.7

20.6

36.1
42.3

0

10

20

30

40

50

1
40

2
80

4
160

8
320

CoupCons3D

#nodes:
#cores:

23.1

47.6

85.1
94.3

0

20

40

60

80

100

1
40

2
80

4
160

8
320

Freescale1

#nodes:
#cores:

23.8

44.4

73.4

97.0

0

20

40

60

80

100

120

1
40

2
80

4
160

8
320

circuit5M_dc

#nodes:
#cores:

Sp
ee

du
p 

w
.r.

t m
tG

S
 (

40
 c

or
es

)

20.4

35.1

52.3
55.8

0

10

20

30

40

50

60

1
40

2
80

4
160

8
320

CurlCurl_3

#nodes:
#cores:

24.9

47.9

90.2

122.2

0

20

40

60

80

100

120

140

1
40

2
80

4
160

8
320

memchip

#nodes:
#cores:

11.9

24.5

42.4 44.9

0

10

20

30

40

50

1
40

2
80

4
160

8
320

BenElechi1

#nodes:
#cores:

Sp
ee

du
p 

w
.r.

t m
tG

S
 (

40
 c

or
es

)

13.5

27.6

42.2

50.8

0

10

20

30

40

50

60

1
40

2
80

4
160

8
320

pwtk

#nodes:
#cores:

11.8

24.3

34.0 35.4

0

5

10

15

20

25

30

35

40

1
40

2
80

4
160

8
320

bmw3_2

#nodes:
#cores:

12.0

23.8

33.5 35.1

0

5

10

15

20

25

30

35

40

1
40

2
80

4
160

8
320

bmwcra_1

#nodes:
#cores:

Figure 4.10: Speedup curves of dmpGS with GP, cnHP and the proposed model
(for K=8, 16, 32 and 64) relative to mtGS on 1 node (40 cores).

56



4.4 Summary

We proposed and implemented an stSPIKE-based distributed-memory parallel

GS (dmpGS) algorithm. For improving the scalability of dmpGS, we propose

an HP-based partitioning model and an in-block row reordering method. Exten-

sive experiments show that the proposed HP model significantly decreases the

reduced system size with respect to the baseline models while attaining compa-

rable communication volume. The proposed in-block reordering method leads to

a substantial decrease in the computational cost of both forming and solving the

reduced system. Parallel experiments up to 320 cores demonstrate that using the

proposed reordering model significantly improves the scalability of dmpGS.

57



Chapter 5

Partitioning and Reordering for

Parallel Solution of Triangular

Systems in ILU(0)

We propose a distributed-memory parallel algorithm, dmpGS, for parallel solu-

tion of triangular systems in ILU(0) using stSPIKE. For this purpose, we use both

lower and upper stSPIKE algorithms to solve the lower and upper triangular sys-

tems in parallel. Solving the reduced systems in lower and upper stSPIKE consti-

tutes the sequential computational bottleneck in dmpILU. Although dmpILU can

be applied to any kind of incomplete LU, we consider ILU(0) since it guarantees

that L and U matrices have the same sparsity pattern with A; so a priori reorder-

ing of A determines the size and nonzero count of reduced system in stSPIKE on

L and U .

This chapter is organized as follows. In Section 5.1, we introduce the dmpILU

algorithm. The proposed partitioning and reordering model for dmpILU is ex-

plained in Section 5.2. The experimental results are provided in Section 5.3 and

Section 5.4 summarizes.

58



(a) Partitioning for matrix L and vectors f , y

(b) Partitioning for matrix U and vectors x, y

Figure 5.1: Four-way row-wise partition of matrices and vectors for dmpILU.

5.1 Distributed-Memory Parallel ILU (dmpILU)

Algorithm 6 represents the pseudocode of dmpILU. The superscript L or U letter

indicate the case of belonging to upper or lower stSPIKE. For instance, CL and CU

denote the reduced system index sets for stSPIKE on L and U , respectively. RL
k

and DL
k respectively denote the kth off-diagonal row block and the block diagonal

of L; whereas RU
k and DU

k respectively denote the kth off-diagonal row block and

the block diagonal of U as shown in Figure 5.1.

The sequential computational overhead of solving the reduced systems at each

iteration is proportional to the number of nonzeros in the off-diagonals of ŜL and

ŜU , i.e., in ŜL−I and ŜU−I, respectively, since the nonzeros of I do not incur

59



Algorithm 6 dmpILU for processor Pk
Input: Submatrices RL

k , D
L
k , R

U
k , D

U
k , and right-hand side subvector fk

Output: Subvector xk

1: if 2≤k≤K−1 then
2: GL

k ← (DL
k )
−1
RL
k

3: GU
k ← (DU

k )
−1
RU
k

4: Form and send ĜL
k and ĜU

k to processor P1

5: if k = 1 then
6: Receive ĜL

` and ĜU
` from P` for 2≤`≤K−1 to form ĜL and ĜU

7: ŜL ← ĜL + I
8: ŜU ← ĜU + I

9: iteratively do
10: B lower triangular stSPIKE
11: gk ← (DL

k )
−1
fk B local sparse triangular solve

12: if k 6= 1 then
13: Send {gk(i)}i∈CL to processor P1

14: if k = 1 then
15: Receive {g`(i)}i∈CL from P` for 2≤`≤K to form ĝL

16: ŷ ← (ŜL)−1ĝL B lower triangular reduced system
17: Send ŷ entries to requiring processors
18: if k 6= 1 then
19: Receive required ŷ-entries to form ȳk
20: zk ← RL

k ȳk B local SpMV
21: wk ← (DL

k )−1zk B local sparse triangular solve
22: yk ← gk − wk
23: B upper triangular stSPIKE
24: gk ← (DU

k )
−1
yk B local sparse triangular solve

25: if k 6= 1 then
26: Send {gk(i)}i∈CU to processor P1

27: if k = 1 then
28: Receive {g`(i)}i∈CU from P` for 2≤`≤K to form ĝU

29: x̂← (ŜU)−1ĝU B upper triangular reduced system
30: Send x̂ entries to requiring processors
31: if k 6= 1 then
32: Receive required x̂-entries to form x̄k
33: zk ← RU

k x̄k B local SpMV
34: wk ← (DU

k )−1zk B local sparse triangular solve
35: xk ← gk − wk

60



any cost while forming or solving the reduced system.

The communication at lines 13-15 and 26-28 of Algorithm 6 are of size |CL| and

|CU |, respectively. Furthermore, the reduced system sizes put an upper bound on

the nonzero count of the reduced system, that is the sequential computational

overhead.

5.2 The Proposed Partitioning and Reordering

Model for dmpILU

We propose a partitioning and reordering model that exploits the sparsity of the

coefficient matrix for minimizing total size and nonzero count of the reduced sys-

tems in dmpILU. The first phase of the proposed model is a row-wise partitioning

of the coefficient matrix, and the second phase is a local reordering of the rows

within the induced row blocks.

In Section 5.2.1, we propose a novel hypergraph partitioning model that ex-

tends and enhances the conventional column-net model for decreasing the reduced

system sizes in lower and upper triangular parts simultaneously. Decreasing the

reduced system size is important since it contributes to reducing the communi-

cation volume, and it relates to decreasing the computational overhead. In order

to encode the minimization of total number of nonzero column segments in the

lower and upper triangular parts, we introduce new vertex fixing, net anchoring

and net splitting schemes within the well-known recursive bipartitioning (RB)

framework.

In Section 5.2.2, we propose an in-block row reordering method for decreasing

the computational costs of solving the reduced systems, that is the total number

of nonzeros in the lower and upper triangular reduced systems.

61



5.2.1 Hypergraph Partitioning Model

The objective of the proposed partitioning for improving the performance of

dmpILU is to minimize the total size of the reduced systems in lower and upper

stSPIKE, that is

PartObj = |CL|+ |CU |, (5.1)

which corresponds to minimizing the total number of off-diagonal nonzero

columns in lower and upper triangular parts.

The key point here is to truly calculate the number of nonzero columns in both

lower and upper triangular parts separately. Let us consider a column ci which

has nonzeros both in lower and upper triangular parts, versus another column cj

which has nonzeros only in upper triangular part. A usual column-net hypergraph

partitioning model with cut-net metric would count 1 as the cutsize incurred by

both of these columns. However, ci should incur a cutsize of 2, while cj incurs 1.

As seen in this simple example, a new cutsize definition is needed. We want the

following to hold:

1. If a column links multiple row-parts in off-diagonal blocks only in U , or

only in L, then it should incur cutsize of 1.

2. If a column links multiple row-parts in off-diagonal blocks in both U and L

then it should incur cutsize of 2.

5.2.1.1 Definitions and Layout

We define a column as L-linking or U-linking if it links at least one off-diagonal

block in the lower or upper triangular part, respectively. That is, a column ci

in kth column block Bck is L-linking if it links a row block Br` with ` > k; or is

U -linking if it links a row block Br` with ` < k. Since L-linking and U -linking

columns of A are respectively the nonzero columns of RL and RU , the number of

L-linking (L link cols(A)) and U -linking (U link cols(A)) columns is equal to

62



the total reduced system size, |CL| + |CU |. Therefore, the partitioning objective

(5.1) can be rewritten as

PartObj = L link cols(A) + U link cols(A). (5.2)

LetH=HCN(A)=(V ,N ) be the column-net hypergraph of anm×m sparse ma-

trix A with nonzero diagonal entries. An ordered partition ΠK =〈V1,V2, . . . ,VK〉
of H is decoded as a partitioning of A as explained in Section 2.1.2. Each net ni

of H connects vertex vi since A(i, i) 6=0 for each 1≤ i≤m. A net ni with vi∈Vk
is called L-cut if it connects at least one vertex part V` such that `>k; and called

U -cut if it connects at least one vertex part V` such that `<k. The set of L-cut

and U -cut nets are denoted as NLcut and NUcut, respectively. Then we define the

L-cut-net metric and U-cut-net metric as

csLcut(ΠK) =
∑

n∈NLcut

c(n), (5.3)

csUcut(ΠK) =
∑

n∈NUcut

c(n). (5.4)

The partitioning objective of HP in this problem is minimizing the cost of par-

tition ΠK which is defined as the sum of L-cut-net metric and U -cut-net metric

with unit net cost, that is,

costLUcut(ΠK) = |NLcut|+ |NUcut|. (5.5)

Lemma 5.2.1. A column ci of A is L-linking or U-linking if and only if net ni

of H is L-cut or U-cut, respectively.

Proof. Due to symmetric row-column ordering, ci is in Bck if and only if ri is in Brk,
which corresponds to vi∈Vk. Furthermore, ci links Br` if and only if ni connects

V`. Therefore, ci in Bck links Br` for `>k if and only if ni with vi∈Vk connects V`,
where `>k. That is, ci is L-linking if and only if ni is L-cut. Similarly, ci in Bck
links Br` for `<k if and only if ni with vi∈Vk connects V`, where `<k. That is,

ci is U -linking if and only if ni is U -cut.

Proposition 5.2.2. Minimizing costLUcut(ΠK) for a K-way partition ΠK of H
corresponds to minimizing the partitioning objective (5.2).

63



Proof. By Lemma 5.2.1, the number of L-cut nets in H is equal to the num-

ber of L-linking columns in A. Thus |NLcut| = L link cols(A). Similarly, the

number of U -cut nets in H is equal to the number of U -linking columns in A.

Thus |NUcut|=U link cols(A). Therefore, |NLcut|+ |NUcut|=L link cols(A) +

U link cols(A).

In H, each vertex is associated with a weight equal to the number of nonzeros

in the respective row of the matrix, i.e., w(vi) = nnz(A(i, :)). By this way, the

partitioning constraint of maintaining balance on part weights approximately

encodes the computational load balance during aggregate two triangular solves

in dmpILU.

To the best of our knowledge, there exists no partitioning tool or model that

can bipartition a given hypergraph with the objective of minimizing the L-cut-net

and U-cut-net metrics simultaneously. We propose to use an RB framework with

new net anchoring and splitting schemes to formulate the minimization of the sum

of L-cut-net and U-cut-net metrics as a conventional hypergraph bipartitioning

problem with cut-net metric.

5.2.1.2 Recursive Bipartitioning Model for dmpILU

At each RB step, an ordered bipartition Π2 = 〈VU ,VL〉 of V is decoded such that

vertices in VL are ordered after VU where VU and VL denote the upper and lower

parts, respectively. In RB, the concept of L-cut or U -cut net takes a special form.

In a bipartition Π2 =〈VU ,VL〉, a net ni is called

• L-cut, if vi is assigned to VU and ni connects at least one vertex vj such

that vj∈VL.

• U -cut, if vi is assigned to VL and ni connects at least one vertex vj such

that vj∈VU .

In other words, a cut net ni is called L-cut if vi is assigned to VU , and called

64



(a) ni is L-cut (b) ni is U -cut

Figure 5.2: Sample L-cut and U -cut nets.

U -cut if vi is assigned to VL. Figure 5.2 shows sample L-cut and U -cut nets.

For encapsulating the L-cut-net and U -cut-net metrics simultaneously, we ex-

tend H=(V ,N ) into a hypergraph H′=(V ′,N ′) so that minimizing the number

of conventional cut nets in H′ encodes minimizing the partitioning objective. We

introduce new fixed vertices vU ∈V ′U and vL∈V ′L to form the extended vertex set

V ′=V ∪ {vU , vL}. Here, vU and vL are fixed to parts VU and VL, respectively.

We represent each net ni in H as a pair of nets n̂i and ňi in H′. We define three

different states that a net can have. At the beginning, all nets are in 0-cut-state

meaning that they have not been in cut yet. When a net becomes L-cut in an

RB step, we call it has L-cut-state. Being an internal net or L-cut net several

times does not change its state. Similarly, when a net becomes U-cut in an RB

step, we call it has U-cut-state. Being an internal net or U-cut net several times

does not change its state. When a net in L-cut-state becomes U-cut, or when a

net in U-cut-state becomes L-cut, then we change its state as LU-cut-state.

In our HP model, the extension of a net in H to H′ is done in three different

ways, depending on the state of the net as follows.

• If a net ni ofH is in 0-cut-state, then n̂i is same as ni except it is U -anchored

(connects vU), whereas ňi is same as ni except it is L-anchored (connects

vL). That is,

Pins(n̂i,H′) = Pins(ni,H) ∪ {vU}, (5.6)

Pins(ňi,H′) = Pins(ni,H) ∪ {vL}. (5.7)

65



0-c
ut-
sta
te U-cut-stateL-cut-state

Figure 5.3: Extension of a net in H to H′ for different states.

• If a net ni ofH is in L-cut-state, then ňi is same as ni except it is L-anchored

(connects vL), whereas n̂i is a 2-pin U -anchored net which connects vU and

vi. That is,

Pins(n̂i,H′) = {vi, vU}, (5.8)

Pins(ňi,H′) = Pins(ni,H) ∪ {vL}. (5.9)

• If a net ni ofH is in U-cut-state, then n̂i is same as ni except it is U -anchored

(connects vU), whereas ňi is a 2-pin L-anchored net which connects vL and

vi. That is,

Pins(n̂i,H′) = Pins(ni,H) ∪ {vU}, (5.10)

Pins(ňi,H′) = {vi, vL}. (5.11)

Figure 5.3 illustrates these three different kinds for extending a net in H to

H′ depending on its state. Extension of the L-cut-state and U-cut-state cases are

defined for encapsulating the L-cut net and U -cut net metrics, respectively. The

extension of nets having 0-cut-state to H′ is for maintaining the equality of the

effect of nets over the total cutsize.

Although we bipartition the original hypergraph at the beginning and do the

extension on the hypergraphs starting from the second RB step, we can assume

extending the hypergraph at the beginning for the ease of expression. We explain

66



the proposed net splitting and removal methods on H, and show the correspon-

dence on H′. For this purpose, we assume that each bipartition Π′2 = 〈V ′U ,V ′L〉 of

H′ induces a bipartition Π2 = 〈VU ,VL〉 of H. The new hypergraphs HU and HL

are constructed according to Π2 =〈VU ,VL〉 as follows.

If a net is internal in VL, then it is included in NL as is. Similarly, if a net is

internal in VU , then it is included in NU as is. The single-pin nets are discarded

since they cannot contribute to the cutsize in the following RB steps.

We introduce a hybrid cut-net splitting/removal method in order to correctly

encapsulate the L-cut-net and U -cut-net metrics at the same time. At each RB

step, for each net pair (n̂i, ňi) in a bipartition Π′, we consider the state of ni in Π

for ease of understanding. If a net ni is not internal, then it can be either L-cut

or U -cut.

If a net ni falls into the LU -cut-state, we immediately apply cut-net removal for

ni. This is because when ni is LU -cut in an RB step, it also becomes both L-cut

and U -cut in the final K-way partition. In the context of matrix partitioning,

it means that the column ci becomes both L-linking and U-linking. Therefore

there is no need to track this respective net anymore and we do not include it in

further bipartitions.

Otherwise, when ni is U -cut in an RB step, we apply net removal towards HU

and net-L-splitting towards HL. That is, ni is added to HL as

Pins(ni,HL)=Pins(ni,H)∩VL. (5.12)

This is because we do not need to keep track of ni in further bipartitionings of HU

since it is already counted as U -cut, but it has the potential of becoming L-cut

in further bipartitionings of HL. In the extended hypergraph, this corresponds

to adding net pair (n̂i, ňi) to H′L such that

Pins(n̂i,H′L) = (Pins(ni,H) ∩ VL) ∪ {vU}, (5.13)

Pins(ňi,H′L) = {vi, vL}. (5.14)

Conversely, when ni is L-cut in an RB step, we apply net removal towards HL

67



and net-U-splitting towards HU . That is, ni is added to HU as

Pins(ni,HU)=Pins(ni,H)∩VU . (5.15)

This is because we do not need to keep track of ni in further bipartitionings of HL

since it is already counted as L-cut, yet it has the potential of becoming U -cut

in further bipartitionings of HU . In the extended hypergraph, this corresponds

to adding net pair (n̂i, ňi) to H′U such that

Pins(n̂i,H′U) = (Pins(ni,H′) ∩ V ′U) ∪ {vL}, (5.16)

Pins(ňi,H′U) = {vi, vU}. (5.17)

When a net turns into LU -cut-state from L-cut-state or U -cut-state; or it

turns into L-cut-state or U -cut-state from 0-cut-state; we refer this situation as

a change of state for that net. We denote the set of nets that encounter a change

of state in a bipartition Π2 as Ncst(Π2).

