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a b s t r a c t 

The problem of choosing an optimal codon sequence arises when synthetic protein-coding genes are 

added to cloning vectors for expression within a non-native host organism: to maximize yield, the cho- 

sen codons should have a high frequency in the host genome, but particular nucleotide bases sequences 

(called “motifs”) should be avoided or, instead, included. Dynamic programming (DP) has successfully 

been used in previous approaches to this problem. However, DP has a computational limit, especially 

when long motifs are forbidden, and does not allow control of motif positioning and combination. We 

reformulate the problem as an integer linear program (IP) and show that, with the same computa- 

tional resources, one can easily solve problems with much more nucleotide bases and much longer 

forbidden/desired motifs than with DP. Moreover, IP ( i ) offers more flexibility than DP to treat con- 

straints/objectives of different nature, and ( ii ) can efficiently deal with newly discovered critical motifs 

by dynamically re-optimizing additional variables and mathematical constraints. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Optimization models and methods have received increasing at-

ention in genetic engineering in the last decade. Discrete opti-

ization, in particular, proved to be a useful tool in important

rotein design problems, such as determining the physical deploy-

ent of bio-molecular chains in the tri-dimensional space ( inverse

rotein folding Pabo (1983) ; Traoré et al. (2013) ) or finding the

ost productive way of obtaining a protein with desired features

 codon optimization Kofman et al. (2003) ; Webster et al. (2017) ).

n consideration of problem complexity, the large majority of soft-

are tools for these applications are heuristics but, in special cases,

roblems are addressed by Dynamic Programming (DP). In fact,

ince genomic objects are represented as sequences, DP appears

aturally fit for problems of various nature (see e.g. Cohen and

kiena (2003) , Condon and Thachuk , Montes et al. (2010) ;

ueller et al. (2010) and Gould et al. (2014) for more references). 

In this paper we investigate the potential of Integer Program-

ing (IP), and precisely of 0-1 Linear Programming, in designing

ptimization tools for a large number of problems addressed in the

elevant literature. Via a specific example, on one hand we numer-
∗ Corresponding author. 
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cally demonstrate the potential advantage of IP over DP in terms

f efficiency; on the other hand we suggest that this potential has

hances to be exploited for more articulated problems, that can

asily be modeled resorting to the great expressiveness of IP. 

A protein is a (possibly very long) sequence π of elements

1 , π2 , . . . called amino acids . Each amino acid is in turn generated

y a triplet, called codon , of nucleotide bases taken from the well

nown DNA alphabet. Viewed in this way, a protein is essentially a

ombinatorial object: protein design calls for finding one of a huge

umber of codon sequences (or equivalently, nucleotide sequences)

hat realizes the desired protein while optimizing factors related to

rotein yield, folding or other biochemical properties. 

The idea of codon optimization in protein design, as described

n Kofman et al. (2003) , is partly motivated by significant variations

f codon usage bias ( Holm, 1986; Varenne and Lazdunski, 1986 )

mong different species or even genes within the same organisms.

n fact, as we shall detail later in Section 2 , the same amino acid

an in general be expressed by more than one codon, and the same

rotein is thus produced by an organism (the host ) in equivalent

orms that differ for the codons used in its synthesis: the form

ost preferred (or biased ) by the host is generally expected to give

he largest yield. According to this view and in rough terms, then,

he best way to construct a protein would be to insert in the host

enome the most frequently observed codons that the host uses in

ature to express the required amino acids. 

https://doi.org/10.1016/j.cor.2020.104932
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However, even neglecting studies ( Mauro and Chappel, 2014;

Webster et al., 2017 ) that find codon frequency too simplistic —

when not contradictory — an indicator, pandering to the host

codon-usage bias may not guarantee the best results. In fact, spe-

cial sub-sequences of nucleotide bases – called motifs ( Sandhu

et al., 2008; Satya et al., 2003 ) – formed in the synthesis may have

positive or negative effects in terms of either protein final use or

yield. For instance, in DNA vaccination or gene therapy, some mo-

tifs have experimentally been observed to be immuno-stimulatory

while certain others are immuno-suppressive. Also, particular sub-

structures ( hairpins, pseudoknots ) may reduce/increase protein yield

despite host bias/unbias ( Charneski and Hurst, 2013 ), with a be-

havior influenced by many factors, among which sequence stabil-

ity. Thus, a finer control of sub-structural motifs is in general re-

garded as potentially advantageous. 

Following the above remarks, along with a DNA or RNA frag-

ment that encodes the desired protein, software packages of-

ten provide users with a warning about motifs that may con-

trast expected features. However, those motifs are not always con-

trolled ex-ante : for instance, the IDT Codon Optimization Tool checks

and notifies hairpins, repeats and extreme genetic code content

( IDT Codon Optimization Tool, 2018 ) just ex-post . Furthermore, so-

lution optimality is rarely certified: Optimumgene TM OptimumGene ,

to quote another commercial tool, just uses particle swarm opti-

mization heuristics. For a survey on, and comparison of, commer-

cial tools the interested reader can refer to Gould et al. (2014) . 

Besides commercial tools, many methods for codon optimiza-

tion can be found in the scientific literature, and several algorithms

can be downloaded from the web and run for experiments (see

Condon and Thachuk (2012) ; Fuglsang (2003) ; Gao et al. (2004) ;

Sandhu et al. (2008) ; Satya et al. (2003) , just to quote a few). Like

commercial tools, those algorithms take as input a target amino

acid sequence π (the protein that one wants to produce) and all

the codon biases of the host organism, and return a sequence σ
of nucleotide bases that corresponds to π and maximizes a qual-

ity indicator, such as the Codon Adaptation Index (CAI) originally

proposed by Sharp and Li (1987) . In so doing, however, motif engi-

neering methods such as ( Condon and Thachuk, 2012; Satya et al.,

20 03; Skiena, 20 01 ) allow some ex-ante motif control by explic-

itly trying to maximize (minimize) the amount or weight of de-

sired (undesired) motifs in the output encoding σ . Instead of the

CAI, other protein synthesis methods try to optimize the stabil-

ity of m RNA secondary structures ( Cohen and Skiena, 2003 ), or

the placement of restriction sites Montes et al. (2010) . Pareto op-

timal codon designs obtained using a standard commercial solver,

and incorporating (multiple) objectives such as CAI and m RNA sec-

ondary structures are discussed in Ş en et al. (2019) . 

In this paper we focus on CAI optimizers and use ( Condon and

Thachuk, 2012 ), where an exact dynamic programming (DP) algo-

rithm is proposed and tested, as our benchmark reference. This

algorithm maximizes the CAI of the output sequence, and imple-

ments motif engineering by minimizing (maximizing) the number

of undesired (desired) motifs from lists given in advance. The al-

gorithm runs in linear time in the target protein length, but is ex-

ponential in the length of the longest (desired or undesired) mo-

tif: as a consequence, it works fine for moderate motif lengths but

becomes increasingly impractical as the length increases (experi-

ments in Condon and Thachuk (2012) refer to a data set with ten

undesired motifs of length ≤ 6 and thirty-three desired ones of

length ≤ 8). 

