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a b s t r a c t

This paper addresses the problem of auto-parallelization of streaming applications. We propose an
online parallelization optimization algorithm that adjusts the degree of pipeline and data parallelism
in a joint manner. We define an operator development API and a flexible parallel execution model
to form a basis for the optimization algorithm. The operator interface unifies the development of
different types of operators and makes operator properties visible in order to enable safe optimizations.
The parallel execution model splits a data flow graph into regions. A region contains the longest
sequence of compatible operators that are amenable to data parallelism as a whole and can be further
parallelized with pipeline parallelism. We also develop a stream processing run-time, named Joker, to
scale the execution of streaming applications in a safe, transparent, dynamic, and automatic manner.
This ability is called organic adaptation. Joker implements the runtime machinery to execute a data
flow graph with any parallelization configuration and most importantly change this configuration at
run-time with low cost in the presence of partitioned stateful operators, in a way that is transparent
to the application developers. Joker continuously monitors the run-time performance, and runs the
optimization algorithm to resolve bottlenecks and scale the application by adjusting the degree of
pipeline and data parallelism. The experimental evaluation based on micro-benchmarks and real-world
applications showcase that our solution accomplishes elasticity by finding an effective parallelization
configuration.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

As the world is becoming more connected and instrumented,
we have been witnessing an increasing interest in systems that
can process continuous streams of data in near real time.
Telecommunications, trading platforms, manufacturing systems,
network monitoring systems, and health-care systems are just
a few examples of the domains that can make use of stream
processing systems to analyze high rates of data streams swiftly
and extract actionable insights.

Stream processing is a computational paradigm that processes
large volumes of continuous data streams in an on-the-fly man-
ner. The high throughput processing requirement of streaming
applications necessitates taking advantage of multi-processors
and multiple machines. Streaming applications are generally rep-
resented as data flow graphs, where operators are generic data
manipulators and streams connect operators to each other using
FIFO semantics. The data flow graph representation allows de-
velopers to express their computations easily without handling
the complexity of concurrent and distributed nature of streaming
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applications. Additionally, it captures a rich set of parallelization
opportunities, such as pipeline, task, and data parallelism [18].
However, there are several challenges in taking advantage of
parallelism to scale streaming applications, while keeping the
simplicity of the data flow graph representation.

First, it is not a straightforward task to find a good degree
of parallelism for a streaming application. The number of pos-
sible parallelization configurations is exponential in the size of
the data flow graph [11]. Unlike in relational databases, where
a small set of relational operators with well-studied semantics
and cost models exist, streaming applications usually have op-
erators with user-defined functions (UDFs), whose costs may
depend on data stream rates and data distributions. Furthermore,
streaming applications have a long-running nature with highly
dynamic workloads. An efficient solution should continuously
apply parallelization optimizations and adjust the mapping of
logical application pieces to available computing resources to
achieve elasticity.

Second, in order for streaming applications to flourish, we
need toolkits of generic streaming operators. Since operator prop-
erties such as arity, selectivity, and state play critical roles in
the application of parallelization methods, operator development
APIs should achieve two things at once: (i) ease the develop-
ment of generic, reusable operators, (ii) provide visibility into the
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operator properties so that parallelization optimizations can be
applied in a safe, effective, and profitable manner.

Third, an integrated middleware solution that performs au-
tomatic and transparent parallelization optimizations is needed.
Having such a solution is a major challenge because of the discord
between the workload and resource dynamicity of streaming ap-
plications, and the ability of the runtime systems to adapt. Addi-
tionally, applying parallelization optimizations becomes harder in
the presence of stateful operators. An integrated solution should
free the developers from the burden of hand-optimizing stream-
ing applications by detecting and resolving bottlenecks automati-
cally. It should also cooperate with user code to handle the heavy
lifting in a transparent way, such as state migration and preserva-
tion of sequential execution semantics while doing performance
optimizations.

We address the challenge of parallelizing streaming appli-
cations by defining a flexible parallel execution model and de-
veloping an effective online optimization algorithm that adjusts
the parallelization configuration dynamically at run-time. First,
we extend the pipelined fission parallel execution model, first
introduced in [11], which splits a data flow graph into sub-
graphs called regions. A region contains the longest sequence
of compatible operators that are amenable to data parallelism
as a whole and can be further divided into pipelines to ap-
ply pipeline parallelism. Second, the parallelization optimization
algorithm detects bottlenecks in the execution of streaming ap-
plications and resolves these bottlenecks by adjusting the degree
of pipeline and data parallelism in a joint manner. We determine
a set of metrics to characterize the performance of a parallelized
execution. Using these metrics, the parallelization optimization
algorithm identifies bottlenecks, decides on a series of parallelism
changes to resolve the bottlenecks, and improves the throughput,
all at run-time. While making parallelism changes, the algorithm
takes operator properties and interactions of the paralleliza-
tion optimization techniques into consideration. It also evaluates
the profitability of parallelism change decisions. If a parallelism
change does not improve execution performance, it is reverted
and blacklisted. Last, profitability evaluations are adaptive to the
dynamicity of run-time workloads.

We address the second challenge by introducing an opera-
tor development API that preserves the simplicity of the data
flow graph representation, while at the same time making the
relevant operator properties visible to the runtime for perform-
ing safe parallelization optimizations. The operator development
API defines a unified interface for stateless, stateful, and parti-
tioned stateful computations via a set of tuple processing, opera-
tor scheduling, and state management primitives. This API allows
processing of tuples one-by-one or in batches, and simplifies
the development of source, sink, and processing operators with
multiple input/output ports. Consider a simple Barrier operator
which is commonly used in streaming applications. It takes one
tuple from each input port and combines them into a single
output tuple. The operator implementation is required to buffer
incoming tuples until it receives at least one tuple from each
input port. More importantly, it needs to apply back pressure on
its input ports in order to limit the memory usage of the internal
buffer, especially when its input ports receive tuples at different
rates. Our operator development API frees the developers from
the burden of such complex tasks for implementing the Barrier
operator.

Last, but not the least, we address the challenge of having an
integrated solution by developing an elastic stream processing
engine, named Joker. Joker is able to scale the execution of a
streaming application in a safe, transparent, dynamic, and au-
tomatic manner. This ability is called organic adaptation. Based
on its parallel execution model, Joker implements the runtime

machinery to execute a given data flow graph with any paral-
lelization configuration and most importantly change this config-
uration at run-time with low cost, in a way that is transparent to
the operator implementations. Joker continuously monitors the
run-time performance and feeds the measurements into the par-
allelization optimization algorithm. During parallelism changes,
Joker migrates operator state transparently, thanks to the state
management primitives present in the operator development
API. It capitalizes on the consistent hashing algorithm [19] to
minimize the amount of migrated operator state. Joker is de-
veloped as an open source1 single-host runtime to demonstrate
the usefulness of our contributions. However, the parallelization
optimization algorithm, the operator development API, and the
runtime techniques we introduce are extensible to distributed
settings and applicable to any stream processing engine.

In summary, this paper makes the following contributions:
• It introduces a flexible parallel execution model for stream-

ing applications, and to the best of our knowledge, the first online
parallelization optimization algorithm that resolves bottlenecks
of a streaming application by adjusting the degree of pipeline and
data parallelism in a joint manner.
• It proposes an operator development API that greatly simpli-

fies the development of stateless, stateful, and partitioned stateful
operators, while at the same time making operator properties
visible to the runtime in order to enable safe parallelization
optimizations.
• It develops the accompanying runtime machinery to execute

a streaming application in a parallelized manner, characterize its
performance with a metric set, and carry out parallelism changes
at run-time transparently to the user code, in the presence of
stateful and partitioned stateful computations.
• It presents a detailed evaluation of the parallelization opti-

mization algorithm to demonstrate its effectiveness.
The rest of the paper is organized as follows. Section 2 elab-

orates the terminology we use in the paper. Section 3 explains
Joker’s operator development API, parallel execution model, and
runtime abilities. Section 4 introduces Joker’s parallelization opti-
mization algorithm and Section 5 presents the experimental eval-
uation. Section 6 discusses related work and Section 7 concludes
the paper.

2. Background

We model a streaming application as a directed acyclic graph
(DAG) of operators. An operator is a logical unit that carries
out a piece of the computation in a continuous manner. It re-
ceives tuples from its input ports, processes them, and emits
output tuples via its output ports. Selectivity of an operator
is the number of emitted output tuples for each input tuple.
Operators with no input ports are called source operators and
they introduce tuples to the execution. Operators with no output
ports are called sink operators. Streams are the connections that
transfer unbounded sequence of tuples from upstream operators
to downstream operators with FIFO semantics.

Streaming operators may or may not have state, which is a
piece of data maintained between firings of incoming tuples.
Namely, streaming operators can be stateless, stateful, and parti-
tioned stateful. Stateless operators do not maintain state across
tuples. Stateful operators maintain arbitrary state which may
depend on the entire history of the stream. Partitioned stateful
operators maintain independent state across partitions which are
determined based on a given partitioning key attribute.

In this paper, the DAG representation of a streaming compu-
tation is called a data flow graph. A data flow graph is realized

1 Source code is available at https://github.com/metanet/joker.
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for execution with a parallelization configuration, which contains
the number of replicas for each operator, and mappings between
operator replicas and available computation resources. An opera-
tor can be instantiated with multiple replicas in a parallelization
configuration. Execution of a data flow graph can be parallelized
by utilizing several parallelism techniques. In this study, we focus
on three:
• pipeline parallelism: An upstream operator can execute

concurrently with a downstream operator.
• task parallelism: If an operator is connected to multiple

downstream operators, each downstream operator can perform
a separate task on the data stream concurrently.
• data parallelism: If an operator is being executed with

multiple replicas, each operator replica can process a different
portion of the data stream concurrently. The input stream of the
operator can be distributed among its replicas in a round-robin
fashion or based on the value of a partitioning key attribute,
which exists in all tuples of the input stream. Data parallelism
is applicable to stateless and partitioned stateful operators. It
is a particularly favorable parallelism technique because it is
not limited by the number of operators in the data flow graph.
However, a data parallel execution should preserve the sequential
execution semantics, that is, it should produce the same result as
if each operator has a single replica.