Figures 5.4, 5.5 and 5.6 illustrate all possible cases for a sample net in 0-, L-

and U - cut-states, respectively. The top horizontal layer shows a bipartition Π′2 of

the current hypergraph H′. The second layer shows the corresponding bipartition

Π2 of H. The third layer shows HU and HL induced by Π2. Finally, the bottom

layer shows the corresponding H′U and H′L induced by Π′2.

In Figure 5.4, net ni is assumed to have 0-cut-state before the bipartitioning

for all cases. If ni becomes L-cut as in Figure 5.4a, then it is extended to further

hypergraphs as a net in L-cut-state. If ni becomes U -cut as in Figure 5.4b, then

it is extended to further hypergraphs as a net in U -cut-state. If ni is internal as

in Figure 5.4c or 5.4d, then it is extended to further hypergraphs as a net having

0-cut-state.

In Figure 5.5, net ni is assumed to have L-cut-state before the bipartitioning

for all cases. If ni becomes U -cut as in Figure 5.5b, then it is not included in any

further hypergraphs. Otherwise, it is still extended to further hypergraphs as a

net having L-cut-state.

In Figure 5.6, net ni is assumed to have U -cut-state before the bipartitioning

68



(a) ni is L-cut (b) ni is U -cut (c) ni is internal
to part VU

(d) ni is internal
to part VL

Figure 5.4: All cases for a net ni in 0-cut-state and the corresponding net pair
(n̂i, ňi) after bipartition Π′2 = 〈V ′U ,V ′L〉.

69



(a) ni is L-cut (b) ni is U -cut (c) ni is internal
to part VU

(d) ni is internal
to part VL

Figure 5.5: All cases for a net ni in L-cut-state and the corresponding net pair
(n̂i, ňi) after bipartition Π′2 = 〈V ′U ,V ′L〉.

70



(a) ni is L-cut (b) ni is U -cut (c) ni is internal
to part VU

(d) ni is internal
to part VL

Figure 5.6: All cases for a net ni in U -cut-state and the corresponding net pair
(n̂i, ňi) after bipartition Π′2 = 〈V ′U ,V ′L〉.

71



for all cases. If ni becomes L-cut as in Figure 5.6a, then it is not included in any

further hypergraphs. Otherwise, it is still extended to further hypergraphs as a

net having U -cut-state.

Proposition 5.2.3. Consider the bipartition Π2 = 〈VU ,VL〉 of H induced by a

bipartition Π′2 = 〈V ′U ,V ′L〉 of H′ in an RB step. The net pair (n̂i, ňi) incurs 2 cut

nets in Π′2 only when the corresponding net ni is in Ncst(Π2). Otherwise, the net

pair (n̂i, ňi) incurs 1 cut net in Π′2.

Proof. For a net ni having 0-cut-state, a change of state occurs when ni becomes

L-cut, or U -cut. There are four cases for a 0-cut-state as follows.

• If ni is L-cut in Π2 of H, then vi∈VU and ni connects a vertex vj such that

vj∈VL. In Π′2 of H′, n̂i is cut since it connects vi∈V ′U and vj∈V ′L; and ňi is also

cut since it connects vi∈V ′U and vL∈V ′L.

• If ni is U -cut in Π2 of H, then vi∈VL and ni connects a vertex vj such that

vj∈VU . In Π′2 of H′, n̂i is cut since it connects vi∈V ′L and vj∈V ′U ; and ňi is also

cut since it connects vi∈V ′L and vU ∈V ′U .

• If ni is internal to VL, then in Π′2, net n̂i is also internal to V ′L since both vi

and vL are in V ′L; but ňi is cut since it connects vi∈V ′L and vU ∈V ′U .

• If ni is internal to VU , then in Π′2, net n̂i is also internal to V ′U since both vi

and vU are in V ′U ; but ňi is cut since it connects vi∈V ′U and vL∈V ′L.

For a net ni having L-cut-state, a change of state occurs only when ni becomes

U -cut. There are three different cases for a net in L-cut-state as follows.

• If ni is U -cut in Π2 of H, then vi∈VL and ni connects a vertex vj such that

vj∈VU . In Π′2 of H′, n̂i is cut since it connects vi∈V ′L and vj∈V ′U ; and ňi is also

cut since it connects vi∈V ′L and vU ∈V ′U .

• If ni is not U -cut and vi∈VU in Π2, then n̂i is cut in Π′2 because it connects

vL∈V ′L and vi∈V ′U ; but ňi is not cut since both vi and vU are in V ′U .

• If ni is not U -cut and vi∈VL in Π2, then ni should be internal to VL; because

otherwise, there would be at least one pin in VU which would make ni to be U -cut.

In Π′2, net n̂i is internal to V ′L since both vi and vL are in V ′L; but ňi is cut since

it connects vi∈V ′L and vU ∈V ′U .

72



For a net ni having U -cut-state, a change of state occurs only when ni becomes

L-cut. There are three cases for a net in U -cut-state as follows.

• If ni is L-cut in Π2 of H, then vi∈VU and ni connects a vertex vj such that

vj∈VL. In Π′2 of H′, n̂i is cut since it connects vi∈V ′U and vj∈V ′L; and ňi is also

cut since it connects vi∈V ′U and vL∈V ′L.

• If ni is not L-cut and vi∈VL in Π2, then n̂i is cut in Π′2 because it connects

vU ∈V ′U and vi∈V ′L; but ňi is not cut since both vi and vL are in V ′L.

• If ni is not L-cut and vi∈VU in Π2, then ni should be internal to VU ; because

otherwise, there would be at least one pin in VL which would make ni to be L-cut.

In Π′2, net n̂i is internal to V ′U since both vi and vU are in V ′U ; but ňi is cut since

it connects vi∈V ′U and vL∈V ′L.

Theorem 5.2.4. Recursively bipartitioning H′ by minimizing the cutsize accord-

ing to the conventional cut-net metric and applying the proposed net splitting and

removal strategies until reaching K parts encodes minimizing the partitioning ob-

jective (5.2).

Proof. By Proposition 5.2.3, for a bipartition Π2, each net in Ncst(Π2) incurs 2

cut nets in Π′2, whereas all remaining nets in Π2 incur 1 cut net in Π′2. Thus, the

cutsize in Π′2 is equal to |Ncst(Π2)|+|N |. Since |N | is constant, minimizing the

cutsize of Π′2 is equivalent to minimizing |Ncst(Π2)| for each bipartition Π2. A

change of state for a net means the first occurrence of being an L-cut or U -cut

net. Furthermore, proposed net splitting and removal strategies ensure that an

L-cut or U -cut net in ΠK is also L-cut in Π2, and vice versa. Therefore, the

sum of |Ncst(Π2)| values over all bipartitions Π2 gives the exact number of L-cut

and U -cut nets in ΠK , which is equal to |NLcut|+ |NUcut| = costLUcut(ΠK) (5.5).

Finally by Proposition 5.2.2, minimizing costLUcut(ΠK) encodes minimizing the

partitioning objective (5.2).

73



Figure 5.7: A sample row-wise partitioning of matrix A and a focus on a single
row block Brk.

5.2.2 Reordering within Row Blocks

We consider the K-way block structure of A induced by the partial symmetric

row-column permutation obtained by the HP model in Section 5.2.1. We illus-

trate a sample row-block partition of A and a focus on a single row block Brk in

Figure 5.7. Here, BLk and BUk respectively denote the submatrices of Brk lying in

the lower and upper block triangular parts of A. The sizes of BLk and BUk are

respectively mk×zLk and mk×zUk where

zLk =
k−1∑
i=1

mi and zUk =
K∑

i=k+1

mi. (5.18)

Note that the nonzero pattern of BLk and BUk are respectively same as the nonzero

pattern of RL
k and RU

k since the nonzero pattern of L and U are same as the

nonzero pattern of A in ILU(0).

We perform row reordering within the kth row block Brk by considering the

nonzeros of both BLk and BUk . At the end, the row reordering within kth row

block Brk is symmetrically applied to the columns of the kth column block Bck. For

simplicity, we assume a local indexing for the rows of Brk so that it consists of rows

ri with 1≤ i≤mk. Let CLk and CUk denote the subset of CL and CU corresponding

to the row indices in BLk and BUk , respectively.

Recall that, fill-in may arise below the top nonzero of each spike in BLk for lower

stSPIKE and above the bottom nonzero of each spike in BUk for upper stSPIKE.

74

Br 
.,L ~ l' 

B; 
--

ki, 
~ 

ki, 
~ 

83 m11 Bf 
1 1 Bf 1 

B4 Bk 

A 



The top nonzero of a spike cj in BLk is defined as the nonzero with row index

top(cj,BLk )=min{i : BLk (i, j) 6=0, 1≤ i≤mk}. (5.19)

The bottom nonzero of a spike cj in BUk is defined as the nonzero with row index

bottom(cj,BUk )=max{i : BUk (i, j) 6=0, 1≤ i≤mk}. (5.20)

We define heightL of a spike cj in BLk as the number of reduced system row indices

between top(cj,BLk ) and mk inclusively, i.e.,

heightL(cj,BLk ) = |{i : top(cj,BLk )≤ i≤mk, i∈CLk }|, (5.21)

since only the rows with indices in CLk may contribute to the nonzero count of

ŜL. Conversely, we define heightU of a spike cj in BUk as the number of reduced

system row indices between 1 and top(cj,BUk ) inclusively, i.e.,

heightU(cj,BUk ) = |{i : 1≤ i≤bottom(cj,BUk ), i∈CUk }|, (5.22)

since only the rows with indices in CUk may contribute to the nonzero count

of ŜU . The height of a spike in BLk or BLk constitutes an upper bound on the

nonzero count (including the fill-in) of the corresponding column in ŜL and ŜU ,

respectively. We assume the height of a non-spike column as zero. The objective

of in-block reordering is to minimize the total height

K−1∑
k=2

 zLk∑
j=1

heightL(cj,BLk ) +
m∑

j=m−zUk

heightU(cj,BUk )

 , (5.23)

which constitutes an upper bound on the total nonzero count in off-diagonal

blocks of the lower and upper triangular reduced systems. The first and last

blocks do not contribute nonzeros to reduced systems since the reduced system

index sets are empty.

We define the degree of a row in BLk or BUk as the number of nonzeros of that

row lying in BLk or BUk , that is,

degLk (ri)= |{j : A(i, j) 6= 0, 1 ≤ j ≤ zLk }|, and (5.24)

degUk (ri)= |{j : A(i, j) 6= 0, m−zUk ≤ j ≤ m}|. (5.25)

75



Note that if we were to reorder the rows of Brk by just considering the nonzeros

of BLk , we would aim to order the rows with smaller degrees in BLk to upper

positions of Brk since placing denser rows to upper positions incurs more height in

lower stSPIKE. In that case, it would be better to place the rows whose indices

are not among CLk to the bottom of Brk to avoid the nonzeros of the rows that are

not in CLk to contribute to the total height. We call this method, that considers

only the lower triangular part and places the rows whose indices are not among

CLk to the top of Brk in increasing order of degLk , as incr L.

Conversely, if we were to reorder the rows of Brk by just considering the nonzeros

of BUk , we would aim to order the rows with smaller degrees in BUk to lower

positions of Brk since placing denser rows to lower positions incurs more height in

upper stSPIKE. In that case, it would be better to place the rows whose indices

are not among CUk to the top of Brk to avoid the nonzeros of the rows that are not

in CUk to contribute to the total height. We adopt an in-between strategy that

takes the nonzeros in both BLk and BLk into account. We call this method, that

considers only the upper triangular part and places the rows whose indices are

not among CUk to the bottom of Brk in decreasing order of degUk , as decr U.

Algorithm 7 presents the pseudocode of the proposed reordering method for

the rows of Brk. Note that determining the orderings within different row blocks

are independent and can be done concurrently. First, we place the rows that

have no nonzero in BLk and does not belong to CUk to the top of Brk as in lines

4-6. Conversely, we place the rows that have no nonzero in BUk and does not

belong to CLk to the bottom of Brk as in lines 7-9. For the rest of the rows, we use

three priority queues to keep track of three different kinds of rows. The priority

queues are implemented as min-heap. We place the rows which belong to CLk
but not to CUk to the top of the remaining places in increasing order of their

degLk (ri) values. Then we place the rows which belong to CUk but not to CLk to

the bottom of the remaining places in decreasing order of their degUk (ri) values.

We place the remaining rows to remaining positions in increasing order of their

degLk (ri)− degUk (ri) values, with the aim of placing the rows with lower degLk (ri)

and higher degUk (ri) values to the upper positions.

76



Algorithm 7 Proposed in-block reordering for row block Brk where 2≤k≤K−1

Input: Brk and reduced-system index sets CLk and CUk .
Output: the permutation vector perm for rows of Brk.

1: indx← 1
2: indx back ← mk

3: for each row ri of Brk do
4: if degLk (ri) = 0 and i /∈ CUk then
5: perm(indx) = i
6: indx← indx+1
7: else if degUk (ri) = 0 and i /∈ CLk then
8: perm(indx back) = i
9: indx back ← indx back−1

10: else if i ∈ CLk but i /∈ CUk then
11: INSERT(heapL, i, degLk (ri))
12: else if i ∈ CUk but i /∈ CLk then
13: INSERT(heapU , i, degUk (ri))
14: else
15: INSERT(heapLU , i, degLk (ri)− degUk (ri))

16: while heapL is not empty do
17: perm(indx) = EXTRACT MIN(heapL)
18: indx← indx+1

19: while heapLU is not empty do
20: perm(indx) = EXTRACT MIN(heapLU)
21: indx← indx+1

22: while heapU is not empty do
23: perm(indx back) = EXTRACT MIN(heapU)
24: indx back ← indx back−1

77



5.3 Experimental Results

The experiments are conducted on the dataset which is described in Section 5.3.

It consists of 359 sparse matrices whose properties are summarized in Table 4.1.

We use the HSL software package MC64 [106] for scaling and permuting the

coefficient matrices to avoid zero value on the diagonal.

5.3.1 Partitioning Quality

We tested the performance of the proposed hypergraph partitioning algorithm

described in Section 5.2.1 against the partitioning quality of the conventional

column-net HP with cut-net metric (cnHP) and graph partitioning (GP) models.

For all models, vertex weights are set as the number of nonzeros in the respective

rows whereas nets and edges are assigned unit cost. The objective of partitioning

in cnHP is minimizing the number of linking columns whereas in the proposed

model, it is minimizing the total number of L-linking and U-linking columns.

In GP, the objective is to minimize the number of nonzeros in the off-diagonal

blocks. For GP and cnHP models, the partitioning tools METIS [107] and PaToH

[58] are used, respectively. In the proposed HP model, we use PaToH as a tool to

bipartition the hypergraph at each RB step. The maximum allowable imbalance

ratio in each bipartitioning is set as ε=0.05.

We investigate the comparison of partitioning qualities in terms of total re-

duced system size of dmpILU utilizing the partitions generated by the original

ordering, GP, cnHP and the proposed model. The experiments are conducted for

K=8, 16, 32, 64, 128 and 256 parts for each instance in the dataset.

Table 5.1 shows the average improvements gained by using the proposed and

baseline partitioning models against the original ordering. The results for each K

are given as averages of 359 sparse matrices in the dataset. In the table, we use

the notation rss() as a function of total reduced system size obtain by a model.

rss(org) means the total reduced system size obtained with the original matrix

78



Table 5.1: Improvement averages of total reduced system size (rss) in upper and
lower stSPIKE, as ratios with respect to the original ordering, i.e. the ratio of
rss(org) / rss(model) where model ∈ {GP, cnHP, prop}.

improvement over org

K rss(org) GP cnHP prop

8 32,352 3.59 4.04 3.94
16 45,675 3.30 3.60 3.64
32 61,796 3.08 3.31 3.49
64 79,359 2.90 3.10 3.33
128 96,654 2.67 2.83 3.10
256 111,512 2.40 2.53 2.81

ordering. For instance forK = 32, GP, cnHP and the proposed model respectively

yield 3.08, 3.31, and 3.39 times improvement over the original ordering.

Table 5.2 presents the improvement gained by using the proposed model over

the original and baseline models. The values indicate the total reduced system

size of each model, all of which are normalized with respect to the result ob-

tained by the proposed model. As can be seen in the Table, the proposed model

outperforms the baseline models especially after 16 partitions. Furthermore, as

K increases, the degree of superiority increases as well. The partitioning perfor-

mance of proposed model is 1.10, 1.10, 1.13, 1.15, 1.16, 1.17 times better than

the performance of GP; whereas it is 0.98, 1.01, 1.05, 1.07, 1.10, 1.11 times better

than the performance of cnHP for K = 8, 16, 32, 64, 128, 256 parts, respectively.

Table 5.2: Averages of total reduced system size in upper and lower stSPIKE
obtained by the partitioning models normalized with respect to the proposed HP
model.

K org GP cnHP prop

8 3.94 1.10 0.98 1.00
16 3.64 1.10 1.01 1.00
32 3.49 1.13 1.05 1.00
64 3.33 1.15 1.07 1.00
128 3.10 1.16 1.10 1.00
256 2.81 1.17 1.11 1.00

79



Figure 5.8 provides the performance profiles comparing GP, cnHP and the

proposed model in terms of the total reduced system size. As seen in the figure,

the proposed model outperforms the baseline algorithms in terms of the reduced

system size in majority of the test instances. Furthermore, the performance gap

between the proposed model and the baseline models increases significantly with

increasing K.

Table 5.3 shows the detailed comparison of the performance of the partitioning

models in terms of total reduced system size as averages of different matrix kinds.

All values are normalized with respect to the size of A (m). The last row gives

the results as overall average. For instance for K = 32, total reduced system size

obtained by GP, cnHP and the proposed model are 0.218, 0.203, 0.192 of the size

of the original system, respectively.