Instead of DP, we resort to Integer Programming (IP) to formu-

late a more general model. We tested our method on a data set

that adds new and longer proteins, and much more and longer mo-

tifs, to that used in Condon and Thachuk (2012) . With our method,

we found optimal solutions within 0.36 seconds in the worst case
T  
gainst over 73 seconds of DP; and on average, the CPU time we

mploy is from 1.4 to over 500 times less than with DP. 

Not only is our model much more efficient than Condon and

hachuk (2012) to treat long motifs, but it provides users with

ore sophisticated control of subsequences. As already remarked,

ust prohibiting or requiring motifs has been observed to be in-

ufficient in reflecting the intrinsic complexity of DNA/RNA syn-

hesis. Software tools try to address limitations by also consider-

ng codon context (e.g., codon pairs), autocorrelation, t RNA avail-

bility, and RNA secondary structures (e.g. hairpins). Four of the

leven software packages examined in Gould et al. (2014) heuris-

ically treat m RNA secondary structures, and two also codon con-

ext. All those tools aim at optimizing the CAI, but just three con-

ider motif avoidance. Our contribution is basically computational,

o we will not insist on refinements from the viewpoint of bio-

ogical adequacy. We however remark that our IP approach has

 potential to include, quite easily, additional features listed in

ould et al. (2014) due to both its flexibility and efficiency: deci-

ion variables can in fact be used to express additional constraints,

uch as hairpin prevention or codon pair bias, while the strong im-

rovement in the use of computation resources appears promising

o implement dynamic structure search and re-optimization, as in

 branch-and-cut scheme. 

The remainder of the paper is organized in five sections. In

ection 2 we survey basic issues of codon optimization with mo-

if engineering and formulate the problem here addressed. In

ection 3 we present our 0-1 linear programming model and dis-

uss its main characteristics. In Section 4 we observe some polyhe-

ral properties of the model that partially explain its performance

n practice, and describe the potential of our model for coping

ith more complex sub-structural requirements. A numerical ex-

erience including a comparison of our model to the DP algorithm

eveloped in Condon and Thachuk (2012) is provided in Section 5 ,

nd conclusions are finally drawn in Section 6 . 

. Basics of codon optimization 

As it is well known, the DNA alphabet B consists of four sym-

ols called bases , B = { a,c,g,t } . Triplets of elements of B, called

odons , generate the 20 different amino acids reported in Table 1

lus the stop signal of protein end: from now on, this set of 21

lements (the protein alphabet) will be denoted by A . 

Because there are as many as 4 3 = 64 possible codons, a single

mino acid of A can be encoded in more than one way: for ex-

mple, Phenylalanine can be either encoded as ttt or as ttc . As

 consequence, the same protein π ∈ A 

n can be expressed by a

uge number of DNA/RNA sequences σ ∈ B 

3 n that are equivalent

n terms of the amino acids produced, but generally not in terms

f bases and therefore secondary biochemical behavior. This behav-

or has a twofold aspect: one, in terms of protein yield, is related

o the host organism; another, in terms of final use, deals with the

ffects on the protein recipient. The quality indexes normally (and

ere) adopted to measure the relevant effects are the Codon Adap-

ation Index (CAI) and the number of desired/undesired motifs in

he output sequence. However, more complex indicators, such as

easures of motif absolute or reciprocal positions, can be consid-

red to reveal sub-sequence interaction ( Evfratov et al., 2017; Os-

erman et al., 2013 ), see also Section 4.2 . 

.1. Codon adaptation index 

The Codon Adaptation Index (CAI) is correlated with protein

ield ( Quax et al., 2016 ), and is computed in an elementary way

rom experimental data that indicate how frequently codons are

ncoded by the host organism when producing a given amino acid.

he frequency with which a codon c appears in nature (meaning,
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Table 1 

DNA codon table. 

I II base III 

base t c a g base 

t ttt Phenylalanine tct Serine tat Tyrosine tgt Cysteine t 

t ttc ” tcc ” tac ” tgc ” c 

t tta Leucine tca ” taa stop tga stop a 

t ttg ” tcg ” tag ” tgg Tryptophan g 

c ctt ” cct Proline cat Histidine cgt Arginine t 

c ctc ” ccc ” cac ” cgc ” c 

c cta ” cca ” caa Glutamine cga ” a 

c ctg ” ccg ” cag ” cgg ” g 

a att Isoleucine act Threonine aat Asparagine agt Serine t 

a atc ” acc ” aac ” agc ” c 

a ata ” aca ” aaa Lysine aga Arginine a 

a atg Methionine acg ” aag ” agg ” g 

g gtt Valine gct Alanine gat Aspartic acid ggt Glycine t 

g gtc ” gcc ” gac ” ggc ” c 

g gta ” gca ” gaa Glutamic acid gga ” a 

g gtg ” gcg ” gag ” ggg ” g 
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μ  
n a reference genomic set associated with the host organism) can

asily be computed dividing the number of occurrences of c by the

otal number of occurrences of the codons representing the same

mino acid as c . 

For example ( Table 1 ), a = Lysine has two codon expressions:

 = aaa and c ′ = aag . In the bacterium Escherichia Coli 1 , Lysine is

ound 54,723 times in the form c and 17,729 times in the form c ′ .
hus, referred to the 54 , 723 + 17 , 729 = 72 , 452 codons expressing

ysine , the relative frequencies are ρc (a ) = 0 . 76 and ρc ′ (a ) = 0 . 24 .

nstead of taking frequencies, the CAI uses codon fitness numbers

c ( a ) normalized to the most frequent codon: hence, in the case of

ysine , τc (s ) = 1 and τc ′ (a ) = 

0 . 24 
0 , 76 ≈ 0 . 32 . 

The CAI of a codon sequence σ = c 1 c 2 . . . c n is obtained by mul-

iplying and normalizing the fitness numbers of the codons σ con-

ists of: 

AI(σ ) = 

( 

n ∏ 

k =1 

τc k (πk ) 

) 

1 
n 

herefore CAI ( σ ) ≤ 1, where 1 corresponds to an “ideal” codon se-

uence for the considered host. 

.2. Motif engineering 

If one relies on the CAI, getting an ideal sequence of bases σ
eems trivial: simply, one has to take the most frequent codon for

ach amino acid π k of the target protein. However, as outlined

n Section 1 , things are complicated by the fact that, in the ar-

angement provided by σ , the nucleotide bases may form unde-

ired substrings from the viewpoint of the recipient organism. Or,

erhaps, by the fact that a σ ′ with a smaller CAI than σ presents,

s a counterpart, some desirable base substrings for the recipient

rganism. Or, finally, because the presence/absence of a particular

otif has an effect on yield that dominates the one measured by

he CAI. Known desired or undesired base substrings (the motifs )

re respectively gathered into sets D and U , that we assume as in-

ut data for codon optimization. 

