
Identifying Key Developers using Artifact Traceability Graphs
H. Alperen Çetin

Bilkent University

Ankara, Turkey

alperen.cetin@bilkent.edu.tr

Eray Tüzün

Bilkent University

Ankara, Turkey

eraytuzun@cs.bilkent.edu.tr

ABSTRACT
Developers are the most important resource to build and maintain

software projects. Due to various reasons, some developers take

more responsibility, and this type of developers are more valuable

and indispensable for the project. Without them, the success of

the project would be at risk. We use the term key developers for
these essential and valuable developers, and identifying them is a

crucial task for managerial decisions such as risk assessment for

potential developer resignations. We study key developers under
three categories: jacks, mavens and connectors. A typical jack (of

all trades) has a broad knowledge of the project, they are familiar

with different parts of the source code, whereas mavens represent
the developers who are the sole experts in specific parts of the

projects.Connectors are the developers who involve different groups
of developers or teams. They are like bridges between teams.

To identify key developers in a software project, we propose

to use traceable links among software artifacts such as the links

between change sets and files. First, we build an artifact traceability

graph, then we define various metrics to find key developers. We

conduct experiments on three open source projects: Hadoop, Hive

and Pig. To validate our approach, we use developer comments

in issue tracking systems and demonstrate that the identified key

developers by our approach match the top commenters up to 92%.

CCS CONCEPTS
• Software and its engineering→ Programming teams.

KEYWORDS
key developers, most valuable developers, developer categories,

social networks, artifact traceability graphs, jack, maven, connector

ACM Reference Format:
H. Alperen Çetin and Eray Tüzün. 2020. Identifying Key Developers using

Artifact Traceability Graphs. In Proceedings of the 16th ACM International
Conference on Predictive Models and Data Analytics in Software Engineering
(PROMISE ’20), November 8–9, 2020, Virtual, USA. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3416508.3417116

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PROMISE ’20, November 8–9, 2020, Virtual, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8127-7/20/11. . . $15.00

https://doi.org/10.1145/3416508.3417116

1 INTRODUCTION
Software developmentmainly depends on human effort. In a project,

some developers take more responsibility, and the success rate of

the project heavily depends on these developers. Thus, they are

valuable and essential to develop and maintain the project, in other

words, they are the key developers of the project.
Developers leave and join projects due to numerous reasons such

as transferring to another project in the same company or leaving

a company to work in another one. When a developer position

is opened, it is filled by another developer in time. This is also

known as developer turnover, which is a common phenomenon

in software development and a critical risk for software projects

[19]. It is more critical when the key developers leave the project.

Therefore, identifying the valuable and indispensable developers is

a vital and challenging task for project management. Developers

can be valuable for a project in many different ways. All developers

contribute to the project in some way or another. For instance, a

developer may know a specific module very well, while another

one knows a little related to multiple modules. In our study, similar

to our previous work [7], we examine key developers under three

categories: jacks, mavens and connectors.
Our motivation for this categorization comes from The Tipping

Point by Gladwell [15]. The book discusses the reasons behind

word-of-mouth epidemics. In The Law of Few chapter, the author

justifies that three kinds of people are responsible for tipping ideas:

connector, salesman and maven. Connectors have connections to

different social groups, and they allow ideas to spread between these

groups. Salesmen have a charisma that allows them to persuade

people and change their decisions. Mavens have a great knowledge

of specific topics and thus help people to make informed decisions.

Since there are traceable links among software artifacts as the

connections among people in real life, we propose to use a similar

categorization, connector and maven, as described in the book to

find the key developers in a software project. A typical connector
represents a developer who is involved in different (sub)projects

or different groups of developers. Connecting divergent groups or

(sub)projects increases this type of developers’ significance because

they connect the developers who are not in the same group (i.e.

team) and touching different parts of a project means collective

knowledge from different aspects of the project. Maven category

represents the developers who are masters in details of specific

modules or files in the project. Being the rare experts of specific

parts of the source code makes these developers difficult to replace.

Jacks (of all trades) are the developers who have a broad knowl-

edge of the project. They use or modify files from different parts

of the project. Here, jack and connector definitions may interfere

with each other since both define key developers who touch dif-

ferent parts of the project. To make it more clear, jack category

purely focuses on knowledge when connector category focuses on

51

https://doi.org/10.1145/3416508.3417116
https://doi.org/10.1145/3416508.3417116

PROMISE ’20, November 8–9, 2020, Virtual, USA Çetin and Tüzün

connecting developers. "Jack" name comes from a figure of speech,

jack of all trades, to define people “who can do passable work at

various tasks”
1
. For the developers who have broad knowledge of

projects, we use jack to remind this phrase.

To discover these three types of key developers, in this study,

we address the following research questions (RQs):

RQ 1:How can we identify key developers in a software project?

RQ 1.1: How can we identify jacks in a software project?

RQ 1.2: How can we identify mavens in a software project?

RQ1.3:How canwe identify connectors in a software project?

In the following section, we share the related work. In Section

3, we explain our methodology addressing the research questions.

In Section 4, we share the details of the datasets and the important

points of the preprocessing. In Section 5, we perform case studies

in three different open source software (OSS) projects. In Section

6, we discuss the threats to validity of our study. In Section 7, we

present our conclusions and possible future works.

2 RELATEDWORK
In the literature, there are many studies on truck factor, developer

roles and social developer networks. In the following, we mention

them under separate sections.

2.1 Truck Factor
Truck factor (a.k.a. bus factor) is the answer to the following ques-

tion:What is the minimum number of developers who have to leave
the project before the project becomes incapacitated and has serious
problems? To address this problem, Avelino et al. [4] associated files

to authors by using the degree of authorship [14], then they found

the minimum number of developers whose total file coverage is

more than 50% of all files. Cosentino et al. [9] measured developers’

knowledge on artifacts (e.g. files, directories and project itself) with

different metrics such as "last change takes it all" and "multiple

changes equally considered". They defined primary and secondary

developers for the artifacts and proposed that the project will have

problems with the artifact if all primary and secondary developers

leave the project. Rigby et al. [23] studied a model on file abandon-

ment. In their study, the author of a line is assigned by using git
blame, and a file is abandoned when the authors of 90% of its lines

left the project. They proposed to remove developers randomly

until a specific amount of file loss occurs, and use the number of

removed developers as the truck factor at that point.

Moreover, some researchers published empirical studies on ex-

isting truck factor algorithms. Avelino et al. [3] investigated aban-

doned OSS projects. In their definition, a project is abandoned when

all truck factor developers leave. Ferreira et al. [12] performed a

comparative study on truck factor algorithms and made a compre-

hensive discussion on them frommany different viewpoints such as

the accuracy of the reported results in the studies and the reasons

why the truck factor algorithms fail at some circumstances.

2.2 Developer Roles and Social Networks
There has been a number of studies examined developer types

from different perspectives. Kosti et al. [18] investigated archetypal

1
https://www.merriam-webster.com/dictionary/jack-of-all-trades

personalities of software engineers. They chose extraversion and

conscientiousness as their main criteria and focused on the binary

combinations of them. Cheng and Guo [8] made an activity-based

analysis of OSS contributors, then adopted a data-driven approach

to find out the dynamics and roles of the contributors. Bella, Sillitti

and Succi [11] classified OSS contributors as core, active, occasional

and rare developers. Also, there are studies examined the core

and periphery [10, 16], hero [1], and key developers [20] in OSS

projects. Likewise, Zhou and Mockus [28] claimed that Long Term

Contributors (LTCs) are valuable for projects. They all have similar

definitions, and in Section 5.3, we further discuss these studies by

comparing with our study.

