
Skin-Patchable Electrodes for Biosensor Applications: A Review
Nagaraj P. Shetti,* Amit Mishra, Soumen Basu, Ronald J. Mascarenhas, Raghava Reddy Kakarla,
and Tejraj M. Aminabhavi

Cite This: ACS Biomater. Sci. Eng. 2020, 6, 1823−1835 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Health care monitoring is an extremely important
aspect of human life that can be accomplished using wearable skin-
patchable sensors. Upon interfacing with the skin or epidermal
surface of the body, the sensing patches can monitor the
movements of human parts such joints, legs, and fingers as well
as tiny vibrations caused by respiration, blood flow, and heart beat.
Wearable skin patches have shown improved promise in
monitoring the body temperature and fever in addition to quick
measurement of blood pressure and pulse rate along with breathing
rate. Sensors can also analyze the sweat contents when in contact
with the skin as well as other analytes such as diabetes-based
volatile organic compounds (VOCs) and organophosphate nerve
stimulating agents. Hence, the sensors can be of immense help in the early prediction of malfunctions of the body organs such as
heart and lungs, leading to timely and effective treatment. This review covers different important aspects of skin-patchable sensors
including mechanical strength and flexibility, sensitivity, transparency, self-healing, self-cleaning, and self-powering ability as well as
their latest applications in medical technology.

KEYWORDS: sensors, wearable, skin patchable, biomedical measurement, bioelectronics, health monitoring

1. INTRODUCTION

Real-time health care monitoring is quite useful in the early
prediction and treatment of various diseases.1 With the advances
in portable devices, thin, flexible, and wearable skin-patchable
electrodes have gained considerable attention.2−4 These can be
very useful in monitoring the daily physiological problems
related to human health,3,5−7 leading to increased interest in
developing next-generation biosensors offering a high flexi-
bility.8−13 There is also a need for a separate and flexible energy
source to power such devices, such as charging and replacing,
and charging heavy devices like batteries may be an obstacle for
further development.9,12,14−18 In order to fabricate fully flexible
wearable biosensors, it is necessary that all the components must
have highmechanical strength, especially the electrodes, as these
can transmit body signals to an external circuit.4,19−27 The
development of wearable biosensors therefore requires interfac-
ing the biomaterials and electronic components by assembling
them onto a flexible and thin substrate, which can transform the
biological interactions to readable electronic signals.19,28−31

Conventional biosensors, which are based on electrochemical
interactions among the biomaterials and the analytes, are some
of the earliest and more common types of devices.20,32−34 The
wearable sensors (in the form of wristbands and watches) may
not only offer a more convenient monitoring of some of the
critical parameters such as heart beat and blood pressure35−38

but also allow noninvasive analysis of some important

biochemical markers through sweat, saliva, tears, and interstitial
fluids (ISF).14,28,39−42 Thus, the noninvasive diagnosis with the
help of these biofluids could provide more accurate health and
fitness information.28,43,44 Traditional analytical techniques
require few point contacts that rely on flat electrode pads,
which are kept in contact with the skin via adhesive tapes and
sometimes with conductive gels that are applied to minimize the
contact impedance between the skin and the electrode.6,34,45,46

However, these suffer from a loss of adhesion and discomfort
arising from the unfavorable nature of the skin−electrode
interface.
The present review covers the developments on flexible and

wearable skin-patchable electrodes used in the fabrication of
wearable biosensors. A very typical approach to monitor human
activity via wearable sensors is to measure the strain induced in
the body by the muscle movements and internal organ
functions.29,42,47,48 Sensors attached to the skin areas near or
on moving joints can reveal valuable information about large
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body motions to measure large strains, and hence, sensors must
have high stretchability and good mechanical strength.46,49−52

On the other hand, some sensors can detect small or lesser
intensity strains, which are mainly induced by the muscular
movements because of the functioning of the internal
organs.47,53 Such sensors require a high sensitivity toward
smaller strains. In themajority of the cases, the idea about proper
functioning of internal organs can be assessed by measuring
respiration rate, pulse rate, and heart beat by interfacing the
strain sensor with the neck, wrist, and chest.54−58 However,
fabrication of sensors that can record high-quality signals when
kept in contact with the skin is a challenging task, but a handful
of sensors are available in the literature.4,59,60 In subsequent
sections of this review, different prospects and latest develop-
ments of skin patchable or wearable sensors will be discussed
with suitable examples.