It is reasonable to suppose that none of the given motifs is a

ubsequence of any other motif in D or U . While undesired motifs

re simply forbidden in σ , a quite delicate question arises about

esired motifs. In fact, a motif μ can appear several times in σ :

or example, att ata att ata contains μ = ttat twice. The model

hould then specify whether just one or each occurrence of μ is
1 See http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=155864 

o  

μ  

n

o be counted to fulfill the condition. The algorithm proposed in

ondon and Thachuk (2012) counts every occurrence of a desired

otif μ as a new one, and therefore we do the same in our model;

owever, our model allows to switch to the opposite requirement

ithout any loss of generality. 

.3. Codon optimization with motif engineering 

After the discussion in §§2.1 - 2.2 , we can introduce the Codon

ptimization problem with Motif Engineering (COME) that one

as to solve in order to obtain an optimal encoding of a target pro-

ein π ∈ A 

n , where n is the protein length, that is, the number of

mino acids it contains. 

roblem 2.1. 

Given : 

A target protein π ∈ A 

n , a set D ⊆ B 

∗ of desired motifs, a set

 ⊆ B 

∗ of undesired ones, and positive integers d, u . 

Find : 

A sequence σ ∈ B 

3 n such that: 

i) The k -th triplet of σ encodes the k -th amino acid of π , k =
1 , . . . , n ; 

ii) σ contains no more than u substrings of U ; 

ii) σ contains at least d substrings of D ; 

v) CAI ( σ ) is maximized. 

A COME problem (or a relaxed version in which goals ( ii ) to ( iv )

re hierarchically considered) can be solved by dynamic program-

ing as explained in Condon and Thachuk (2012) . In the following

ection we will describe an alternative approach consisting in for-

ulating the problem in terms of 0-1 Linear Programming. 

. 0-1 linear programming formulation 

For the k -th amino acid π k of the target protein π ∈ A 

n , let

 k denote the set of codons that can be used to express it. For in-

tance ( Table 1 ), if πk = Isoleucine , then C k = { att, atc, ata } . Denote

lso as M = D ∪ U ⊆ B 

∗ the set of all desired or undesired motifs,

nd let | M| = m . 

Let μ∈ M be a motif consisting of | μ| bases, and suppose that

is a substring of σ that starts in i ∈ [1 , 3 n − | μ| + 1] . Depending

n its starting point and according to the amino acids intersected,

is segmented into base triplets, the first and last of which may

ot be completely determined. 

http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=155864
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Example 3.1. If μ = ttccatt ∈ M and i = 1 , the segmentation is

[ttc][cat][t · ·] . If instead μ starts from the fifth base of σ , i.e., i = 5 ,

then its segmentation is [ ·tt][cca][tt ·] . �

Let s = s (i ) = 	 i 3 
 , t = t(i ) = 	 i + | μ|−1 
3 
 be the indexes of

the first and last amino acid of π intersected by μ: in

Example 3.1 with i = 5 , s = 	 5 3 
 = 2 and, as | μ| = 7 , t = 	 11 
3 
 = 4 :

thus μ intersects π2 , π3 , π4 . 

For k = s, . . . , t, define then R 
μ
k 

as the set of codons that are

compatible with the k -th segment of μ: in Example 3.1 , for i = 5 ,

the triplet associated with π2 is [ ·tt ] , so R 
μ
2 

= { att, ttt, ctt, gtt } . 
Definition 3.1. Motif μ is i -compatible with protein π if and only

if C 
μ
k 

= C k ∩ R 
μ
k 

� = ∅ for k = s (i ) , . . . , t(i ) . �

Example 3.2. Let μ = [ ·tt][cca][tt ·] , segmented as in Example

3.1 for i = 5 . Then 

R 

μ
2 

= { att, ttt, ctt, gtt } , R 

μ
3 

= { cca } , R 

μ
4 

= { tta, ttt, ttc, ttg } 
Assume now 

π2 = Isoleucine, π3 = P roline, π4 = P henyl al al anine 

From Table 1 , we see 

 2 = { att, atc, ata } , C 3 = { cct, ccc, cca, ccg } , C 4 = { ttt, ttc } 
Then C 

μ
2 

= { att } , C μ
3 

= { cca } , C μ
4 

= { ttt, ttc } . All sets being non-

empy, μ is 5-compatible with π . �

Note that more motifs can be compatible with π in a given

position. For example, also ν = ttccctt , with R ν
2 

= R 
μ
2 

, R ν
4 

= R 
μ
4 

and R ν
3 

= { ccc } , or γ = ttccat with R 
γ
2 

= R 
μ
2 

, R 
γ
3 

= R 
μ
3 

and R 
γ
4 

=
{ ttt, ttc } , are 5-compatible with π . Given that, let 

M i be the set of all μ∈ M that are i -compatible with π ( M i 

can of course be empty, and in particular M i = ∅ for i >

3 n − min {| μ| : μ ∈ M} ). 
U i = M i ∩ U, D i = M i ∩ D . 

Furthermore, denote by K 

μ
i 

= { s (i ) , s (i ) + 1 , . . . , t(i ) } the index

set of the amino acids intersected by μ when starting in i (see

e.g. figure 5 in the Appendix, where K 

μ
i 

= { 1 , 2 , 3 } for i = 3 , μ =
ccccctt ). We are now ready to formulate Problem 2.1 as 0-1 LP.

The formulation uses two types of 0-1 decision variables, namely 

Codon variables 

x c 
k 

set to 1 if and only if c ∈ C k is used to encode πk , k = 1 , . . . , n 

Motif variables 

y 
μ
i 

set to 1 if and only if μ∈ M i is a subsequence of σ ∈ B 

3 n

that starts from position i, i = 1 , . . . , 3 n − | μ| + 1 

Finally, for k = 1 , . . . , n and all c ∈ C k let 

w 

c 
k = log (τc (πk )) ≤ 0 (1)

Position (1) transforms CAI ( σ ) into a linear function of the codon

variables. The problem reads 

max 
1 

n 

n ∑ 

k =1 

∑ 

c∈ C k 
w 

c 
k x 

c 
k (2)

∑ 

c∈ C k 
x c k = 1 k = 1 , . . . , n (3)

∑ 

μ∈ M i 

y 
μ
i 

≤ 1 i = 1 , . . . , 3 n (4)

3 n ∑ 

i =1 

∑ 

μ∈ D i 
y 
μ
i 

≥ d (5)
y 
μ
i 

+ 

∑ 

c∈ C μ
k 

x c k ≥ 0 ∀ i ;μ ∈ D i ; k ∈ K 

μ
i 

(6)