Besides developer types, researchers worked on communication

networks of developers. Wu and Goh [27] studied the long term

effects of communication patterns on success and performed ex-

periments on how graph centrality, graph density and leadership

centrality affect the success of OSS projects. Also, Kakimoto et al.

[17] worked on knowledge collaboration through communication

tools. They applied social network analysis to 4 OSS communities,

and partially verified their hypothesis, which claims "Communica-

tions are actively encouraged before/after OSS released, especially

among community members with a variety of roles but not among

particular members"[17]. Moreover, Allaho and Lee [2] conducted

a social networks (SN) analysis on OSS projects and found that OSS

SNs follow a power-law distribution which means a small number

of developers dominate the projects.

3 METHODOLOGY
To identify the key developers in a project, first we need to construct

an artifact traceability graph as described in Section 3.1. Afterwards,

from Section 3.2 to Section 3.4, we will explain our methodology

for each corresponding research question.

3.1 Artifact Traceability Graph
Artifact traceability graphs include software artifacts and the con-

nections between them. We denote nodes for software artifacts,

which are developers, change sets (e.g. commits in Git), source files

and issues. Then, we denote undirected edges for the relations (e.g.

commit, review, include and linked) between those artifacts. For

example, we add an edge for a commit relation between the devel-

oper node and the change set node if the developer is the author

of the change set. The edges are undirected because reaching from

one change set to another should be possible over the edges if they

include the same file. Developers commit or review change sets.

Change sets include a set of source files. Issues can be linked to a

set of change sets and vice versa.

In the graph, we denote distances for each edge. Distances of

the edges between developers and change sets are always zero

(0) because these connections are there in order to keep track of

who made commits and reviews. Other than commit and review
cases, edge distances are calculated by using the recency of the

bound change set. Our distance metric is inversely proportional to

the recency of the change set. Recency and distance metrics are

calculated as follows:

𝑅𝑒𝑐𝑒𝑛𝑐𝑦 = 1 − # of days passed

of days included to the graph

(1)

52

Identifying Key Developers using Artifact Traceability Graphs PROMISE ’20, November 8–9, 2020, Virtual, USA

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑅𝑒𝑐𝑒𝑛𝑐𝑦
(2)

Figure 1 shows a sample traceability graph, where the graph

includes 300 days of the project history, and the numbers in the

parentheses are the days that the commits are made. For example,

CS3 was committed at the 90
th
day (i.e. 210 days ago). All the edges

of CS3 have the same distance, which is calculated as follows.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑅𝑒𝑐𝑒𝑛𝑐𝑦
=

1

1 − 210

300

=
1

0.30
= 3.33

3.2 Jacks (RQ 1.1)
To find Jacks in a software project, we analyze the general knowl-

edge of the developers on the project. By looking at the history

of the project from its version control data, we can say that the

source files keep the knowledge, in other words, the know-how

of the project. There are studies to find the authors of source files

(e.g. degree of authorship [14]). Authorship is not only about being

the first author of the file but also about changing the source files

in time depending on the recency of the change. In our study, we

define reachability similar to this definition. If a developer can reach

a file, s/he knows that file. Also, multiple developers can reach the

same file at the same time. In the following, we explain how we

find reachable files and file coverage for each developer.

3.2.1 Finding Reachable Files: We define reachable files of a de-

veloper as the files that are reached by the developer through the

connections in the artifact traceability graph. For example, in Figure

1, D2 node can reach every file node in the graph through change

sets, issues and other developers if there is no distance limit (i.e. a

limit for the sum of distances on the edges in the graph). Actually,

every developer can reach every file if the graph is connected and

there is no distance limit. In that case, every developer would know

every file, and we could not distinguish which developers know

which source files. Also, assuming that all edges having the same

importance might be problematic since some edges represent recent

commits and reviews while others represent older ones. Our re-

cency and distance definitions are utilized here to distinguish these

types of situations. For example, the distance between CS3 and F4

is 3.33 while the distance between CS4 and F5 is 1.67, and there are

around three months between the commit times of CS3 and CS4.

Therefore, to handle these situations, we define the following rules:

(1) We need to set a threshold for distance while reaching from

one node to another. For example, D2 cannot reach F5 if the

threshold is 5 because 3.33 + 1.67 + 1.67 = 6.67 and 6.67 is

beyond the threshold 5.

(2) One developer cannot reach files through other developers

because it would transfer reachable files of a developer to

another developer if the distance threshold is large enough.

For example, in Figure 1, D2 cannot reach F1 through D1,

even if the distance threshold 308.33 or more.

Distance threshold is a parameter, and it depends on the distance

formula given in Equation (2). Due to its nature, distance goes to

infinity when recency goes to zero. In the graph, the oldest relations

are the relations from the first day, and their edges have the highest

distance. In this case, their distance is calculated as follows:

CS2
(60) F2

I2

D1 0

F3

D2 CS3
(90) F4

I3CS4
(180)

D3

F5

 5

 5

 5

 3.33

 3.33 0

 3.33

 1.67

 1.67

 0

CS1
(1)

 0

F1 300 I1 300

Figure 1: Sample artifact traceability graph. Some nodes and
edges are highlighted to illustrate how the reachable files by
D2 are found. (D: Developer, F: File, CS: Change Set, I: Issue)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑅𝑒𝑐𝑒𝑛𝑐𝑦
=

1

1 − 299

300

=
1

1

300

= 300

Therefore, we need to set our threshold to 300 if we want to use

every direct relation in the graph. Since almost all recently changed

files are reachable by the developers who have recent commits in

that case, using 300 as threshold would not enable us to distinguish

which developers know which files.

We follow a simple way while deciding the distance threshold.

In a 300-day graph, the edges with 0.1 or less recency belong to the

change sets committed in the first 30 days. The rest of the graph

corresponds to 90% of the time covered in the graph. Therefore,

we can set the distance threshold to 10, which allows us to use all

direct relations from the last 90% of the days in the graph. Also, if

we set it to 5, 80% of the time would be covered. After this point, we

continue with 10 as the distance threshold unless otherwise stated.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑅𝑒𝑐𝑒𝑛𝑐𝑦
=

1

1 − 270

300

=
1

30

300

=
1

0.1
= 10

Figure 1 shows how reachable files for D2 are found in the sample

graph. The highlighted files (F3, F4, F5) are reachable by D2. While

finding these reachable files, we run a depth first search (DFS)

algorithm starting from D2 with a stopping condition for reaching

the distance threshold. The highlighted edges show the visited edges

when DFS is started from D2 node. Also, the DFS algorithm does

not go through another developer node. For example, the algorithm

stopped when it encountered with the node of D1. Algorithm 1

shows the pseudo code for finding reachable files for each developer.

3.2.2 Identifying Jacks: While finding jacks, we sort the developers

in descending order according to their file coverage in the software

project. File coverage is simply the ratio of the number reachable

files by the developer to the number of all files in the project, not

just currently available files in the graph. Equation 3 shows the file

coverage of some developer 𝑑 .