2. SOME ESSENTIAL PROPERTIES OF AN EFFECTIVE
SKIN PATCHABLE ELECTRODE

Effective skin-patchable sensor and its components should
possess some of the essential properties for its proper
functioning (Figure 1). These include linearity, sensitivity,

mechanical strength and flexibility, self-healing, self-powering
ability, transparency, and biocompatibility. High mechanical
strength, flexibility, and biocompatibility are quite essential for
an effective integration of a sensor to the skin, and these features
are described.
2.1. Linearity in Measurement. Linearity in measurement

is an important factor regarding the patchable skin sensors
because they experience very large strains. Deviation in linearity
leads to complexities in the calibration process, and it is a
prominent limitation in most of the resistive type sensors.
Nonlinearity also arises when the sensors undergo stretching,
which is mainly due to the transition of microstructure from
uniform to nonuniform morphology.61

2.2. Sensitivity. Sensitivity is defined as the slope of relative
changes in electrical signal (resistance and capacitance) vs

applied strain or stress. Stretchable conductors with a high
peizo-resistivity are more eligible for skin-patchable sensor
fabrication. Sensitivity in such sensors relies upon the
mechanism, which is based on the propagation of cracks,
tunnelling, and disconnection between the constituents as well
as micro and nanostructures.62 In this respect, fractured or
crackled microstructure designs mediate the conductive
interconnections to have high tunnelling peizo-resistance and
sensitivity for high pressure.63 A variety of mechanisms and
designs, which when put together may lead to increment in
sensitivity.

2.3. Mechanical Strength and Flexibility. One of the
essential factors to be considered while fabricating the skin-
patchable electrode is to get an intimate contact between the
skin and the sensor with a minimal invasiveness and contact
resistance.64,62 This requires greater emphasis on the design of
constituent materials with high mechanical strength and
flexibility. The deformation of a typical human skin is up to
15% of strain with a elastic modules of 10 kPa to few hundred
kPa.65 Thus, patchable skin sensors should have sufficient
stretchability to keep them attached to the skin and to efficiently
adapt to the mechanical bending and stretching during the body
motion. While fabricating the sensor, it is therefore necessary to
modify the flexural strength of its constituent materials, as
flexibility is proportional to the third power of thickness of the
material.66

Fabrication and integration of ultrathin devices has been
made possible by the recent advances in thin film techniques and
nanotechnology. Single-crystalline Si nanomembranes (100−
200 nm thickness) have transferred from silicon to insulator
wafers to thin polymer substrate that could enable such an
integration to promote the bending to small radii of curvature
without any fracture. This also causes decrement in bending
stiffness by several orders of magnitude.67,68 Innumerable
reports are available regarding the construction of devices
having organic or inorganic constituents on very thin substrates,
which could lead to very small bending radii of the order of
micrometers even after using materials of relatively large elastic
moduli.69,70 The use of materials having high fracture resistance
like CNTs, graphene,71 some metal oxides, hydrogels, and
polymers can be a more effective approach to obtain
mechanically robust devices. Apart from incorporating active
materials and reducing the thickness, structural, and morpho-
logical design of the device also plays an important role in its
mechanical stability.72 In this respect, soft lithography technique
is very promising, as it offers soft molds for imprinting targeted
materials, thereby allowing the generation of complex 3D
morphologies. It also enables the utilization of elastomeric
materials as stamps for the incorporation of materials in nanosize
regime onto the planar and nonplanar topographic surfaces at
reduced cost.73

Another preferred procedure is to build an island-bridge type
of layout where conductive bridges or interconnects are linked
to the active components, called islands.74−76 These inter-
connects tend to accommodate an overall stretching in the
device and decrease the strain in individual functional
components. Therefore, It is necessary that these interconnects
must withstand the repetitive strains as a result of daily motion of
the human body. Hence, these must be designed and fabricated
in such a way that they can undergo only elastic deformation
during day-to-day use, as the plastic deformation will lead to
crack formation and increased electrical impedance.77 Matsu-
hisa et al.78 reported a printable elastic conductor containing