80



1 1.1 1.2 1.3 1.4 1.5

Total reduced system size relative to the best

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

prop
cnHP
GP

(a) K = 8

1 1.1 1.2 1.3 1.4 1.5

Total reduced system size relative to the best

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

prop
cnHP
GP

(b) K = 16

1 1.1 1.2 1.3 1.4 1.5

Total reduced system size relative to the best

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

prop
cnHP
GP

(c) K = 32

1 1.1 1.2 1.3 1.4 1.5

Total reduced system size relative to the best

0

0.2

0.4

0.6

0.8

1
F

ra
ct

io
n 

of
 te

st
 in

st
an

ce
s

prop
cnHP
GP

(d) K = 64

1 1.1 1.2 1.3 1.4 1.5

Total reduced system size relative to the best

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

prop
cnHP
GP

(e) K = 128

1 1.1 1.2 1.3 1.4 1.5

Total reduced system size relative to the best

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 te
st

 in
st

an
ce

s

prop
cnHP
GP

(f) K = 256

Figure 5.8: Performance profiles that compare GP, cnHP and the proposed HP
model in terms of the total reduced system size in lower and upper stSPIKE.

81



T
ab

le
5.

3:
A

ve
ra

ge
s

of
to

ta
l

re
d
u
ce

d
sy

st
em

si
ze

in
lo

w
er

an
d

u
p
p

er
tr

ia
n
gu

la
r

st
S
P

IK
E

n
or

m
al

iz
ed

w
it

h
re

sp
ec

t
to

th
e

n
u
m

b
er

of
ro

w
s.

k
in

d
ID

K
=

8
K

=
16

K
=

32
K

=
64

K
=

12
8

K
=

25
6

G
P

cn
H

P
p
ro

p
G

P
cn

H
P

p
ro

p
G

P
cn

H
P

p
ro

p
G

P
cn

H
P

p
ro

p
G

P
cn

H
P

p
ro

p
G

P
cn

H
P

p
ro

p

1
0.

07
4

0.
07

3
0.

07
6

0.
12

4
0.

12
5

0.
12

8
0.

18
8

0.
19

2
0.

19
0

0.
27

2
0.

27
8

0.
27

1
0.

38
0

0.
38

9
0.

37
0

0.
51

6
0.

52
9

0.
49

5
2

0.
10

5
0.

10
4

0.
11

0
0.

14
6

0.
15

2
0.

14
7

0.
18

9
0.

20
1

0.
18

5
0.

23
0

0.
25

2
0.

22
4

0.
27

9
0.

30
9

0.
26

7
0.

33
1

0.
37

6
0.

31
6

3
0.

12
8

0.
09

3
0.

09
1

0.
20

3
0.

14
8

0.
14

1
0.

30
6

0.
20

1
0.

18
3

0.
41

4
0.

25
5

0.
22

8
0.

51
8

0.
32

0
0.

28
3

0.
61

8
0.

39
6

0.
35

5
4

0.
15

4
0.

14
1

0.
13

7
0.

23
4

0.
21

7
0.

21
4

0.
33

4
0.

31
2

0.
30

0
0.

45
2

0.
42

6
0.

40
0

0.
59

7
0.

56
4

0.
51

5
0.

75
9

0.
71

8
0.

64
4

5
0.

07
2

0.
07

5
0.

07
5

0.
11

9
0.

12
2

0.
11

9
0.

18
5

0.
19

1
0.

18
3

0.
27

1
0.

28
0

0.
26

2
0.

38
2

0.
39

4
0.

36
6

0.
52

0
0.

53
7

0.
49

1
6

0.
04

5
0.

04
4

0.
04

5
0.

07
3

0.
07

0
0.

07
1

0.
11

2
0.

10
7

0.
10

5
0.

16
5

0.
15

7
0.

15
3

0.
23

4
0.

22
5

0.
21

4
0.

32
5

0.
31

1
0.

29
6

7
0.

10
9

0.
11

2
0.

11
0

0.
17

3
0.

18
1

0.
17

4
0.

25
6

0.
27

3
0.

25
2

0.
35

4
0.

37
6

0.
34

7
0.

48
8

0.
52

0
0.

47
3

0.
64

1
0.

69
1

0.
62

1
8

0.
11

6
0.

07
8

0.
08

9
0.

18
0

0.
14

4
0.

14
1

0.
30

3
0.

26
0

0.
24

0
0.

40
7

0.
36

2
0.

31
5

0.
53

0
0.

48
1

0.
40

5
0.

66
9

0.
60

5
0.

49
4

9
0.

75
6

0.
53

1
0.

49
2

0.
99

3
0.

74
5

0.
66

5
1.

21
8

0.
98

6
0.

83
8

1.
39

7
1.

23
6

0.
99

7
1.

57
5

1.
46

0
1.

14
6

1.
71

3
1.

65
4

1.
26

7
10

0.
09

7
0.

06
4

0.
07

1
0.

14
1

0.
10

4
0.

10
8

0.
19

5
0.

15
7

0.
16

1
0.

27
4

0.
22

7
0.

23
2

0.
36

9
0.

31
3

0.
31

5
0.

48
3

0.
40

9
0.

40
7

11
0.

09
0

0.
08

9
0.

08
5

0.
14

0
0.

13
9

0.
13

3
0.

20
1

0.
20

8
0.

19
3

0.
28

1
0.

29
0

0.
26

4
0.

37
6

0.
39

0
0.

35
0

0.
49

0
0.

50
6

0.
45

0
12

0.
07

3
0.

06
5

0.
06

3
0.

10
2

0.
09

1
0.

08
9

0.
14

0
0.

12
9

0.
11

9
0.

18
8

0.
17

2
0.

15
8

0.
25

0
0.

22
9

0.
20

9
0.

32
1

0.
29

4
0.

26
7

13
0.

02
3

0.
02

1
0.

02
4

0.
03

8
0.

03
5

0.
03

9
0.

06
0

0.
05

7
0.

05
8

0.
08

9
0.

08
5

0.
08

6
0.

13
0

0.
12

7
0.

12
5

0.
18

7
0.

18
3

0.
18

1
14

0.
14

1
0.

14
2

0.
13

8
0.

23
5

0.
23

4
0.

22
5

0.
36

1
0.

36
6

0.
33

8
0.

51
2

0.
52

4
0.

47
9

0.
69

7
0.

73
0

0.
65

4
0.

90
4

0.
95

0
0.

83
9

15
0.

18
7

0.
15

8
0.

16
4

0.
27

1
0.

23
5

0.
23

7
0.

35
0

0.
31

3
0.

29
9

0.
42

6
0.

39
0

0.
35

6
0.

50
4

0.
46

5
0.

40
8

0.
57

4
0.

53
8

0.
46

3
16

0.
11

1
0.

10
1

0.
10

4
0.

17
2

0.
15

1
0.

15
6

0.
25

2
0.

22
4

0.
21

0
0.

34
3

0.
31

0
0.

28
0

0.
43

7
0.

39
7

0.
35

9
0.

58
1

0.
51

9
0.

46
0

A
ll

0.
09

8
0.

08
7

0.
08

9
0.

15
0

0.
13

8
0.

13
6

0.
21

8
0.

20
3

0.
19

2
0.

29
7

0.
27

8
0.

25
9

0.
39

3
0.

37
1

0.
33

8
0.

50
4

0.
48

0
0.

43
2

82



Figure 5.9 illustrates the averages of total reduced system size normalized with

respect to the size of A as a comparison of different matrix kinds. As can be seen

in the figure, some kinds such as model reduction (Kind ID = 9) and materials

(Kind ID = 14) have larger averages of total reduced system size.

5.3.2 In-Block Reordering Quality

The proposed in-block reordering method considers the nonzeros in both lower

and upper triangular parts to obtain a balanced ordering. We compare its per-

formance with the methods that consider the nonzeros only in the lower or upper

triangular parts, namely incr L and decr U, respectively, as described in Sec-

tion 5.2.2.

Table 5.4 shows the average improvements gained by using the proposed and

baseline partitioning models against the original ordering in terms of the total

number of nonzeros in the reduced systems. For both methods, including the orig-

inal ordering, the coefficient matrix is assumed to be partitioned and accordingly

partially ordered by using the proposed HP model beforehand. The results for

each K are given as averages of all instances in the dataset. In the table, we use

the notation rs nnz() as a function of total number of nonzeros in the reduced

system obtain by a model. rs nnz(org) means the total number of nonzeros in

the reduced system obtained by the original ordering, after applying the HP par-

titioning. For instance for K = 32, incr L, decr U and the proposed method

respectively yield 20.9, 17.7, and 30.7 times improvement over the original order-

ing. As can be observed from the table, the proposed method yields a significant

improvement over the original ordering and outperforms the baseline methods.

Although the improvement of the proposed method against the original ordering

tends to degrade with increasing K, it is expected since there are fewer rows per

block and hence there is less room for improvement.

Table 5.5 shows the detailed comparison of the performance of the partitioning

models in terms of total number of nonzeros in the reduced systems as averages

of different matrix kinds. All values are normalized with respect to the number of

83



Figure 5.9: Total reduced system size normalized with respect to the coefficient
matrix size (m) as averages of different matrix kinds.

84



Table 5.4: Improvement rates in terms of total number of nonzeros in the reduced
systems (rs nnz) in upper and lower stSPIKE, as ratios with respect to the
original ordering (after partitioned with the proposed HP model), i.e. the ratio
of rs nnz(org) / rs nnz(model) where model ∈ {incr L, decr U, proposed}.

improvement over org

K rs nnz(org) incr L decr U prop.

8 150,848 36.7 28.8 67.1
16 263,505 29.9 24.0 48.3
32 371,600 20.9 17.7 30.7
64 462,834 14.5 12.5 19.7
128 528,515 10.4 9.4 13.4
256 586,483 7.4 6.8 9.0

nonzeros in A. The last row gives the results as overall average. As can be seen

in this table, total number of nonzeros in the reduced systems is much smaller

than the nonzero count of the original system. For instance for K = 32, total

number of nonzeros in the reduced systems obtained by incr L, decr U and the

proposed model are 0.013, 0.015, 0.009 of the nonzero count of the original system,

respectively. This verifies the feasibility of the dmpILU algorithm by applying

the proposed partitioning.

85



T
ab

le
5.

5:
A

ve
ra

ge
s

of
to

ta
l

n
on

ze
ro

co
u
n
ts

in
th

e
off

-d
ia

go
n
al

b
lo

ck
s

of
Ŝ
L

an
d
Ŝ
U

n
or

m
al

iz
ed

w
it

h
re

sp
ec

t
to

th
e

n
on

ze
ro

co
u
n
t

of
th

e
co

effi
ci

en
t

m
at

ri
x
.

k
in

d
ID

K
=

8
K

=
16

K
=

32
K

=
64

K
=

12
8

K
=

25
6

i
n
c
r
L

d
e
c
r
U

p
ro

p
i
n
c
r
L

d
e
c
r
U

p
ro

p
i
n
c
r
L

d
e
c
r
U

p
ro

p
i
n
c
r
L

d
e
c
r
U

p
ro

p
i
n
c
r
L

d
e
c
r
U

p
ro

p
i
n
c
r
L

d
e
c
r
U

p
ro

p

1
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
1

0.
00

1
0.

00
3

0.
00

3
0.

00
3

0.
00

8
0.

00
8

0.
00

7
0.

01
6

0.
01

6
0.

01
5

0.
03

1
0.

03
1

0.
03

0
2

0.
01

0
0.

01
3

0.
00

9
0.

01
5

0.
01

8
0.

01
3

0.
01

7
0.

02
0

0.
01

6
0.

02
5

0.
02

9
0.

02
3

0.
03

3
0.

03
6

0.
03

0
0.

04
2

0.
04

5
0.

04
0

3
0.

01
5

0.
05

1
0.

00
5

0.
03

6
0.

09
1

0.
01

7
0.

06
9

0.
13

0
0.

04
0

0.
10

2
0.

16
6

0.
06

8
0.

13
4

0.
18

7
0.

09
6

0.
17

6
0.

22
4

0.
13

3
4

0.
00

6
0.

00
9

0.
00

3
0.

01
0

0.
01

4
0.

00
6

0.
01

8
0.

02
3

0.
01

3
0.

03
1

0.
03

7
0.

02
4

0.
04

9
0.

05
5

0.
03

9
0.

07
1

0.
07

6
0.

06
1

5
0.

00
3

0.
00

3
0.

00
1

0.
00

7
0.

00
9

0.
00

2
0.

01
6

0.
01

8
0.

00
5

0.
02

2
0.

02
4

0.
00

9
0.

02
2

0.
02

4
0.

01
2

0.
03

8
0.

04
0

0.
02

5
6

0.
00

0
0.

00
1

0.
00

0
0.

00
1

0.
00

1
0.

00
1

0.
00

2
0.

00
2

0.
00

1
0.

00
4

0.
00

5
0.

00
2

0.
00

8
0.

00
9

0.
00

4
0.

01
3

0.
01

5
0.

00
9

7
0.

00
1

0.
00

1
0.

00
1

0.
00

3
0.

00
3

0.
00

3
0.

00
6

0.
00

7
0.

00
6

0.
01

4
0.

01
4

0.
01

3
0.

02
7

0.
02

8
0.

02
6

0.
05

2
0.

05
2

0.
05

0
8

0.
00

5
0.

00
5

0.
00

1
0.

01
6

0.
02

3
0.

00
5

0.
05

3
0.

08
9

0.
02

9
0.

10
5

0.
17

7
0.

07
5

0.
16

4
0.

25
2

0.
13

1
0.

27
1

0.
35

5
0.

21
2

9
0.

22
5

0.
22

0
0.

19
5

0.
48

9
0.

49
3

0.
43

4
0.

83
7

0.
84

8
0.

75
0

1.
20

5
1.

22
6

1.
08

7
1.

56
9

1.
60

9
1.

43
3

1.
84

4
1.

88
7

1.
68

9
10

0.
01

1
0.

00
9

0.
00

5
0.

01
3

0.
01

1
0.

00
7

0.
02

5
0.

02
3

0.
01

5
0.

04
1

0.
04

0
0.

02
7

0.
06

6
0.

06
7

0.
04

7
0.

09
9

0.
10

6
0.

07
6

11
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
3

0.
00

3
0.

00
2

0.
00

6
0.

00
6

0.
00

5
0.

01
0

0.
01

0
0.

00
9

0.
01

8
0.

01
8

0.
01

6
12

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

4
0.

00
3

0.
00

3
0.

00
6

0.
00

6
0.

00
5

0.
01

0
0.

00
9

0.
00

8
0.

01
5

0.
01

4
0.

01
3

13
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
1

0.
00

1
0.

00
0

0.
00

1
0.

00
1

0.
00

1
0.

00
2

0.
00

2
0.

00
1

0.
00

4
0.

00
4

0.
00

2
14

0.
00

1
0.

00
2

0.
00

1
0.

00
5

0.
00

6
0.

00
4

0.
01

1
0.

01
4

0.
01

0
0.

02
6

0.
03

0
0.

02
3

0.
05

3
0.

05
7

0.
04

9
0.

10
1

0.
10

3
0.

09
6

15
0.

01
4

0.
01

9
0.

01
3

0.
03

5
0.

04
4

0.
03

3
0.

07
9

0.
10

3
0.

06
9

0.
13

8
0.

17
9

0.
12

7
0.

20
0

0.
28

4
0.

18
9

0.
25

6
0.

32
0

0.
24

3
16

0.
00

4
0.

00
7

0.
00

1
0.

01
2

0.
02

0
0.

00
7

0.
01

8
0.

02
7

0.
01

0
0.

03
4

0.
04

8
0.

02
1

0.
04

4
0.

05
9

0.
03

1
0.

06
2

0.
06

9
0.

04
6

A
ll

0.
00

3
0.

00
4

0.
00

2
0.

00
6

0.
00

8
0.

00
4

0.
01

3
0.

01
5

0.
00

9
0.

02
2

0.
02

5
0.

01
6

0.
03

4
0.

03
8

0.
02

7
0.

05
4

0.
05

8
0.

04
4

86



Figure 5.10 illustrates the averages of total number of nonzeros in reduced

systems normalized with respect to the nonzero count of A as a comparison of

different matrix kinds. As can be seen in the figure, some matrix kinds such as

economic (Kind ID=3), model reduction (Kind ID=9), chemical process simula-

tion (Kind ID=10) and weighted graph (Kind ID=15) have proportionally larger

averages of total number of nonzeros in the reduced systems, so their sequential

computational overhead are expected to be relatively high.

5.3.3 Parallel Scalability

Parallel experiments are performed on Sariyer cluster of UHEM [109] using up to

160 cores over 4 distributed nodes where each node contains 40 cores (two Intel

Xeon Gold 6148 CPUs).

We implement an MPI+OpenMP hybrid parallel dmpILU algorithm to demon-

strate the effectiveness of using stSPIKE and the proposed model. We refer the

proposed HP and in-block reordering model (Section 5.2) applied to dmpILU as

the proposed model throughout this section. The number of MPI processes is the

same as the number of parts (K) in a partition. For the experiments of dmpILU,

we assign 8 processes per node and 5 threads per process. Therefore, we conduct

parallel experiments for dmpILU using 1, 2, and 4 nodes corresponding to 40, 80,

and 160 cores and K=8, 16 and 32 parts (processes), respectively.

For comparing the performance of dmpILU, we also implemented a multi-

threaded ILU (mtILU) in which we use by using the multithreaded sparse tri-

angular system solver (mkl sparse d trsm) of Intel MKL [110]. As a baseline,

we obtain the results of mtILU on 40 threads/cores (1 node) by using the GP

reordering. We run both dmpILU and mtILU for 100 iterations with the initial

guess x=[0, . . . , 0]T and the right-hand side vector f=[1/m, 2/m, . . . , 1]T .

We tested the parallel scalability of dmpILU for a subset of the dataset since

the provided core hours on the HPC platform are limited. From the dataset,

87



 incr_L  decr_U  proposed 

Figure 5.10: Total number of nonzeros in the lower and upper triangular reduced
systems normalized with respect to the number of nonzeros in the coefficient
matrix as averages of different matrix kinds.

88



Table 5.6: The properties of matrices to conduct parallel experiments. Runtime
results of mtILU are taken on 40 cores for 100 iterations.