Elasticity is the ability of stream processing engines to adapt to
varying workloads, operational changes, and availability of com-
puting resources by applying various optimization techniques
at run-time. We focus on two techniques in this study: fusion
and fission. Fusion is a technique that trades communication cost
against pipeline parallelism [18]. Cheap operators are fused into
the same execution unit (i.e., thread) to eliminate communication
overhead. The fission technique replicates an operator and splits
the input stream over its replicas to achieve data parallelism [18].

The life cycle of a streaming application consists of three
fundamental stages. First, operators of the streaming application
are coded. We name this stage design-time. Then, the application
is formed by configuring operators for execution and connect-
ing them via streams. This stage is called composition-time. The
last stage is run-time, in which the configured operators are
instantiated and executed by a stream processing engine.

3. Solution overview

In this section, we give a brief overview of our solution. We
first introduce the building blocks of our organic adaptation so-
lution, which are the operator development API and the parallel
execution model. Then, we describe Joker’s runtime system and
elaborate on how it realizes the organic adaptation solution.

3.1. Operator development API

We introduce an operator development API that supports the
development of flexible, generic, and reusable operators. Such an
API enables strong cooperation between the user-defined opera-
tor code and the runtime, and extends runtime’s understanding
of the operator behavior for performing parallelization optimiza-
tions in a safe manner.

First, the operator development API creates an isolation layer
between operator implementations and the runtime. Once an
operator is invoked, it receives a batch of tuples in an input
object, processes them, and emits the resulting tuples with an
output object. The input and output objects work as buffers. This
approach enables the runtime to define boundaries of an operator
invocation precisely. Thus, the runtime can perform execution
and parallelization optimization tasks transparently to operators,
such as applying back pressure, making parallelism changes, and

migrating operator state. Additionally, this approach brings up
the opportunity of batching optimizations.

Second, we follow a different approach than the prevalent
event-driven model for operator invocations. SPL [16], S4 [22],
Apache Samza,2 Apache Storm,3 Apache Flink,4 Apache Heron,5
Hazelcast Jet,6 ChronoStream [25], and many other solutions
employ the event-driven model for operator invocations. In the
event-driven model, the operator code is invoked when a tuple
arrives at one of its input ports. Since there is no guarantee for
the ordering of tuple arrivals across different ports, a multi-input
port operator should buffer tuples if they arrive out of order, limit
memory usage, and apply back pressure on its own. Our opera-
tor development API contains an operator scheduling API which
frees operator implementations from the burden of such complex
tasks. Operators specify the required number of tuples for their
input ports using a flexible specification scheme that supports
conjunctive and disjunctive requirements. If a requirement is
conjunctive, the operator is invoked when the required number
of tuples are available at all of its input ports. If it is disjunctive,
the operator is invoked when the required number of tuples are
available at any of its input ports. In this model, the runtime
becomes responsible for handling the complexity of satisfying
the tuple requirements for multi-input port operator invocations.
For instance, it is sufficient to declare just the number of input
ports and tuple requirements to develop a barrier operator, which
expects one tuple from each input port.

Third, the operator development API contains a schema speci-
fication API to unify the development of task-specific and generic
operators. A task-specific operator defines all of its properties at
design-time where a generic operator can provide these prop-
erties partially at design-time and extend them at composition-
time when the data flow graph is formed for execution. These
properties are operator state type (stateless, stateful, partitioned
stateful), partitioning key attributes if the operator is partitioned
stateful, input/output port counts, and input/output schemas.
Moreover, operator properties determine the type and scope of
various applicable parallelization optimization techniques.

Fourth, we enable stateful computations with a set of state
management APIs. An operator can maintain its computation
state using an in-memory state object, which is provided by
the runtime during invocations. The runtime creates a single
global state object for a stateful operator and independent state
objects for different partitioning key instances of a partitioned
stateful operator. When a stateful operator is invoked, its state
object is passed to the operator. Partitioned stateful operators
are invoked on a partitioning key instance basis. Joker runtime
invokes a partitioned stateful operator for a particular partition-
ing key instance, along with the input tuples and the state object
maintained for that partitioning key instance. Thus, Joker greatly
simplifies the development of partitioned stateful computations.
The state management API also forms the foundation of the run-
time capabilities, such as load balancing and transparent operator
migration. Albeit not implemented, the runtime can also optimize
the storage of externalized operator state by compression or
overflowing to disk.

Last, but not the least, our operator development API abstracts
parallelization of streaming applications from the specification
of these applications. For instance, Apache Storm, Apache Flink,
and Apache Spark’s programming interfaces contain methods for

2 Apache Samza website: http://samza.apache.org retrieved in March 2019.
3 Apache Storm website: http://storm.apache.org retrieved in March 2019.
4 Apache Flink website: https://flink.apache.org retrieved in March 2019.
5 Apache Heron website: https://github.com/apache/incubator-heron re-

trieved in March 2019.
6 Hazelcast Jet website: https://jet.hazelcast.org retrieved in March 2019.
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Fig. 1. Joker operator API.

developers to specify various parallelization hints, such as how
many replicas to create for an operator, how to chain operators,
etc. In contrast, our API frees the developers from such bur-
dens. Streaming applications are specified in a way that is free
from any parallelization hint, and Joker runtime parallelizes these
applications obliviously to the developers.

Operators implement the Operator interface, shown in Fig. 1.
Operators receive their properties and configurations, initialize
their internal state, and return their scheduling requirements
in the initialize() method. Dually, they perform clean up
tasks in the optional shutdown() method. They implement their
computation logic in the invoke() method.

Fig. 2 depicts a specific barrier operator implementation. It is a
partitioned stateful operator with 2 input ports and 1 output port.
As it is marked as partitioned stateful, it receives a state object
for each invocation. SumBarrierOperator returns a scheduling
requirement indicating that the operator must be invoked when
there are exactly 10 tuples on both input ports for a partitioning
key instance. This requirement enables processing of tuples in
batches, as each invocation is done with 20 tuples in total. The
operator takes a tuple from each input port and finds the maxi-
mum value of the num field in these tuples. Then, it calculates the
summation of these values for all tuples in the batch, and adds it
to the value stored in the given state object for each partitioning
key instance. It also sends this value to the output port. The
runtime creates a separate state object for each partitioning key
instance. Port counts of this operator are defined at design-time.
However, it is possible to define them at composition-time as
well, when the data flow graph is formed for execution. Moreover,
the partitioning key attribute is also defined at composition-time.

3.2. Parallel execution model

The main goal of the optimization algorithm is to automat-
ically discover the parallelization configuration that maximizes
the throughput of a streaming application at run-time. To that
end, we first formalize our parallel execution model based on
the application of fusion and fission techniques [18]. We extend
the parallel execution model developed by Gedik et al. in [11].
Their parallel execution model works on chain topologies only,
where there is no branching, i.e., operators are organized into a
series. On the other hand, our solution can parallelize topologies
that contain branches. We partition the data flow graph into
regions using the longest compatible operator sequence princi-
ple. A region contains operators for which data parallelism is
applicable as a whole. Once we discover the regions, we split the
sequence of operators in a region into pipelines. We run pipelines
concurrently on separate threads to achieve pipeline parallelism.
We further create multiple replicas of pipelines to achieve data
parallelism. Each pipeline replica performs the same sequence of
tasks in parallel on a different portion of the data stream.

Second, we define the rules and constraints to discover region
boundaries on top of the operator development API. We form
the regions starting from the source operators. As we proceed
through operators of the data flow graph, we add them into
the current region, as long as their state types and schemas are
compatible with the current operators in the region. When we
encounter an incompatible operator, we terminate the current
region and start a new one. We define the compatibility rules be-
low. Our reasoning is that streaming applications tend to reduce
the volume of the data stream as the data flows through stages of
the computation [3]. Hence, our approach is to form long regions
and assign more processing resources for early stages as much as
possible, in order to have more opportunities for scaling.

Our region formation rules are as follows:
• Source operators have their independent regions, called

source regions. Source regions are excluded in the optimization
process.
• Operators in a region can have at-most-one predecessor and

successor. If we encounter a branching in the data flow graph, we

Fig. 2. SumBarrierOperator implementation.
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Fig. 3. A sample parallelization configuration.

terminate the current region and start new regions. This implies
that each region has a single entry and exit point. If an operator
has multiple downstream connections, each downstream opera-
tor starts its own region, and output tuples of the operator are
forwarded to all downstream regions.
• A data parallel region starts with a stateless or partitioned

stateful operator, and can contain only these two operator types.
We preserve the safety of the computation for data parallel re-
gions. A data parallel region should always produce the same
result with its sequential counterpart, no matter which paral-
lelization configuration it runs with. Tuples should leave the
region in the same order they enter the region. Earlier studies
either ignore order preservation [15,20,23,26], or use a variety of
splitters and mergers to achieve perfect order [12]. We optimize
for the general scenario and guarantee the sequential execution
semantics only for tuples having the same partitioning key in-
stance, i.e., ordering is not preserved across tuples belonging
to different partitions. For this reason, we require data parallel
regions to contain at least one partitioned stateful operator. Joker
runtime distributes the incoming data stream using a hashing-
based scheme. It directs tuples that have the same partitioning
key instance to the same replica of the region. Thus, we eliminate
the need for explicit mergers and reduce the parallelization over-
head. Our experience with real-world stream processing appli-
cations has shown that ordering across partitions is uncommon.
For the scenarios where it is needed, explicit operators could be
added into the data flow graph to achieve the desired ordering.
• Partitioning key attributes of the first partitioned stateful op-

erator of a data parallel region become partitioning key attributes
of the region. Subsequent partitioned stateful operators must be
compatible with the region, i.e., their partitioning key attributes
must contain partitioning key attributes of the region. Similarly,
input schemas of stateless operators must contain partitioning
key attributes of the region. With these rules in place, once a tuple
enters a data parallel region with a partitioning key instance, the
same key is used for all invocations of the tuple along the way,
and the ordering is preserved for the tuples having the same key.
Moreover, when the degree of data parallelism is changed for a
region, some of the keys are moved between region replicas, and
all tuples belonging to those keys and waiting in the input queues
of the operators are moved between region replicas without
breaking tuple ordering.
• After we form all source regions and data parallel regions,

we combine rest of the operators with respect to the at-most-one
predecessor and successor rule. These regions can contain stateless
and stateful regions together, but not partitioned stateful opera-
tors, and they are amenable to only pipeline parallelism. In other
words, they can have multiple pipelines with a single replica.