Figure 1. Desirable features of skin-patchable sensors.
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AgNPs, which are formed in situ by mixing of nanosized Ag
flakes, fluorine rubbers, and a surfactant. AgNP formation was
influenced by the surfactant, heating process, and molecular
weight of the elastomer. The printable elastic composite had
conductivity higher than 4000 S cm−1 at 0% strain and 935 S
cm−1 when stretched up to 400%.
There is yet another technique, called additive printing (3D

and inkjet printing) for preparing skin patchable devices with
better scalability.43,79−84 This opens up a wider choice of
materials such as biomaterials, metal nanoparticles, semi-
conductors, polymers, and ceramics.79,85−87 Also, hybrid
combinations of such materials can lead to the formation of
functional devices that can generate optical or electrical signals
after interacting with the target skin region.70,71,88,89

2.4. Ability to Self-Heal. Self-healing is very important, as
the device components are prone to wear/tear and even damage
during daily use.90 Self-healing allows different components to
repair themselves and re-establish their original role in the device
functioning.91,92 The self-healing materials possess a high
tolerance to damage or small cracks and prevent their
propagation, leading to an increase in device robustness.
There are many materials such as self-healing conductors used
as constituents in the stretchable and flexible electronic devices
like electronic skins.87,93−95 However, many self-healing
polymers fromwhich devices are fabricated have lowmechanical
strength and are viscoelastic. To overcome this limitation, Kang
et al.90 reported a cross-linked polymer via rationally designed
multistrength hydrogen-bonding interactions. This has led to
the formation of a supramolecular network in polymer film
having exceptional mechanical stretchability and self-healing
even under artificial sweat conditions.
Another challenge is the integration of different self-healing

components into multifunctional electronic systems. To resolve
this issue, Son et al.96 observed the reconstruction of conducting
nanostructures when they are in contact with a self-healing
dynamically cross-linked polymer network. The self-bonding
feature of the polymer enabled the integration of different
devices to a heterogeneous multicomponent device or a single
multifunctional system. In another study, Liu et al.91 reported
wearable hydrogels having self-healing and self-adhesive proper-
ties, which have the ability to transform mechanical stimuli of
deformation of epidermal skin tissues to the readable electrical
signals.
2.5. Ability to Self-Clean. The property of self-cleaning

assures proper functioning and stability of skin patchable
electrode sensors. Recently, Kar et al.97 prepared a self-cleaning
electronic skin capable of mimicking the pressure-sensing
feature of natural human skin. It was observed98 that carbon-
based nanoparticles impart a sensor surface with a super-
hydrophobicity with contact angle 150° and sliding angle 10°.
The superhydrophobic nature of the surface let the water
droplets roll out along with dust particles and contaminants.99

2.6. Optical Transparency. For convenience and comfort,
it is necessary that skin-patchable sensors should be transparent
such that they are not visible when used on the face and
neck.47,100 Lan et al.100 prepared optically transparent
thermotherapy pads consisting of Ag nanowires on the
poly(vinyl alcohol) (PVA) matrix. This film has an optical
transparency of 93.1% with excellent flexibility and controllable
heating with a rapid thermal response. Recently, Chun et al.101

prepared thin and lightweight transparent pressure sensor using
graphene applicable to an electronic skin sensor. In this protocol,
a single graphene layer was grown by CVD onto polymethyl

methacrtylate (PMMA) interlayer-coated polydimethylsiloxane
(PDMS) substrate. Here, graphene acted as an intact conductive
sensing layer.

2.7. Ability to Power Itself. A number of techniques have
been developed to accommodate the energy generating and
energy storage devices into wearable skin patchable electrode-
based sensors.102,103 Since energy autonomy is necessary for skin
patchable devices, they can be designed to harvest their power
from the human body itself or from the surrounding environ-
ment.104−106 From the human body, power can be harvested by
the mechanical motion of the body,107,108 which can be
converted up to electrical energy. Power can also be harvested
from human sweat as in case of wearable biofuel cells,109 solar
energy110 and electromagnetic energy in the radio frequency
(RF) range.104,105

TENG is the latest power-generation technology reported for
the first time in 2012.111 This works on the principle of
triboelectrification according to which static opposite charges
are created between two different materials that are arranged
face-to-face.112 These materials have electrodes at their back
side and the charges flow between these electrodes via an
external circuit under the potential bias. TENG has been widely
used to power a variety of wearable devices such as skin-
patchable electrodes. Hwang et al.47 reported the fabrication of a
transparent self-powered patchable sensor in which a tribo-
electric nanogenerator (TENG) was integrated with a super-
capacitor and was used for detecting strain on human skin. In an
another report, Pu et al.113 described the fabrication of an
ultrastretchable and transparent TENG that is soft skinlike,
which enables energy harvesting and tactile sensing that was
achieved by a combination of an ionic hydrogel acting as an
electrode and an elastomer, which is the electrification layer.