Matrix
Kind

ID
Sym Size Nnz

mtILU
time (s)

msdoor 1 X 415,863 19,173,163 9.8
atmosmodl 5 1,489,752 10,319,760 13.4
test1 4 392,908 9,447,535 6.5
thermal2 13 X 1,228,045 8,580,313 12.6
G3 circuit 2 X 1,585,478 7,660,826 13.9
cage13 15 445,315 7,479,343 6.2

we considered the matrices with at most 2,000,000 rows due to the memory con-

straints. We selected six different kinds, namely structural (Kind ID = 1), circuit

simulation (Kind ID = 2), semiconductor device (Kind ID = 4), computational

fluid dynamics (Kind ID = 5), thermal (Kind ID = 13), and weighted graph

(Kind ID = 15). Then we select the instances that has the most number of

nonzeros within each of these kinds. The properties of those matrices are shown

in Table 5.6, sorted in decreasing order of their nonzero counts. The last column

of the table shows the runtime of mtILU after 100 iterations.

Figure 5.11 shows the results of the scaling experiments as speedup curves of

dmpILU using GP, cnHP and the proposed model. As seen in the figure, the

proposed model highly increases the scalability of dmpILU so that it scales up

to 160 cores on all instances. Furthermore, the proposed model significantly out-

performs the baseline GP and cnHP models for all of the test instances. dmpILU

with the proposed model achieves up to 70.2 speedup on 160 cores over mtGS on

40 cores.

89



13,2

25,6

47,3

68,4

0

20

40

60

80

1 node 2 nodes 4 nodes 8 nodes

af_shell1
Proposed GP cnHP

13.3

31.6

37.0

0

5

10

15

20

25

30

35

40

1
40

2
80

4
160

msdoor

#nodes:
#cores:

20.3

31.1

42.9

0

10

20

30

40

50

1
40

2
80

4
160

atmosmodl

#nodes:
#cores:

13.5

26.6

36.8

0

5

10

15

20

25

30

35

40

1
40

2
80

4
160

test1

#nodes:
#cores:

12.6

24.9

32.7

0

5

10

15

20

25

30

35

1
40

2
80

4
160

thermal2

#nodes:
#cores:

15.9
24.5

70.2

0

10

20

30

40

50

60

70

80

1
40

2
80

4
160

G3_circuit

#nodes:
#cores:

2.2

3.0

3.8

0

1

2

3

4

5

1
40

2
80

4
160

cage13

#nodes:
#cores:

Figure 5.11: Speedup curves of dmpILU with GP, cnHP and the proposed model
(for K=8, 16, and 32) relative to mtILU on 1 node (40 cores).

90



5.4 Summary

We propose a distributed-memory parallel ILU(0) solution algorithm (dmpILU)

by using stSPIKE for solving the lower and upper triangular systems. The re-

duced systems in both lower and upper stSPIKE constitute the sequential bottle-

neck of dmpILU. For alleviating this bottleneck, we propose a two-phase parti-

tioning and reordering model. The first phase is a novel hypergraph partitioning

model whose partitioning objective encapsulates the minimization of the total

size of lower and upper triangular reduced systems. For this purpose, we exploit

the recursive bipartitioning framework by introducing new types of net anchor-

ing and splitting schemes. The second phase is an in-block reordering method for

minimizing total number of nonzeros in the lower and upper triangular reduced

systems. Experiments demonstrate that the proposed hypergraph partitioning

model indeed decreases total reduced system size with respect to the baseline

models. The proposed in-block reordering method yields a high benefit in terms

of decreasing the total number of nonzeros in the reduced systems. Parallel ex-

periments also demonstrate that using the proposed partitioning and reordering

model improves the scalability of dmpILU.

91



Chapter 6

Hypergraph Partitioning for

Scalable Sparse Tensor

Decomposition
1

The success of medium-grain CPD-ALS algorithm adopting the multi-

dimensional cartesian tensor partitioning is due to its nice upper bounds on com-

munication overheads. However, this model does not utilize the sparsity pattern

of the tensor to reduce the total communication volume. Our objective is to fill

this literature gap.

We describe the communication volume requirement of a given cartesian par-

tition of a tensor in Section 6.1. We propose a novel HP model, CartHP, for

minimizing the total communication volume of medium-grain CPD-ALS in Sec-

tion 6.2. For ease of understanding, we first discuss cartesian partition and

CartHP for a three-mode tensor. Then we discuss the extension of the proposed

model to more than three modes. We also provide a discussion on the direct ex-

tension of CBHP for tensors and its deficiency in Section 6.3. Section 6.4 provides

the experimental results and Section 6.5 summarizes. Throughout this chapter,

we denote tensors, matrices and vectors by calligraphic (X ), bold capital (A) and

1©2018 IEEE. Reprinted, with permission, from [111].

92



1

2

3
1 2 3 4 1

2
3

X(1,:,:)

X(2,:,:)

X(3,:,:)

X(:,1,:) X(:,2,:) X(:,3,:) X(:,4,:)

X(:,:,1)

X(:,:,2)

X(:,:,3)

Figure 6.1: A 3D cartesian partition of a 3× 4× 3 tensor for a 2× 3× 2 virtual
processor mesh.

bold lowercase (a) letters, respectively.

6.1 Communication Volume Requirement

A given cartesian partition of the tensor divides each slice/fiber into sub-

slices/subfibers, each of which is owned by a different processor. We denote any

(sub)tensor γ owned by a set α of processor(s) by γα. For instance, X (i, :, :)q,r,s

and X (i, j, :)q,r,s respectively denote the subslice of X (i, :, :) and the subfiber of

X (i, j, :) which are owned by processor pq,r,s. Similarly, X (i, :, :):,r,: denotes the

subslice of X (i, :, :) owned by processor layer p:,r,:. To differentiate the subslices

owned by a single processor from those owned by multiple processors, we refer to

the former ones as unshared subslices. A (sub)slice/(sub)fiber containing at least

one nonzero element is called a nonzero (sub)slice/(sub)fiber. Figure 6.1 displays

a cartesian partition of a 3×4×3 tensor for a 2×3×2 virtual processor mesh and

the respective divisions of slices into subslices induced by this partition. In this

figure, each tensor nonzero is denoted by a different symbol and each nonzero

subslice is highlighted. For example, slice X (1, :, :) contains 4 nonzero elements

93



and 3 nonzero unshared subslices.

Let ZA
i , ZB

j and ZC
k respectively denote the sets of nonzero unshared sub-

slices of X (i, :, :), X (:, j, :) and X (:, :, k). For the example given in Figure 6.1,

ZA
1 = {X (1, :, :)1,2,1, X (1, :, :)1,2,2, X (1, :, :)1,3,1}. We assume that each slice con-

tains at least one nonzero, hence, these sets are nonempty. In the first phase of

medium-grain CPD-ALS, only the processors that own a subslice in ZA
i produce

partial results for Â(i, :). Similarly in the second and third phases, only the pro-

cessors that own a subslice in ZB
j and ZC

k produce partial results for B̂(j, :) and

Ĉ(k, :), respectively.

We assume that each factor-matrix row is assigned to a processor which owns

a nonzero subslice in the corresponding slice. We refer to this assumption as the

consistency condition for the correctness of our hypergraph model to be proposed

in Section 6.2. Let Â(i, :) be assigned to a processor, say p, that owns a nonzero

subslice in ZA
i . Each of the other processors that own a nonzero subslice in ZA

i

sends a partial result for Â(i, :) to p in the fold step. Then, the communication

volume regarding the fold operation on Â(i, :) amounts to (|ZA
i |−1)F . In a dual

manner, p sends the updated row A(i, :) to these processors in the expand step,

incurring a communication of volume (|ZA
i | − 1)F again. Since the same volume

of communication is incurred regarding the expand operation on A(i, :) and the

fold operation on Â(i, :), we only consider the one regarding Â(i, :) and formulate

it as

volAi = (|ZA
i | − 1)F. (6.1)

Then, the total volume in the first phase is the sum of the volumes regarding the

rows of Â, that is,

volA =
I∑
i=1

volAi = (
I∑
i=1

(|ZA
i | − 1))F.

With similar discussions for the second and third phases, we obtain volB =

(
∑J

j=1(|ZB
j | − 1))F and volC = (

∑K
k=1(|ZC

k | − 1))F . Then, volA + volB + volC

gives the overall total volume per iteration.

In Figure 6.1, the volume of communication regarding Â(1, :) is volA1 = (|ZA
1 |−

94



o1 o2 o3

1

2

1
23

1

2

3
1 2 3 4

1

2

3
1 2 3 4

X(:,j,:)

X(i,:,:)

X(:,:,k)

Figure 6.2: Slice chunks obtained in phases φ1, φ2 and φ3 and (sub)subslices of
X (i, :, :), X (:, j, :) and X (:, :, k) divided by these chunks.

1)F = 2F . The total volume in the first phase is volA = (2 + 1 + 3)F = 6F and

the overall total volume is (6 + 5 + 7)F = 18F .

6.2 CartHP: Proposed HP Model

For a given tensor X and a Q×R×S virtual mesh of processors, CartHP contains

partitioning phases φ1, φ2 and φ3, in which hypergraphs HA, HB and HC are

constructed with vertex sets representing the horizontal, lateral and frontal slices

of X , respectively. In φ1, CartHP obtains a Q-way partition of HA and uses this

partition to reorder the horizontal slices to form Q horizontal chunks. These hor-

izontal chunks divide each lateral and frontal slice into Q subslices along mode 1.

Similarly in φ2, CartHP obtains an R-way partition of HB and uses this partition

to reorder the lateral slices to form R lateral chunks. These lateral chunks divide

each horizontal slice into R subslices along mode 2 and each frontal subslice into

R subsubslices along mode 2. Note that each frontal slice has Q×R subsubslices

95



Algorithm 8 CartHP

Input: tensor X , 3D processor mesh size Q×R×S, imbalance ratios ε1, ε2, ε3.

1: φ1(X , Q, ε1) B obtains Q horizontal chunks
2: φ2(X , R, ε2) B obtains R lateral chunks
3: φ3(X , S, ε3) B obtains S frontal chunks

4: for each subtensor Xq,r,s do
5: Assign Xq,r,s to processor pq,r,s

at the end of φ2. Finally in φ3, CartHP obtains an S-way partition of HC and

uses this partition to reorder the frontal slices to form S frontal chunks. These

frontal chunks divide each horizontal and lateral subslice into S subsubslices along

mode 3. Note that each horizontal and lateral slice have R×S and Q×S sub-

subslices at the end of φ3, respectively. Figure 6.2 illustrates a tensor which is

partitioned by CartHP for a 2×4×3 virtual processor mesh and three sample

slices along different modes.

Algorithm 8 displays the basic layout of CartHP. Here, we abuse the notation

for simplicity and use the same symbol X for the original tensor (line 1) and the

reordered tensors (lines 2-3). Consequently, each subtensor Xq,r,s (line 4) is the

intersection of the respective chunks of the reordered tensor.

Algorithm 9 displays phase φ1, in which we construct (lines 1-13) and partition

(line 14) HA = (VA,NB ∪ NC) to obtain Q horizontal chunks (lines 15-17). In

HA, VA = {vA1 , . . . , vAI } contains a vertex vAi for each horizontal slice X (i, :, :).

NB contains a net nBj for each nonzero lateral slice X (:, j, :), whereasNC contains

a net nCk for each nonzero frontal slice X (:, :, k). Since all slices are assumed to

have at least one nonzero element, NB = {nB1 , . . . , nBJ } and NC = {nC1 , . . . , nCK}.
Net nBj connects vertex vAi if the intersection of X (i, :, :) and X (:, j, :) contains

at least one nonzero (lines 7-8). Similarly, nCk connects vAi if the intersection of

X (i, :, :) and X (:, :, k) has at least one nonzero (lines 11-12). Each vertex vAi is

assigned a single weight w(vAi ) = nnz(X (i, :, :)) (lines 2-3). Here, nnz(·) denotes

the number of nonzeros of the given (sub)tensor. Then, a Q-way partition ΠA of

HA is obtained (line 14).

96



Algorithm 9 φ1(X , Q, ε1)

1: VA ← {vA1 , . . . , vAI }
2: for each horizontal slice X (i, :, :) do
3: w(vAi )← nnz(X (i, :, :))

4: NB ← NC ← ∅
5: for each lateral slice X (:, j, :) do
6: NB ← NB ∪ {nBj } with Pins(nBj ) = ∅
7: for each nonzero fiber X (i, j, :) do
8: Pins(nBj )← Pins(nBj ) ∪ {vAi }

9: for each frontal slice X (:, :, k) do
10: NC ← NC ∪ {nCk } with Pins(nCk ) = ∅
11: for each nonzero fiber X (i, :, k) do
12: Pins(nCk )← Pins(nCk ) ∪ {vAi }

13: HA ← (VA,NB ∪NC)
14: ΠA = {VA1 , . . . ,VAQ} ←HP(HA, Q, ε1)

15: for q ← 1 to Q do
16: for each vAi ∈ VAq do
17: Assign slice X (i, :, :) to chunk Xq,:,:

Algorithm 10 displays phase φ2, in which we construct (lines 1-13) and par-

tition (line 14) HB = (VB,NA ∪ NC) to obtain R lateral chunks (lines 15-

17). In HB, VB = {vB1 , . . . , vBJ } contains a vertex vBj for each lateral slice

X (:, j, :). NA contains a net nAi for each nonzero horizontal slice X (i, :, :), that

is, NA = {nAi , . . . , nAI }. Net nAi connects vertex vBj if the intersection of X (:, j, :)

and X(i, :, :) contains at least one nonzero (lines 7-8). The nets in NA are similar

to those in φ1 since horizontal slices are not yet divided into subslices. Frontal

slices, on the other hand, have been divided into Q subslices along mode 1 by the

horizontal chunks formed in φ1. Instead of a single net, each frontal slice X (:, :, k)

is represented by a number of nets as many as the number of its nonzero sub-

slices. NC contains a net nCk(q) for each nonzero subslice X (:, :, k)q,:,: (lines 9-10).

We only include nets for nonzero subslices as the zero subslices do not incur any

increase in the number of nonzero unshared subslices. Net nCk(q) connects vertex

vBj if the intersection of X (:, j, :) and X (:, :, k)q,:,: contains at least one nonzero

(lines 11-12). Since each slice X (:, j, :) contains Q subslices, each vertex vBj is

assigned Q weights wq(v
B
j ) = nnz(X (:, j, :)q,:,:) for q = 1, . . . , Q (lines 2-3). Then,

97



Algorithm 10 φ2(X , R, ε2)

1: VB ← {vB1 , . . . , vBJ }
2: for each lateral subslice X (:, j, :)q,:,: do
3: wq(v

B
j )← nnz(X (:, j, :)q,:,:)

4: NA ← NC ← ∅
5: for each horizontal slice X (i, :, :) do
6: NA ← NA ∪ {nAi } with Pins(nAi ) = ∅
7: for each nonzero fiber X (i, j, :) do
8: Pins(nAi )← Pins(nAi ) ∪ {vBj }

9: for each nonzero frontal subslice X (:, :, k)q,:,: do
10: NC ← NC ∪ {nCk(q)} with Pins(nCk(q)) = ∅
11: for each nonzero subfiber X (:, j, k)q,:,: do
12: Pins(nCk(q))← Pins(nCk(q)) ∪ {vBj }

13: HB ← (VB,NA ∪NC)
14: ΠB = {VB1 , . . . ,VBR } ← MC-HP(HB, R, ε2)

15: for r ← 1 to R do
16: for each vBj ∈ VBr do
17: Assign slice X (:, j, :) to chunk X:,r,:

an R-way partition ΠB of HB is obtained by multi-constraint HP (MC-HP) (line

14).

Algorithm 11 displays phase φ3, in which we construct (lines 1-13) and par-

tition (line 14) HC = (VC ,NA ∪ NB) to obtain S frontal chunks (lines 15-17).

In HC , VC = {vC1 , . . . , vCK} contains a vertex vCk for each frontal slice X (:, :, k).

As in φ2, each divided slice is represented by a number of nets as many as the

number of its nonzero subslices. Note that each horizontal slice has been divided

into R subslices along mode 2 in φ2, whereas each lateral slice has been divided

into Q subslices along mode 1 in φ1. NA contains a net nAi(r) for each nonzero

subslice X (i, :, :):,r,:, whereas NB contains a net nBj(q) for each nonzero subslice

X (:, j, :)q,:,: (lines 5-6 and 9-10). Net nAi(r) connects vertex vCk if the intersection of

X (:, :, k) and X (i, :, :):,r,: contains at least one nonzero (lines 7-8). Similarly, nBj(q)

connects vCk if the intersection of X (:, :, k) and X (:, j, :)q,:,: contains at least one

nonzero (lines 11-12). Since each slice X (:, :, k) contains Q×R subsubslices, each

vertex vCk is assigned Q×R weights wq,r(v
C
k ) = nnz(X (:, :, k)q,r,:) for q=1, . . . , Q

98



Algorithm 11 φ3(X , S, ε3)

1: VC ← {vC1 , . . . , vCK}
2: for each frontal subslice X (:, :, k)q,r,: do
3: wq,r(v

C
k )← nnz(X (:, :, k)q,r,:)

4: NA ← NB ← ∅
5: for each nonzero horizontal subsliceX (i,:,:):,r,: do
6: NA ← NA ∪ {nAi(r)} with Pins(nAi(r)) = ∅
7: for each nonzero subfiber X (i, :, k):,r,: do
8: Pins(nAi(r))← Pins(nAi(r)) ∪ {vCk }
9: for each nonzero lateral subslice X (:, j, :)q,:,: do
10: NB ← NB ∪ {nCj(q)} with Pins(nCj(q)) = ∅
11: for each nonzero subfiber X (:, j, k)q,:,: do
12: Pins(nBj(q))← Pins(nBj(q)) ∪ {vCk }

13: HC ← (VC ,NA ∪NB)
14: ΠC = {VC1 , . . . ,VCS } ← MC-HP(HC , S, ε3)

15: for s← 1 to S do
16: for each vCk ∈ VCs do
17: Assign slice X (:, :, k) to chunk X:,:,s

and r= 1, . . . , R (lines 2-3). Then, an S-way partition ΠC of HC is obtained by

MC-HP (line 14).

All nets in the hypergraphs constructed in our model are assigned a cost of F .

That is, c(n) = F for each net n in HA, HB and HC .

In partitioningHA,HB andHC , the maximum allowed imbalance ratios are set

to ε1, ε2 and ε3, respectively. It can be shown that at the end of three partitoning

phases, the number of nonzeros assigned to a processor is bounded above by

(1/P )nnz(X )(1 + ε1)(1 + ε2)(1 + ε3). (6.2)

The derivation of equation (6.2) is given in Section 6.2.5.