Fig. 3 displays a parallelization configuration of a data flow
graph with 4 operators: o1, o2, o3, and o4. The data flow graph

has 2 regions: (i) the left-hand region is the source region with a
single pipeline and a single replica, (ii) the right-hand region has
3 operators that are parallelized by 2 pipelines and 3 replicas,
where the first pipeline consists of o2 and o3, and the second
pipeline consists of o4. Operator replicas are depicted as circles
and pipelines are depicted as rectangles surrounding the opera-
tors. The black dots represent region boundaries and the arrows
represent the direction of the tuple streams. In this figure, output
tuples emitted by the source operator are distributed among the
three replicas of the second region.

3.3. Joker runtime

Joker is implemented with Java 87 as a single-host stream
processing runtime. It utilizes multi-threaded execution to re-
alize the parallelism techniques described in Section 3.2. In de-
tail, it assigns pipeline replicas to Java threads. For instance,
Joker runs the parallelization configuration given in Fig. 3 with
7 threads. During execution, a Joker thread traverses operators
of its pipeline replica and comes back to the first operator for
the next traversal. As operators can have different scheduling
requirements, Joker places tuple queues between operators. Tuple
queues between operators of the same pipeline are implemented
as single-threaded queues, whereas the queues between opera-
tors of different pipelines are implemented as concurrent lock-
free queues. Joker employs back pressure by bounding the size of
the tuple queues.

One of our major contributions is Joker runtime’s ability to
auto-scale a streaming application in the presence of stateful
operators. The first major challenge of the auto-scaling ability is
preserving safety, which is solved by the operator development
API and region formation rules, as described in Sections 3.1 and
3.2.

The second challenge is employing the auto-scaling ability in
a transparent manner without interfering with the user code.
We address this challenge by developing a key–value store based
state management API for stateful and partitioned stateful oper-
ators. Joker runtime creates independent state objects for differ-
ent partitioning key instances and guarantees that a partitioned
stateful operator processes tuples of the same partitioning key
instance using the same state object.

The third major challenge of auto-scaling is to perform par-
allelism changes dynamically at run-time, while the streaming
application is running. In this regard, Joker runtime can split
a pipeline into smaller pipelines, merge subsequent pipelines
of a region into a longer pipeline, and change the number of
replicas of a data parallel region. When the number of replicas
is changed, partitioning key instances are re-distributed across
the region replicas and the associated state, including the tu-
ples in the operator queues and operator-specific state objects
stored in key–value stores, is transparently migrated. Since Joker
is implemented as a single-host runtime, operator state objects
and queued tuples are moved between operator replicas during
migrations. Therefore, partitioning key re-distribution does not
involve serialization/deserialization cost. Nevertheless, we min-
imize the amount of migrated state using the consistent hashing
algorithm [19].

4. Organic adaptation

The essence of our solution is its ability to infer the work-
load and resource dynamics of a streaming application at run-
time, and to scale the application automatically by improving

7 Java 8 website: http://www.oracle.com/technetwork/java/javase/overview/
java8-2100321.html retrieved in March 2019.
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its parallelization configuration. We liken this behavior to bio-
logical organisms’ capability to adapt to their environment for
survival. Consequently, we name our solution as organic adapta-
tion, and the parallelization optimization algorithm as adaptation
algorithm.

When Joker runtime starts executing a streaming application,
it creates a single pipeline and a single replica for each region.
Then, it runs a three-phase scheme to incrementally improve the
parallelization configuration of the application as follows:
• Profiling: In the first phase, a lightweight profiler collects

several metrics to be used in the adaptation phase.
• Adaptation: The second phase starts by identifying bottle-

neck pipelines. After that, the adaptation algorithm investigates
possible parallelism changes to resolve the identified bottlenecks.
Then, Joker runtime applies the changes that are estimated to
provide the largest improvement to the execution performance.
• Evaluation and Control: In the final phase, the adaptation

algorithm evaluates the performance of the execution with the
resulted parallelization configuration, and takes one of two pos-
sible actions. If the new configuration improves performance, the
algorithm persists the applied changes. Otherwise, it reverts them
and goes back to the second phase to look for other possible
changes. The organic adaptation solution runs until it notices that
the execution is stabilized, and no more parallelism changes occur
afterwards.

4.1. Profiling

Joker runtime collects three types of profiling metrics to feed
the adaptation algorithm:
• It collects CPU utilization ratios of pipeline replica threads

to discover bottlenecks. It divides the amount of CPU time a
pipeline replica thread utilizes by wall clock time to calculate
its CPU utilization ratio. Threads’ CPU times are fetched via JMX
interfaces. Our reasoning is that a heavily utilized thread turns
into a bottleneck. If we assign more computing resources to a
bottleneck pipeline, we would be able to improve performance.
• For each pipeline replica thread, Joker runtime estimates

how its CPU time is distributed among its operators. We define
a metric, operator cost, to be the portion of CPU time a pipeline
replica thread spends on an operator. For instance, if a pipeline
contains 2 operators, o1, o2, and their costs are estimated as 0.4
and 0.5, it means that o1 consumes 40% of its pipeline replica
threads’ CPU times. Note that these operator costs do not add
up to 1. This is because execution of a pipeline involves CPU
consuming tasks as well, such as moving tuples across operators
and pipelines, partitioning streams, and managing state objects.
We name the portion of the CPU time a pipeline replica thread
spends for such tasks as the pipeline overhead. We estimate the
pipeline overhead by 1 −

∑n
i=1 costi where n is the number of

operators in the pipeline and costi is the operator cost. In the
example above, the pipeline overhead is 1− (0.4+ 0.5) = 0.1.
• Throughput is measured as the number of tuples processed

for a time period. We use region throughput values as our eval-
uation metric. Our solution tries to optimize the throughput of
the source regions by adjusting the degree of pipeline and data
parallelism of each region in the data flow graph.

Since Joker runtime executes each pipeline replica with a sep-
arate thread, the profiler calculates pipeline metrics by averaging
metrics of each pipeline replica. The profiler runs each second.
In each run, it collects CPU utilization ratios, operator costs,
and region throughput values. We run the profiler for 30 s and
calculate the exponential average of the metric values collected
in each run.

Algorithm 1: Adapt(T[], C[])
Input: T []: New throughput values of regions
Input: C[]: New CPU util. ratios of regions
Result: Multiple regions can be adapted.
Data: Regions: Regions topologically sorted
Data: A: Currently adapting regions
if A.Length = 0 then

foreach R ∈ Regions do
UpdateMetrics(R, T[R], C[R])

foreach R ∈ Regions do
if ResolveIfBottleneck(R) then A + = R

else
N← GetNonResolvedRegion(A, T, C)
if N = null then

foreach R ∈ A do
Finalize(R, T[R], C[R])

A← []
else

Revert(N)
if !ResolveIfBottleneck(N) then

foreach R ∈ A \ N do
Revert(R)

A← []

Our profiling mechanism is a lightweight solution. It relies
on Java volatile keyword semantics8 for metric collection. As
described in Section 3.3, a pipeline replica thread traverses its
operators and comes back to the first operator. For some of
the traversals, it stores the new metric values and the currently
running operator into a volatile field. Dually, the profiler reads
this field from its own thread. We employ a sampling mechanism
to estimate operator costs. The profiler counts how many times
it encounters an operator in this volatile field. If it makes N reads
in the last second and encounters a particular operator C times,
then the operator cost is estimated as C/N .

4.2. Adaptation algorithm

Recall that a region is the longest sequence of operators for
which data parallelism is applicable as a whole. Regions can
be further divided into pipelines to utilize pipeline parallelism,
and multiple replicas can be created for pipelines to utilize data
parallelism. The adaptation phase aims to resolve bottlenecks and
increase the throughput by changing the degree of pipeline and
data parallelism incrementally.

Algorithm 1 presents the Adapt() procedure, which is the
main entry point of the adaptation algorithm. It works on regions.
It maintains internal state for pipeline and replica configurations,
metric values, and adaptation process of each region.

The Adapt() procedure is invoked with the metrics collected
by the profiler. When there is no ongoing adaptation, it first calls
the UpdateMetrics() procedure to update the metrics of each
region. Then, it iterates over the regions to resolve bottlenecks.
A region is considered as a bottleneck if it contains at least
one bottleneck pipeline. Bottleneck regions are resolved in the
ResolveIfBottleneck() procedure and are collected into a
variable. The Adapt() procedure takes no action if no bottleneck
or no candidate parallelism change is found.