𝐹𝑖𝑙𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑑 =
of reachable files by 𝑑

of all files in the project

(3)

53

PROMISE ’20, November 8–9, 2020, Virtual, USA Çetin and Tüzün

Algorithm 1 Finding Reachable Files

1: function DevToFiles(𝑔𝑟𝑎𝑝ℎ, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

2: 𝑑𝑒𝑣𝑠 ← 𝐺𝑒𝑡𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠 (𝑔𝑟𝑎𝑝ℎ) ⊲ list

3: 𝑑𝑒𝑣𝑇𝑜𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐹𝑖𝑙𝑒𝑠 ← 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 () ⊲ string to list

4: for 𝑑𝑒𝑣 in 𝑑𝑒𝑣𝑠 do
5: 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐹𝑖𝑙𝑒𝑠 ← 𝐷𝐹𝑆 (𝑔𝑟𝑎𝑝ℎ,𝑑𝑒𝑣, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
6: 𝑑𝑒𝑣𝑇𝑜𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐹𝑖𝑙𝑒𝑠.𝑝𝑢𝑡 (𝑑𝑒𝑣, 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐹𝑖𝑙𝑒𝑠)
7: return 𝑑𝑒𝑣𝑇𝑜𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐹𝑖𝑙𝑒𝑠

Algorithm 2 Finding Jacks

1: function FindJacks(𝑔𝑟𝑎𝑝ℎ)

2: 𝑑𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝑠 ← 𝐷𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝑠 (𝑔𝑟𝑎𝑝ℎ, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
3: 𝑑𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 () ⊲ string to float

4: 𝑛𝑢𝑚𝐹𝑖𝑙𝑒𝑠 ← 𝐺𝑒𝑡𝑁𝑢𝑚𝐹𝑖𝑙𝑒𝑠 (𝑔𝑟𝑎𝑝ℎ)
5: for 𝑑𝑒𝑣 in 𝑑𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝑠.𝑘𝑒𝑦𝑠 () do
6: 𝑛𝑢𝑚𝐷𝑒𝑣𝐹𝑖𝑙𝑒𝑠 ← 𝑑𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝑠 .𝑔𝑒𝑡 (𝑑𝑒𝑣) .𝑙𝑒𝑛𝑔𝑡ℎ()
7: 𝑓 𝑖𝑙𝑒𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← 𝑛𝑢𝑚𝐷𝑒𝑣𝐹𝑖𝑙𝑒𝑠

𝑛𝑢𝑚𝐹𝑖𝑙𝑒𝑠
8: 𝑑𝑒𝑣𝑇𝑜𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒.𝑝𝑢𝑡 (𝑑𝑒𝑣, 𝑓 𝑖𝑙𝑒𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)
9: return 𝑆𝑜𝑟𝑡𝐵𝑦𝑉𝑎𝑙𝑢𝑒 (𝑑𝑒𝑣𝑇𝑜𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)

Table 1: Reachable files and file coverages for each developer
in the sample artifact traceability graph

Developer Reachable Files File Coverage
D1 F2 and F3 40%

D2 F3, F4 and F5 60%

D3 F3, F4 and F5 60%

Table 1 shows the reachable files and file coverages for each

developer in the sample artifact traceability graph given in Figure 1.

Algorithm 2 shows the pseudo code of finding jacks. First, it finds

reachable files for each developer, then calculates file coverage

scores for developers. Finally, it returns developers in descending

order according to their file coverage scores.

3.3 Mavens (RQ 1.2)
By definition, mavens are the rare experts of specific parts, files

or modules of the project. As we stated in Section 3.2, the source

files in a software project are the reflection of the knowledge (i.e.

know-how). Since mavens are the rare expert developers on specific

parts, they have knowledge that the others do not have. Thus, we

need to find lesser-known parts of the project.

3.3.1 Rarely Reached Files: First, reaching a file through the edges

in the artifact graph means knowing the file. To meet the maven

definition, we can use the files only reached by a limited number

of developers. We call this type of files rarely reached files, and we

set this limit to 1, which means that the files reached by only one

developer are the rarely reached files. This could be a configurable

parameter according to the size of the project. For example, for the

graph given in Figure 1, F2 is a rarely reached file. Actually it is the

only one as it can be seen in Table 1.

Algorithm 3 shows how to find rarely reached files. It is assumed

that 𝑑𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠 is initialized with developer names and empty

Algorithm 3 Finding Rarely Reached Files

1: function DevToRareFiles(𝑔𝑟𝑎𝑝ℎ, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

2: 𝑑𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝑠 ← 𝐷𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝑠 (𝑔𝑟𝑎𝑝ℎ, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
3: 𝑓 𝑖𝑙𝑒𝑇𝑜𝐷𝑒𝑣𝑠 ← 𝐼𝑛𝑣𝑒𝑟𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝑑𝑒𝑣𝑇𝑜𝐹𝑖𝑙𝑒𝑠)
4: 𝑑𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠 ← 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 () ⊲ string to list

5: for 𝑓 𝑖𝑙𝑒 in 𝑓 𝑖𝑙𝑒𝑇𝑜𝐷𝑒𝑣𝑠.𝑘𝑒𝑦𝑠 () do
6: 𝑑𝑒𝑣𝑠 ← 𝑓 𝑖𝑙𝑒𝑇𝑜𝐷𝑒𝑣𝑠.𝑔𝑒𝑡 (𝑓 𝑖𝑙𝑒)
7: if devs.length() is 1 then
8: 𝑑𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠.𝑔𝑒𝑡 (𝑑𝑒𝑣𝑠.𝑔𝑒𝑡 (0)).𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 𝑖𝑙𝑒)
9: return 𝑑𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠

Algorithm 4 Finding Mavens

1: function FindMavens(𝑔𝑟𝑎𝑝ℎ, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

2: 𝑑𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠 ← 𝐷𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠 (𝑔𝑟𝑎𝑝ℎ, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
3: 𝑑𝑒𝑣𝑇𝑜𝑀𝑎𝑣𝑒𝑛𝑛𝑒𝑠𝑠 ← 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 () ⊲ string to float

4: 𝑛𝑢𝑚𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠 ← 𝐺𝑒𝑡𝑁𝑢𝑚𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠 (𝑔𝑟𝑎𝑝ℎ)
5: for 𝑑𝑒𝑣 in 𝑑𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠 .𝑘𝑒𝑦𝑠 () do
6: 𝑛𝑢𝑚𝐷𝑒𝑣𝐹𝑖𝑙𝑒𝑠 ← 𝑑𝑒𝑣𝑇𝑜𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠.𝑔𝑒𝑡 (𝑑𝑒𝑣).𝑙𝑒𝑛𝑔𝑡ℎ()
7: 𝑚𝑎𝑣𝑒𝑛𝑛𝑒𝑠𝑠 ← 𝑛𝑢𝑚𝐷𝑒𝑣𝐹𝑖𝑙𝑒𝑠

𝑛𝑢𝑚𝑅𝑎𝑟𝑒𝐹𝑖𝑙𝑒𝑠
8: 𝑑𝑒𝑣𝑇𝑜𝑀𝑎𝑣𝑒𝑛𝑛𝑒𝑠𝑠.𝑝𝑢𝑡 (𝑑𝑒𝑣,𝑚𝑎𝑣𝑒𝑛𝑛𝑒𝑠𝑠)
9: return 𝑆𝑜𝑟𝑡𝐵𝑦𝑉𝑎𝑙𝑢𝑒 (𝑑𝑒𝑣𝑇𝑜𝑀𝑎𝑣𝑒𝑛𝑛𝑒𝑠𝑠)

lists. Also, 𝐼𝑛𝑣𝑒𝑟𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔 function generate a mapping from val-

ues to keys. For instance, it inverts the hashmap {𝐷1 : [𝐹1], 𝐷2 :

[𝐹1, 𝐹2]} to the hashmap {𝐹1 : [𝐷1, 𝐷2], 𝐹2 : [𝐷2]}.