2.8. Biocompatibility and Interfacing with Skin.
Biocompatibility is an important factor for a proper integration
of the sensor with the skin such that it may not cause any
allergies or rashes on human skin like rashes and etching. There
are the three strategies of integration of sensors with skin that are
based on different methodologies of attaching the sensor to skin
such as epidermal or tattoo-like integration,106 hard−soft
integration,114 and as functional substrates.115 The materials
that are attached to the skin as temporary epidermal tattoo have
the elastic modulus similar to that of the skin and this allows for
contact and adhesion between the skin and the sensor.116

Siliconematerials like PDMS, Ecoflex, and Solaris have also been
used as substrates in most of the epidermal tattoo sensors.
Apart from silicone materials polymers such as poly(vinyl

alcohol) (PVA), polyethylene terapathalate (PET), polyester,
and polyimide have also been used as substrates that can be
integrated with the human body at different locations. On the
other hand, the hard−soft integration consists of a combination
of commercial off-the-shelf chips and flexible metallic
interconnections on soft and stretchable substrates that can be
mounted on the skin.114 This strategy allows building of skin-
mountable integrated circuits. The third strategy of functional
substrates involves the combination of different functional
substrates and thin films for the fabrication of sensors for a
particular application.117

Hence, it is necessary to consider all these factors before even
choosing an active material for skin patchable electrodes. The
other most important factor is the interface between skin and the
sensor. The key point at the interface is the better adhesion of
the sensor with the skin so that it can actively analyze strain,
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sweat, blood pressure, etc. Also, biocompatibility is an important

factor.

3. TYPES OF SKIN-PATCHABLE SENSORS AND THEIR
APPLICATIONS

Six types of skin-patchable sensors (Figure 2, Table 1) are
considered in this review, which have been primarily classified
based on their applications into categories such as chemical
sensor, sleep-monitoring sensor, and temperature sensor. These
are also differentiated by their working principles as optical
sensors and mechanosensors under which strain and pressure
sensors fall. The sixth type is multisensing devices, which
combine the two sensing devices in a single substrate.

3.1. Skin-Patchable Chemical Sensors. Flexible and
wearable chemical sensors that can quickly detect different
biomarkers in the human body are necessary for day-to-day
monitoring of human health. These can be the effective
noninvasive techniques to monitor at the molecular level
providing information on some vital signs of the disease onset.
Such sensors have been used in a number of attempts for the
diagnosis of body fluids such as saliva, sweat, blood, exhaled air,
breathing air, etc. An ultrasensitive chemical sensor based on 3D
biomimetic butterfly wing template was developed by Wang et
al.118 A graphene sheet coated porous 3-D structure has shown
to highly selective detection for diabetes-based volatile organic
compounds (VOCs) with a fast response time of <1 s at the low
detection limit of 20 ppb.
Wearable sweat sensing has gained much attention because of

its immense potential in health diagnosis.119 A novel wearable
potentiometric tattoo biosensor for real-time monitoring of G
type nerve agent stimulant was fabricated by Mishra et al.89 This
sensor was fabricated by screen printing electrodes on a tattoo
paper (Figure 3A−D) and interfaced to a conformal electronic
interface to enable wireless data transmission. The sensor could
withstand large mechanical stresses without any decrement in
performance. It has a fast response time and is selective toward
fluorine-containing organophosphate nerve stimulant agent,
namely, diisopropyl fluorophosphate (DFP), in both vapor and
liquid phases. A microfluidic and flexible sweat-sensing patch
containing spiral patterned microfluidic component incorpo-
rated with ion-selective sensors and electrical impedance-based
sweat rate sensor mounted onto a flexible plastic substrate was
fabricated.120 The patch could perform sweat analysis by
interfacing with the sensing component, which is an on-site
signal conditioning, analysis, and transmission circuit (Figure
3E). Here, the pressure induced by secreted sweat governs the
sweat flow in the microfluidic device to enhance the sweat
sampling as well as electrochemical detection of ions viz., H+,
Na+, K+, and Cl− by a sweat collection chamber. The sweat
sensor consisted of the electrodes selective for each particular

Figure 2. Different types of skin-patchable sensors.