Our adaptation algorithm is inherently a greedy solution. It
improves the throughput of a streaming application by applying
parallelism changes incrementally at each adaptation period. In
each period, the adaptation algorithm changes the degree of
parallelism for all bottlenecks at once. Another approach would

8 Java 8 language specification: http://docs.oracle.com/javase/specs/jls/se8/
html/jls-8.html retrieved in March 2019.

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html
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Algorithm 2: ResolveIfBottleneck(R)
Input: R: Region to resolve bottleneck pipelines if present
Result: If bottleneck pipelines are detected and could be resolved

with a non-blacklisted parallelism change, the new
parallelization configuration is applied.

Output: true if a parallelism change is applied, false otherwise
B← FindBottleneckPipelines(R)
if B = null then return false

CFG← SplitBottleneckPipelines(R, B)
if CFG = null then CFG← ExpandRegion(R, B)

if CFG = null then
return false

R.A← B ▷ Set adapting pipelines
R.CFGbase← R.CFG ▷ Save current par. config
R.CFG← CFG ▷ Set new par. config
ApplyParallelizationConfiguration(R)
return true

be resolving each bottleneck individually in separate adaptation
periods. Although being a simpler solution, this approach does
not work for a scenario where an upstream region is connected
to two parallel downstream regions that are both bottleneck. In
this scenario, if only one region is resolved at a time, it would not
be profitable since the throughput is still bounded by the other
bottleneck region. Therefore, all bottlenecks found in the same
adaptation period are resolved together.

Algorithm 2 describes the ResolveIfBottleneck() proce-
dure, which resolves bottleneck pipelines of a single region. It
starts with finding the bottleneck pipelines and returns immedi-
ately if there are none. The FindBottleneckPipelines() pro-
cedure returns pipelines that have CPU utilization ratios greater
than a configurable threshold, called the CPU utilization bottle-
neck threshold. Increasing the degree of pipeline parallelism is
a cheaper operation compared to increasing the degree of data
parallelism since the latter involves iteration over partitioning
key instances to re-distribute operator state and queued tuples.
For this reason, the ResolveIfBottleneck() procedure first
tries to increase the degree of pipeline parallelism by splitting
bottleneck pipelines into smaller pipelines. If the SplitBot-
tleneckPipelines() procedure does not offer any pipeline
parallelism change, then the ExpandRegion() procedure in Al-
gorithm 4 is called to increase the replica count, if the region is a
data parallel region. If a candidate parallelism change is found by
one of these calls, the ResolveIfBottleneck() procedure real-
izes the new parallelization configuration on the region. Note that
the adaptation algorithm can increase both the degree of pipeline
and data parallelism in separate adaptation periods, depending
on the bottlenecks in the region and the metrics provided by
the profiler. It can decide to perform a pipeline split at one
adaptation period, and then increase the number of replicas in
future adaptation periods, or vice versa.

The main use of operator cost estimation is to make pipeline
split decisions. The SplitBottleneckPipelines() procedure
in Algorithm 3 defines a parameter, split utility, which predicts the
ratio of increase in throughput when a pipeline is split at a partic-
ular operator. Consider the scenario where a 3-operator pipeline
has the following operator costs: 0.2, 0.1, 0.4, and pipeline over-
head: 0.3. If we split this pipeline at the second operator, then
the first pipeline runs the first operator, and the second pipeline
runs the second and third operators. Since the total operator cost
of the second pipeline is greater than the first pipeline, we spec-
ulate that the second pipeline would bound the new throughput
value. Then, the split utility value of the second operator is
calculated as 1/(0.3 + max(0.2, 0.1 + 0.4)). The divider in the

Algorithm 3: SplitBottleneckPipelines(R, B)
Input: R: Region of the bottleneck pipelines
Input: B: Bottleneck pipelines
Output: New config if pipelines are splitable and splits are

profitable, null otherwise
Threshold: UT : Min utility value to make a split
A← []
foreach P ∈ B do

if R.Pipelines[P].Length = 1 then return null

C← R.C[P]
L← P.Length
S = argmin

k∈1..(L−1)
∥C[1..k] − C[k+ 1..L]∥

▷ If distr. of operator costs is not good enough...
if GetUtility(C, S) < UT then return null

CFG← R.CFG + S ▷ Create split pipeline config
if CFG ∈ R.Blacklist[P] then return null

A + = CFG
return A

Algorithm 4: ExpandRegion(R, B)
Input: R: Region of the bottleneck pipelines
Input: B: Bottleneck pipelines
Output: New config if region is expandible, null otherwise
if R.type ! = partitioned stateful then return null

CFG← R.CFG
CFG.ReplicaCount++ ▷ Expand the region
foreach P ∈ B do

if CFG ∈ R.Blacklist[P] then return null
return CFG

equation is the summation of pipeline overhead of the bottleneck
pipeline and total operator cost of the new pipeline. The overall
calculation estimates the ratio of new throughput value to the
current throughput value as if the new pipeline consists only the
operators in the equation. Similarly, the split utility value of the
third operator is calculated as 1/(0.3+max(0.2+0.1, 0.4)). Since
splitting the pipeline at the third operator results in a higher
split utility value, we choose the third operator as a pipeline split
candidate. At this point, we check whether if the split utility value
of the candidate operator is greater than a threshold, called split
utility threshold. A split can non-profitable when a pipeline has a
highly unbalanced operator cost distribution. The SplitBottle-
neckPipelines() procedure returns no parallelism change if it
cannot find a candidate pipeline split whose split utility is greater
than this threshold.

4.3. Evaluation and control

The Adapt() procedure proceeds to the evaluation phase in
the next period after parallelism changes. In this phase, the pro-
filer measures the throughput of the adapting regions. There can
be multiple bottleneck regions at a time if their processing costs
are close to each other. Moreover, some of the bottleneck regions
can be closer to the source compared to the other bottleneck
regions. In this case, it is sufficient the check new throughput
values of the regions that are closest to the source, because their
throughput values represent their downstream, i.e., the other
bottleneck regions, as well. For this reason, GetNonResolvedRe-
gion() call in the Adapt() procedure checks the throughput
of the adapting regions that are closest to the source regions. If
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Algorithm 5: Finalize(R, Tn, Cn)
Input: R: Region
Input: Tn[]: New throughput values
Input: Cn[]: New CPU util. values
Result: New region config is persisted.
foreach P ∈ R.A do

R.Blacklist[P]← [] ▷ Clear blacklist
R.T[R.A]← Tn[R.A] ▷ Update throughputs
R.C[R.A]← Cn[R.A] ▷ Update CPU utils
R.CFGbase← null
R.A← null ▷ Reset bottleneck pipelines

Algorithm 6: Revert(R)
Input: R: Region
Result: Reverts and blacklists the parallelism change
foreach P ∈ R.A do

R.Blacklist[P] + = P.CFG
R.CFG← R.CFGbase
R.CFGbase← null
ApplyParallelizationConfiguration(R)

Algorithm 7: UpdateMetrics(R, T, C)
Input: R: Region to update metrics
Input: T : New throughput values
Input: C: New CPU util. values
Result: Metrics of the region’s pipelines are updated. If load

change is detected for a pipeline, its blacklisted changes
and non-resolvable flag are reset.

foreach P ∈ R.Pipelines do
if IsLoadChanged(R, P, T[P], C[P]) then

R.Blacklist[P]← []
R.T[P]← T[P]
R.C[P]← C[P]

the ratio of increase in throughput is greater than a threshold,
called throughput increase threshold, then the ongoing adaptation
process is considered to be successful.

The Adapt() procedure calls Finalize() to complete a suc-
cessful adaptation process. The Finalize() procedure, as shown
in Algorithm 5, persists parallelism changes, updates metrics,
and clears blacklisted parallelism changes. In case of a failed
adaptation, the Revert() procedure in Algorithm 6 reverts and
blacklists the applied parallelism changes. After blacklisting, the
Adapt() procedure looks for other parallelism changes to con-
tinue the current adaptation process. If it could not find an-
other parallelism change, it reverts and blacklists all parallelism
changes applied in the current adaptation process.

The adaptation algorithm can accommodate changes in the
workload as well. Workload changes may invalidate past deci-
sions of the algorithm. Consequently, the algorithm forgets past
decisions when it detects a workload change. The UpdateMet-
rics() procedure in Algorithm 7 calls IsLoadChanged() to
compare the new throughput and CPU utilization ratio values
with the current metric values of the region. If the ratio of
difference is greater than a threshold, called the workload change
threshold, the pipeline’s blacklist is reset.

Additionally, the adaptation algorithm tolerates noises and
transient fluctuations in the workload. During an ongoing adapta-
tion process, it only updates metrics of the regions that are being
adapted. The reason is that the ongoing adaptation process could
fail, and blacklists of the other regions could be reset redundantly.
Stability of the adaptation algorithm is preserved by preventing
such situations. The profiler also contributes to the stability of

the adaptation algorithm. After a parallelism change is applied,
the profiler first waits for some time to allow the execution to
stabilize.

4.4. Discussion of the adaptation algorithm parameters

The adaptation algorithm has four parameters: CPU utiliza-
tion bottleneck threshold, split utility threshold, throughput increase
threshold, and workload change threshold. We run experiments to
investigate these parameters in Section 5.2.

4.5. Discussion of the organic adaptation solution

We further discuss two aspects of the organic adaptation
solution:
• Single host runtime: We implement the organic adaptation

solution on top of a single host runtime. However, our solution
has no limitation that prevents it to be extended to a distributed
runtime. The parallel execution model, state management API,
runtime capabilities, and the adaptation algorithm have general
applicability and can be implemented in a distributed setting.
• Settling time: The adaptation algorithm is model-free. It

gradually increments the degree of pipeline and data parallelism.
In cases where the needed degree of parallelism is high, the
algorithm can have a long settling time. We can address this prob-
lem by extending the algorithm as follows: rather than splitting
bottleneck pipelines into two pipelines, the adaptation algorithm
can create more than two pipelines. Similarly, when the algo-
rithm decides to increment the degree of data parallelism, it can
create two or more new replicas at once. Thus, the algorithm can
calibrate the trade-off between shortening the settling time and
fine-tuning the degree of parallelism.