3.3.2 Identifying Mavens: To find mavens, we consider the number

of the rarely reached files of the developers. For a better comparison

among developers, we define mavenness of a developer 𝑑 as follows:

𝑀𝑎𝑣𝑒𝑛𝑛𝑒𝑠𝑠𝑑 =
of rarely reached files of 𝑑

of all rarely reached files

(4)

While finding mavens, first we find reachable files as explained

in Section 3.2.1, then we find rarely reached files as explained in Sec-

tion 3.3.1 and given in Algorithm 3, finally we calculate mavenness

scores and sort the developers according to them in descending

order. Algorithm 4 shows the procedure.

3.4 Connectors (RQ 1.3)
Connectors are the developers who are involved in different sub-

projects or teams. The main idea behind the connector definition

is connecting developers who have no other connections, in other

words, being the bridge between different groups of developers.

Using node centrality, we identify this type of developers on artifact

traceability graphs defined in Section 3.1.

3.4.1 Calculating Betweenness Centrality: Betweenness centrality
of a node is based on the number of shortest paths passing through

that node. Freeman [13] discussed that betweenness centrality is

related to control of communication. Also, Bird et al. [5] used be-

tweenness centrality to find the gatekeepers in the social networks

of mail correspondents. Therefore, we hypothesize that between-

ness centrality can be a measure to find connectors. Betweenness

centrality of some node 𝑣 where 𝑉 is the set of nodes, 𝑠 and 𝑡 are

some nodes other than 𝑣 :

54

Identifying Key Developers using Artifact Traceability Graphs PROMISE ’20, November 8–9, 2020, Virtual, USA

𝑐𝐵 (𝑣) =
∑

𝑠≠𝑣≠𝑡𝜖𝑉

of shortest paths passing through v
of shortest (s,t)-paths

(5)

For a better comparison among developers, betweenness values

are normalized with 2/((𝑛−1) (𝑛−2)) where 𝑛 is the number nodes

in the graph. For betweenness centrality related operations, we

use NetworkX package
2
, which uses faster betweenness centrality

algorithm of Brandes [6].

To use betweenness centrality, we need a graph composed of

only developers because we are looking for developers who connect

other developers to each other. Sulun et al.[26] proposed a metric,

know-about, to find how much developers know the files. They

found different paths between the files and the developers in the

artifact graph, and defined know-about as the summation of the

reciprocals of the path lengths. Similarly, we propose to use different

paths between developers to find how much they are connected in

the artifact graph. The next section explains the details.

3.4.2 Constructing the Developer Graph: Developer graph is a pro-

jection of the artifact traceability graph. It defines distances directly

between developers in a different way, not as we mentioned in

Section 3.1. When projecting an artifact graph to a developer graph,

we find all different paths between each developer pair with a depth

limit of 4. Since connector definition is not about knowing the files

but about connecting the other developers, recency is not a concern

and it is assumed that all edges in the artifact graph have the same

distance of 1. Thus, depth limit 4 means that the maximum path

length can be 4. Therefore, in the traceability graph, two developers

can be connected through the paths with length of 2 (through a

change set node), or the paths with length of 4 (through 2 differ-

ent change set nodes and a file node connected to them). These

kinds of paths can be seen in the sample graph in Figure 2. We find

the paths between two developers through software artifacts, not

through other developers. For example, in Figure 2, there is a path

between D2 and D3 through D1, but we interpret this path as the

combination of two paths: D1-D2 and D1-D3. Since the develop-

ers in the same team potentially work on the same group of files

and these files will be close to each other (they will be connected

through change sets because they will be changed by the same

group frequently) in the traceability graph, the method mentioned

above finds the paths between the developers in the same group.

So, the developers who have connections in different groups will

be favored in betweenness centrality calculations.

After finding the paths between each developer pair, we define

a new distance metric, Reciprocal of Sum of Reciprocal Distances

(RSRD). We define RSRD as follows when 𝐷 denotes the set of

all distances between two developers (i.e. the set of lengths of all

different paths between two developers) and 𝑑 is a distance in 𝐷 :

𝑅𝑆𝑅𝐷 =

[∑
𝑑𝜖𝐷

𝑑−1
]−1

(6)

Reciprocals of distances make larger contributions to the score

for closer nodes. For example,
1

2
> 1

4
and the path with length of

2 make a larger contribution. After summing the contributions of

2
https://networkx.github.io/

D1

D2

D4

D3

CS2

CS3

CS1

F3F2

F1

F4

 include

 include

 include

 include

 include

 include

 commit

 commit

 commit review

review

review

Figure 2: Another sample artifact traceability graph. (D: De-
veloper, F: File, CS: Change Set)

D1 D2

D4 D3

D1 D2

D4 D3

RSRD

2,4,4,4

4,4,4 4,4,4

4

2,4

2,4

0.8

1.33 1.33

1.3
3

1.33

Figure 3: Sample developer graph. (D: Developer)

all reciprocal distances, larger values represent a stronger connec-

tion. For example, the first one means a stronger connection when

the first one is
1

2
+ 1

4
= 3

4
and the second one is

1

4
+ 1

4
= 2

4
. To

use betweenness centrality, we need to inverse the result of this

summation, because the nodes with stronger connections need to

be closer. For example, for the numbers in the previous example,

4

3
= 1.33 is smaller than

4

2
= 2, and it means a closer relation. At the

end, a smaller RSRD score represents a closer relationship between

two developers, just like any other distance metric.

Figure 3 shows how the developer graph is constructed from the

sample artifact graph in Figure 2. For example, (2, 4, 4, 4) are the

distances of the different paths between D1 and D2 in Figure 2, and

the RSRD between these two developers is calculated as follows:

(2−1 + 4−1 + 4−1 + 4−1)−1 =
[
1

2

+ 1

4

+ 1

4

+ 1

4

]−1
=

[
5

4

]−1
= 0.8

Algorithm 5 shows the pseudo code for calculating RSRD for a

given graph and depth limit. First, it runs a DFS algorithm starting

from each developer to find the paths to other developers. Second,

it removes duplicates because the DFS results include paths for two

ways. For example, DFS finds paths for both (𝐷1, 𝐷2) and (𝐷2, 𝐷1),
and it removes (𝐷2, 𝐷1). Then, for each developer pair, it calculates

their RSRD value by using the length of the paths.

3.4.3 Identifying Connectors: When identifying connectors, we use

the betweenness centrality of developers in the developer graph.

Algorithm 6 shows the procedure. First, it finds different paths and

RSRD values for each developer pair as mentioned above. Then,

it creates a developer graph with these RSRD values and finds

betweenness centrality for each developer in that graph. Finally, it

sorts developers in descending order according to their centrality.