3 n 
 

i =1 

∑ 

μ∈ U i 
y 
μ
i 

≤ u (7)

y 
μ
i 

+ x a s (i ) + x b t(i ) + 

t(i ) −1 ∑ 

k = s (i )+1 

x c k ≤ | K 

μ
i 
| − 1 (8)

∀ i ;μ ∈ U i ; a ∈ C 
μ
s (i ) 

; b ∈ C 
μ
t(i ) 

x c k ∈ { 0 , 1 } k = 1 , . . . , n ; c ∈ C k 

 

μ
i 

∈ { 0 , 1 } i = 1 , . . . , 3 n ;μ ∈ M i (9)

bjective (2) is equivalent to maximizing the mean of the fitness

umber logarithms, that in turn corresponds to maximizing the

AI index of σ . Assignment conditions (3),(4) state that exactly one

odon out of C k must be used to encode π k , and no more than one

otif in M i can start at any given position of i the output sequence

. Inequalities (5), (7) require a minimum or allow a maximum

umber of desired and undesired motifs, respectively. Conditions

6) — called implications — state that if μ is chosen as a desired

ubsequence starting from the i -th base of σ , then all the amino

cids involved must be encoded accordingly. Conditions (8) — that

e here call cover inequalities — prohibit codon subsequences that

ontain μ from position i , unless μ is accepted as an undesired

ubsequence starting from the i -th base of σ . Inequalities (6) and

8) are written for each forbidden motif μ and position i ; more-

ver, (8) are written for each codon pair with the first element in

 

μ
s (i ) 

and the second in C 
μ
t(i ) 

(note that for s ( i ) < k < t ( i ), C 
μ
k 

reduces

o a single codon). 

Let us briefly discuss inequality (4) . Suppose that, unlike what

upposed in this paper, μ is a subsequence of ν and both are

un)desired motifs; then an occurrence of ν may or may not im-

ly an occurrence of μ according to whether (4) is withdrawn or

ot from the constraint set. This decision clearly implies a differ-

nt count of motifs. Another case is when one motif is desired and

he other undesired. If we accept their co-existence in σ , we can

plit inequality (4) in two conditions, one with the left-hand side

ummation extended to D i , the other to U i . 

Codon variables are as many as 

n 
 

k =1 

| C k | ≤ 6 n 

ecause the amino acids with the largest C k (namely, Leucine

nd Arginine ) have 6 possible codons. Considering that each in-

er segment of μ is a blocked triplet (that is, only one combi-

ation of three bases is possible, see the intermediate [cat] in

xample 3.1 or [cca] in Example 3.2 ), the number of motif vari-

bles is 

3 n 
 

i =1 

∑ 

μ∈ M i 

∏ 

k ∈ K μ
i 

| C μ
k 
| ≤ 3 n | M| max 

i 
{| C s (i ) || C t(i ) |} ≤ 108 mn 

he problem has 4 n assignment conditions, cover inequalities are 

3 n 
 

i =1 

∑ 

μ∈ U i 
| C μ

s (i ) 
|| C μ

t(i ) 
| ≤ 108 mn 

nd implications are ≤ mn max {| μ|: μ∈ D }. Therefore the formu-

ation is compact in m, n and the length of the longest desired

otif. In practice, motif variables as well as implications and cover

nequalities are much fewer, since their existence is subject to i -

ompatibility. 



C. Arbib, M.Ç. Pınar and F. Rossi et al. / Computers and Operations Research 119 (2020) 104932 5 

4

4

 

t  

T  

e  

u  

0  

A  

t  

l

T  

m  

(

P  

C  

h

T  

m  

(

P  

f  

a  

t  

i  

v  

p  

r

 

 

 

h  

t

P  

(  

t

E  

f

μ

F  

S  

t  

m

x

M

x

P

(

P  

m  

y

E

μ

r  

L  

A  

g  

0

μ  

W

x

a  

a

−

T  

a

P  

r  

v  

s

−  

B  

C  

b

α  

=

B

−

h

m

S  

C  

s  

l

4

 

c  

a  

q  

M

. Nice model features 

.1. Matrix properties 

As we will see in Section 5 , formulation (2) - (9) is a good basis

o develop a solution algorithm which is very efficient in practice.

his nice behavior is partially explained by the structure of the in-

quality set. First, recall that a matrix is said to be totally unimod-

lar if the determinant of any of its square sub-matrices is either

 or ± 1. If A ∈ {0, ± 1} m × n is totally unimodular and b ∈ Z , then

x ≤ b is an integral polyhedron (for more on total unimodularity

he reader is referred to Schrijver (1999) ). We then observe the fol-

owing two properties. 

heorem 4.1. For any fixed y-vector of motif variables and any given

otif μ, the coefficients of the codon variables x c 
k 

in inequalities (3) ,

6) form a totally unimodular matrix. 

roof. Recall that for each k the index set of the variables in (3) ,

 k , contains that of the variables in (6) , C 
μ
k 

. Therefore the matrix

as the consecutive 1 property by row. �

heorem 4.2. For any fixed y-vector of motif variables and any given

otif μ, the coefficients of the codon variables x c 
k 

in inequalities

8) form a totally unimodular matrix. 

roof. Let K 

μ
i 

= { s (i ) , . . . , t(i ) } . There exists one cover inequality

or each codon pair a ∈ C 
μ
s (i ) 

, b ∈ C 
μ
t(i ) 

: each intermediate codon vari-

ble x c 
k 

involved in the inequalities, s ( i ) < k < t ( i ), is in fact blocked

o the single codon c ∈ C 
μ
k 

that is compatible with μ in position

 . Hence we can associate each inequality (each non-intermediate

ariable x a 
s (i ) 

, x b 
t(i ) 

) with a vertex (with an edge) of a complete bi-

artite graph G . The coefficient of the codon variables are then ar-

anged into a matrix where 

• the columns corresponding to intermediate variables consist of

all 1; 
• the remaining columns form the edge-vertex incidence matrix

of G . 