Figure 6.3 illustrates an example for CartHP applied on a 4×4 ×3 tensor X
for a 2×2×2 virtual mesh of processors. The vertices that represent horizontal,

lateral and frontal slices are colored with purple, green and red, respectively.

The same color encoding also applies to the nets in each phase. In φm, the

99



v1

A v2

A v3

A v4

A
[2] [2][3][2]

n1

B n2

B n3

B n4

B

n1

C n2

C n3

C

v1

A v4

A

n1

B n3

B
n2

C n1

C

v2

A v3

A

n3

C

n2

B

∏   = {      ,      }
A

V
A

1

Phase 

V
A

1
V

A

2

n4

B

1 2 3 4

3
2

1

1 2 3 4

3
2

1

1 2 3 4

3
2

1

1 2 3 4

3
2

1

3

2

1

1

4

2

3

3

2

1

1

4

2

3

3

2

1

1

4

2

3

3

2

1

1

4

2

3

1

4

2

3

1 3 2 4

1

4

2

3

1 3 2 4

1

4

2

3

1 3 2 4

X(1,:,:)

X(2,:,:)

X(3,:,:)

X(4,:,:)

X(:,4,:)X(:,3,:)X(:,2,:)X(:,1,:)

X(:,:,1)
X(:,:,2)

X(:,:,3)

[4]

V
A

2

[5]

Mode-1 slices

Mode-2 slices 

6

Resulting 3D cartesian partition 9

1 3 2 4

2

3

1
X(1,:,:)

X(4,:,:)

X(2,:,:)

X(3,:,:)

2

3

1

1

4

2

3

X(:,4,:)X(:,2,:)X(:,3,:)X(:,1,:)

1

4

2

3

1 3 2 4

1

4

2

3

1 3 2 4

1

4

2

3

1 3 2 4

X(:,:,1)
X(:,:,3)

X(:,:,2)

v1

B v4

Bv3

Bv2

B

n1

A n2

A n3

A n4

A

n1(2)

C n2(1)

C n2(2)

C

∏   = {      ,      }
B

V
B

1
V

B

2

[1
2] [0

2][1
0][2

1]

V
B

1

[3
3]

V
B

2

[1
2]

n3(2)

Cn1(1)

C

v1

B v3

B

n1

A

v2

B v4

B

n3

A

n2

A

n4

An1(1)

C

n1(2)

C

n2(2)

C
n2(1)

C n3(2)

C

v1

C v3

Cv2

C

n1(2)

B n2(1)

B n3(1)

B n3(2)

B

∏   = {      ,      }
C

V
C

1
V

C

2

[0
1

0
1][1

1
1
1][2

1
0
0]

V
C

[2
2

0
1]

1

V
C

[1
1

1
1]

2
7 8

n1(1)

B n4(2)

B

v1

C v3

C

v2

C

n1(2)

B
n2(1)

B

n3(1)

B

n1(1)

A

n1(1)

B n3(2)

B

n2(1)

A n4(1)

A n3(2)

A
n4(2)

B

n1(2)

A

n1(2)

A n2(1)

A n3(2)

A n4(1)

An1(1)

A

with reordered mode-1 indices

Mode-3 slices 
with reordered mode-1 and mode-2 indices H

C
Hypergraph

4 5
H

B
Hypergraph

1 2
H

A
Hypergraph

3

1 3 2 4

2

3

1

1 3 2 4

2

3

1

1 3 2 4

2

3

1

2

3

1

1

4

2

3

2

3

1

1

4

2

3

2

3

1

1

4

2

3

1

Phase 2

Phase 3

Figure 6.3: CartHP on a 4×4×3 tensor X for a 2×2×2 virtual mesh of processors.
φ1: horizontal slices of X . φ2: lateral slices of X with reordered mode-1 indices.
φ3: frontal slices of X with reordered mode-1 and mode-2 indices. Bottom: slices
of X reordered along all modes.

100



tensor is displayed in terms of mode-m slices. For each hypergraph, the array

of weights associated to each vertex/part is displayed next to the corresponding

vertex/part. For example, consider vB3 in φ2. Vertex vB3 is connected by nets

nA2 and nA4 due to nonzero fibers X (2, 3, :) and X (4, 3, :), respectively, and by

nets nC1(2), n
C
2(1) and nC3(2) due to nonzero subfibers X (:, 3, 1)2,:,:, X (:, 3, 2)1,:,: and

X (:, 3, 3)2,:,:, respectively. Since nnz(X (:, 3, :)1,:,:)=1 and nnz(X (:, 3, :)2,:,:)=2,

w1(vB3 )=1 and w2(vB3 ) = 2. Since vB3 ∈ VB1 in ΠB, slice X (:, 3, :) is reordered in

chunk X:,1,:.

6.2.1 Correctness of CartHP

In this section, we show the correctness of the proposed CartHP model in mini-

mizing the total communication volume of medium-grain CPD-ALS.

Suppose that we have a cartesian partition of X obtained by CartHP and

consider a horizontal slice X (i, :, :). Note that X (i, :, :) is not divided into any

subslices in φ1. In φ2, X (i, :, :) is divided into R subslices X (i, :, :):,r,: for r =

1, . . . , R along mode 2. Let ZB(i, :, :) denote the set of mode-2 indices of the

nonzero subslices among these R subslices, i.e.,

ZB(i, :, :) = {r | X (i, :, :):,r,: is a nonzero subslice}.

Note that ZB(i, :, :) ⊆ {1, . . . , R}. For example in Figure 6.3, ZB(1, :, :) = {1, 2}
and ZB(2, :, :) = {1}. In φ3, each subslice X (i, :, :):,r,: is divided into S subsub-

slices X (i, :, :):,r,s for s = 1, . . . , S along mode 3. Let ZC(i, :, :):,r,: denote the set

of mode-3 indices of the nonzero subslices among these S subsubslices, that is,

ZC(i, :, :):,r,: = {s | X (i, :, :):,r,s is a nonzero subslice}.

Note that ZC(i, :, :):,r,: ⊆ {1, . . . , S}. For example in Figure 6.3, ZC(1, :, :):,1,: =

{1} and ZC(1, :, :):,2,: = {2}.

X (i, :, :) is represented by a single net nAi in φ2 and by at most R nets nAi(r) in

φ3, but not represented by any nets in φ1. Let csAi (φ) denote the total cutsize

incurred by the nets representing X (i, :, :) in a phase φ. Since λ(nAi ) in φ2 amounts

101



to the number of X (i, :, :)’s nonzero subslices along mode 2, which is |ZB(i, :, :)|,
the cutsize incurred by nAi in φ2 is

csAi (φ2) = (λ(nAi )− 1)c(nAi ) = (|ZB(i, :, :)| − 1)F.

λ(nAi(r)) in φ3 amounts to the number of X (i, :, :):,r,:’s nonzero unshared subslices,

which is |ZC(i, :, :):,r,:|. Then, the total cutsize incurred by the nets representing

X (i, :, :) in φ3 is

csAi (φ
3)=

∑
r∈ZB(i,:,:)(λ(nAi(r))− 1)c(nAi(r))

=
∑

r∈ZB(i,:,:)(|ZC(i, :, :):,r,:| − 1)F

=
(∑

r∈ZB(i,:,:) |ZC(i, :, :):,r,:|−|ZB(i, :, :)|
)
F.

Let csAi denote the total cutsize incurred by the nets representing X (i, :, :) in

all phases. Since csAi = csAi (φ2) + csAi (φ3) and the term |ZB(i, :, :)|F is cancelled

out in this summation, we obtain

csAi =

 ∑
r∈ZB(i,:,:)

|ZC(i, :, :):,r,:| − 1

F.

Note that the sum of the number of nonzero subsubslices in ZC(i, :, :):,r,: for all

r ∈ ZB(i, :, :) gives the total number of unshared subslices in X (i, :, :). Then,

csAi = (|ZA
i | − 1)F. (6.3)

By equations (6.1) and (6.3), we obtain

csAi = volAi .

These findings apply to mode-2 and mode-3 slices as follows: csBj =csBj (φ1)+

csBj (φ3) and csCk = csCk (φ1)+csCk (φ2), where csBj and csCk denote total cutsizes

incurred by the nets representing X (:, j, :) and X (:, :, k) in all phases, respectively.

Then, csBj = (|ZB
j | − 1)F = volBj and csCk = (|ZC

k | − 1)F = volCk . That is, the

total cutsizes incurred by the nets representing X (i, :, :), X (:, j, :) and X (:, :, k) are

equal to the communication volumes regarding factor-matrix rows Â(i, :), B̂(j, :)

and Ĉ(k, :), respectively. Since the overall cutsize of CartHP is equal to the sum

102



of the cutsizes of the nets representing individual slices in all phases, minimizing

the overall cutsize corresponds to minimizing the total communication volume.

In Figure 6.3, consider slice X (:, :, 2) and the nets that represent this slice.

In φ1, the cutsize incurred by nC2 is csC2 (φ1) = (2−1)F = F . In φ2, the total

cutsize incurred by nets nC2(1) and nC2(2) is csC2 (φ2) = (2−1)F +(2−1)F = 2F .

Then, the total cutsize of csC2 =3F incurred by the nets representing X (:, :, 2) is

equal to the communication volume regarding Ĉ(2, :), which is given by volC2 =

(|ZC
2 |−1)F = 3F . Similarly, csC1 = volC1 =F and csC3 = volC3 =F . Then, the total

cutsize incurred by the nets representing the frontal slices is 5F , which is equal to

the total communication volume in the third phase of medium-grain CPD-ALS ,

i.e., volC =5F . With similar discussions for the first and second phases, the total

cutsize of 12F in CartHP is equal to the total communication volume.

6.2.2 1D Factor Matrix Partitioning

Recall that the correctness of CartHP in encapsulating total communication vol-

ume depends on the consistency condition. In order to satisfy this condition, we

assign each factor-matrix row to one of the processors that own a nonzero subslice

in the corresponding slice.

The rows of a factor matrix are partitioned among processors, independently

for each factor matrix. Note that the communications regarding each row chunk

(e.g., Aq) are confined to a distinct processor layer (e.g., pq,:,:). Hence, the rows

in a chunk are partitioned among the processors in the corresponding layer, in-

dependently for each chunk. For partitioning the rows in a chunk, we adopt

the best-fit-decreasing heuristic used for solving the P -feasible bin-packing prob-

lem [112]. The rows are considered in decreasing order of the number of their

nonzero unshared subslices. That is, A(i, :) is processed earlier than A(i′, :) if

|ZA
i | ≥ |ZA

i′ |. The best-fit criterion corresponds to assigning a row to a processor

that currently has the minimum communication volume among the processors

that own a nonzero subslice in the corresponding slice. After assigning a row to

a processor, the volumes of the respective processors are increased accordingly.

103



6.2.3 Mode Processing Order

In our model, we determine the number of chunks along each mode, i.e., Q, R

and S values, to be proportional to the tensor dimension in that mode, i.e., I, J

and K values, as proposed in [48]. Recall that CartHP introduces the number of

chunks along a mode as a multiplicative factor to the number of constraints in

each further partitioning phase. For example, Q chunks obtained in φ1 lead to

Q and Q × R constraints in φ2 and φ3, respectively. However, the performance

of the multi-constraint partitioning tools is known to degrade with increasing

number of constraints [113]. In order to have fewer constraints, the modes with

fewer chunks should be processed earlier. For this purpose, CartHP processes the

modes in increasing order of the number of chunks.

6.2.4 Extension to More Than Three Modes

For an M -mode tensor X and an P1× · · · × PM virtual mesh of processors,

CartHP consists of M partitioning phases. In phase φm, hypergraph Hm =

(Vm,
⋃

1≤k≤M,k 6=mN k) is constructed and partitioned into Pm parts. In Hm, each

mode-m slice is represented by a vertex with Πm
i=1Pi−1 weights (with P0 = 1) in

Vm, whereas each nonzero mode-k (sub)slice is represented by a net in N k for

k= 1, . . . ,m−1,m+1, . . . ,M . Net n connects vertex v if the intersection of the

(sub)slices represented by v and n contains at least one nonzero. Here, the slices

are M−1 dimensional, hence the intersection of two slices along different modes

is M−2 dimensional.

A Pm-way partition of Hm induces Pm slice chunks along mode m. As a result,

each slice along a mode different than mode m is divided into Pm subslices along

mode m. In Hm, each nonzero mode-k subslice is represented by a net in N k in

order to correctly encapsulate the communication volume. Here, these nonzero

subslices are the smallest possible subslices divided by the chunks. Similarly,

the number of nonzeros in each subslice of a mode-m slice constitutes a different

weight to the vertex representing that slice for achieving computational load

104



balance via multi-constraint partitioning.

6.2.5 Balancing Constraint of CartHP

In partitioning HA, HB and HC , the maximum allowed imbalance ratios are set

to ε1, ε2 and ε3, respectively. Maintaining balance on the weights of the parts in

ΠA corresponds to allowing a maximum of

nnz(X )(1 + ε1)

Q

nonzeros in each horizontal chunk Xq,:,:. Consider chunk Xq,:,:, which is partiti-

toned into R subchunks by ΠB along mode 2. Maintaining balance on the weights

of the parts in ΠB corresponds to allowing a maximum of

nnz(Xq,:,:)(1 + ε2)

R
≤ nnz(X )(1 + ε1)(1 + ε2)

Q×R

nonzeros in each subchunk Xq,r,:. Consider subchunk Xq,r,:, which is partititoned

into S subsubchunks by ΠC along mode 3. Maintaining balance on the weights

of the parts in ΠC corresponds to allowing a maximum of

nnz(Xq,r,:)(1 + ε3)

S
≤ nnz(X )(1 + ε1)(1 + ε2)(1 + ε3)

Q×R× S

nonzeros in each subsubchunk Xq,r,s. Hence, the number of nonzeros assigned to

a processor is bounded above by

nnz(X )(1 + ε1)(1 + ε2)(1 + ε3)

P
.

6.3 deCartHP: Direct Extension of CBHP

As CartHP, deCartHP containsM hypergraph partitioning phases for anM -mode

tensor. In the mth phase, each mode-m slice is represented by a vertex, whereas

each slice along the other modes is represented by a net. The main difference

of deCartHP from CartHP is using a single net for each slice, disregarding the

subslices in the ones that have been divided in the previous partitioning phases.

105



Algorithm 12 φ2(X , R, ε2) of deCartHP

1: VB ← {vB1 , . . . , vBJ }
2: for each lateral subslice X (:, j, :)q,:,: do
3: wq(v

B
j )← nnz(X (:, j, :)q,:,:)

4: NA ← NC ← ∅
5: for each horizontal slice X (i, :, :) do
6: NA ← NA ∪ {nAi } with Pins(nAi ) = ∅
7: for each nonzero fiber X (i, j, :) do
8: Pins(nAi )← Pins(nAi ) ∪ {vBj }

9: for each frontal slice X (:, :, k) do
10: NC ← NC ∪ {nCk } with Pins(nCk ) = ∅
11: for each nonzero fiber X (i, :, k) do
12: Pins(nCk )← Pins(nCk ) ∪ {vBj }

13: HB ← (VB,NA ∪NC)
14: ΠB = {VB1 , . . . ,VBR } ← MC-HP(HB, R, ε2)

15: for r ← 1 to R do
16: for each vBj ∈ VBr do
17: Assign slice X (:, j, :) to chunk X:,r,:

The rest of the discussions is held for three-mode tensors for simplicity. For de-

CartHP and CartHP, the main layout (Algorithm 8) and phase φ1 (Algorithm 9)

are exactly the same. However, phases φ2 and φ3 of deCartHP are different than

those of CartHP in terms of the nets of HB and HC . Algorithms 12 and 13

respectively display φ2 and φ3 of deCartHP.

In φ2, the difference between deCartHP and CartHP is the representation

of the frontal slices by the nets in NC . In HB of deCartHP, each frontal slice

X (:, :, k) is represented by a single net nCk ∈ NC instead of multiple nets. Then,

NC = {nC1 , . . . , nCK} (lines 9-10). Net nCk connects vertex vBj if X (:, j, k) is a

nonzero fiber (lines 11-12).

In φ3, the difference between deCartHP and CartHP is the representation of

the horizontal and lateral slices by the nets in NA and NB, respectively. In HC of

deCartHP, each horizontal slice X (i, :, :) is represented by a single net nAi ∈ NA

instead of multiple nets. Similarly, each lateral slice X (:, j, :) is represented by a

single net nBj ∈ NB instead of multiple nets. Then, NA = {nA1 , . . . , nAI } (lines

106



Algorithm 13 φ3(X , S, ε3) of deCartHP

1: VC ← {vC1 , . . . , vCK}
2: for each frontal subslice X (:, :, k)q,r,: do
3: wq,r(v

C
k )← nnz(X (:, :, k)q,r,:)

4: NA ← NB ← ∅
5: for each horizontal slice X (i, :, :) do
6: NA ← NA ∪ {nAi } with Pins(nAi ) = ∅
7: for each nonzero fiber X (i, :, k) do
8: Pins(nAi )← Pins(nAi ) ∪ {vCk }
9: for each lateral slice X (:, j, :) do
10: NB ← NB ∪ {nCj } with Pins(nCj ) = ∅
11: for each nonzero fiber X (:, j, k) do
12: Pins(nBj )← Pins(nBj ) ∪ {vCk }

13: HC ← (VC ,NA ∪NB)
14: ΠC = {VC1 , . . . ,VCS } ← MC-HP(HC , S, ε3)

15: for s← 1 to S do
16: for each vCk ∈ VCs do
17: Assign slice X (:, :, k) to chunk X:,:,s

5-6) and NB = {nB1 , . . . , nBJ } (lines 9-10). Net nAi connects vertex vCk if X (i, :, k)

is a nonzero fiber (lines 7-8). Similarly, net nBj connects vertex vCk if X (:, j, k) is

a nonzero fiber (lines 11-12).

The weights assigned to vertices in deCartHP are the same as those in CartHP,

so is the discussion held for the maximum imbalance ratios.