55

PROMISE ’20, November 8–9, 2020, Virtual, USA Çetin and Tüzün

Algorithm 5 Calculating RSRD

1: function CalculateRsrd(𝑔𝑟𝑎𝑝ℎ,𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ)

2: 𝑑𝑒𝑣𝑠 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠 (𝑔𝑟𝑎𝑝ℎ) ⊲ list

3: 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑃𝑎𝑡ℎ𝑠 ← 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 () ⊲ string pair to list

4: for start in devs do
5: 𝑜𝑡ℎ𝑒𝑟𝐷𝑒𝑣𝑠 ← 𝑑𝑒𝑣𝑠 − 𝑠𝑡𝑎𝑟𝑡
6: 𝑝𝑎𝑡ℎ𝑠 ← 𝐷𝐹𝑆 (𝑔𝑟𝑎𝑝ℎ, 𝑠𝑡𝑎𝑟𝑡, 𝑜𝑡ℎ𝑒𝑟𝐷𝑒𝑣𝑠,𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ)
7: for path in paths do
8: 𝑒𝑛𝑑 ← 𝑝𝑎𝑡ℎ.𝑔𝑒𝑡𝐿𝑎𝑠𝑡 ()
9: 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑃𝑎𝑡ℎ𝑠.𝑔𝑒𝑡 ((𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)) .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑎𝑡ℎ)
10: 𝑅𝑒𝑚𝑜𝑣𝑒𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 (𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑃𝑎𝑡ℎ𝑠)
11: 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑅𝑠𝑟𝑑 ← 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 ()
12: for (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) in 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑃𝑎𝑡ℎ𝑠.𝑘𝑒𝑦𝑠 () do
13: 𝑠𝑟𝑑 ← 0

14: 𝑝𝑎𝑡ℎ𝑠 ← 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑃𝑎𝑡ℎ𝑠.𝑔𝑒𝑡 ((𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑))
15: for path in paths do
16: 𝑠𝑟𝑑 ← 𝑠𝑟𝑑 + 1

𝑝𝑎𝑡ℎ.𝑙𝑒𝑛𝑔𝑡ℎ ()
17: 𝑟𝑠𝑟𝑑 ← 1

𝑠𝑟𝑑
18: 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑅𝑠𝑟𝑑.𝑝𝑢𝑡 ((𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑), 𝑟𝑠𝑟𝑑)
19: return 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑅𝑠𝑟𝑑

Algorithm 6 Finding Connectors

1: function FindConnectors(𝑔𝑟𝑎𝑝ℎ)

2: 𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑅𝑠𝑟𝑑 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑠𝑟𝑑 (𝑔𝑟𝑎𝑝ℎ)
3: 𝑑𝑒𝑣𝐺𝑟𝑎𝑝ℎ ← 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝐺𝑟𝑎𝑝ℎ(𝑑𝑒𝑣𝑃𝑎𝑖𝑟𝑇𝑜𝑅𝑠𝑟𝑑)
4: 𝑑𝑒𝑣𝑇𝑜𝐵𝑡𝑤𝑛 ← 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 (𝑑𝑒𝑣𝐺𝑟𝑎𝑝ℎ)
5: return 𝑆𝑜𝑟𝑡𝐵𝑦𝑉𝑎𝑙𝑢𝑒 (𝑑𝑒𝑣𝑇𝑜𝐵𝑡𝑤𝑛)

4 DATASET
4.1 Selecting Datasets
As we mentioned before, we use software artifacts from project

history to construct the artifact traceability graph. More specifically,

our approach needs change sets (i.e. commits) and their related data

such as author, changed files and linked issues. Rath and Mader [21]

published datasets for 33 OSS projects, SEOSS 33. All 33 datasets are

available online
3
. Out of 33 projects, we selected Apache Hadoop

4
,

Apache Hive
5
and Apache Pig

6
since these three projects have the

highest issue and change set link ratios among SEOSS 33 datasets.

The datasets include data from version control systems (e.g. Git)

and issue tracking systems (e.g. Jira). Table 2 shows the details for

each dataset with a varying number of issues and change sets.

4.2 Preprocessing
Data is already extracted from the version control and issue track-

ing platforms and provided in an SQL dataset. Nonetheless, we

processed the data in order to prevent errors and calculate specific

fields. We did not use all information in the dataset; change_set,
code_change and change_set_link tables were enough to create

nodes for developers, changes sets, issues and files.

3
https://bit.ly/2wukCHc

4
https://hadoop.apache.org/

5
https://hive.apache.org/

6
https://pig.apache.org/

We processed change sets from change_set table ordered by

commit_date, extracted the data required and dumped them into

a file as JSON formatted string of change sets in the temporal

order. For each change set, we extracted the following information:

commit hash, author, date (commit_date), issues linked, set of file
paths with their change types, number of files in the project (after

the change set).

In the data extraction, the following points are important:

• We only extracted the code changes in java files which, we

assumed, end with ".java" extension. If a change set has no

code change including a java file, we ignored it completely.

• We ignored merge change sets (is_merge is 1) since they

could inflate the contributions of some developers [1].

• We created a look-up table for each project to detect different

author names of the same authors. They are createdmanually

by looking at the developer names and their email addresses.

For example, "John Doe" and "Doe John" can be the same

developer if they share a common email address. We used

this table to correct the author names by replacing them.

• In order to calculate mavenness score (See Section 3.3), we

needed the number of files in the project after each change

set. Thus, we tracked the set of current files over time. After

each code change, we removed the file if its change type is

DELETE, and we added the file if its change type is ADD.
• Git does not track RENAME situations explicitly, and the

dataset [21] did not share such information about the code

changes. When a file is renamed, it is a DELETE and an ADD
for Git (if there is no change in the file)

7
. In the code_change

table, there are three change_types: ADD, DELETE andMOD-
IFY. In that case, we needed to handle renames because it

would affect our traceability graph and change the knowl-

edge balance among developers. We treated (DELETE, ADD)
pairs in the same change set (commit) as RENAME when the

following conditions were satisfied:

– Both have the same file name (file paths are different).

– The number of lines deleted in DELETE code change and

the number of lines added in ADD code change are equal.

So, our rename algorithm only detects file path changes and

does not check file contents. For example, it detects RENAME

when "example.java" moved from "module1/example.java"

to "module2/example.java" but does not detect it when the

file content is changed. Since we used the datasets from

SQL tables [21] directly and we did not mine them from Git

repositories ourselves, we used the heuristic give. above.

• In Hadoop dataset, we detected that there were duplicate

commits. Even though the commit hashes were different,

the rest of the extracted data were identical. This situation

only applies for Hadoop, the same preprocessing steps did

not produce such a situation for Hive and Pig. We removed

these change sets by using string comparison for all parts of

the JSON string except the commit hash.

Table 2 show the number of change sets for each dataset after

preprocessing. Also, we share our implementation online
8
, and it

includes the preprocessing script.

7
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

8
https://github.com/hacetin/KeyDev-PROMISE20/

56

Identifying Key Developers using Artifact Traceability Graphs PROMISE ’20, November 8–9, 2020, Virtual, USA

Table 2: Dataset Details

Project Before Preprocessing [21] After Preprocessing

Time Period
(months)

of
Issues

of
Change
Sets

Linked Change
Sets to a Set
of Issues (%)

of
Change
Sets

of Change Sets
added or modified
files more than 10

of Change Sets
added or modified
files more than 50

Hadoop 150 39,086 27,776 97.13 15178 1900 (12.5%) 129 (0.8%)

Hive 113 18,025 11,179 96.34 9030 1062 (11.8%) 127 (1.4%)

Pig 123 5234 3134 92.85 2401 240 (10.0%) 32 (1.3%)

4.3 Handling Large Change Sets
Change set means a set of file changes, and it is called large change

set when the number of changed files is more than a specific number.