5. Experiments

In this section, we evaluate the effectiveness of our solu-
tion based on five kinds of experiments. First, we use micro-
benchmarks to evaluate the adaptation algorithm with varying
topologies and application sizes. Second, we investigate the sen-
sitivity of the adaptation algorithm to different values of the
adaptation parameters. Third, we study the overhead of the adap-
tation algorithm on the execution. Fourth, we use three real-
world applications to compare the throughput achieved by our
adaptation algorithm to that of no optimization. Last, we compare
our algorithm with a model based solution [11]. All experiments
except the last one are repeated three times and average values
are reported.

We performed our experiments on a host with 2 Intel Xeon
processors. Each processor has 6 cores with 2-way SMT, exposing
24 hardware threads. We run Joker on Java HotSpot VM (TM)9
with 4 GB heap size.

5.1. Micro-benchmarks

For the micro-benchmarks, we use an operator that has two
variations: stateless and partitioned stateful. This operator per-
forms integer multiplications for each input tuple. When it is
partitioned stateful, it also counts how many times an integer
value is multiplied and persists this value using the KV store API
provided by Joker runtime. We adjust the number of multiplica-
tions to simulate the varying amount of work being performed by
the operator. At the one end of the spectrum, where there is little
work per tuple, it is more difficult to achieve scalability because

9 Java HotSpot VM website: https://www.oracle.com/technetwork/articles/
javase/index-jsp-136373.html retrieved in March 2019.

https://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
https://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
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Fig. 4. A data flow graph that consists of a source region and a data parallel
region with 4 operators.

Fig. 5. Speedup of the 4-operator region.

the overhead of parallelization becomes significant compared
to the actual work. Achieving scalability becomes easier as the
overhead of parallelization becomes insignificant compared to the
cost of tuple processing.

In all micro-benchmarks, the CPU utilization bottleneck thresh-
old is 0.8, the split utility threshold is 0.2, and the throughput
increase threshold is 0.1.

We evaluate our solution with data flow graphs that con-
tain varying costs and numbers of the multiplication operator.
We start with a simple data flow graph that contains a single
data-parallel region of 4 multiplication operators, as shown in
Fig. 4.

Fig. 5 plots the speedup achieved by the adaptation algorithm
compared to the no-parallelization case, as a function of per-tuple
processing cost. It presents the results for 4 different combi-
nations of possible adaptation actions. Fusion Only means that
the adaptation algorithm solely optimizes the fusion technique,
hence adjusts the degree of pipeline parallelism. Similarly, only
the fission technique is optimized by Fission Only in order to
adjust the degree of data parallelism. Fusion First is the approach
presented in Algorithm 2, as it first applies a pipeline parallelism
change, and a data parallelism change afterwards to resolve a
bottleneck. Last, Fission First reverses this order.

The Fusion Only results in Fig. 5 show that increasing the
degree of pipeline parallelism does not improve the through-
put significantly when the overall computation is cheap. When
per-tuple work is less than 64 multiplications, the adaptation
algorithm achieves 2x speedup with two pipelines, where the
first pipeline runs the first and second operators, and the second
pipeline runs the third and fourth operators. When per-tuple
work becomes more costly, the adaptation algorithm achieves
4x speedup as it runs each operator in a separate pipeline. It is
important to note that solely increasing the degree of pipeline
parallelism cannot go over 4x speedup since there can be at
most 4 pipelines. In this context, the main advantage of data

Fig. 6. Speedup of the data parallel region for varying operator costs and
operator counts.

parallelism is that it is not bounded by the number of operators.
The Fission Only results in Fig. 5 support this claim. Even for low-
cost operators, increasing the degree of data parallelism achieves
at least 5x speedup. As the application becomes more costly, the
speedup goes up to 10x.

Fig. 5 reveals that the adaptation algorithm achieves higher
speedups with the joint optimization of the fusion and fission
techniques. For all operator costs, the joint optimization results
are higher than individual application of the optimization tech-
niques. As operators become more costly, the adaptation algo-
rithm performs better with the joint optimization, for instance,
20x speedup is achieved for high operator costs. However, chang-
ing the order of application of optimization techniques does
not create a significant difference in the results. Since chang-
ing the degree of pipeline parallelism does not involve operator
state migrations, it is a cheaper operation compared to changing
the degree of data parallelism. Therefore, we conclude that the
adaptation algorithm applies parallelism changes in an effective
order.

We repeat this experiment by increasing the cost and number
of operators together. Fig. 6 shows that our solution is also able
to scale long data flow graphs. The algorithm presents significant
speedups as the data flow graph becomes longer.

Our parallel execution model divides a data flow graph into
regions and the adaptation algorithm parallelizes each region
separately. It could happen that scaling up a region can eventually
cause another region to turn into a bottleneck, or multiple regions
can become bottlenecks at the same time, for instance, if they are
in parallel branches of a data flow graph. Therefore, we evaluate
our solution with data flow graphs that contain multiple regions.
Figs. 8 and 9 demonstrate the results of the multi-region exper-
iments. In Fig. 7, we have four different topologies. In the Tree
topology, as shown in Fig. 7a, a data parallel region is connected
to two downstream data parallel regions, each of which consists
of a single multiplication operator. Another topology, Reverse Tree
as shown in Fig. 7b, connects two data parallel regions into a
single downstream data parallel region. The last two settings
are composed of a chain of two data parallel regions, which
have different partitioning key definitions. In Fig. 7c, Chain of
2 operators topology places a single multiplication operator in
each region, while Chain of 4 operators topology in Fig. 7d places
two operators in each region. In this experiment, the adaptation
algorithm works as it is described in Algorithm 2.
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Fig. 7. Data flow graphs with multiple regions.

Fig. 8. Speedup of the multiple-region flow.

Fig. 9. Speedup of the flow of a costly and a cheap region.

Fig. 8 reveals that our solution resolves bottlenecks that span
multiple regions. In the Tree and Reverse Tree topologies, the
adaptation algorithm works incrementally and distributes CPU

resources among the three regions. For instance, in the Tree
topology, the upstream region becomes bottleneck initially. When
the algorithm resolves this bottleneck by adding more replicas,
the downstream regions receive more tuples and eventually turn
into bottlenecks. Then, the algorithm resolves bottlenecks of the
downstream regions together. The algorithm works similarly for
the Reverse Tree topology. Differently than the Tree topologies,
which contain 3 data parallel regions, the adaptation algorithm
achieves a more balanced CPU resource distribution and higher
speedups for the chain topologies, since they contain less number
of operators and each operator receives a higher degree of data
parallelism.

Fig. 9 slightly differs from previous experiments. It contains
two data parallel regions with operators that have different mul-
tiplication counts. Namely, the upstream region is 8 times more
costly than the downstream region. For instance, in the first
iteration, the upstream operator and the downstream operator
perform 32 and 4 multiplications per tuple, respectively. In all
iterations, the adaptation algorithm creates 4 replicas for the
downstream region. We report the number of replicas of the
upstream region in Fig. 9. As the upstream region becomes more
costly, it gets more replicas and achieves linear speedups. In the
last iteration, our solution assigns 13 replicas to the upstream
region and achieves 12x speedup.

In the last experiment of this section, we are interested in
how our solution resolves bottlenecks in the presence of opera-
tors with different cost and selectivity values. In particular, we
build a data parallel region of 4 operators with the following
multiplication counts: 1024, 256, 1024, and 2048. The multipli-
cation operator has selectivity of 1, i.e., it produces an output
tuple for each input tuple. After the first operator, we place an
operator that duplicates each input tuple to 4 output tuples. After
the subsequent multiplication operators, we place operators that
randomly filters input tuples with selectivity values 0.25 and 0.5.

Joker starts running this data flow graph with the paralleliza-
tion configuration shown in Fig. 10a. In this configuration, the
data parallel region is executed by a single pipeline replica thread,
which manages to process 80 ktps (thousand tuples per second)
and becomes a bottleneck. The adaptation algorithm attempts to
solve this bottleneck by splitting the pipeline into two pipelines:
[m1, s1, m2] and [s2, m3, s3, m4]. The reason of this split is that, the
duplication and filter operators have negligible costs compared
to the multiplication operators, and the multiplication operators
receive similar costs because of the selectivity values. Therefore,
the adaptation algorithm distributes the multiplication operators
equally among pipelines. However, the new parallelization con-
figuration results in only 4% increase in the throughput. There-
fore, it is reverted and a new pipeline replica is created for the
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Fig. 10. Adaptation steps of the selectivity experiment.

region in the second attempt. Fig. 10b shows the resulting par-
allelization configuration. The new parallelization configuration
is persisted as it improves the region throughput by 67%. In the
next adaptation period, the region is still marked as bottleneck
and passes over the same procedure. In this period, increasing
the degree of pipeline parallelism increases the throughput 9%.
Hence, the bottleneck is resolved by creating a new pipeline
replica again. We observe that the throughput increases 46% with
the resulting parallelization configuration shown in Fig. 10c. Even
with 2 replicas, the region is still marked as bottleneck. This
time, splitting the region pipeline leads to 14% improvement in
the throughput, and the algorithm reaches to the parallelization
configuration shown in Fig. 10d. In this configuration, the re-
gion processes 230 ktps with 2 pipelines and 3 replicas. After
this point, the input stream is saturated, i.e., pipeline replica
thread of the source operator fully utilizes its CPU, and there is
no bottleneck anymore. Thus, the adaptation process terminates
eventually.