Figure 6.4 illustrates φ2 and φ3 of deCartHP on the same tensor X given in

Figure 6.3. We omit to show φ1 and the resulting cartesian partition as they are

exactly the same as those in Figure 6.3. Recall that the total communication

volume of that cartesian partition is 12F . Also recall that the cutsize of ΠA is 4F

in φ1 of Figure 6.3. As seen in Figure 6.4, the cutsizes of ΠB and ΠC in deCartHP

are 3F and 7F , respectively. Thus, the total cutsize in deCartHP, which is 14F ,

does not correspond to the total communication volume of the resulting cartesian

partition, which is 12F . As exemplified by this figure, deCartHP is deficient since

minimizing the total cutsize in deCartHP does not correspond to minimizing the

total communication volume. The reason for this deficiency is explained in the

107



v1

B v4

Bv3

Bv2

B

n1

A n2

A n3

A n4

A

n1

C n2

C n3

C

v1

C v3

Cv2

C

n1

A n2

A n3

A n4

A

n1

B n2

B n3

B n4

B

v1

B v3

B

n1

A n2

C n3

C

v2

B v4

B

n3

A

n2

A

n1

C

n4

A

v1

C v3

C

n4

A n1

B

n4

B

v2

C

n1

A
n2

A n3

B n3

A

n2

B

∏   = {      ,      }
B

V
B

1
V

B

2

∏   = {      ,      }
C

V
C

1
V

C

2

[0
1

0
1][1

1
1
1][2

1
0
0]

[1
2] [0

2][1
0][2

1]

V
B

1 [3
3]

V
B

2 [1
2]

V
C [2

2
0
1]

1

V
C [1

1
1
1]

2

H
B

Hypergraph

H
C

Hypergraph

Phase 2

Phase 3

Figure 6.4: Phases φ2 and φ3 of deCartHP for the example given in Figure 6.3.

following section.

6.3.1 Deficiency of deCartHP

Suppose we have a 3D cartesian partition of X obtained by deCartHP and con-

sider a horizontal slice X (i, :, :). In φ2, R lateral chunks obtained by ΠB divide

X (i, :, ; ) into R subslices along mode 2. λ(nAi ) in ΠB amounts to the number

of nonzero subslices among these R subslices, which is denoted by |ZB(i, :, :)|.
Then, the cutsize incurred by net nAi in φ2 is

csAi (φ2) = (λ(nAi )− 1)c(nAi ) = (|ZB(i, :, :)| − 1)F.

In φ3, S frontal chunks obtained by ΠC divide X (i, :, ; ) into S subslices along

mode 3. Let ZC(i, :, :) denote the set of mode 3 indices of the nonzero subslices

among these S subslices, that is,

ZC(i, :, :) = {s | X (i, :, :) is a nonzero subslice}.

108



λ(nAi ) in ΠC amounts to the number of nonzero subslices among these S subslices,

which is denoted by |ZC(i, :, :)|. Then, the cutsize incurred by net nAi in φ3 is

csAi (φ3) = (λ(nAi )− 1)c(nAi ) = (|ZC(i, :, :)| − 1)F.

Therefore, the total cutsize csAi incurred by the nets representing X (i, :, :) is

(|ZB(i, :, :)| − 1)F + (|ZC(i, :, :)| − 1)F. (6.4)

However as explained in Section 6.1, the volume of communication regarding

factor-matrix row Â(i, :) is (|ZA
i | − 1)F , which is not necessarily equal to the

expression given in (6.4). Thus, minimizing the total cutsize in deCartHP does

not necessarily correspond to minimizing the total communication volume.

In Figure 6.4, consider slice X (1, :, :) and the nets that represent

this slice. The total cutsize incurred by nets representing X (1, :, :) is

(|ZB(1, :, :)|−1)F+(|ZC(1, :, :)|−1)F =F+F =2F . However, the communication

volume regarding factor-matrix row Â(1, :) is (|ZA
1 |−1)F =F . Therefore, the to-

tal cutsize incurred by the nets representing X (1, :, :) does not correspond to the

total volume regarding Â(1, :).

6.4 Experiments

We evaluate the performance of the proposed CartHP method against the base-

line multi-dimensional cartesian partitioning method [48]. For obtaining balance

on the number of tensor nonzeros, this method randomly permutes the slices

at each mode before obtaining respective slice chunks. We refer to this baseline

method as CartR, with “R” standing for “random”. The performance comparison

is conducted in terms of partition statistics and parallel CPD-ALS runtimes for

12 tensors on 64, 128, 256, 512 and 1024 processors. Finally, we discuss the amor-

tization of the partitioning overhead introduced by CartHP in terms of CPD-ALS

solutions.

109



6.4.1 Setting

For partitioning hypergraphs in CartHP (line 14 in Algorithms 9, 10 and 11), we

use PaToH [49] (version 3.2) in speed mode with maximum allowable imbalance

ratio set to 0.04, i.e., εm = 0.04. In PaToH, we set the refinement algorithm

to FM with tight balance. Since PaToH contains randomized algorithms, we

ran CartHP five times for each instance and report the geometric average of the

results.

For conducting the parallel CPD-ALS experiments, we implemented the

medium-grain CPD-ALS algorithm in C using MPI for interprocess communi-

cation. The source code is compiled with Cray C compiler (version 2.5.9) using

the optimization level three. For the fold and expand operations on factor-matrix

rows, personalized all-to-all collective operations are used. For storing the sub-

tensors in processors, an extension of the compressed row storage (CRS) scheme

for tensors [114] is utilized. MTTKRP operation is performed in a fiber-centric

manner to reduce the FLOP counts, as described in [114]. For the rest of the

computations, efficient CBLAS routines provided by Intel MKL library (version

2017) are used whenever needed. Our parallel implementation is orthogonal to

the data partitioning method, hence it can take any medium-grain partition as

input. For a fair comparison, we use the same parallel implementation for eval-

uating the partitions obtained by CartR. In our experiments, we set the number

of components in CPD-ALS to 16, i.e., F = 16. For each instance, the runtime

of one CPD-ALS iteration is reported by taking the average of the total runtime

of 1000 iterations.

We conducted our parallel experiments on a Cray XC40 cluster, namely Hazel

Hen, based in the High Performance Computing Center Stuttgart (HLRS). A

node of this cluster consists of 24 cores (two 12-core Intel Haswell Xeon processors)

with 2.5 GHz clock frequency and 128 GB memory. The nodes are connected with

CRAY Aries, which is a high speed network with Dragonfly topology. The peak

performance is up to 7.42 Petaflops (quadrillion floating point operations per

second).

110



Table 6.1: Properties of the test tensors.

name I J K L nnz

Facebook 42.4K 40.0K 1.5K – 738.1K
NELL-b 2.4M 428 344.6K – 3.0M
Brightkite 51.4K 942 773.0K – 2.7M
Finefoods 67.1K 11.8K 82.3K – 5.6M
Gowalla 107.1K 597 1.3M – 6.3M
MovieAmazon 87.9K 4.4K 226.5K – 15.0M
NELL-c 5.1M 435 716.3K – 96.7M
Netflix 17.8K 480.2K 2.2K – 100.5M
Yelp 686.6K 85.5K 773.3K – 185.6M
MovieLens 7.8K 19.5K 38.6K 3.4K 465.6K
Flickr 319.7K 28.2M 1.6M 730 112.9M
Delicious 532.9K 17.3M 2.5M 1.4K 140.1M

6.4.2 Dataset

In our experiments, we use 12 sparse tensors whose properties are given in Ta-

ble 6.1. All of these tensors are obtained from the datasets arising in real-world

applications. First nine of them have three modes, whereas the remaining three

have four modes. Columns 2–5 and 6 respectively display the dimensions and the

number of nonzeros in the respective tensor.

Facebook consists of the wall-posting information in the form of owner-poster-

date triplets from the Facebook New Orleans networks[115]. NELL-b and NELL-c

consist of the beliefs in the form of entity-relation-entity triplets discovered by

the Never Ending Language Learning (NELL) project [116]. NELL-b contains

the relations that NELL believes to be true, whereas NELL-c contains only the

candidate beliefs. Brightkite and Gowalla consist of checkin information in

the form of user-date-location triplets obtained from location-based social net-

works [117]. Finefoods and MovieAmazon consist of user-product-word triplets

obtained from food and movie reviews in Amazon, respectively [118]. Netflix

consists of user-item-time triplets obtained from the ratings in Netflix Prize com-

petition [119]. Similar to Finefoods, Yelp consists of user-business-word triplets

obtained from business reviews in Yelp academic dataset2. MovieLens consists

2https://www.yelp.com/dataset challenge/dataset

111



Table 6.2: Average results obtained by CartHP normalized with respect to those
obtained by CartR.

number
of

procs

number of comm parallel
messages volume runtime

imb max avg max avg comm total

64 1.01 0.97 0.93 0.61 0.42 0.50 0.82
128 1.01 0.97 0.93 0.60 0.45 0.56 0.78
256 1.05 0.97 0.91 0.60 0.49 0.59 0.74
512 1.05 0.98 0.90 0.53 0.51 0.61 0.72

1024 1.05 0.97 0.85 0.53 0.53 0.61 0.72

average 1.03 0.97 0.90 0.57 0.48 0.57 0.76

of user-movie-tag-time quadruplets obtained from free-text taggings in Movie-

Lens 20M dataset [120]. Flickr and Delicious consist of user-resource-tag-time

quadruplets which were first crawled by Görlitz et al. [121] respectively from

flickr.com and delicious.com.

6.4.3 Parallel CPD-ALS Results

Table 6.2 presents the average results obtained by CartHP normalized with re-

spect to those obtained by CartR. Each row displays the geometric average of

the results on 12 tensors for the respective number of processors. Column “imb”

denotes load imbalance, which we compute as the ratio of the maximum to the

average number of nonzeros assigned to a processor. Columns under ”number

of messages” and ”comm volume” denote the number of messages sent and re-

ceived by a processor regarding the expand and fold steps through all phases

and the volume of data communicated along these messages, respectively. Un-

der both, ”max” and ”avg” denote the maximum and average amount of the

corresponding metric over all processors, respectively. Under ”parallel runtime”,

columns ”comm” and ”total” respectively denote the communication time and

total runtime of a single iteration in medium-grain-parallel CPD-ALS.

112



As seen in Table 6.2, CartHP drastically reduces average communication vol-

ume compared to CartR. Note that the reduction in average communication vol-

ume also refers to the reduction in total communication volume. CartHP reduces

average (total) volume by 58%, 55%, 51%, 49% and 47% for 64, 128, 256, 512 and

1024 processors, respectively. These improvements are expected since CartHP

minimizes this metric while CartR only provides a loose upper bound on it. The

reduction in average volume leads to a similar reduction in maximum volume, by

39%, 40%, 40%, 47% and 47% for 64, 128, 256, 512 and 1024 processors, respec-

tively. The reduction in average volume also leads to a significant reduction in

average (total) number of messages. CartHP reduces average number of messages

by 7%, 7%, 9%, 10% and 15% for 64, 128, 256, 512 and 1024 processors, respec-

tively. The reduction in average number of messages leads to a slight reduction

of 2-3% in maximum number of messages.

The drastic reductions in communication cost metrics lead to a drastic reduc-

tion in the communication time of CPD-ALS by 50%, 44%, 41%, 39% and 39% for

64, 128, 256, 512 and 1024 processors, respectively. Although CartHP causes an

increase in load imbalance by at most 5% on the average, the reduction obtained

in communication time conceals this increase and leads to a significant reduction

in total CPD-ALS runtime. CartHP reduces total runtime by 28%, 32%, 36%,

38% and 38% for 64, 128, 256, 512 and 1024 processors, respectively.

Table 6.3 presents the detailed results obtained by CartR and CartHP on 512

processors for each tensor. The values given for maximum and average commu-

nication volumes are in terms of words. For each tensor, the best result attained

for each metric is given in boldface.

113



T
ab

le
6.

3:
P

ar
ti

ti
on

st
at

is
ti

cs
an

d
p
ar

al
le

l
ru

n
ti

m
e

re
su

lt
s

ob
ta

in
ed

b
y

C
ar

tR
an

d
C

ar
tH

P
fo

r
on

e
C

P
D

-A
L

S
it

er
at

io
n

on
51

2
p
ro

ce
ss

or
s.

C
ar

tR
C

ar
tH

P

n
u
m

b
er

of
co

m
m

p
ar

al
le

l
n
u
m

b
er

of
co

m
m

p
ar

al
le

l
m

es
sa

ge
s

vo
lu

m
e

ru
n
ti

m
e

(m
s)

m
es

sa
ge

s
vo

lu
m

e
ru

n
ti

m
e

(m
s)

te
n
so

r
im

b
m

ax
av

g
m

ax
av

g
co

m
m

to
ta

l
im

b
m

ax
av

g
m

ax
av

g
co

m
m

to
ta

l

F
a
c
e
b
o
o
k

1.
32

2,
16

2
1,

95
6

11
4K

83
K

2.
7

3.
4

1
.0

1
2
,0

4
3

1
,9

0
1

6
7
K

5
8
K

1
.9

2
.8

N
E
L
L
-
b

1.
06

1,
40

0
53

4
15

8K
75

K
4.

4
7.

5
1
.0

1
1
,2

6
2

2
2
4

3
8
K

1
1
K

2
.1

4
.5

B
r
i
g
h
t
k
i
t
e

1
.7

3
2,

32
3

2,
30

6
23

1K
14

2K
5.

1
8.

8
4.

25
2
,3

0
0

2
,1

5
5

8
5
K

6
4
K

3
.3

6
.0

F
i
n
e
f
o
o
d
s

1.
08

1
,2

5
9

1,
22

5
35

6K
25

7K
7.

4
11

.1
1
.0

5
1,

26
3

1
,1

9
1

3
0
8
K

2
0
3
K

5
.1

9
.4

G
o
w
a
l
l
a

1.
08

2
,1

3
6

1,
86

6
68

7K
44

3K
7.

6
13

.2
1
.0

1
2,

18
2

1
,7

5
7

1
8
6
K

1
3
3
K

4
.0

7
.0

M
o
v
i
e
A
m
a
z
o
n

1
.0

9
2
,2

0
9

2
,1

5
4

6
0
7
K

47
4K

8
.3

1
3
.9

1.
10

2,
22

8
2,

20
9

1.
1M

4
2
3
K

8.
5

16
.3

N
E
L
L
-
c

1
.0

1
1,

94
1

1,
50

4
2.

5M
1.

4M
34

.5
72

.6
1.

07
1
,8

4
5

1
,2

5
4

9
4
3
K

4
9
1
K

1
5
.4

4
4
.5

N
e
t
f
l
i
x

1
.0

1
2
,5

6
4

2
,5

6
2

5
9
4
K

55
1K

9.
9

3
5
.5

1.
14

2
,5

6
4

2,
56

4
72

9K
4
7
1
K

9
.3

35
.7

Y
e
l
p

1
.0

6
1
,2

6
7

1
,2

6
7

4
.1

M
3.

3M
62

.5
12

6.
7

1.
07

1,
26

8
1,

26
8

5.
7M

2
.3

M
4
7
.9

1
1
3
.4

M
o
v
i
e
L
e
n
s

1.
30

2,
46

4
2,

04
3

19
8K

85
K

2.
9

4.
3

1
.0

8
2
,2

1
9

1
,9

6
9

7
7
K

6
5
K

2
.4

3
.9

F
l
i
c
k
r

1
.0

1
4
,6

0
3

4
,5

9
5

17
.7

M
10

.6
M

32
7.

0
50

5.
2

1.
14

4,
60

8
4,

59
7

4
.0

M
3
.4

M
1
0
8
.0

2
1
6
.3

D
e
l
i
c
i
o
u
s

1.
06

4
,3

6
7

4
,3

6
7

24
.0

M
11

.3
M

39
8.

2
64

9.
7

1
.0

5
4,

36
8

4,
36

8
8
.8

M
6
.1

M
1
7
1
.6

3
5
5
.9

114



As seen in Table 6.3, CartHP attains a better result in average communication

volume for all tensors and in maximum communication volume for 9 out of 12

tensors. In communication time and total CPD-ALS runtime, it achieves a better

result for 11 and 10 tensors, respectively. For the rest of the metrics, CartHP

and CartR have comparable performances since each achieves a better result for

half of the tensors. The highest reduction rates in total runtime are observed for

Gowalla, Flickr and Delicious. This can be explained by the drastic amounts

of decrease achieved in both maximum volume and total volume for these tensors.

CartHP performs comparable to CartR for Netflix since the reduction in the

communication time and the increase in the imbalance compensate each other.

For MovieAmazon, CartHP performs worse than CartR due to the increase in the

communication time stemming from the increase in maximum volume despite

the decrease in total volume. Note that a similar increase is also observed for

Netflix, but it does not degrade the communication time much due to a higher

decrease in total volume.

Figure 6.5 displays the strong scaling curves for all tensors in terms of total

CPD-ALS runtime. For 9 out of 12 tensors, CartHP achieves better CPD-ALS

scalability compared to CartR. This is because CartHP obtains drastic reductions

in both maximum and average communication volume metrics for these tensors.

CartHP performs comparable to CartR for Netflix and Yelp and slightly worse

than CartR for MovieAmazon since CartHP increases maximum volume while

decreasing average volume for these tensors on all processor counts. For Facebook

and MovieLens, although CartHP performs better than CartR, both methods

display poor scalability for these tensor since they are small.

Table 6.4 presents the results obtained by CartHP normalized with respect

to those obtained by CartR for each tensor and number of processors. Column

“imb” denotes load imbalance, which we compute as the ratio of the maximum to

the average number of nonzeros assigned to a processor. Columns under ”num-

ber of messages” and ”comm volume” denote the number of messages sent and

received by a processor regarding the expand and fold steps through all phases

and the volume of data communicated along these messages, respectively. Un-

der both, ”max” and ”avg” denote the maximum and average amount of the

115



64 128 256 512 1024

3

4

C
P
D

-A
LS

 r
u
n
ti

m
e
 (

in
 m

s)

Facebook
CartR CartHP

64 128 256 512 1024

101

NELL-b

64 128 256 512 1024

101

Brightkite

64 128 256 512 1024

101

Finefoods

64 128 256 512 1024

101

C
P
D

-A
LS

 r
u
n
ti

m
e
 (

in
 m

s)

Gowalla

64 128 256 512 1024

20

30

40

50

MovieAmazon

64 128 256 512 1024

102

NELL-c

64 128 256 512 1024

102

Netflix

64 128 256 512 1024
number of processors

102C
P
D

-A
LS

 r
u
n
ti

m
e
 (

in
 m

s)

Yelp

64 128 256 512 1024
number of processors

4

5

6
MovieLens

64 128 256 512 1024
number of processors

102

103

Flickr

64 128 256 512 1024
number of processors

103

Delicious

Figure 6.5: Strong scaling curves for medium-grain-parallel CPD-ALS obtained
by CartR and CartHP.