For example, initial commits of a project most probably include

many files, and it is a typical example for large commits. Another

example is moving a project into another project. In that case, its

change set includes all the files in the added project.

Committing a large number of files in one change set is not

considered to be a good practice in software engineering. Sadowski

et al.[25] claim that 90% of the changes in Google modify less than

10 files. Also, Rigby and Bird [22] excluded the changes that contain

more than 10 files in their case studies. In our experiments, we use a

looser limit for excluding change sets. In the following, we explain

the details on removing the large change sets:

• Regardless of the size of a change set, we apply changes to

the traceability graph for DELETE and RENAME types. Since

the knowledge of deleted files is not required after that point

and renamed files need to proceed with their new names.

• If a change set includes more than 50 files which are added or

modified, we ignore these ADD and MODIFY code changes.

We did not use 10 as the limit because we did not want to

lose 10.0-12.5% of the datasets (See Table 2). Also, sometimes

large commits can exist even though it is not a good practice.

Our purpose is handling initial commits of the projects and

project movements. So, choosing 50 is a good trade-off for the

limit of the number of files added or modified in a change set.

It is not that small to cause losing 10.0-12.5% of the datasets

and not that large to include commits like initial commits.

5 CASE STUDIES
5.1 Experimental Setup
In the experiments, we used NetworkX package

2
for graph op-

erations. In order to prevent potential bugs, we used its built-in

functions whenever possible (e.g. calculating betweenness central-

ity, finding paths between developers). However, we implemented

the DFS algorithm for reachable files in Algorithm 1 because it was

very specific to our case (e.g. the stopping condition is different).

Our source code is available online
8
.

How much time the artifact graph should cover is a parame-

ter in our method. We chose a sliding window approach over an

incremental window in time, in other words, the artifact graph al-

ways includes the change sets committed in a constant time period.

Followings are the reasons behind this choice:

• If the time period of the graph changes over time, the mean-

ing of the recency changes. For example, 0.9 recency means

1 2 3 ... 365 366 367 368 369 ...

1 2 3 ... 365 366 367 368 369 ...

1 2 3 ... 365 366 367 368 369 ...

Step 1

Last
Step

Step 2

33673001 3002 3003 ... 3365 3366

 TIMELINE (days)

1 year (365 days)

33673001 3002 3003 ... 3365 3366

33673001 3002 3003 ... 3365 3366

Figure 4: Experimental Setup

30 days ago in a 300-day graph while the same recency corre-

sponds to 50 days ago in a 500-day graph. Thus, keeping the

time period (sliding windows size) constant enables recency

scores to have the same meaning in different time points.

• Keeping every artifact from history enlarges the graph every

day, and the algorithms run slower in larger graphs. There-

fore, removing unnecessary parts (the artifacts older than

one year) means less run time.

• In OSS projects, there is no data about leaving developers. If

we keep every artifact from the history, we should calculate

scores even for former developers. Therefore, removing old

artifacts enables us to keep track of the current developers. If

the graph keeps the last 365 days, we assume the developers

who contributed to the project in the last 365 days are the

current active developers.

We used a 1-year (365 days) sliding window in our experiments.

Figure 4 shows how the included days change in iterations. The

numbers on the figure come from the Hive dataset. "3367 days"

corresponds to the number of days after preprocessing. There are

3003 iterations including the initial window. We tracked the dates

over change sets. When forwarding the window one day, firstly,

we removed the change sets of the first day of the window. Then,

we added the change sets of the day after the last day of the win-

dow. For each iteration, we calculated scores for jacks, mavens and

connectors, then, we reported them and their scores in descending

order. The same procedure was repeated for Hadoop and Pig.

5.2 Results
Since we propose to use jack, maven and connector as the key

developer categories for the first time and there is no classification

of developers for these types in the literature, we are not able to

compare our approach with others. Also, since we conducted our

experiments on OSS projects, we have no data for developer labels

for these projects. However, we can show that the results of our

approach are compatible with other statistics of the projects.

To validate our approach, we propose to use developers’ com-

ments on issues. Jacks are the developers who have broad knowl-

edge by definition, and we identified them by finding their file

57

PROMISE ’20, November 8–9, 2020, Virtual, USA Çetin and Tüzün

Table 3: Mean accuracy percentages for the key developers of our approach vs. the developers selected randomly in Monte
Carlo simulation

Key Developer
Category Projects Top

Commenters
Key Developers Randomly Selected Developers

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

JACKS

HADOOP

Top-1 6.82 19.04 27.10 50.47 1.97 5.88 9.79 19.56

Top-3 - 22.65 30.20 47.81 - 5.58 9.30 18.59

Top-5 - - 29.62 47.40 - - 9.60 19.18

Top-10 - - - 41.75 - - - 19.14

HIVE

Top-1 44.16 71.43 81.65 92.21 6.24 18.73 31.23 58.17

Top-3 - 54.78 70.20 84.12 - 17.46 29.10 54.17

Top-5 - - 57.02 73.28 - - 26.60 49.53

Top-10 - - - 55.31 - - - 38.84

PIG

Top-1 59.16 86.23 88.90 89.91 11.77 35.41 56.35 83.55

Top-3 - 75.27 85.26 89.99 - 34.95 55.61 83.05

Top-5 - - 66.91 79.66 - - 46.61 73.73

Top-10 - - - 59.15 - - - 55.84

INTERSECTION
OF ALL

(Sorted by
Jack Score)

HADOOP

Top-1 7.22 21.33 34.97 59.04 1.96 5.87 9.77 17.48

Top-3 - 23.80 32.68 52.05 - 5.57 9.28 16.65

Top-5 - - 31.26 49.08 - - 9.59 17.16

Top-10 - - - 44.38 - - - 17.04

HIVE

Top-1 56.94 75.92 81.15 87.98 6.23 10.92 12.50 14.68

Top-3 - 49.40 55.17 61.33 - 10.38 11.90 14.01

Top-5 - - 38.86 44.94 - - 10.79 12.68

Top-10 - - - 30.48 - - - 10.70

PIG

Top-1 66.26 86.41 86.63 86.63 11.78 22.36 23.58 23.58

Top-3 - 55.54 56.30 56.30 - 22.44 23.78 23.78

Top-5 - - 39.39 39.39 - - 20.73 20.73

Top-10 - - - 21.29 - - - 15.45

coverage in the project. Therefore, the jacks should be involved

in the issues such as bugs and enhancements more than other de-

velopers. We claim that, by definition, the top jacks and the top

commenters in the project’s issue tracking system (e.g. Jira) should

be mostly the same developers. However, we cannot claim that

mavens and connectors should be among the top commenters. To

validate the results of these categories, we offer to use the develop-

ers who are jack, maven and connector at the same time, in other

words, the intersection of all kinds of key developers. In that way,

we include mavens and connectors to our validation, and we show

how the intersection developers overlap with the top commenters.

While using the intersection developers, we sorted them by their

jack score (i.e. file coverage) since we cannot combine betweenness

centrality, mavenness score and file coverage properly. So, in the

case studies, we examined the jacks and the intersection developers.