5.2. Investigation of the adaptation algorithm parameters

In this section, we study the behavior of the adaptation algo-
rithm for different values of the adaptation parameters: CPU uti-
lization bottleneck threshold, split utility threshold, and throughput
increase threshold.

The CPU utilization bottleneck threshold parameter impacts how
our solution reacts to varying degrees of the workload received
by the runtime. When the average CPU utilization ratio of replica

threads of a pipeline exceeds this threshold, the adaptation algo-
rithmmarks the pipeline as bottleneck and attempts a parallelism
change. If the threshold is too high, the algorithm will take
no action even if the throughput could be improved with a
higher degree of parallelism. As a result, the achieved speedup
will suffer. If the threshold is too low, it will cause the algo-
rithm to overreact and disrupt the execution unnecessarily with
non-profitable parallelism changes.

In order to investigate the CPU utilization bottleneck threshold
parameter, we run a simple data flow graph that contains a data
parallel region of a single multiplication operator, which performs
256 multiplications for each input tuple. We start the execution
with the input throughput of 40 ktps. Then, we repeatedly double
the input throughput until it reaches to 640 ktps.

We use 3 values for the CPU utilization bottleneck thresh-
old parameter: 0.5, 0.8 and 0.95. Fig. 11 demonstrates how the
adaptation algorithm reacts to increasing amounts of input load.
Y -axis on the left hand side shows the input throughput and the
throughput handled by the runtime. Y -axis on the right hand side
shows replica count of the region. The runtime is able to handle
the load using a single operator replica until the input throughput
increases to 640 ktps. However, when the threshold is 0.5, the
second replica is created once the input throughput becomes 160
ktps and 320 ktps. Similarly, when the threshold is 0.8, the second
replica is created once the input throughput reaches to 320 ktps.
Since the input throughput is already handled by a single operator
replica, these parallelism changes are evaluated as non-profitable
and reverted. This behavior shows that although the adaptation
algorithm can overreact to input loads when the threshold is too
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Fig. 11. Adjusting the CPU utilization bottleneck threshold.

Fig. 12. Adjusting the Throughput increase threshold.

Fig. 13. A data flow graph that consists of a source region and a data parallel
region with 2 operators.

low, it does not lead to overshoot. When the input throughput
increases to 640 ktps, the runtime is able to handle only 500 ktps
with a single operator replica. In this case, adding a new operator
replica helps the runtime to fully handle the input throughput.
After the adaptation algorithm settles on 2 replicas, when the
threshold is lower than 0.95, it still considers the region as a
bottleneck and tries out a non-profitable configuration with a
third replica.

The split utility threshold determines to what degree pipeline
parallelism is preferred to resolve a bottleneck. If a small value
is set, the adaptation algorithm could try a pipeline split even if
the bottleneck pipeline has a very unbalanced operator cost dis-
tribution. In such a case, a pipeline split would not be profitable
and reverted by the adaptation algorithm. This behavior leads to
longer settling time. On the other hand, if a large value is set, a
profitable pipeline parallelism opportunity could be missed even
though operator costs are balanced.

Fig. 14. Adjusting the Split utility threshold for non-balanced operator costs.

Fig. 15. Adjusting the Split utility threshold for balanced operator costs.

We demonstrate this behavior in the following experiments
performed on a 2-operator region (see Fig. 13). First, we run this
region with unbalanced operator costs: 0.75 and 0.10, i.e., pipeline
replica threads spend 75% and 10% of their CPU time on the
first and second operators respectively. In this setting, we use 2
different values for the split utility threshold: 0,2 and 0,1. Fig. 14
displays how the adaptation algorithm scales the data flow graph
by adding new replicas. When the split utility threshold is 0.2, the
algorithm solely creates new replicas and resolves the bottleneck
at 4 steps. On the other hand, when the split utility threshold
is 0.1, before adding a new replica, the algorithm creates a
new pipeline and reverts it at each step because increasing the
degree of pipeline parallelism is not beneficial for this unbalanced
operator cost distribution. We run this data flow graph also with
a balanced operator cost distribution: 0.45 and 0.40, and the split
utility threshold values: 0.2 and 0.9. When split utility threshold
is 0.2, the algorithm creates a new pipeline first, then proceeds
with adding new replicas. However, it does not create a new
pipeline when split utility threshold is 0.9. Fig. 15 shows that using
a large split utility threshold value restrains the potential speedup
achievable by the algorithm. When no new pipeline is created,
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Fig. 16. Throughput of the data flow graph throughout parallelism changes.

the execution congests after 8 replicas and the achieved speedup
becomes 40% less than the lower-threshold case.

Last, we investigate the throughput increase threshold by re-
peating the experiment shown in Fig. 12 for three different values
of the parameter: 0.1, 0.2, and 0.4. As we describe in Section 4.3,
the throughput increase threshold parameter is used for evaluat-
ing the profitability of parallelism changes. A parallelism change
is reverted if it could not increase the throughput sufficiently.
Fig. 12 tells that setting a high value for the threshold restricts the
adaptation algorithm. When the computation is cheap, the con-
tribution of the adaptation algorithm to the overall performance
is limited. For cheap operators, increasing the threshold reduces
the speedup values drastically. The effect of the threshold’s value
is inversely correlated with the computation cost. When the
computation becomes more costly, the algorithm achieves similar
speedups for the threshold values 0.1 and 0.2. On the other side,
we observe that 0.4 is very restrictive for the threshold. At early
stages, when the degree of parallelism is low, adding a new
pipeline or a new replica results in significant improvements
in the throughput. As the algorithm proceeds and the runtime
utilizes a higher degree of parallelism compared to the initial
state, the ratio of increase in the throughput after new changes
is not as large as in the early stages. Therefore, setting a large
value for the throughput increase threshold causes the algorithm
to revert and blacklist beneficial parallelism changes because the
ratio of increase in the throughput is considered to be insufficient.

There is also the workload change threshold to adjust the sen-
sitivity of the adaptation algorithm to changes in the workload.
If a small value is set, minor workload changes can affect the
adaptation algorithm easily and cause the algorithm to repeat
its past nonprofitable parallelism changes. If a large value is
set, it can reduce the dynamicity of the adaptation algorithm.
We perform no experiment for the workload change threshold
parameter because its semantics is easy to grasp.

5.3. Investigation of the overhead of the adaptation algorithm

Before going into the real-world application benchmarks, we
study how much overhead our adaptation solution imposes to the

run-time. We run a data flow graph in which a source operator
is connected to a data-parallel region of 5 operators with the
following multiplication counts: 1024, 32, 32, 1024, 1024. We
record the throughput of the source operator.

Fig. 16 depicts the change in the throughput over the course
of the execution. In this figure, we mark the throughput at the
time of and a few seconds after a parallelism change. In the
beginning, the adaptation algorithm creates a new pipeline. There
are only 2 threads at this stage, one thread for the source operator
and another thread for the single pipeline of the data parallel
region. Only the latter is paused and the region is divided into
2 pipelines. Since the number of threads is small, this paral-
lelism change is applied promptly and the throughput is not hurt.
Nevertheless, the throughput does not increase right after the
parallelism change. It takes 2 s to see the benefit of the new
pipeline. The same situation also goes for the second and third
parallelism changes. The throughput does not decrease while
applying these parallelism changes, but it still takes 2 s to see
the effect of the increased degree of parallelism. After the third
parallelism change, the region has 3 pipelines and 2 replicas,
utilizing 6 threads in total. The first pipeline executes the first,
second and the third operators, the second pipeline executes the
fourth operator, and the third pipeline executes the last operator.

Before adding the third replica, the adaptation algorithm
pauses all 6 threads of the data parallel region, re-distributes
tuples and key–value state objects, resumes the paused threads,
and starts 3 new threads for the new replica of the pipelines. The
throughput drops more than 30% after this change and it takes 3 s
to see an improvement in the throughput. We observe a similar
pattern for the following parallelism changes.

Since the current implementation of Joker runtime is not dis-
tributed, the realization of parallelism changes does not involve
serialization of tuples and key–value state objects, and sending
them through the network. Instead, references of these objects
are moved between threads. If the degree of data parallelism is
changed, re-hashing is performed as well. Because of the lack
of the serialization and networking overhead, Joker is able to
apply parallelism changes are under a second. However, it takes
around 2 to 3 s for the execution to stabilize afterwards. We
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Fig. 17. Data flow graphs for the application kernels.

conclude that parallelism changes have a non-negligible overhead
on the execution when the degree of parallelism is high, and this
overhead must be taken into consideration while adjusting the
adaptation algorithm parameters.

5.4. Application benchmarks

In this section, we run benchmarks with three real-world
stream processing application kernels from previous works,
shown in Fig. 17.

These application kernels are:
• Word Count: In this application, the source operator gener-

ates sentences which are split into words by the second oper-
ator. Then, the words are forwarded to an operator that counts
occurrences of each word and emits an output tuple when it
increments the number of occurrences of a word. The input is
a data set of random English words. In this application, the Word
Splitter operator forms a stateless region and the Word Counter
operator forms a partitioned stateful region.
• Finance: One branch of the application calculates volume

weighted average price of the trades. Another branch emits quote
values which are joined with the average prices. As the output,
bargain indices are calculated for profitable quotes. For input
data, it cycles through a real-world stock market data set.
• Network Monitoring: Public-facing servers constantly receive

malicious login attempts through ssh service. This application,

Fig. 18. Scaling the Word Count application.

as described in [17], parses Linux system logs to detect break-
in attempts. We combine system logs of a server with synthetic
login attempts to generate the input.

For the Word Count and Finance applications, we plot the
throughput along with the number of replicas for the data parallel
regions as a function of time. The throughput is reported until
the adaptation algorithm locates a parallelization configuration
which saturates the whole input throughput, i.e., pipeline replica
thread of the source operator fully utilizes its CPU.