The matrix is therefore totally unimodular. �

Although Theorem 4.2 admits some generalization, it does not

old in general if assignment constraints (3) are added to the ma-

rix, or if cover inequalities (8) are taken from different motifs. 

roposition 4.3. The assignment constraints (3) plus the inequalities

8) associated with a single motif can form a matrix which is not to-

ally unimodular for any fixed y-vector of motif variables. 

xample 4.4. Take π = (Serine, Proline, Leucine) and μ = ccccctt

orbidden in position i = 2 . This position implies the segmentation 

= [ ·cc ][ ccc ][ tt ·] 
rom the DNA codon table ( Table 1 ), the only compatible encoding of

erine is tcc ; Proline is blocked to ccc ; on the contrary, both tta and

tg encode Leucine while being compatible with μ in position 2. The

otif is forbidden by y 
μ
2 

= 0 , so the relevant cover inequalities read 

 

tcc 

1 + x ccc 

2 + x tca 

3 ≤ 2 x tcc 

1 + x ccc 

2 + x tcg 

3 ≤ 2 

oreover, by (3) , 

 

tca 

3 + x tcg 

3 ≤ 1 

utting those inequalities together, we note that the coefficients of x tcc 

1 
or x ccc 

2 
), x tca 

3 
, x tcg 

3 
form an odd circulant with determinant ± 2 . �

roposition 4.5. The inequalities (8) associated with an odd set of

otifs can form a matrix which is not totally unimodular for any fixed

-vector of motif variables. 
xample 4.6. Take π = (Leucine, Glutamic Acid, Aspartic Acid) and 

= taga ν = ttagagg ρ = agat 

espectively forbidden in positions 2, 1, 6 . From Table 1 we see that

eucine can be encoded tta , Glutamic Acid gaa or gag , and Aspartic

cid gat , therefore π can be encoded either tta gaa gat or tta gag

at . Forbidding motifs in the given positions implies y 
μ
2 

= y ν
1 

= y 
ρ
6 

=
 and the following segmentations: 

= [ ·ta ][ ga ·][ · · · ] ν = [ tta ][ gag ][ g · ·] ρ = [ · · · ][ · · a ][ gat ]

e then have the cover inequalities 

 

tta 

1 + x gaa 

2 ≤ 1 x tta 

1 + x gag 

2 + x gat 

3 ≤ 2 x gaa 

2 + x gat 

3 ≤ 1 

nd in the corresponding matrix the coefficients of x tta 

1 , x gaa 

2 
, x gat 

3 
form

n odd circulant with determinant ± 2 . �

Inequalities (8) can actually be enforced by 

y 
μ
i 

+ 

∑ 

k ∈ K μ
i 

∑ 

c∈ C μ
k 

x c k ≤ | K 

μ
i 
| − 1 i = 1 , . . . , 3 n ;μ ∈ U i (10) 

heorem 4.7. For any given motif μ, inequality (10) is obtained by

ny sequential lifting in (8) of variables x c 
k 
, k ∈ { s (i ) , t(i ) } , c ∈ C 

μ
k 

. 

roof. Write (8) for a ∈ C 
μ
s (i ) 

, b ∈ C 
μ
t(i ) 

, and let a ′ ∈ C 
μ
s (i ) 

, a ′ � = a using

 = | K 

μ
i 
| − 1 for the right-hand side to simplify notation. Add then

ariable x a 
′ 

s (i ) 
multiplied by the lifting coefficient α to the left-hand

ide: 

y 
μ
i 

+ x a s (i ) + αx a 
′ 

s (i ) + 

t(i ) −1 ∑ 

k = s (i )+1 

∑ 

c∈ C μ
k 

x c k + x b t(i ) ≤ r (11)

y assignment condition (3) , x a 
′ 

s (i ) 
= 1 implies x 

q 
s (i ) 

= 0 for any q ∈
 

μ
s (i ) 

, d � = a ′ . To enforce (11) we then choose the largest α compati-

le with the latter position, that is 

= max 

⎧ ⎨ ⎩ 

r + y 
μ
i 

− x a s (i ) −
t(i ) −1 ∑ 

k = s (i )+1 

∑ 

c∈ C μ
k 

x c k − x b t(i ) | x q s (i ) 
= 0 , q � = a ′ 

⎫ ⎬ ⎭ 

=

 max 

⎧ ⎨ ⎩ 

r + y 
μ
i 

−
t(i ) −1 ∑ 

k = s (i )+1 

∑ 

c∈ C μ
k 

x c k − x b t(i ) 

⎫ ⎬ ⎭ 

ut, due to the assignment constraints, 

t(i ) −1 ∑ 

k = s (i )+1 

∑ 

c∈ C μ
k 

x c k ≥ 1 − r 

ence 

ax 

⎧ ⎨ ⎩ 

r + y 
μ
i 

−
t(i ) −1 ∑ 

k = s (i )+1 

∑ 

c∈ C μ
k 

x c k − x b t(i ) } ≥ max { y μ
i 

+ 1 − x b t(i ) 

⎫ ⎬ ⎭ 

= 1 

imilarly we obtain the lifting coefficients of variables x b 
′ 

t(i ) 
, b ′ ∈

 

μ
t(i ) 

, b ′ � = b. It is easy to see that the lifting procedure returns the

ame coefficient α = 1 whatever is the order in which variables are

ifted. �

.2. Model enrichment 

The mathematical form of problem (2) - (9) allows a much finer

ontrol on decision making than Condon and Thachuk (2012) ,

nd can help avoid possible drawbacks of optimized DNA/RNA se-

uences, such as those pointed out in ( Charneski and Hurst, 2013;

auro and Chappel, 2014 ). 
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For example, instead of maximizing the CAI one can be inter-

ested in approaching the wild types distribution as much as possi-

ble, see e.g. Consortium (2017) . Let f c be the relative wild type fre-

quency of codon c ∈ B 

3 encoding for amino acid a ∈ A . The approx-

imation error is defined by slack and surplus variables u c , v c ∈ R + 
associated with c : 

1 

n a 

n ∑ 

k =1 

x c k + u 

c − v c = f c 

where n a = |{ k ∈ Z : 1 ≤ k ≤ n, πk = a }| , and one seeks to minimize∑ 

c∈B 3 (u c + v c ) . 
One can also weigh motifs differently according to some prefer-

ence: to do so, one has to simply generalize constraints (5), (7) to

knapsack inequalities using motif weights p μ ∈ IR + 

3 n ∑ 

i =1 

∑ 

μ∈ D i 
p μy 

μ
i 

≥ d 

3 n ∑ 

i =1 

∑ 

μ∈ U i 
p μy 

μ
i 

≤ u 

or, in alternative, add/subtract the weighted left hand sides to/from

the objective function. 

Motifs can also be desired or undesired with different grades,

and one can permit no more than — or require at least — a given

number of motifs per grade. In this case D and U are partitioned

into subsets corresponding to grades, and one can write an in-

equality of the form (5), (7) for each subset. A combination of

weights and grades is also possible. 

Hierarchical preferences on desired motifs can be expressed as 

3 n −| μ| +1 ∑ 

i =1 

y 
μ
i 

≤
3 n −| ν| +1 ∑ 

i =1 

y νi 

which implies that motif μ∈ D cannot be found at any point in σ
unless some other motif ν ∈ D is in turn present somewhere (or

perhaps in some specified zone). Let us call COME 1 this extended

version of Problem 2.1 . 

One can further enrich the model features by taking advantage

of motif position-indexing: in fact, special sub-structures (e.g., hair-

pins) may not correspond to fully known base sequences, but can

contain “don’t care” which can be indirectly modeled by control-

ling absolute or relative positions of motifs. To this purpose, one

can add such special constraints as 

y 
μ
i 

+ y νj ≤ 1 μ, ν ∈ M, ∀ i, j : a μν ≤ | i − j| ≤ b μν

that prevent σ from containing motifs μ, ν within a certain range

[ a μν , b μν ] of reciprocal positions, whatever are the intermediate

bases. Let us refer to this extension as COME 2 . 