The datasets [21] we used for experiments include data from

issue tracking systems (e.g. Jira). In the change_set_link table, there

are links between issues and change sets, which means we can use

the comments made to issues in the traceability graph. The datasets

supply the display_name of the commenters in issue_comment table.
The names in the display_name field matches the developer names

in author field of change_set table. So, we can find which developers

made how many comments to the issues in the graph. To increase

the validity of the number of comments for each developer, we

corrected the commenter names by using the look-up table created

manually in preprocessing (See Section 4.2).

The Key Developers column in Table 3 shows the accuracy of

our approach when we treat the top commenters as the actual key

developers (i.e. ground truth). "Top commenters" means a ranked

list of commenters according to the number of comments that they

made to the issues in the last year. The predicted key developers

by our model are consistent with the top commenters up to 92%.

Accuracy is calculated as shown in Equation 7, where 𝐾𝐷 is the

ranked list of key developers, 𝐶 is the ranked list of commenters,

𝐷 is the set of dates (i.e. days or iterations in Figure 4) and k refers

the numbers in Top-k phrases in the Table 3. For example, the

accuracy of day 𝑑 for (Top-3, Top-5) cell is calculated as follows:

If 𝐶𝑑 (3) = {𝐷1, 𝐷2, 𝐷3} and 𝐾𝐷𝑑 (5) = {𝐷1, 𝐷2, 𝐷4, 𝐷5, 𝐷6}, the
accuracy is

| {𝐷1,𝐷2} |
| {𝐷1,𝐷2,𝐷3} | =

2

3
= 0.67.

𝑀𝑒𝑎𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑘1, 𝑘2) =
1

|𝐷 |

𝐷∑
𝑑

|𝐶𝑑 (𝑘1) ∩ 𝐾𝐷𝑑 (𝑘2) |
|𝐶𝑑 (𝑘1) |

(7)

Since there is no comparable approach that finds our subcate-

gories of key developers, we used the Monte Carlo simulation as a

baseline approach. We randomly selected the key developers for

each day from the existing developers in the graph, in other words,

from the developers who committed changes to the source code in

the sliding window period. While producing random developers,

we considered the number of key developers in our results since

the simulation should provide random results in the same struc-

ture. For example, we selected 4 random developers if our approach

58

Identifying Key Developers using Artifact Traceability Graphs PROMISE ’20, November 8–9, 2020, Virtual, USA

found 4 jacks in that day even if 𝑘2 is 5. Then, we calculated mean

accuracies in the same way shown in Equation 7. This experiment

with random key developers is repeated 1000 times. The Randomly
Selected Developers column in Table 3 shows the average of the

accuracies of 1000 simulations. It can be seen that our approach is

more successful than the random model for all cases.

Hadoop, Hive and Pig have different scales. Pig is a small project

with tens of developers while the others have hundreds of develop-

ers in their whole history. Even though they both have hundreds

of developers and their time periods are not that different, Hadoop

has a lot more change sets and issues than Hive as shown in Table

2. The average number of active developers for each project, in

other words, the average number of developers in the traceability

graph over time are as follows: 9.05 in Pig, 35.08 in Hive and 49.86

in Hadoop. So, it is clear that Hadoop is a more active project than

Hive. Also, the differences between the results of projects in Table

3 infer the same conclusion. Both the results of our algorithms and

the results of Monte Carlo simulation show that the more active

developers exist, the harder it becomes to predict key developers.

Even though the accuracies are different among the projects due to

the fact mentioned above, our results are better than the results of

the random model for all cases. Also, the key developers predicted

by our approach and the top commenters overlap up to 92%.

5.3 Discussion
In this section, we discuss the studies which propose a definition

for core, hero, key or LTC developers similar to our definition.

Agrawal et al. [1] worked on hero developers in software projects.

According to their definition, a project has hero developers if 20% of

the developers made 80% of the contributions. Hero developers are

similar to key developers in our case, as projects mostly depends

on them. The authors provided a definition for the projects with

hero developers, then analysed hero and non-hero projects without

providing a validation. In our study, we subcategorized the key

developers into three categories and provided separate algorithms

to identify key developers.

Oliva et al. [20] worked on characterizing the key developers,

that is "the set of developers who evolve the technical core". First,

they detected the commits to core files in the project. Then, they

ranked the developers according to their core commit counts, and

considered first 25% of the list as key developers. Without validating

their key developers, they analyzed the identified key developers in

terms of contribution characteristics, communication and coordina-

tion within the project. Also, they only performed an experiment

on a small project with 16 developers. In our study, we investigated

our algorithms in three projects different in size, and validated our

key developers using top commenters in issue tracking systems.

Crowston et al. [10] examined the core and periphery of OSS

team communications. They analyzed if the three following meth-

ods produce similar results or not: the contributors named officially

(e.g. support manager, developer), the contributors who contribute

the most to the bug reports, and the contributors who are defined

by a pattern of interactions in bug tracking systems. Since they

used data from SourceForge
9
, they had access to official labels of

the contributors. In our case, Git repositories does not provide any

9
https://sourceforge.net/

labels for developer roles in the project and Apache organization

only provide the full list of current developers.

Joblin et al.[16] studied core and peripheral developers. The core

developers are the essential developers in the projects as the key

developers in our study. They worked on count-based (e.g. number

of commits as in [1]) and network-based (e.g. degree centrality in

developer graph from version control systems and mailing lists)

metrics. They established a ground truth by making a survey with

166 participants. We were not able to examine their data because

the project and survey data links are not accessible through their

website
10
. Also, their survey shows the actual core developers for

a snapshot of the time, while our approach provide results continu-

ously with a sliding window approach.

Zhou and Mockus [28] defined an LTC as "a participant who

stays with the project for at least three years and is productive".

They claimed that LTCs are crucial for success of the projects.

They mainly investigated how a new joiner become an LTC (i.e. a

valuable contributor). In our study, we investigated how to find key

developers rather than examining how new joiners evolve in time.

6 THREATS TO VALIDITY
Construct validity is about how the operational measures in the

study represent what is investigated according to the RQs [24]. We

used a dataset from another study[21], and their mining process

can potentially affect our results. To reduce the threat caused by

the data mining process, we eliminated the possible problems (e.g.

we corrected author names manually by looking at their names and

email addresses.) in preprocessing (See Section 4.2). However, there

might still be problems related to data integrity.

Internal validity concerns if the causal relations are examined

or not [24]. While building the graphs and defining algorithms, we

made many decisions related to thresholds including choosing 50

as the limit for the number of files added or modified in a change

set, choosing 10 as the distance threshold in file reachability and

using 365-day (1-year) sliding window in the experiments. We tried

various options and made the final decisions after evaluating their

results. In the corresponding sections of this study, we shared the

justifications behind these decisions. For example, we chose 10 as

the distance threshold since it corresponds to 90% of the covered

time in the graph because of the nature of the distance formula.

The potential errors in the implementation of our approach

threaten the validity of our results. We benefited from a stable

graph package NetworkX
2
in our operations and used its methods

whenever possible, for example, betweenness centrality calcula-

tions and DFS for finding paths between developers. To prevent

potential bugs, we performed multiple code review sessions with a

third researcher. Also, we shared the implementation online
8
for

replicability of the results.