Table 1. Representation of Different Skin-Patchable Sensors and Their Applications

sensor material sensor types applications parameter sensed/analyte detected ref

chtiosan/rGO composite chemical sensing of diabetes related VOCs acetone 118
potentiometric tattoo sensor chemical G-type nerve-simulating agent

detection
DFP 89

microfluidic sweat sensing patch chemical sweat analysis H+, Na+, K+ and Cl− 120
PDA/PVA hydrogel pressure/strain epidermal strain facial expressions, pulse beat, and limb

movements
91

Au micromesh/PDMS pressure/strain epidermal strain eye blinking, chewing, and gestures 76
CNTs/PDMS array sensor pressure/strain epidermal strain epidermal/muscle movement of throat

and wrist
123

resistor-type composite pNI-PAM/PEDOT/CNTs temperature skin temperature fever diagnosis 136
stretchable SWCNT-based TFT temperature skin temperature fever diagnosis 137
3D printed “earnable” smart device with liquid metal
interconnect

temperature core body temperature fever diagnosis 139

TENG-based aluminum leaf patterned film (APLF) sleep-monitoring
sensor

sleep monitoring sleep monitoring 102

AgNPs/CNT/PEDOT:PSS multisensor strain and temperature ECG, temperature, acceleration 148
graphene-based ISFET multisensor sweat and temperature sweat pH and skin temperature 1
regioregular narrow band gap PIPCP polymer optical photoplethysmogram blood volume changes 151
NIR-PPG (h-PPG) sensor optical photoplethysmogram heart rate variability and pulse pressure 152
SERS-based biocompatible poly-(e-caprolac-tone) film optical in situ identification of different

analytes
MG molecule 153

nanocavity array incorporated into 3D nanocup
plasmonic substrate

optical biosensing carcinogenic antigen 154
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ion integrated upon the flexible substrate. The experiments
carried out on Na+ selective electrode showed the sensitivity of
56 mV/decade at a constant flow rate of 1 μL/min and sensor
shows very rapid response to sudden changes in flow rate.
Gao et al.121 made a flexible microfluidic pressure sensor

consisting of PDMS that was capable of undergoing strains up to
200% without getting failed. The as-fabricated sensor consisted
of the Wheatstone bridge type circuit, which was sensitive for
both tangential and radial strains with a high sensitivity of 0.0835
kPa−1 with the change in output voltage that can operate in the

temperature range of 20−50 °C. It has also been found that the
liquid is more deformable than the solids so the sensors
containing the liquids confined in soft templates as sensing
components represent ideal platform for applications such as
flexible sensors.122

3.2. Patchable Pressure/Strain Sensors. In order to keep
a watch on real-time live movements of the human body parts,
wearable sensors have been developed to study different body
movements such as tiny epidermal movements related to pulse
beats, throat vibration, and facial expression changes as well as

Figure 3. (A−D) Skin-patchable potentiometric tatoo biosensor. (E) Microfluidic channels based sweat sensor. (A−D) Reproduced with permission
from ref 89. Copyright 2018 Elsevier. (E) Reproduced with permission from ref.120. Copyright 2018 American Chemical Society.

Figure 4. (a) Fabrication process of Au nanomesh/PDMS strain sensor by crackled approach, (b) fabrication of CNT/PDMS pressure sensor. (a)
Reproduced with permission from ref 76. Copyright 2018 American Chemical Society (b) Reproduced with permission from ref 123. Copyright 2018
IOP Science.
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larger body movements like fingers and legs. In a recent study,91

a self-adhesive and self-healing epidermal sensor was prepared
by the addition of polydopamine (PDA) and poly(vinyl alcohol)
(PVA) hydrogel. Because of their self-adhesive and compliant
nature, they can be easily affixed onto the skin epidermis without
using any external adhesive. Being very sensitive, it can detect
small epidermal movements such as pulse rate, throat vibration,
and changes in facial expressions. Because of its high
stretchability, it can even monitor larger body movements of
legs and fingers. A skin patchable strain sensor from Au
micromesh, which is partially incorporated in a flexible
polydimethylsiloxane (PDMS) support by the crackle templat-
ing method (Figure 4a) was developed.76 The PDMS support
provided robustness to the Aumicrowire network and the sensor
had a high optical transmittance of about 85% with an effective
stretching strain in the range of 0.02−4.5% in both tension and
compression cycles for a gauge factor of 10.8 This sensor was
very sensitive to both high and low strains with an ultrafast
response.
Apart from body movements, the pressure sensing is also an