Let us explain how COME 1 and COME 2 intervene in practical

genome design. 

1. A restriction enzyme is a reagent that cuts DNA at specific

patterns. For instance, the enzyme EcoRI cuts at the pattern

gaattc . According to Montes et al. (2010) , over 30 0 0 of such

enzymes have been studied in detail, and over 600 are com-

mercially available today. A restriction site is an occurrence of

an enzyme-specific motif, and if unique in σ , it allows to cut

the sequence at a certain point and only there. Having many

unique restriction sites regularly placed in σ is therefore a fea-

ture that helps sequence manipulation, but keeping the sites

positional distance under a desired threshold δ was proved to

be N P -hard ( Montes et al., 2010 ). This is a COME 1 -type prob-

lem with 

∑ 

μ∈ D 
y 
μ
i 

≤
∑ 

μ∈ D 

i + δ∑ 

j= i +1 

y 
μ
i 
for all positions i , where D is the set of motifs associated with

the enzyme considered, with the further condition 

3 n −| μ| +1 ∑ 

i =1 

y 
μ
i 

≤ 1 ∀ μ ∈ D 

requiring the uniqueness of motif occurrences. 

2. Hairpins are formed by complementary motifs, namely pairs

μ, μ̄ with | μ| = | ̄μ| , characterized by relatively low levels of

free energy that can cause the string to fold. The strongest

chemical link is g ≡ c , followed by the double link a = t . Thus,

in a string, g,c and a,t are complementary nucleotide pairs, and

string folding can occur when complementary sub-sequences

are read (at an appropriate reciprocal distance) in opposite di-

rections: for instance, μ = tacggct , μ̄ = agccgta . To prevent

such a folding one can use a special form of COME 2 : 

y 
μ
i 

+ y 
μ̄
i + p ≤ 1 p ∈ [ a, b] , μ ∈ M i 

where [ a, b ] denotes the range of distances for which the fold-

ing probability is somehow significant. 

For instance, the restriction sequence gcc · · · · · ggc (BgII) is

found with high-frequency in Homo Sapiens and recognized

by bacterial endonucleases. Because of the five undetermined

bases, forbidding this configuration would require DP to forbid

1024 distinct motifs. With IP this is instead easily obtained by

writing the above constraints for p = 5 and just for the vari-

ables that are i -compatible with π . 

In general, such secondary structures can be detected by dy-

namic programming in the current optimal sequence σ ∗, possi-

bly based on an estimation of the total energy of the relevant

electrochemical links. Inequalities are then generated in a lazy

way and the sequence re-optimized. 

Hierarchical preferences or incompatible motif pairs sepa-

ately make Problem 2.1 N P -hard. For details see the Appendix,

ection 7 . 

. Numerical experience 

In this section we report on a computational experience carried

ut with model (2) –(9) enforced by (10) on a testbed of Coding

NA Sequences (CDS) taken from two data sets: 

• Dataset I . A filtered set based on the 3,891 CDS regions of the

GENEC-ODE subset of the Encode data set ( Consortium, 2004 )

(version hg17 NCBI build 35) and used in the computational

test of Condon and Thachuk (2012) . This set is further elabo-

rated by framing the sequences and eliminating those with in-

termediate stop codons. As a result, 3,154 sequences are even-

tually obtained, with lengths ranging from 72 to 3,106 bases. 
• Dataset II . CDS list from GRCh38.p10 assembly (Genome Ref-

erence Consortium, Consortium (2017) ), containing coding se-

quences for Ensembl or “ab initio” predicted genes. The original

list contains 52,848 CDS, but with much redundancy (that is,

base sequences that encode the same protein). Filtering that re-

dundancy, one obtains 20,376 coding genes. We further reduced

this amount by suppressing sequences with ≤ 72 bases or with

intermediate stop codons, and a few ones with “don’t care” el-

ements. The final set consists of 10,223 sequences with lengths

between 72 and 4,696 bases. 

From each CDS we obtain a target protein by associating, as

er Table 1 , amino acids with consecutive base triplets. Prob-

em sizes in the two data sets are distributed as in Figs. 1 and

 (sequence lengths on the horizontal axis). As in Condon and

hachuk (2012) , codon fitness numbers τ c (and hence the CAI)

ere computed from the frequencies in http://www.kazusa.or.jp/

odon/cgi-bin/showcodon.cgi?species=155864 . 

http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=155864
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Table 2 

Dataset I, CPU time of dynamic vs. integer programming. 

Dynamic Programming Integer Programming 

L max mean σ min median max mean σ min median max 

12 0.013 0.017 < 0.001 0.010 0.230 0.006 0.012 < 0.001 0.003 0.231 

15 0.071 0.093 < 0.001 0.050 1.260 0.006 0.012 0.001 0.003 0.242 

18 0.387 0.469 0.080 0.260 6.550 0.006 0.012 0.001 0.003 0.233 

21 2.028 2.481 0.480 1.355 34.500 0.006 0.012 0.001 0.003 0.229 

24 10.929 13.298 2.830 7.300 181.120 0.006 0.012 0.001 0.003 0.232 

Table 3 

Dataset II, CPU time of dynamic vs. integer programming. 

Dynamic Programming Integer Programming 

L max mean σ min median max mean σ min median max 

12 0.033 0.029 < 0.001 0.030 0.470 0.015 0.027 < 0.001 0.010 1.387 

15 0.182 0.156 0.010 0.150 2.610 0.015 0.026 < 0.001 0.010 1.415 

18 0.883 0.760 0.070 0.730 13.760 0.015 0.028 < 0.001 0.010 1.612 

21 4.665 4.035 0.470 3.830 75.040 0.015 0.026 < 0.001 0.010 1.457 

24 25.727 23.421 2.740 21.160 407.740 0.015 0.026 < 0.001 0.010 1.412 

Fig. 1. Dataset I, distribution of sequence length. 

Fig. 2. Dataset II, distribution of sequence lengths. 
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We carried out experiments with different forbidden and de-

ired motif sets to compare the behavior of our integer program-

ing model (IP) to that of the dynamic programming algorithm

DP) proposed in Condon and Thachuk (2012) , downloadable from

ttp://www.cs.ubc.ca/labs/beta/Projects/codon-optimizer . Data sets 

re available from the website http://optimization.disim.univaq.it/

odon-opt/ . The code of our algorithm can be freely downloaded

rom https://github.com/fabrros/codon-opt . 