Fig. 18 plots the throughput achieved for the Word Count
application. The adaptation algorithm increases the replica count
of the Word Counter operator until the speedup goes up to 5x.
Although the Word Counter operator is evaluated as bottleneck
with 8 replicas towards the end of the execution, adding a new
replica does not help anymore since the input load is already
saturated with 8 replicas.

We run the Word Count application also on Apache Storm10 to
compare Joker against the state of the art stream processing en-
gines. Since Joker currently runs as a single-node engine, Apache
Storm is also deployed as a single-node cluster on our server. In
order to achieve the highest performance in Apache Storm, the
Word Count application is executed in a single worker process,11
and reliable tuple processing is disabled.12 In this setting, we
hand-optimized task counts of the application in Apache Storm.

Fig. 18 shows that Joker’s performance is comparable to
Apache Storm. In this experiment, Joker runs only a single replica
of the source operator. Its thread fully utilizes its CPU and emits
3.2 Mtps (million tuples per second) when the downstream is ex-
ecuted by 9 threads. Joker can achieve higher throughput values if
more source threads are added. On the other hand, Apache Storm
processes 0.7 Mtps with 22 threads. The throughput achieved by
Joker runtime is 4.5 times higher than Apache Storm. It is worth
mentioning that Apache Storm bears several components that are
required for production usage and not implemented in Joker, and
these components bring an overhead to the execution. Apache
Storm could achieve similar performance to Joker when it runs
in the cluster mode.

Joker outperforms Apache Storm for the Word Count applica-
tion which consists of only 3 operators. The other 2 real-world

10 Apache Storm 1.2.2 http://storm.apache.org/releases/1.2.2/index.html.
11 The parallelism model of Apache Storm http://storm.apache.org/releases/1.
2.2/Understanding-the-parallelism-of-a-Storm-topology.html.
12 Reliable tuple processing in Apache Storm http://storm.apache.org/releases/
1.2.2/Guaranteeing-message-processing.html.

http://storm.apache.org/releases/1.2.2/index.html
http://storm.apache.org/releases/1.2.2/Understanding-the-parallelism-of-a-Storm-topology.html
http://storm.apache.org/releases/1.2.2/Understanding-the-parallelism-of-a-Storm-topology.html
http://storm.apache.org/releases/1.2.2/Guaranteeing-message-processing.html
http://storm.apache.org/releases/1.2.2/Guaranteeing-message-processing.html
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Fig. 19. Scaling the finance application.

application kernels in this section consist of more complex data
flow graphs. We reckon that results would be similar for those
application kernels, hence do not run them on Apache Storm.

Fig. 19 plots the throughput achieved for the Finance appli-
cation. There are 2 source operators and 2 partitioned stateful
regions in this application. The upstream partitioned stateful
region consists of the two operators that calculate average trade
prices and the downstream region consists of a single operator
that calculates bargains. The adaptation algorithm manages to
scale the application by resolving bottlenecks in these regions
together. It achieves a linear speedup of 4.4x with 4 replicas for
the upstream region and 6 replicas for the downstream region.
Although there are two operators in the upstream region, the
adaptation algorithm cannot achieve any speedup by increasing
its degree of pipeline parallelism. This is because the second
operator is very cheap and running it on a separate pipeline is not
profitable. In the final parallelization configuration, the 2 source
operators are able to emit 9 Mtps in total.

In the Network Monitoring application, Auth Failure Filter
and Failure Parser operators form a stateless region, and Failure
Window, Cut Off and Diff operators form a partitioned stateful

Fig. 21. The data flow graph used in the model-based experiments.

region. In the second region, only the first operator is partitioned
stateful and other operators are stateless. Fig. 20 walks through
the adaptation steps of the Network Monitoring application. In
this experiment, the adaptation algorithm achieves only 2.86x
speedup because the overall application complexity is very low.
With the initial parallelization configuration, which is shown in
Fig. 20a, the runtime is able to process 2.1 Mtps. In this config-
uration, the partitioned stateful region is evaluated as bottleneck
and a new replica is created, as shown in Fig. 20b. The new par-
allelization configuration achieves 2.3x speedup. The partitioned
stateful region is still a bottleneck in the new configuration. Since
it is able to process more tuples in the new configuration, it also
causes the stateless region to turn into a bottleneck. In this case,
the adaptation algorithm applies a pipeline split to the upstream
region and adds a new replica to the downstream region in a sin-
gle step. Fig. 20c shows the resulting parallelization configuration,
which leads to 2.86x speedup compared to the initial throughput.
Joker processes 6 Mtps with this parallelization configuration.

5.5. Comparison to model based solutions

Gedik et al. [11] present a model-based solution to optimize
the throughput of streaming applications. Their solution defines

Fig. 20. Adaptation steps of the network monitoring application.
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Fig. 22. Sel. factor: 0.1, the pipelined fission model.

Fig. 23. Sel. factor: 0.1, Joker.

Fig. 24. Sel. factor: 0.2, the pipelined fission model.

Fig. 25. Sel. factor: 0.2, Joker.

Fig. 26. Sel. factor: 0.4, the pipelined fission model.

Fig. 27. Sel. factor: 0.4, Joker.

Fig. 28. Sel. factor: 0.8, the pipelined fission model.

Fig. 29. Sel. factor: 0.8, Joker.

the throughput given a parallelization configuration, and pro-
poses a heuristic approach to find a close-to-optimal paralleliza-
tion configuration.

The model in the pipelined fission solution [11] contains 2 pa-
rameters related to the stream processing runtime: thread switch-
ing overhead and replication cost factor. These parameters are
used for estimating the overhead incurred by the application of

Fig. 30. Sel. factor: 1.0, the pipelined fission model.

Fig. 31. Sel. factor: 1.0, Joker.

pipeline and data parallelism. Their values are calculated only
once for a stream processing runtime and an execution envi-
ronment. Besides these global parameters, the model requires
2 additional parameters related to each streaming application:
operator cost and selectivity.

Our parallel execution model extends the parallel execution
model developed in [11]. However, our adaptation algorithm
works online. It does not require a model to estimate the through-
put. Instead, it measures the actual throughput at run-time, and
gradually increases the degree of pipeline and data parallelism
to resolve bottlenecks. We use the data flow graph shown in
Fig. 21 to compare our solution with the pipelined fission solution.
In this data flow graph, there is a single source operator and 7
multiplication operators. The multiplication operators have dif-
ferent state types in order to create multiple regions. They also
vary in multiplication counts and selectivity values. To emulate
selectivity, an operator draws a random number for each incom-
ing tuple and compares it to the provided selectivity value to
determine if the input tuple should be forwarded to downstream.
For instance, ‘‘mult3’’ performs 20 multiplications for each input
tuple and its ratio of the number of output tuples to input tuples
is 0.9. We generate different versions of the data flow graph by
multiplying operators’ selectivity values with factors of 0.1, 0.2,
0.4, 0.8, and 1.0. When selectivity values are small, less number
of tuples arrive at the downstream operators and the upstream
operators become more costly. The downstream operators receive
more tuples and become more costly as the selectivity values
increase.

We first determine the value of the thread switching overhead
and replication cost factor for Joker runtime by following the
procedure described in [11]. We provide the thread switching
overhead, the replication cost factor, operator costs, and selectiv-
ity values to the pipelined fission solution to generate a paralleliza-
tion configuration for each selectivity factor. Then, we disable the
adaptation algorithm and run the data flow graph in Joker directly
with those parallelization configurations. We also run the data
flow graph in Joker with the adaptation algorithm.

Figs. 22 to 31 display the parallelization configurations gen-
erated by the pipelined fission solution and Joker’s adaptation
algorithm, and Fig. 32 reports the throughput values achieved
by those configurations. The pipelined fission solution and the
adaptation algorithm parallelize only the upstream region when
the selectivity factor is small. When it is 0.1, the adaptation algo-
rithm increases the degree of data parallelism while the pipelined
fission solution increases the degree of pipeline parallelism, and
the adaptation algorithm achieves higher throughput. However,
when the selectivity factor is 0.2, both solutions increase the
degree of data parallelism. The adaptation algorithm continues
to generate the same configuration when the selectivity factor is
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Fig. 32. Comparison of Joker and the pipelined fission model.

0.4, but the pipelined fission solution keeps the initial configuration
in this case. When the selectivity factor is 0.8, the pipelined
fission solution increases the degree of data parallelism for the
downstream region, while the adaptation algorithm optimizes
both the upstream and downstream regions. In the last experi-
ment, the stateful region in the middle becomes a non-resolvable
bottleneck and restrain the throughput for both solutions.

Fig. 32 shows that Joker presents comparable results to the
model-based pipelined fission solution and utilizes a higher de-
gree of parallelism. We conclude that although the pipelined
fission solution is effective for optimizing streaming applications,
it can produce sub-optimal results, for instance when the model
parameter estimations become incompatible with the runtime
because of the difficulty in covering the runtime’s execution
characteristics.

5.6. Evaluation summary

The experimental results presented in this section show that
the organic adaptation solution is able to:

• transparently and non-disruptively optimize parallelization
of non-trivial data flow graphs that involve partitioned
stateful computations,
• resolve multiple bottlenecks at a time,
• achieve higher speedup values by joint optimization of

pipeline and data parallelism,
• adapt to changes in the workload, and discover an effective

parallelization configuration without causing overshoot.
• present comparable performance to the state of the art

stream processing engines and model-based optimization
solutions.

6. Related work

Recent research efforts are focused on the dynamic application
of various optimization techniques to achieve automatic elasticity
at run-time. Realizing online optimizations involves several chal-
lenges that need to be addressed by stream processing engines,
such as low-overhead profiling, simple cost models, effective
performance metrics, profitability evaluation strategies, and safe
operator state migrations. Hirzel et al. [18] present a catalog of
stream processing optimizations. Based on their classification, we

review several studies here and investigate how they apply the
fusion and fission techniques for elastic stream processing.