important factor to monitor blood pressure, heart beat, and
blood flow rate. There is a great need for wearable pressure
sensors with a broad pressure-sensing range, high sensitivity,
temperature-independent sensing, and rapid response with
relaxation times. Yu et al.123 fabricated a high-performance
pressure sensor based on microstructured carbon nanotube/
polydimethylsiloxane (PDMS) arrays (Figure 4b) by an
ultraviolet/ozone (UV/O3) microengineered method, which is
cost-effective, efficient, and can be used at room temperature.
This pressure sensor has a broad sensing range of 7 Pa to 50 kPa
with a sensitivity of around −0.101 ± 0.005 kPa, fast relaxation
speed of 10 ms, and a good cycling stability.
3.2.1. Working Mechanisms of Pressure/Strain-Based

Sensors. 3.2.1.1. Dimensional Effects in Resistive and
Capacitive Sensors. In order to detect epidermal vibrations
and the movement of the human body parts, sensors work on
two distinct mechanisms, which solely depend upon thematerial
characteristics, morphology, and fabrication procedure. These
can be either resistive or capacitive type. In case of resistive
sensors, resistance to mechanical strain is due to geometrical
effects and peizo-resistivity.39 These are quite different from the
traditional strain-based sensors, which work upon the
disconnection between the sensing constituents, propagation
of cracks, and tunnelling effects. After countering strain, the
sensor tends to contract in a transverse direction. If the sensor is

resistive type, then the resistance is given by ρ= ( )L
A
, where ρ is

resistivity, L is length, andA is area of the cross-section.124 There
is an increment in resistance upon increase of length and
decrease in the area of cross-section.
On the other hand, the capacitive sensor works by change in

capacitance, which relies on changes in thickness of the dielectric
material and the capacitive area. The change in capacitance is

expressed as ε ε= ( )C ( ) l
wd0 0 r , where ε0 and εr are permittivity in

vacuum and dielectric medium. When the sensor undergoes a
strain S, then its length and capacitance can be increased by (1 +
S)l and (1+S)C0. Thus, the capacitance of a capacitor sensor
increased linearly by 1 + S times the initial value and this linear
relationship is valid only up to certain strain values, but not at
larger strains.125,126

3.2.1.2. Piezo-resistive Mechanism. Piezo-resistivity is
defined as the change in resistivity upon mechanical

deformation of the material. For a piezo-resistive sensor, the
change in resistance can be mathematically defined as

Δ = + + ρ
ρ

Δ( )R v S(1 2 ) , where v is poison’s ratio of the

sensor material. In this expression, the first term (1 + 2v)S
denotes the impacts of structural deformations and ρ

ρ
Δ is change

in resistivity upon deformation. The peizo-resistivity of
semiconductors depend upon the change in band gap and
interatomic distances.124,127 This is considered as the most
common sensing mechanism due to its simplicity in design and
readout by pressure variation into resistance changes.128

Numerous efforts have been made to fabricate state of the art
peizo-resistive skin-patchable sensors. It is, however, difficult to
accurately monitor the pressure under mechanical deformation
as a result of variable sensing performance.129 This issue was
overcome by developing bending insensitive ultraflexible and
resistive type pressure sensors with the composite nanofibers.130

This has resulted in no significant change in sensor properties
even at low bending radius because of the thin support. This also
allowed for accurate and precise measuring of pressure
distribution on the sensor surface.

3.2.1.3. Mechanism of Disconnection and Crack Prop-
agation. The stretching of skin-patchable sensors causes
loosening of electrical connection between the conductive
nanomaterials causing an increase in electrical resistance. This
normally occurs as a result of weakening of interfacial binding
and mismatch in stiffness among the polymers and nanoma-
terials.131 On the other hand, cracks form and propagate in thin
film polymer substrate containing brittle materials upon
stretching. These cracks are usually formed in regions where
there is more stress. Enlargement of cracks and separation
between the cracks limit the electrical conductivity of thin
films.132 It was found that the sensor material underwent
increment in crack size and upon stretching; it was restored to its
initial state upon release because of reconnection between the
crack edges. Also, this will lead to drastic increase in electrical
resistance, which was used in the development of highly sensitive
sensors.