In our experiments we maintained the desired set as in

ondon and Thachuk (2012) , that is: 
D = aacgtt , aacgttcg , acgcgt , agcgct , gacgtc , gacgtt , aac-

gat , aacgct , agcgtt , atcgat , cacgtg , cacgtt , ctcgac , ctcgca ,

ctcgta , gacgat , gacgct , gacgta , gacgtg , ggcgtt , gtcgac ,

gtcgat , gctgct , gtcgtc , gtcgtt , tacgta , tacgtt , tgacgtt ,

tgtcgct , tgtcgtt , tcaacgtt , tcgcga . 

ut we modified the undesired set by increasing to 4 nucleotide

ases the length of the shortest motifs and by adding restric-

ion sequences found with high-frequency in Homo Sapiens and

ecognized by bacterial endonucleases, namely gggccc (Apal), cc-

agg (Avril), cctcagc (BbvCI), tttaaa (DraI), gcatgc (SphI), aata-

t (SspI), tctaga (XbaI), ttatttatt (RNA destabilizing sequence ele-

ent), gaattc (EcoRI), aagctt (HindIII), gagctc (SacI), plus the in-

tance gccatagcggc of gcc · · · · · ggc (BgII), where · denotes any

ucleotide. This leads to the following list of undesired motifs: 

U = ccgg, cggg, cgcgcg, gcgcgc, gggg, cccc, tttt, aaaa, gactc,

gagtc, gggccc, cctagg, cctcagc, tttaaa, gcatgc, aatatt, tc-

taga, ttatttatt, gaattc, aagctt, gagctc, gccatagcggc . 

The largest length of a motif in the above list is L max = 11 . To

est larger lengths, for each CDS we added a further undesired mo-

if corresponding to a basis sequence of length L max ∈ {12, 15, 18,

1, 24} found in the middle of the CDS (i.e., starting from position

 

3 | π |−L max 
2 � ; choosing an additional motif that exists in the CDS en-

ures that the corresponding x, y variables exist in our model). 

As designed and used in Condon and Thachuk (2012) , DP oper-

tes a hierarchical optimization by first minimizing undesired mo-

ifs, then maximizing desired ones, and finally maximizing the CAI.

hus, for a fair algorithm comparison, we run IP in the same hier-

rchical way, that is, first we minimize the number of undesired

otifs getting u ∗, then we maximize the number of desired motifs

y fixing the number of undesired motifs to u ∗ and, at the end,

e maximize the CAI with u ∗ and d ∗ fixed. It is worth mentioning

hat this hierarchical multi-objective optimization is directly han-

led by the ILP solver we use (Gurobi 8.1.1, www.gurobi.com ). Tests

ere conducted on a machine Intel Xeon E5-2698 v4 clocked at

.20GHz with 256 GB RAM. Gurobi runs with default settings but

he number of threads is limited to 4 to simulate a standard desk-

op computer. We compare the CPU (wall clock) time required for

olving each CDS instance disregarding the time to setup both the

P algorithm and the IP model, that can be considered negligible. 

The test summary is reported in Tables 2 , 3 and Figs. 3 , 4 . Ta-

les are arranged in rows corresponding to problem groups, where

 group contains problems referred to the whole data set (I or II)

ith L max up to the value in column 1. Columns 2 to 6 report the

http://www.cs.ubc.ca/labs/beta/Projects/codon-optimizer
http://optimization.disim.univaq.it/codon-opt/
https://github.com/fabrros/codon-opt
https://www.gurobi.com
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Fig. 3. Dataset I: DP (blue, square) vs. IP (orange, circle). 

 

 

 

 

 

Fig. 4. Dataset II: DP (blue, square) vs. IP (orange, circle). 

i  

t

 

mean, standard deviation σ , minimum, median and maximum CPU

time with DP. Columns 7 to 11 give the values observed with our

IP model (2) –(9) enforced by (10) . 

Distributions of CPU time are shown in Figs. 3 and 4 grouped

by L max (from 12 to 24). Each dot represents a problem solved, the

x -axis reports the number of nucleotide basis, while CPU time is
ndicated in the y -axis. The blue squared dots represent DP while

he orange circle dots refer to IP. 

Looking at the experiment outcome, we observe that: 

• Both methods find an optimal solution in all the problems

tested. 
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Fig. 5. Digraph G constructed after π = Serine, Proline, Leucine ; the motif μ = ccccctt originates the dashed path. 
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• With IP, CPU time is always very small, never exceeding 0.3 sec-

onds in Dataset I and 1.7 seconds in Dataset II. Problems with

this performance are just rare outliers: both average CPU time

and standard deviation amount in fact to fractions of seconds. 
• With DP, CPU time remains comparable to IP only for motifs

with length 12 and, as well as standard deviation, sensibly di-

verges with L max ≥ 21 in both data sets. The worst performance

in Dataset I (resp., Dataset II) is with over 3 (resp., 6) minutes

CPU time. 
• CPU time scales linearly with CDS length for DP, and is appar-

ently insensitive to CDS length for IP. Note however that, for vi-

sual comparison of DP and IP, charts for longer L max use a larger

time scale than shorter ones. On average, a very moderate lin-

ear increase with sequence length can in fact be observed also

for IP. For DP, instead, CPU time increase (roughly) by a factor

of 5 when L max is increased by 3. On the contrary, IP times does

not seem to vary with L max . 
• DP outperforms IP only in a few cases, concentrated in in-

stances with L max = 12 . An explanation for this behavior is that

the LP model has a matrix size that cannot be compressed fur-

ther. However, the very small values involved (0.3 seconds for

Dataset I and 1.4 seconds for Dataset II) make this DP domi-

nance not meaningful in practice. 

Finally, by running the DP code on instances with L max = 24 , we

bserved a memory peak requirement of about 74 GB (resp., 176

B) for the largest instances in Dataset I (resp., Dataset II). Such

 memory usage may prevent users from running DP in instances

ith fairly long CDSs and L max ≥ 24. On the contrary, the memory

eak of IP in the whole testbed never exceeds 120 MB. 

As a whole, the experiments took 101h:25’:15”, of which

01h:11’:04” (99.8%) dedicated to DP and only 14’:11” to IP. The

P method was in other words over 400 times faster than DP, and

equired about 1,400 times less memory in the worst cases. All in

ll, the tests carried out indicate therefore that integer program-

ing is a much faster and more reliable way to solve the codon

ptimization problems here addressed. 

. Conclusion 

The problem of codon optimization with motif engineering

riginally formulated in Condon and Thachuk (2012) , and solved
here by dynamic programming was tackled by 0-1 linear program-

ing in this paper. The model we developed has nice properties

oth in terms of mathematical structure and potential extensions.

n a numerical comparison, our solution method behaves very well

n absolute terms, and outperforms the competing DP software es-

ecially for increasing motif length: in fact, the time complexity of

ynamic programming is exponential in the largest motif length,

hile the CPU time of our method appears very well scalable with

oth problem size and motifs length. In particular, the speedup

nd memory requirements of our approach make it possible to

xtend the hierarchical search of dynamic programming and ex-

lore the whole Pareto-efficiency region of the problem with re-

pect to the three goals studied (number of desired/undesired mo-

ifs and CAI). These features of the model suggest a good potential

or more challenging bio-chemical and genetic applications, such

s its use in simulation environments or to establish complex pro-

eomic benchmarks for in-vitro experiments. 