116



Table 6.4: Detailed results obtained by CartHP normalized with respect to those
obtained by CartR.

number
of

procs

number of comm parallel number of comm parallel
messages volume runtime messages volume runtime

tensor imb max avg max avg comm total tensor imb max avg max avg comm total

64

F
a
c
e
b
o
o
k

0.92 1.00 1.00 0.56 0.54 0.53 0.71

N
E
L
L
-
c

1.05 1.00 1.00 0.43 0.31 0.34 0.99
128 0.92 1.00 1.00 0.57 0.60 0.60 0.67 1.05 1.00 1.00 0.37 0.33 0.31 0.77
256 0.85 1.00 1.00 0.60 0.65 0.70 0.71 1.05 1.00 0.97 0.38 0.34 0.36 0.73
512 0.77 0.94 0.97 0.59 0.69 0.69 0.80 1.06 0.95 0.83 0.37 0.36 0.45 0.61

1024 0.73 0.83 0.86 0.57 0.72 0.77 0.84 1.03 0.96 0.79 0.30 0.37 0.32 0.47

64

N
E
L
L
-
b

0.99 0.72 0.44 0.25 0.05 0.15 0.82

N
e
t
f
l
i
x

1.12 0.99 0.99 1.30 0.89 0.89 1.06
128 0.99 0.70 0.40 0.27 0.08 0.25 0.79 1.12 1.00 1.00 1.24 0.85 1.05 1.07
256 0.98 0.71 0.31 0.28 0.14 0.37 0.68 1.11 1.00 1.00 1.27 0.87 0.96 1.06
512 0.95 0.90 0.42 0.24 0.15 0.47 0.60 1.14 1.00 1.00 1.23 0.85 0.94 1.00

1024 0.93 0.96 0.37 0.35 0.20 0.70 0.72 1.11 1.00 0.97 1.24 0.83 0.87 0.95

64

B
r
i
g
h
t
k
i
t
e 0.83 0.99 0.99 0.24 0.26 0.28 0.66

Y
e
l
p

1.01 1.00 1.00 1.89 0.80 0.89 1.20
128 1.05 1.00 1.00 0.32 0.34 0.56 0.68 0.97 1.00 1.00 1.93 0.81 0.86 1.01
256 1.95 1.00 0.99 0.32 0.38 0.55 0.77 1.01 1.00 1.00 1.89 0.76 0.83 0.97
512 2.46 0.99 0.93 0.37 0.45 0.64 0.69 1.01 1.00 1.00 1.40 0.71 0.77 0.89

1024 2.58 0.92 0.72 0.42 0.49 0.65 0.86 1.02 1.00 1.00 1.33 0.73 0.76 0.92

64

F
i
n
e
f
o
o
d

1.00 1.00 1.00 1.21 0.83 0.89 0.96
M
o
v
i
e
L
e
n
s 0.94 1.00 1.00 0.74 0.76 0.77 0.85

128 0.98 1.00 1.00 0.97 0.79 0.80 0.94 0.91 1.00 1.00 0.68 0.76 0.76 0.85
256 0.95 1.00 1.00 0.88 0.81 0.81 0.83 0.91 1.00 1.01 0.65 0.77 0.72 0.76
512 0.97 1.00 0.97 0.87 0.79 0.70 0.85 0.83 0.90 0.96 0.39 0.77 0.80 0.93

1024 0.95 1.00 0.92 0.76 0.78 0.79 0.75 0.94 0.94 0.97 0.51 0.77 0.55 0.77

64

G
o
w
a
l
l
a

1.01 0.99 0.99 0.23 0.18 0.21 0.49

F
l
i
c
k
r

1.13 1.00 1.00 0.33 0.36 0.49 0.56
128 0.98 1.00 1.00 0.27 0.23 0.33 0.52 1.12 1.00 1.00 0.25 0.32 0.46 0.53
256 0.96 1.00 1.00 0.24 0.25 0.44 0.53 1.15 1.00 1.00 0.30 0.34 0.38 0.47
512 0.93 1.02 0.94 0.27 0.30 0.52 0.53 1.13 1.00 1.00 0.22 0.32 0.33 0.43

1024 0.91 1.01 0.93 0.29 0.34 0.66 0.70 1.06 0.99 0.92 0.20 0.32 0.31 0.37

64

M
o
v
i
e
A
m
a
z
o
n 1.00 1.00 1.00 1.91 0.92 1.01 1.14

D
e
l
i
c
i
o
u
s 1.09 1.00 1.00 0.65 0.56 0.58 0.78

128 1.00 1.00 1.00 1.98 0.90 0.99 1.07 1.06 1.00 1.00 0.53 0.55 0.50 0.74
256 1.03 1.00 1.00 1.99 0.91 0.95 1.06 1.00 1.00 1.00 0.50 0.56 0.48 0.60
512 1.01 1.01 1.03 1.79 0.89 1.03 1.18 0.99 1.00 1.00 0.37 0.54 0.43 0.55

1024 1.08 1.04 1.04 1.54 0.90 0.78 0.99 0.99 1.00 0.99 0.38 0.58 0.47 0.56

corresponding metric over all processors, respectively. Under ”parallel runtime”,

columns ”comm” and ”total” respectively denote the communication time and

total runtime of a single iteration in medium-grain-parallel CPD-ALS.

As seen in the table, CartHP significantly reduces average (total) communi-

cation volume compared to CartR in all partitioning instances. This is expected

since CartHP directly minimizes the total communication volume while CartR

only provides an upper bound on it. The reduction in average communication

volume results in a reduction in communication time of parallel CPD-ALS al-

gorithm in all partitioning instances except three (MovieAmazon on 64 and 512

processors Netflix on 128 processors). CartHP outperforms CartR for all con-

sidered processor counts in terms of parallel CPD-ALS runtime for all tensors

117



Table 6.5: Comparison of partitioning overhead of CartHP against factorization
in terms of sequential runtime.

CartHP
CartHP/factorization

tensor time (s) F = 16 F = 64

Facebook 5.8 4.68 0.82
NELL-b 9.8 0.53 0.10
Brightkite 9.2 1.73 0.18
Finefoods 22.3 2.32 0.32
Gowalla 31.5 3.93 0.47
MovieAmazon 35.0 1.17 0.12
NELL-c 62.3 0.50 0.08
Netflix 36.2 0.39 0.08
Yelp 380.6 6.28 1.10
MovieLens 4.6 9.22 1.38
Flickr 569.6 7.97 1.69
Delicious 1693.0 23.10 5.06

average - 2.60 0.41

except for MovieAmazon, Netflix and Yelp. For these three tensors, observe

that CartHP starts to perform better compared to CartR with increasing num-

ber of processors. For example on Yelp, the paralell runtime obtained by CartHP

is 20% higher than that obtained by CartR on 64 processors, whereas it is 8%

lower on 1024 processors.

6.4.4 Partitioning Overhead and Amortization

Table 6.5 reports the partitioning time of CartHP in seconds as well as the ratio

of this partitioning time to the factorization time for each tensor. Here, each

factorization involves a number of CPD-ALS iterations required to converge with

tolerance 10−5 (as computed in [114]), where the number of iterations typically

increases with increasing F . Both partitioning and factorization are performed

in a sequential setting. As seen in the table, for Netflix, partitioning takes 0.39

and 0.08 factorizations for F = 16 and F = 64, respectively. On average, it takes

2.60 and 0.41 factorizations for F = 16 and F = 64, respectively.

Table 6.6 displays the average number of CPD solutions that amortize the

118



Table 6.6: Average number of CPD solutions that amortize the sequential parti-
tioning time of CartHP.

P =64 P =128 P =256 P =512 P =1024 avg

3.39 3.91 4.92 8.02 14.18 5.94

sequential partitioning time of CartHP for each processor count, i.e., P value.

Here, each CPD solution refers to running the parallel CPD-ALS algorithm for

computing a factorization for ten different F values [122] starting from three

different sets of initial factor matrices [67]. For each F value and initial factor

matrix set, a factorization is assumed to require 25 iterations, so, each CPD

solution is assumed to involve 10×3×25 = 750 iterations. As seen in the table,

on the average, the partitioning time of CartHP amortizes in only 3.39, 3.91,

4.92, 8.02, and 14.18 CPD solutions for 64, 128, 256, 512, and 1024 processors,

respectively, where the overall average is computed as 5.94 CPD solutions.

6.5 Summary

We investigated the utilization of the sparsity pattern of a given tensor for min-

imizing the total communication volume in medium-grain CPD-ALS algorithm

which adopts multi-dimensional cartesian tensor partitioning. We proposed a

novel hypergraph-partitioning model that correctly encapsulates the total com-

munication volume of medium-grain-parallel CPD-ALS. We demonstrated the

effectiveness of the proposed model by conducting experiments on 12 tensors for

up to 1024 processors. Our model drastically reduces the communication volume

and the communication time of medium-grain-parallel CPD-ALS, hence the total

parallel runtime.

119



Chapter 7

Conclusion

In this thesis, we presented novel hypergraph partitioning models and reordering

methods for improving the performance of distributed-memory parallel sparse ma-

trix and tensor computations. We proposed distributed-memory parallel Gauss-

Seidel (dmpGS) and incomplete ILU (dmpILU) algorithms by implementing a

parallel sparse triangular solver (stSPIKE) based on the SPIKE algorithm. By

this way, the triangular systems in both Gauss-Seidel and ILU are parallelized in

exchange for solving a much smaller reduced triangular system at each iteration.

For reducing the size of these reduced systems in both dmpGS and dmpILU,

we proposed novel hypergraph partitioning models that introduces new net an-

choring and splitting schemes using the recursive bipartitioning scheme. For

reducing the nonzero counts of the reduced systems, we proposed successful row

reordering methods within the row blocks obtained by the hypergraph partition-

ing models. Furthermore, we proposed a novel hypergraph partitioning model

for minimizing the communication volume and hence improve the parallel scala-

bility of the medium-grain sparse tensor decomposition. We provided the results

of extensive experiments validating the effectiveness of the proposed partitioning

and reordering models against the state-of-the-art algorithms. We conclude that

the hypergraph partitioning and reordering models can be used as powerful tools

for improving the speedup and scalability of parallel sparse matrix and tensor

computations.

120



As a future work, we will consider the parallel solution of the reduced systems

in dmpGS and dmpILU to further alleviate the sequential bottleneck. We will

also consider an in-block row reordering which takes the nonzeros of the diagonal

blocks into account for further reducing the nonzero count in the reduced sys-

tem. We are aiming to develop an ILU-based preconditioner which allows fill-in.

We also plan to test the performance of the proposed preconditoner on iterative

Krylov subspace methods. Finally, the future work will include extending the

dmpGS and dmpILU algorithms for multiple right-hand-sides as it is also very

common in modern applications. Using multiple right-hand-side vectors is ex-

pected to further enhance the performance of these algorithms since it enables

using higher level BLAS subroutines compared to the single right-hand-side case.

Moreover, the parallel solution time per right-hand-side vector will decrease since

the parallel factorization is done only once.

121



Bibliography

[1] T. A. Davis, Direct methods for sparse linear systems, pp. 83–95. SIAM,

2006.

[2] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3, pp. 606–616.

JHU press, 2013.

[3] M. W. Berry, “Large-scale sparse singular value computations,” The Inter-

national Journal of Supercomputing Applications, vol. 6, no. 1, pp. 13–49,

1992.

[4] B. Bylina and J. Bylina, “Analysis and comparison of reordering for two

factorization methods (LU and WZ) for sparse matrices,” in International

Conference on Computational Science, pp. 983–992, Springer, 2008.

[5] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, “A fully asyn-

chronous multifrontal solver using distributed dynamic scheduling,” SIAM

Journal on Matrix Analysis and Applications, vol. 23, no. 1, pp. 15–41,

2001.

[6] X. S. Li and J. W. Demmel, “SuperLU DIST: A scalable distributed-

memory sparse direct solver for unsymmetric linear systems,” ACM Trans-

actions on Mathematical Software (TOMS), vol. 29, no. 2, pp. 110–140,

2003.

[7] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, “A synchronization-free

algorithm for parallel sparse triangular solves,” in European Conference on

Parallel Processing, pp. 617–630, Springer, 2016.

122



[8] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[9] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for

the solution of linear systems: building blocks for iterative methods. SIAM,

1994.

[10] Y. Saad, “ILUT: A dual threshold incomplete LU factorization,” Numerical

linear algebra with applications, vol. 1, no. 4, pp. 387–402, 1994.

[11] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner

for nonsymmetric linear systems,” SIAM Journal on Scientific Computing,

vol. 19, no. 3, pp. 968–994, 1998.

[12] Y. Notay, “An aggregation-based algebraic multigrid method,” Electronic

transactions on numerical analysis, vol. 37, no. 6, pp. 123–146, 2010.

[13] J. W. Ruge and K. Stüben, “Algebraic multigrid,” in Multigrid methods,

pp. 73–130, SIAM, 1987.

[14] M. Benzi, “Preconditioning techniques for large linear systems: a survey,”

Journal of Computational Physics, vol. 182, no. 2, pp. 418–477, 2002.

[15] M. Bernaschi, P. D’Ambra, and D. Pasquini, “AMG based on compatible

weighted matching for GPUs,” Parallel Computing, vol. 92, 2020.

[16] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast

iterative solvers: with applications in incompressible fluid dynamics. Nu-

merical Mathematics and Scientific Computation, 2014.

[17] W. Pazner, “Efficient low-order refined preconditioners for high-order

matrix-free continuous and discontinuous Galerkin methods,” SIAM Jour-

nal on Scientific Computing, vol. 42, no. 5, pp. A3055–A3083, 2020.

[18] K. Watanabe, H. Igarashi, and T. Honma, “Comparison of geometric and

algebraic multigrid methods in edge-based finite-element analysis,” IEEE

transactions on magnetics, vol. 41, no. 5, pp. 1672–1675, 2005.

123



[19] V. E. Henson and U. M. Yang, “BoomerAMG: A parallel algebraic multigrid

solver and preconditioner,” Applied Numerical Mathematics, vol. 41, no. 1,

pp. 155–177, 2002.

[20] R. Webster, “An algebraic multigrid solver for Navier-Stokes problems,” In-

ternational Journal for Numerical Methods in Fluids, vol. 18, no. 8, pp. 761–

780, 1994.

[21] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, “Parallel multigrid

smoothing: polynomial versus Gauss–Seidel,” Journal of Computational

Physics, vol. 188, no. 2, pp. 593–610, 2003.

[22] J. Boyle, M. Mihajlovic, and J. Scott, “HSL MI20: an efficient AMG pre-

conditioner,” tech. rep., Citeseer, 2007.

[23] P. Van, M. Brezina, J. Mandel, et al., “Convergence of algebraic multigrid

based on smoothed aggregation,” Numerische Mathematik, vol. 88, no. 3,

pp. 559–579, 2001.

[24] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, “ML 5.0 smoothed

aggregation user’s guide,” Tech. Rep. SAND2006-2649, Sandia National

Laboratories, 2006.

[25] A. H. Sameh and R. P. Brent, “Solving triangular systems on a parallel

computer,” SIAM Journal on Numerical Analysis, vol. 14, no. 6, pp. 1101–

1113, 1977.

[26] S.-C. Chen, D. J. Kuck, and A. H. Sameh, “Practical parallel band triangu-

lar system solvers,” ACM Transactions on Mathematical Software (TOMS),

vol. 4, no. 3, pp. 270–277, 1978.

[27] J. J. Dongarra and A. H. Sameh, “On some parallel banded system solvers,”

Parallel Computing, vol. 1, no. 3, pp. 223–235, 1984.

[28] E. Polizzi and A. Sameh, “SPIKE: A parallel environment for solving

banded linear systems,” Computers & Fluids, vol. 36, no. 1, pp. 113–120,

2007. Challenges and Advances in Flow Simulation and Modeling.

124



[29] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system solver: the

SPIKE algorithm,” Parallel Computing, vol. 32, no. 2, pp. 177–194, 2006.

Parallel Matrix Algorithms and Applications (PMAA’04).

[30] B. S. Spring, E. Polizzi, and A. H. Sameh, “A feature-complete SPIKE dense

banded solver,” ACM Transactions on Mathematical Software (TOMS),

vol. 46, no. 4, pp. 1–35, 2020.

[31] M. Manguoglu, A. H. Sameh, and O. Schenk, “PSPIKE: A parallel hybrid

sparse linear system solver,” in European Conference on Parallel Processing,

pp. 797–808, Springer, 2009.

[32] O. Schenk, M. Manguoglu, A. Sameh, M. Christen, and M. Sathe, “Par-

allel scalable PDE-constrained optimization: antenna identification in hy-

perthermia cancer treatment planning,” Computer Science-Research and

Development, vol. 23, no. 3-4, pp. 177–183, 2009.

[33] E. S. Bolukbasi and M. Manguoglu, “A multithreaded recursive and nonre-

cursive parallel sparse direct solver,” in Advances in Computational Fluid-

Structure Interaction and Flow Simulation, pp. 283–292, Springer, 2016.

[34] M. Manguoglu, “A domain-decomposing parallel sparse linear system

solver,” Journal of Computational and Applied Mathematics, vol. 236, no. 3,

pp. 319–325, 2011.

[35] M. Manguoglu, “Parallel solution of sparse linear systems,” in High-

Performance Scientific Computing, pp. 171–184, Springer, 2012.

[36] I. E. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A. H. Sameh, “A

direct tridiagonal solver based on Givens rotations for GPU architectures,”

Parallel Computing, vol. 49, pp. 101–116, 2015.

[37] İ. Çuğu and M. Manguoğlu, “A parallel multithreaded sparse triangular

linear system solver,” Computers & Mathematics with Applications, vol. 80,

no. 2, pp. 371–385, 2020.