3.3. Wearable Temperature Sensor. Body temperature is
an important symptom of insomnia, fever, depression, and
malfunctioning of metabolic processes128 and is useful to
gathering of information, which can be useful in medical
diagnosis. Although conventional means of measuring body
temperature is by the use of a mercury-containing thermometer,
skin-patchable sensors can also be fabricated for this purpose of
measuring the human body temperature.133 Rapid response,
better reliability, higher sensitivity, wider temperature measure-
ment range and low weight are the most desirable characteristics
of a flexible temperature sensor. The mechanism of working of
the skin-patchable temperature sensor is based on the changes in
resistance, which can be achieved by spreading the conductive
fillers on the insulator polymer matrix or by heterogeneously
spreading the temperature-sensitive conductors onto the flexible
substrate.
Single-walled CNTs containing carbonyl groups and hydro-

gen-bond-based polymers were used to prepare a soft thermal
sensor having an excellent mechanical adaptability because of
noncovalent hydrogen bonds in the polymers.134 It was
observed that materials with positive temperature coefficient
can be good candidates for the fabrication of flexible skin-
patchable temperature sensors with increased sensitivity and
better response time.135 Recently, Oh et al.136 fabricated a highly
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sensitive, flexible, wearable resistor-type temperature sensor
using an octopus biomimicked adhesive. The sensor was
fabricated using the composite of poly(N-isopropylacrylamide)
(pNI-PAM) temperature-sensitive hydrogel, poly(3,4-ethyl-
enedioxythiopene) polystyrenesulfonate, and CNT; the device
showed a high temperature sensitivity of about 2.6% between 25
and 40 °C in order to accurately detect small changes (0.5 °C) in
the body temperature. The sensor was fabricated by coating
octopus mimicked rim structure of adhesive polydimethylsilox-
ane (PDMS) layer with pNI-PAM by a single mold formation
via an undercut process of photolithography. This sensor
performance remained unaffected even after repeated attach-
ment/deattachment cycles on the skin epidermis without
producing any long-term irritation.
In a recent report, Zhu et al.137 reported some circuit design

strategies based on stretchable CNT-based transistors that have
led to increased sensor accuracy and robustness. Another
temperature monitoring sensor was fabricated by Trung et al.138

using freestanding single reduction graphene oxide (rGO). This
fiber-based sensor was incorporated with textiles that could be
worn as shocks or undershirts. The sensor showed a fast
response time of 7 s with a good recovery time of 20 s. Its
performance did not change even under applied mechanical
deformation. The conventional skin-patchable temperature
sensors could measure the skin temperature, which varies
significantly from the core body temperature. In order to
overcome this issue, Ota et al.139 demonstrated a 3D printed
wearable “earable” smart temperature sensor designed for
wearing in the ear for measuring the core body temperature
via tympanic membrane or ear drum-based infrared sensor. This
sensor can be successfully interfaced with a wireless module for
proper monitoring. The 3D printing fabrication method allowed
easy customization of the device for personalized healthcare.
3.4. Skin-Patchable Sleep-Monitoring Sensor. Irregular

sleep is another major health disorder that can be diagnosed by
the effective use of sensors that can measure the airflow
breathing, movements of thorax and other body movements.140

However, the conventional monitoring process requires bulky

equipment that consume much energy for obtaining precise and
sensitive measurements. It is also not very easy to sense body
movements in a state of sleep apenea. A compact, flexible and
smart sensor could accurately monitor the sleep disorders.
Recently, Song et al.102 developed a flexible and low-cost TENG
device based on the patterned aluminum-plastic laminated film
(APLF) and an entrapped cantilever spring leaf forming the
sandwiched structure (Figure 5a). This acted as an effective
sensitive sensor for sleep monitoring of the body, which rapidly
responds to external pressure.
The sensing phenomenon (Figure 5b−d) involves pressure

from an external environment and release by self-recovering due
to rebound, leading to tribo-electric effect and charge separation
between APLF and entrapped spring leaf. The open circuit
voltage arising from APLF with the nanopillars of dia 600 nm
and length of 1.5 μm is more than two-times 55 V. On the other
hand, the patterned nanostructure plays an important role in
enhancing the output voltage and current, resulting in a
significant improvement of the device sensitivity.