. Appendix: Some complexity results 

Let us restate problem COME and its variants COME 1 and

OME 2 of §4.2 in terms of Constrained Longest Path on a special

igraph G constructed from π . The node set is the union of dis-

oint subsets C k , k = 0 , 1 , . . . , n, n + 1 , with C 0 = { r} , C n +1 = { s } , and

ith each of the remaining C k corresponding to an amino acid π k 

nd containing one node per codon. Arcs are directed from all the

odes in C k to all those in C k +1 , k = 0 , . . . , n, thus G turns out to be

(n + 2) -layered and acyclic. Fig. 5 shows the graph corresponding

o π = ( Serine, Proline, Leucine ). 

A subsequence of nucleotides creates in G a set of paths: for

nstance, motif μ = ccccctt starting in position 3 (boldface nu-

leotides in Fig. 5 ) forms the path P indicated with dashed arcs.

ach path can be found in polynomial time in motif and protein

ength, and can be desired or undesired as the motif and the po-

ition from which the motif originates. Weighting by (1) each arc

f G except those ending in s , an optimal codon assignment for a

OME problem is then a longest ( r, s )-path in G that has no more

han u undesired sub-paths and at least d desired ones. Similarly,

ne can formulate problems COME 1 and COME 2 as Constrained

ongest Path in G subject to desired/undesired sub-path pairs. 
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Fig. 6. Graph G for ϕ = (x 1 ∨ x 2 ∨ x 4 ) ∧ (¬ x 1 ∨ x 2 ∨ ¬ x 3 ) ∧ (x 2 ∨ x 3 ∨ ¬ x 4 ) ∧ (x 1 ∨ 
¬ x 3 ∨ ¬ x 4 ) : dashed subpaths are forbidden to satisfy clauses, forbidden arc pairs 

to enforce truth assignment consistency are not indicated. 
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Proposition 7.1. Both COME 1 and COME 2 polynomially reduce from

3- SATISFIABILITY . 

Proof. Let ϕ = (� 11 ∨ � 12 ∨ � 13 ) ∧ . . . ∧ (� m 1 ∨ � m 2 ∨ � m 3 ) be a

Boolean formula in conjunctive normal form. Each literal � ij 
is a directed or negated logical variable x k or ¬x k for some

k = 1 , . . . , n, in which case we say that x k occurs in � ij . For each

clause ϕ i = � i 1 ∨ � i 2 ∨ � i 3 define a graph G i with four node pairs

 i j , f i j , j = 0 , . . . , 3 . Four directed arcs connect t ij , f ij to t i, j+1 , f i, j+1

in all possible ways for j = 0 , 1 , 2 . Using the above components G i

construct then a new digraph G by adding two nodes r, s , four arcs

from r to t 11 , f 11 and from t 3 m 

, f 3 m 

to s , and four arcs from t i 3 , f i 3
to t i +1 , 1 , f i +1 , 1 , i = 1 , . . . , m − 1 (see Fig. 6 ). 

Let us stipulate that, for j = 1 , 2 , 3 , an arc entering node t ij
(node f ij ) corresponds to assigning value true (value false ) to the

variable occurring in � ij . An ( r, s )-path P of G corresponds to a con-

sistent truth assignment if and only if for any two literals � ij , � hk 

associated with the same variable x k (with complementary vari-

ables x k , ¬x k ), P does not contain an arc entering t ij if it also con-

tains one entering f hk (entering t hk ), or an arc entering f ij if it also

contains one entering t hk (entering f hk ). Moreover, clause ϕi is sat-

isfied by the assignment corresponding to P if and only if P does

not contain the subpath associated with the only assignment that

falsifies ϕi (dashed arcs in Fig. 6 ). 

In conclusion, φ is satisfiable if and only if G has an ( r, s )-path

that does not include special sub-paths or sub-path pairs. The in-

troductory reformulation of COME 1 and COME 2 is a generalization

of this problem, so the proof is completed. �

Of course we do not expect to construct the reduction of

Proposition 7.1 via a real codon optimization problem. Moreover,

whilst COME 1 and COME 2 are N P-hard, to the best of our knowl-

edge the computational complexity of COME as stated in Prob-

lem 2.1 is open — although its mathematical structure appears

indeed non-trivial. In fact, shortest path problems with forbid-

den transitions have been proved N P -hard for several classes of

graphs Kanté et al. (2016) ; Szeider (2003) . However, we observe

that COME can be efficiently solved in special cases: 

Proposition 7.2. COME can be solved in polynomial time when just

constrained to desired motifs that can repeatedly occur in σ . 
roof. Let d be the minimum number of desired motifs in a so-

ution σ . Construct graph G = (V, E) as in Fig. 5 , together with

he set D of its paths corresponding to motifs in D that start in

ny position. Then elaborate a new path set ˜ D ⊇ D by recursively

oncatenating the paths of D, so that if P ′ , P ′′ ∈ 

˜ D share an arc,

 

′ � = P ′′ , and P = P ′ ∪ P ′′ is a path, then P ∈ 

˜ D . Clearly, the construc-

ion of ˜ D can be carried out in time polynomial in | π |, | D | and in

he largest motif length. 

Next, expand G by creating d + 1 copies v 0 , v 1 , . . . , v d of each

ode v ∈ V except r, s . The expanded graph G exp = (V exp , E exp ) will

ontain arc u i v i for any uv ∈ E not originating in r or ending in s ,

lus all arcs of the form rv 0 , v d s . Moreover, if P is a ( u, v )-path of˜ 

 associated with h desired motif, then u i v min { i + h,d} ∈ E exp for all i .

inally, we weight arcs u i v i as in G and give the remaining arcs the

eight of the associated path in G . 

By construction, G exp is acyclic and can be constructed from π ,

 in time polynomial in the protein and the largest motif length.

et Q be an ( r, s )-path of G exp , if any. If Q reaches node v i , we in-

er that the protein encoding up to that point includes i desired

otifs: in fact, if Q contains a desired ( u i , v i )-path, we can replace

t by the single arc u i −1 v i at the same cost. Because v i s �∈ E exp for

 < d, Q necessarily contains an arc of the form v d s for some v ∈ V .

herefore, Q corresponds to a feasible encoding of π , and to an op-

imal one if of maximum weight. As the longest ( r, s )-path of G exp 

an be computed in polynomial time, the result follows. �

Throughout the paper we assumed that no desired motif con-

ains any other motif of D , but the proof of Proposition 7.2 still

olds under the opposite assumption. The hypothesis that a de-

ired motif can occur with no limits in the encoding sequence σ is

nstead crucial for the proof given. 
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