Fusion is a technique that trades communication cost against
pipeline parallelism [18]. A number of studies investigate how
fusion can be leveraged for elasticity. Tang et al. [24] develop
a greedy control algorithm that continuously changes pipeline
parallelism configuration of a given data flow graph to improve
throughput. Lohrmann et al. [21] utilize dynamic task chaining
and adaptive output buffer sizing to trade high throughput for
low latency. Their solution continuously arranges chains of oper-
ators that can be executed by the same thread without causing a
CPU bottleneck.

The fission technique realizes data parallelism by replicating
an operator and splitting the input stream over its replicas [18].
Even though fission can be applied to stateless operators eas-
ily, handling stateful operators involves rigorous tasks, such as
preserving correctness, performing transparent state migrations,
and minimizing migrated state. Many of the earlier works apply
fission in a dynamic way to adjust the degree of data parallelism
with respect to a performance metric [4–10,12,14,15,20,23,25,26].

Lohrmann et al. [20] satisfy latency constraints with minimum
resource consumption by adjusting the number of replicas for
stateless operators. Stela [26] runs on top of Apache Storm and
adjusts the degree of data parallelism for stateless operators.
When scale-up is requested by the user, it picks the opera-
tor which would lead to the highest amount of increase in the
throughput. Hidalgo et al. [15] build an elastic data parallelism
solution on top of S4 [22] for stateless operators. In their solu-
tion, the system initially overloads an operator to measure the
average number of events the operator can process in a period
of time and assumes it to be constant during the execution.
Cardellini et al. [4] build a prototype solution on top of Apache
Storm that jointly optimizes placement and parallelism of the
operators. Şahin et al. [13] develop a co-routine based elastic
stream processing engine. They model operators as co-routines
and use a thread pool to run the operators. Their elasticity algo-
rithm extends the thread pool if the threads have a high average
utilization value, and adjusts the degree of data parallelism only
for stateless operators. ESC [23] is an elastic stream process-
ing solution implemented in Erlang.13 It realizes elasticity by
acquiring and releasing machines and changing the number of
operator replicas. Although its programming interface contains
a state management primitive, ESC does not support partitioned
stateful computations and operator state rebalancing. Cardellini
et al. [5] extend Apache Storm with a new set of APIs to enable
stateful computations and automatic elasticity by changing the
number of operator instances at run-time. In their solution, it is
the user’s responsibility to define the minimum unit of migratable
state. Different from these studies, Joker is able to jointly optimize
pipeline and data parallelism for partitioned stateful streaming
computations in a transparent and safe manner without requiring
user intervention.

StreamCloud [14], MillWheel [2], SEEP [6], Gedik et al. [12],
and ChronoStream [25] introduce state management primitives
to enable elasticity in the presence of partitioned stateful op-
erators. In addition to elasticity, MillWheel [2], SEEP [6], and
ChronoStream [25] make use of their state management capabil-
ities to achieve fault tolerance.

StreamCloud [14] is built on top of Borealis [1]. It splits a
query into sub-queries based on stateful operators and deploys
each sub-query to a different set of nodes to achieve pipeline
parallelism. In addition, StreamCloud computes hash values for
tuples based on the semantics of a sub-cluster’s stateful operator
and maps them to buckets, that are distributed to nodes of the

13 Erlang website: https://www.erlang.org retrieved in March 2019.

https://www.erlang.org
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sub-cluster, to achieve data parallelism. StreamCloud can acquire
or release nodes for a sub-cluster, or move ownership of buckets
between nodes in the sub-cluster to resolve bottlenecks. Even
though StreamCloud supports partitioned-stateful computations,
it compiles high-level queries into a set of relational algebra op-
erators. Additionally, its query splitting strategy imposes a static
pipeline parallelism configuration. In contrast, the operator de-
velopment API we introduce exposes a set of state-management
primitives to enable arbitrary stateful computations. Moreover,
we offer a more advanced parallel execution model that can
apply data parallelism to multiple operators at once and has more
opportunities for pipeline parallelism. Last, Joker runtime is able
to optimize the degree of data and pipeline parallelism together.

ChronoStream [25] achieves elastic stream processing for
stateful computations by treating the computation state as a first-
class citizen. It divides the computation state into slices which
are distributed and checkpointed in the cluster. For elasticity, it
is able to update the mapping of computation slices to threads
of a worker process. However, ChronoStream does not perform
automatic scaling. Furthermore, ChronoStream forms its state
management primitives on a per-partitioning key basis. Operators
register state objects which provide basic methods for state
manipulation. On the other hand, our operator development API
offers a unified state management API for both stateful and par-
titioned stateful operators, and our adaptation algorithm realizes
automatic scaling.

SEEP [6] checkpoints the externalized operator state on up-
stream operators periodically and uses that state to scale out
stateful operators. Its parallelism model is limited as it deploys
a single operator on each node and scales one operator at a time.
SEEP operators maintain processing state locally and expose it to
the engine via an interface. On the contrary, Joker runtime takes
the responsibility of managing state objects. When a stateful or
partitioned stateful operator is invoked, the corresponding state
object is passed to the operator. This approach opens the door for
Joker runtime to transparently apply various state management
optimizations, such as rebalancing operator state between oper-
ator replicas. Moreover, Joker can scale up multiple operators at
once while performing optimizations.

Gedik et al. [12] introduce an elastic scaling policy for SPL
applications [16]. Their solution changes the degree of data paral-
lelism in the presence of partitioned stateful operators. It
contains a key–value based state management interface and em-
ploys compile-time rewrite techniques on user code to utilize its
state API. By this way, it performs state migrations transparently.
Its control algorithm verifies the profitability of auto-scaling
decisions. Nonprofitable parallelism changes are reverted and
blacklisted. The control algorithm can also adapt to changes in
the workload. If it detects a workload change, it forgets past
nonprofitable decisions.

Floratou et al. [10] introduce the notion of self-regulating
streaming systems. They build a solution on top of Apache Heron,
called Dhalion. Dhalion is built with a modular and extensible
architecture. With its default policies, Dhalion meets throughput
SLOs by automatically adjusting the degree of data parallelism for
Heron spouts and bolts, in the presence of workload variations.
Dhalion’s policies also resolve problems in the execution, such as
slow Heron instances and data skew among bolts. It moves slow
Heron instances to new containers and updates the hash function
when it discovers a data skew problem among bolts. Although
Dhalion enables users to develop custom policies, it does not
handle stateful computations because of the lack of state support
in the Heron API.

Gedik et al. [11] present a model-based solution to optimize
the throughput of streaming applications. They follow a profile-
guided optimization approach to find a parallelization configu-
ration that achieves close-to-optimal throughput. Their model

requires 2 global parameters related to the stream processing
runtime and 2 additional parameters related to each modeled
streaming application. However, it cannot adapt to workload
changes that occur at run-time. Moreover, their solution works
only on chain topologies that do not contain branches. We extend
their parallel execution model to build an online, model-free,
and adaptive parallelization optimization algorithm. We present
a solution that contains both an optimization algorithm and an
accompanying runtime. Our solution is also able to work on
non-trivial topologies that contain branches.

Programming interfaces play an important role in the real-
ization of performance optimizations. For instance, since stateful
computation is not a first-class citizen in Apache Storm, either
elasticity solutions are built only for stateless computations, or
Apache Storm’s operator API is extended to support computation
state. Likewise, StreamCloud [14] supports stateful computations
only for a set of relational algebra operators. However, our oper-
ator development API unifies the development of different types
of operators. It supports arbitrary stateful computations, and en-
ables transparent operator state rebalancing and migrations while
scaling stateful streaming computations.

Furthermore, the majority of the studies focus on dynamic
fission of a single operator at a time [6–9], with a few exceptions,
such as StreamCloud [14] and Gedik et al. [12]. Although Stream-
Cloud [14] can apply fission on a chain of operators, its pipeline
configurations are not dynamic. Moreover, elasticity is studied by
optimizing a single parallelization technique [6,12,14,24]. On the
other hand, our parallel execution model identifies sequences of
operators that are amenable to data parallelism as a whole. It can
also apply different pipeline parallelism configurations to these
operator sequences. To the best of our knowledge, our online
parallelization optimization algorithm is the first solution that
addresses elasticity by applying fusion and fission optimizations
in a joint manner. It is a complete solution that resolves multiple
bottleneck operators in a single step, optimizes the degree of
parallelism with multiple techniques, and tracks the profitability
of its optimization decisions.

7. Conclusion

In this paper, we presented an online parallelization optimiza-
tion algorithm that resolves bottlenecks of streaming applica-
tions. To the best of our knowledge, our algorithm is the first
solution that optimizes the degree of pipeline and data paral-
lelism in a joint manner. We defined an operator development
API and a flexible parallel execution model to form a basis for
the optimization algorithm. The operator interface we introduced
unifies the development of stateless, stateful, and partitioned
stateful operators, source and sink operators, and operators with
multiple input/output ports. We developed Joker, a single-host
elastic stream processing runtime that scales streaming applica-
tions in a safe, transparent, dynamic, and automatic manner. Joker
runtime capitalizes on the information revealed by the operator
development API to parallelize streaming applications transpar-
ently. Joker employs the runtime components to carry out online
changes in the parallelization configuration of streaming applica-
tions. It characterizes the performance of a parallelized execution,
identifies bottlenecks, and optimizes the degree of parallelism
in a greedy manner. Most importantly, the parallelization opti-
mization algorithm is able to safely handle partitioned stateful
computations that are involved in the vast majority of real-world
streaming applications. Our extensive experiments showcase the
effectiveness of our solution.
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