125



[38] U. M. Yang, “Parallel algebraic multigrid methods-high performance pre-

conditioners,” in Numerical solution of partial differential equations on par-

allel computers, pp. 209–236, Springer, 2006.

[39] J. I. Aliaga, M. Barreda, G. Flegar, M. Bollhöfer, and E. S. Quintana-Ort́ı,

“Communication in task-parallel ilu-preconditioned cg solvers using mpi+

ompss,” Concurrency and Computation: Practice and Experience, vol. 29,

no. 21, p. e4280, 2017.

[40] M. Benzi, W. Joubert, and G. Mateescu, “Numerical experiments with

parallel orderings for ilu preconditioners,” Electronic Transactions on Nu-

merical Analysis, vol. 8, pp. 88–114, 1999.

[41] L. C. Dutto, “The effect of ordering on preconditioned gmres algorithm, for

solving the compressible navier-stokes equations,” International Journal for

Numerical Methods in Engineering, vol. 36, no. 3, pp. 457–497, 1993.

[42] J. A. Meijerink and H. A. Van Der Vorst, “An iterative solution method

for linear systems of which the coefficient matrix is a symmetric m-matrix,”

Mathematics of computation, vol. 31, no. 137, pp. 148–162, 1977.

[43] Y. Chen, X. Tian, H. Liu, Z. Chen, B. Yang, W. Liao, P. Zhang, R. He, and

M. Yang, “Parallel ilu preconditioners in gpu computation,” Soft Comput-

ing, vol. 22, no. 24, pp. 8187–8205, 2018.

[44] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multi-

dimensional scaling via an n-way generalization of “eckart-young” decom-

position,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[45] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and

conditions for an” explanatory” multi-modal factor analysis,” UCLA Work-

ing Papers in Phonetics, pp. 1–84, 1970.

[46] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

126



[47] N. K. M. Faber, R. Bro, and P. K. Hopke, “Recent developments in cande-

comp/parafac algorithms: a critical review,” Chemometrics and Intelligent

Laboratory Systems, vol. 65, no. 1, pp. 119 – 137, 2003.

[48] S. Smith and G. Karypis, “A medium-grained algorithm for distributed

sparse tensor factorization,” 30th IEEE International Parallel & Distributed

Processing Symposium, 2016.

[49] U. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based decom-

position for parallel sparse-matrix vector multiplication,” Parallel and Dis-

tributed Systems, IEEE Transactions on, vol. 10, pp. 673–693, Jul 1999.

[50] U. V. Çatalyürek, C. Aykanat, and B. Uçar, “On two-dimensional sparse

matrix partitioning: Models, methods, and a recipe,” SIAM J. Sci. Com-

put., vol. 32, pp. 656–683, Feb. 2010.

[51] B. Uçar and C. Aykanat, “Revisiting hypergraph models for sparse matrix

partitioning,” SIAM Review, vol. 49, no. 4, pp. 595–603, 2007.

[52] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to par-

allel computing: design and analysis of algorithms, vol. 400. Ben-

jamin/Cummings Redwood City, 1994.

[53] B. Hendrickson, R. Leland, and S. Plimpton, “An efficient parallel al-

gorithm for matrix-vector multiplication,” International Journal of High

Speed Computing, vol. 07, no. 01, pp. 73–88, 1995.

[54] U. V. Catalyurek and C. Aykanat, “A hypergraph-partitioning approach for

coarse-grain decomposition,” in Supercomputing, ACM/IEEE 2001 Confer-

ence, pp. 42–42, Nov 2001.

[55] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based decom-

position for parallel sparse-matrix vector multiplication,” IEEE Transac-

tions on parallel and distributed systems, vol. 10, no. 7, pp. 673–693, 1999.

[56] G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Hypergraph par-

titioning for sparse matrix-matrix multiplication,” ACM Transactions on

Parallel Computing (TOPC), vol. 3, no. 3, pp. 1–34, 2016.

127



[57] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach

Using BSP. Oxford University Press, USA, 2020.

[58] Ü. V. Çatalyürek and C. Aykanat, “PaToH (Partitioning Tool for Hyper-

graphs),” in Encyclopedia of Parallel Computing, pp. 1479–1487, Springer,

2011.

[59] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar, “On two-dimensional sparse

matrix partitioning: Models, methods, and a recipe,” SIAM Journal on

Scientific Computing, vol. 32, no. 2, pp. 656–683, 2010.

[60] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.

Catalyurek, “Parallel hypergraph partitioning for scientific computing,”

in Proceedings 20th IEEE International Parallel & Distributed Processing

Symposium, pp. 10–pp, IEEE, 2006.

[61] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-

graph partitioning: Applications in VLSI domain,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp. 69–79, 1999.

[62] T. Torun, “Locality aware reordering for sparse triangular solve,” Master’s

thesis, Bilkent university, 2014.

[63] B. Uçar and C. Aykanat, “Revisiting hypergraph models for sparse matrix

partitioning,” SIAM review, vol. 49, no. 4, pp. 595–603, 2007.

[64] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data distribu-

tion method for parallel sparse matrix-vector multiplication,” SIAM review,

vol. 47, no. 1, pp. 67–95, 2005.

[65] R. Bagnara, “A unified proof for the convergence of Jacobi and Gauss–

Seidel methods,” SIAM review, vol. 37, no. 1, pp. 93–97, 1995.

[66] G. H. Golub and C. F. Van Loan, “Matrix computations. johns hopkins

studies in the mathematical sciences,” 1996.

[67] R. A. Harshman and M. E. Lundy, Research Methods for Multi-Mode Data

Analysis, ch. The PARAFAC model for three-way factor analysis and mul-

tidimensional scaling. New York: Praeger, 1984.

128



[68] K. S. Aggour, A. Gittens, and B. Yener, “Adaptive sketching for fast and

convergent canonical polyadic decomposition,” in International Conference

on Machine Learning. PMLR, 2020.

[69] P. Amodio and F. Mazzia, “A parallel Gauss–Seidel method for block tridi-

agonal linear systems,” SIAM Journal on Scientific Computing, vol. 16,

no. 6, pp. 1451–1461, 1995.

[70] D. P. Koester, S. Ranka, and G. C. Fox, “A parallel Gauss-Seidel algorithm

for sparse power system matrices,” in Supercomputing’94: Proceedings of

the 1994 ACM/IEEE Conference on Supercomputing, pp. 184–193, IEEE,

1994.

[71] Y. Shang, “A distributed memory parallel Gauss–Seidel algorithm for linear

algebraic systems,” Computers & Mathematics with Applications, vol. 57,

no. 8, pp. 1369–1376, 2009.

[72] K. S. Kang, “Scalable implementation of the parallel multigrid method on

massively parallel computers,” Computers & Mathematics with Applica-

tions, vol. 70, no. 11, pp. 2701–2708, 2015.

[73] R. Tavakoli and P. Davami, “A new parallel Gauss–Seidel method based

on alternating group explicit method and domain decomposition method,”

Applied mathematics and computation, vol. 188, no. 1, pp. 713–719, 2007.

[74] J. Zhang, “Acceleration of five-point red-black Gauss-Seidel in multigrid for

Poisson equation,” Applied Mathematics and Computation, vol. 80, no. 1,

pp. 73–93, 1996.

[75] L. M. Adams and H. F. Jordan, “Is SOR color-blind?,” SIAM Journal on

Scientific and Statistical Computing, vol. 7, no. 2, pp. 490–506, 1986.

[76] G. C. Fox, Solving problems on concurrent processors. Old Tappan, NJ;

Prentice Hall Inc., 1988.

129



[77] M. Kawai, T. Iwashita, H. Nakashima, and O. Marques, “Parallel smoother

based on block red-black ordering for multigrid Poisson solver,” in Inter-

national Conference on High Performance Computing for Computational

Science, pp. 292–299, Springer, 2012.

[78] G. Golub and J. M. Ortega, Scientific computing: an introduction with

parallel computing. Academic Press Professional, Inc., 1993.

[79] D. P. O’Leary, “Ordering schemes for parallel processing of certain mesh

problems,” SIAM Journal on Scientific and Statistical Computing, vol. 5,

no. 3, pp. 620–632, 1984.

[80] M. F. Adams, “A distributed memory unstructured Gauss-Seidel algorithm

for multigrid smoothers,” in SC’01: Proceedings of the 2001 ACM/IEEE

Conference on Supercomputing, 2001.

[81] A. Ahmadi, F. Manganiello, A. Khademi, and M. C. Smith, “A parallel

Jacobi-embedded Gauss-Seidel method,” IEEE Transactions on Parallel

and Distributed Systems, vol. 32, no. 6, pp. 1452–1464, 2021.

[82] M. T. Jones and P. E. Plassmann, “Scalable iterative solution of sparse

linear systems,” Parallel Computing, vol. 20, no. 5, pp. 753–773, 1994.

[83] I. S. Duff and G. A. Meurant, “The effect of ordering on preconditioned

conjugate gradients,” BIT Numerical Mathematics, vol. 29, no. 4, pp. 635–

657, 1989.

[84] B. F. Smith, P. E. Bjorstad, W. D. Gropp, and J. E. Pasciak, “Domain

decomposition: Parallel multilevel methods for elliptic partial differential

equations,” SIAM Review, vol. 40, no. 1, pp. 169–170, 1998.

[85] S. T. Mukhambetzhanov, D. V. Lebedev, N. M. Kassymbek, T. S.

Imankulov, B. Matkerim, and D. Z. Akhmed-Zaki, “GMRES based numer-

ical simulation and parallel implementation of multicomponent multiphase

flow in porous media,” Cogent Engineering, vol. 7, no. 1, p. 1785189, 2020.

130



[86] C. M. Andersen and R. Bro, “Practical aspects of parafac modeling of

fluorescence excitation-emission data,” Journal of Chemometrics, vol. 17,

no. 4, pp. 200–215, 2003.

[87] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis in

sensor array processing,” IEEE Transactions on Signal Processing, vol. 48,

pp. 2377–2388, Aug 2000.

[88] A. H. Andersen and W. S. Rayens, “Structure-seeking multilinear methods

for the analysis of fmri data,” NeuroImage, vol. 22, no. 2, pp. 728 – 739,

2004.

[89] E. Martinez-Montes, P. A. Valdes-Sosa, F. Miwakeichi, R. I. Goldman, and

M. S. Cohen, “Concurrent EEG/fMRI analysis by multiway Partial Least

Squares,” NeuroImage, vol. 22, no. 3, pp. 1023 – 1034, 2004.

[90] A. Shashua and A. Levin, “Linear image coding for regression and classi-

fication using the tensor-rank principle,” in Proceedings of the 2001 IEEE

Computer Society Conference on Computer Vision and Pattern Recogni-

tion. CVPR 2001, vol. 1, pp. I–42–I–49 vol.1, 2001.

[91] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener, Modeling and

Multiway Analysis of Chatroom Tensors, pp. 256–268. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005.

[92] B. W. Bader, M. W. Berry, and M. Browne, Discussion Tracking in Enron

Email Using PARAFAC, pp. 147–163. London: Springer London, 2008.

[93] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M.

Mitchell, “Toward an architecture for never-ending language learning,” in

Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[94] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and N. Oliver,

“Tfmap: Optimizing map for top-n context-aware recommendation,” in

Proceedings of the 35th International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’12, (New York, NY,

USA), pp. 155–164, ACM, 2012.

131



[95] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of ten-

sors,” in Advances in Neural Information Processing Systems 27, pp. 1296–

1304, Curran Associates, Inc., 2014.

[96] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with

sparse and factored tensors,” SIAM Journal on Scientific Computing,

vol. 30, pp. 205–231, December 2007.

[97] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor: Scal-

ing tensor analysis up by 100 times - algorithms and discoveries,” in Pro-

ceedings of the 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’12, (New York, NY, USA), pp. 316–324,

ACM, 2012.

[98] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in distributed

memory systems,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’15, (New

York, NY, USA), pp. 77:1–77:11, ACM, 2015.

[99] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression for

large-scale scientific data,” in 2016 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), pp. 912–922, May 2016.

[100] S. Acer, E. Kayaaslan, and C. Aykanat, “A hypergraph partitioning model

for profile minimization,” SIAM Journal on Scientific Computing, vol. 41,

no. 1, pp. A83–A108, 2019.

[101] S. Acer, E. Kayaaslan, and C. Aykanat, “A hypergraph partitioning model

for profile minimization,” SIAM Journal on Scientific Computing, vol. 41,

no. 1, pp. A83–A108, 2019.

[102] L. O. Mafteiu-Scai, “The bandwidths of a matrix. a survey of algo-

rithms,” Annals of West University of Timisoara-Mathematics, vol. 52,

no. 2, pp. 183–223, 2014.

[103] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout problems,” ACM

Computing Surveys (CSUR), vol. 34, no. 3, pp. 313–356, 2002.

132



[104] Y. Lin and J. Yuan, “Profile minimization problem for matrices and

graphs,” Acta Mathematicae Applicatae Sinica, vol. 10, no. 1, pp. 107–112,

1994.

[105] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collec-

tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1,

pp. 1–25, 2011.

[106] I. S. Duff and J. Koster, “On algorithms for permuting large entries to

the diagonal of a sparse matrix,” SIAM Journal on Matrix Analysis and

Applications, vol. 22, no. 4, pp. 973–996, 2001.

[107] G. Karypis and V. Kumar, “METIS: Unstructured Graph Partitioning and

Sparse Matrix Ordering System, Version 5.1.” http://www.cs.umn.edu/

~metis, 2013.

[108] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with

performance profiles,” Mathematical programming, vol. 91, no. 2, pp. 201–

213, 2002.

[109] UHEM, “National Center for High Performance Computing.” http://www.

uhem.itu.edu.tr, 2021.

[110] Intel, “Intel Math Kernel Library (MKL).” https://software.intel.

com/en-us/mkl, 2019.

[111] S. Acer, T. Torun, and C. Aykanat, “Improving medium-grain partitioning

for scalable sparse tensor decomposition,” IEEE Transactions on Parallel

and Distributed Systems, vol. 29, no. 12, pp. 2814–2825, 2018.

[112] E. Horowitz and S. Sahni, Fundamentals of computer algorithms. Computer

Science Press, 1978.

[113] C. Aykanat, B. B. Cambazoglu, and B. Uçar, “Multi-level direct k-way hy-

pergraph partitioning with multiple constraints and fixed vertices,” Journal

of Parallel and Distributed Computing, vol. 68, no. 5, pp. 609–625, 2008.

133

http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.uhem.itu.edu.tr
http://www.uhem.itu.edu.tr
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl


[114] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt: Ef-

ficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE In-

ternational Parallel and Distributed Processing Symposium, pp. 61–70, May

2015.

[115] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution

of user interaction in facebook,” in Proceedings of the 2nd ACM SIGCOMM

Workshop on Social Networks (WOSN’09), August 2009.

[116] A. Carlson, J. Betteridge, B. Kisiel, and B. Settles, “Toward an architecture

for never-ending language learning.,” in AAAI, vol. 5, p. 3, 2010.

[117] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User

movement in location-based social networks,” in Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’11, (New York, NY, USA), pp. 1082–1090, ACM, 2011.

[118] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs: Modeling

the evolution of user expertise through online reviews,” in Proceedings of

the 22Nd International Conference on World Wide Web, WWW ’13, (New

York, NY, USA), pp. 897–908, ACM, 2013.

[119] J. Bennett, S. Lanning, and N. Netflix, “The netflix prize,” in In KDD Cup

and Workshop in conjunction with KDD, 2007.

[120] F. M. Harper and J. A. Konstan, “The movielens datasets: History and

context,” ACM Trans. Interact. Intell. Syst., vol. 5, pp. 19:1–19:19, Dec.

2015.

[121] O. Görlitz, S. Sizov, and S. Staab, “Pints: Peer-to-peer infrastructure for

tagging systems,” in Proceedings of the 7th International Conference on

Peer-to-peer Systems, IPTPS’08, (Berkeley, CA, USA), pp. 19–19, USENIX

Association, 2008.

[122] N. Zheng, Q. Li, S. Liao, and L. Zhang, “Flickr group recommendation

based on tensor decomposition,” in Proceedings of the 33rd International

ACM SIGIR Conference on Research and Development in Information Re-

trieval, SIGIR ’10, (New York, NY, USA), pp. 737–738, ACM, 2010.

134


	Introduction
	Background
	Hypergraphs
	Hypergraph Partitioning (HP)
	Sparse Matrix Partitioning with HP

	Linear System Solution Methods
	Gauss-Seidel(GS)
	LU decomposition
	Incomplete LU (ILU) decomposition

	Sparse Triangular SPIKE (stSPIKE) Algorithm
	Tensors
	Matrix Kronecker, Khatri-Rao and Hadamard Products
	Canonical Polyadic Decomposition (CPD)
	Medium-Grain CPD-ALS Algorithm


	Related Work
	Parallelization of Gauss-Seidel
	Parallelization of ILU(0)
	Parallelization of Tensor Decomposition

	Partitioning and Reordering for Parallel Gauss-Seidel
	Distributed-Memory Parallel Gauss-Seidel (dmpGS)
	The Proposed Partitioning and Reordering Model
	Hypergraph Partitioning Model
	Definitions and Layout
	Recursive Bipartitioning Model for dmpGS

	Reordering within Row Blocks
	Illustration

	Experiments
	Partitioning Quality
	In-Block Reordering Quality
	Parallel Scalability

	Summary

	Partitioning and Reordering for Parallel Solution of Triangular Systems in ILU(0)
	Distributed-Memory Parallel ILU (dmpILU)
	The Proposed Partitioning and Reordering Model for dmpILU
	Hypergraph Partitioning Model
	Definitions and Layout
	Recursive Bipartitioning Model for dmpILU

	Reordering within Row Blocks

	Experimental Results
	Partitioning Quality
	In-Block Reordering Quality
	Parallel Scalability

	Summary

	Hypergraph Partitioning for Scalable Sparse Tensor Decomposition
	Communication Volume Requirement
	CartHP: Proposed HP Model
	Correctness of CartHP
	1D Factor Matrix Partitioning
	Mode Processing Order
	Extension to More Than Three Modes
	Balancing Constraint of CartHP

	deCartHP: Direct Extension of CBHP
	Deficiency of deCartHP

	Experiments
	Setting
	Dataset
	Parallel CPD-ALS Results
	Partitioning Overhead and Amortization

	Summary

	Conclusion