We used developer comments in issue tracking systems to vali-

date our approach, however, we do not claim that the number of

comments shows the key developers in a project. We just claim that

there should be a correlation between the top commenters and the

key developers in the same time period. Then, we used this idea

to show that our approach produced more logical results than the

random case with a Monte Carlo simulation.

10
http://siemens.github.io/codeface/icse2017/ (Accessed on 13 Aug 2020)

59

PROMISE ’20, November 8–9, 2020, Virtual, USA Çetin and Tüzün

External validity concerns about generalization of the find-

ings in studies [24]. In our case studies, we used three different

OSS projects. Even though we did not conduct a case study in an

industrial company, we selected projects from Apache
11
, a 20-year

established foundation. Also, the sizes of the projects are differ-

ent as seen in Table 2. Although we believe that we have enough

data for an initial assessment, in the future, we need to run our

algorithms in more OSS and industrial datasets.

7 CONCLUSION AND FUTUREWORK
In this study, we proposed different categories for key developers

in software development projects: jacks, mavens and connectors. To
identify the developers in these subcategories of key developers,

we proposed separate algorithms. Then, we conducted case studies

on three OSS projects (Hadoop, Hive and Pig). Since there was no

labeled data for the key developer categories, we used developers’

comments in issue tracking systems to validate our results. The

key developers found by our model were compatible with the top

commenters up to 92%. The results indicated that our approach has

promising results to identify key developers in software projects.

We can summarize the contributions of our study as follows:

• We offered a novel categorization for the key developers

inspired by The Tipping Point from Gladwell [15].

• For each of the three key developer categories (jacks, mavens

and connectors), we proposed the corresponding algorithms

using a traceability graph (network) of software artifacts.

• The findings of this study might shed light on the truck-

factor problem. Key developers can be used to find the truck

factor of the projects.

• Identifying key developers in a software project might help

the software practitioners for making managerial decisions.

As future work, we plan to run our algorithms on the projects in

industrial datasets and validate our results by interviewing project

stakeholders and creating a labeled dataset for these types of key

developers. We are also planning to use the artifact traceability

graph to categorize projects (balanced or hero) and recommend

replacements for leaving developers.

REFERENCES
[1] Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran, and Tim

Menzies. 2018. We don’t need another hero?: the impact of heroes on software

development. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice. ACM, 245–253.

[2] Mohammad Y Allaho and Wang-Chien Lee. 2013. Analyzing the social ties and

structure of contributors in open source software community. In Proceedings
of the 2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining. 56–60.

[3] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander

Serebrenik. 2019. On the abandonment and survival of open source projects: An

empirical investigation. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1–12.

[4] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.

A novel approach for estimating truck factors. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). IEEE, 1–10.

[5] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-

nathan. 2006. Mining email social networks. In Proceedings of the 2006 interna-
tional workshop on Mining software repositories. 137–143.

[6] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163–177.

11
https://www.apache.org/

[7] H Alperen Cetin. 2019. Identifying the most valuable developers using artifact

traceability graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1196–1198.

[8] Jinghui Cheng and Jin LC Guo. 2019. Activity-based analysis of open source

software contributors: roles and dynamics. In 2019 IEEE/ACM 12th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).
IEEE, 11–18.

[9] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2015. Assessing

the bus factor of Git repositories. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 499–503.

[10] Kevin Crowston, Kangning Wei, Qing Li, and James Howison. 2006. Core and

periphery in free/libre and open source software team communications. In Pro-
ceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06), Vol. 6. IEEE, 118a–118a.

[11] Enrico Di Bella, Alberto Sillitti, and Giancarlo Succi. 2013. A multivariate classi-

fication of open source developers. Information Sciences 221 (2013), 72–83.
[12] Mívian Ferreira, Thaís Mombach, Marco Tulio Valente, and Kecia Ferreira. 2019.

Algorithms for estimating truck factors: a comparative study. Software Quality
Journal 27, 4 (2019), 1583–1617.

[13] Linton C Freeman. 1978. Centrality in social networks conceptual clarification.

Social networks 1, 3 (1978), 215–239.
[14] Thomas Fritz, Gail C Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily

Hill. 2014. Degree-of-knowledge: Modeling a developer’s knowledge of code.

ACM Transactions on Software Engineering and Methodology (TOSEM) 23, 2 (2014),
1–42.

[15] Malcolm Gladwell. 2006. The tipping point: How little things can make a big
difference. Little, Brown.

[16] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. 2017. Clas-

sifying developers into core and peripheral: An empirical study on count and

network metrics. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 164–174.

[17] Takeshi Kakimoto, Yasutaka Kamei, Masao Ohira, and Kenichi Matsumoto. 2006.

Social network analysis on communications for knowledge collaboration in

oss communities. In Proceedings of the International Workshop on Supporting
Knowledge Collaboration in Software Development (KCSD’06). Citeseer, 35–41.

[18] Makrina Viola Kosti, Robert Feldt, and Lefteris Angelis. 2016. Archetypal person-

alities of software engineers and their work preferences: a new perspective for

empirical studies. Empirical Software Engineering 21, 4 (2016), 1509–1532.

[19] Audris Mockus. 2010. Organizational volatility and its effects on software de-

fects. In Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. 117–126.

[20] Gustavo Ansaldi Oliva, José Teodoro da Silva, Marco Aurélio Gerosa, Francisco

Werther Silva Santana, Cláudia Maria Lima Werner, Cleidson Ronald Botelho de

Souza, and Kleverton Carlos Macedo de Oliveira. 2015. Evolving the system’s

core: a case study on the identification and characterization of key developers in

Apache Ant. Computing and Informatics 34, 3 (2015), 678–724.
[21] Michael Rath and Patrick Mäder. 2019. The SEOSS 33 dataset—Requirements,

bug reports, code history, and trace links for entire projects. Data in brief 25

(2019), 104005.

[22] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer

review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. 202–212.

[23] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.

Quantifying and mitigating turnover-induced knowledge loss: case studies of

Chrome and a project at Avaya. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 1006–1016.

[24] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting

case study research in software engineering. Empirical software engineering 14, 2

(2009), 131.

[25] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto

Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. 181–190.

[26] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. 2019. Reviewer Recommenda-

tion using Software Artifact Traceability Graphs. In Proceedings of the Fifteenth
International Conference on Predictive Models and Data Analytics in Software
Engineering. 66–75.

[27] Jing Wu and Khim Yong Goh. 2009. Evaluating longitudinal success of open

source software projects: A social network perspective. In 2009 42nd Hawaii
International Conference on System Sciences. IEEE, 1–10.

[28] Minghui Zhou and Audris Mockus. 2012. What make long term contributors:Will-

ingness and opportunity in OSS community. In 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 518–528.

60

	Abstract
	1 Introduction
	2 Related Work
	2.1 Truck Factor
	2.2 Developer Roles and Social Networks

	3 Methodology
	3.1 Artifact Traceability Graph
	3.2 Jacks (RQ 1.1)
	3.3 Mavens (RQ 1.2)
	3.4 Connectors (RQ 1.3)

	4 Dataset
	4.1 Selecting Datasets
	4.2 Preprocessing
	4.3 Handling Large Change Sets

	5 Case Studies
	5.1 Experimental Setup
	5.2 Results
	5.3 Discussion

	6 Threats to Validity
	7 Conclusion and Future Work
	References