3.5. Wearable Multisensing Electrodes. Multisensing
electrodes often produce a variety of human health monitoring
applications. Collection of data from daily human activity and
some critical parameters such as heart rate, body temperature,
pulse rate and blood pressure is of much significance as these are
highly affected by the day-to-day activities. Hence, simultaneous
monitoring of these important parameters is highly desirable.141

Incorporation of two or more sensors on a single substrate has
gained immense attention, as it enables simultaneous detection
and diagnosis of various diseases.142 The most common strategy
to integrate two or more different sensors is stacking of two
active layers for creating a bimodal sensor.143,144 In particular,
integration of pressure and temperature sensors has opened
doors for the fabrication of devices that can measure two
different signals without any interfacing from the external
devices.145

In the eariler literature, few attempts regarding multisensing
devices have been reported.146,147 In this respect, Yamamoto et
al.148 fabricated a planar sensor sheet that was incorporated with

Figure 5. (a) Sandwiched structure of sleep monitoring sensor and (b−d) its working mechanism. (a−d) Reproduced with the permission from ref 99.
Copyright 2016 American Chemical Society.
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the sensors to detect human body movements and temperature.
This sensor has a unique kirigami-type electrode architecture,
which enables it to conveniently record the acceleration without
any effect on the resistance. The sensor was also found to be
mechanically reliable and can be placed in direct contact with the
skin, and as a result, real-time measurements related to motion,
temperature and even ECG signals for successful recording was
possible. Nakata et al.1 developed a wearable sweat chemical
sensor sheet for pH measurement containing an ion-sensitive
field-effect transistor (ISFET) and temperature sensor incorpo-
rated into it. The sensor enabled simultaneous measurement of
sweat pH and skin temperature when the device was attached to
the human neck during an exercise routine. This has led to the
precise measurement of both these parameters, which was
confirmed from the commercially available sensor devices.
3.6. Skin-Patchable Optical Sensors. Optical sensors are

capable of detecting a wide variety of optical signals such as
wavelength, intensity, frequency and polarization. Their working
performance was evaluated on the basis of their selectivity,
sensitivity, and response time.149 In most optical sensors,
photodetector is an important component in addition to pulse
oximeters containing two light-emitting diodes (LEDs) having
different emission wavelengths, which are placed on the human
body and the light reflected or transmitted from the internal
tissue was detected by the photo detector.149,150

The commercial oximeters are bulky, which hampers their
practical applications. To overcome this issue, a sensor with
ultrathin, flexible, and reflective pulse oximeters were
fabricated151 comprising polymeric LEDs and a near IR
photodetector composed of regiro-regular narrow band gap
poly(decanodithiopene-pyridyl [2,1,3] thiadiazole-cyclopenta-
dithiopene) (PIPCP) polymer. These devices have shown fast

and more precise on−off switching behavior with a high device
yield, which is enabled by the deliberate optimization of physical
dimensions of the active layer. The sensor showed better
sensitivity in the near-IR region because of the balance between
good responsively and mechanical conformability,
In a recent study, Xu et al.152 fabricated a wearable

photoplethysmogram sensor that has provided measurements
to evaluate day-to-day health monitoring. The flexible near-
infrared photoplethysmogram (NIR PPG) sensor was inte-
grated to a low power and highly sensitive organic photo-
transistor (OPT) with an efficient inorganic LED. It was
demonstrated that skin patchable and flexible PPG sensors were
capable of monitoring the variation in heart rate and successful
tracking of pulse pressures with a high precision at different
postures of the human body and these exhibited a more reliable
performance than the commercially available PPG sensors, and
they also consumed less power.
Apart from NIR-based patchable sensors, there are sensing

devices that work upon Surface Enhanced Raman Scattering
(SERS), which provides a more rapid, sensitive and non-
destructive strategy for label-free fingerprint diagnosis. Xu et
al.153 demonstrated a biodegradable and flexible SERS film by
inversely and longitudinally stretching Ag-deposited biocom-
patible poly(e-caprolac-tone) film (Figure 6a). The composite
film exhibited an exciting phenomenon upon stretching in which
surface plasmon resonance of stretched polymer film offered 10-
times more signal enhancement compared to unstretched
polymer film. The uniform SERS signals also showed a good
temperature stability. The flexible and transparent polymer film
showing surface plasmon resonance (SPR) effect was effectively
used to detect various chemicals. Ameen et al.154 devised a
sensor and sensing method based on plasmonic-photonic

Figure 6. (a) Schematic representation of stretching of SPR film under external force. (b) Schematic diagram showing contacting polymer SPR film
onto the greenmussel and gathering of SERS signals from the back surface. (c) Schematic representation of theML-nanoLCA depicting the multilayer
structure and direction of illumination. (d) Schematic representation of surface fictionalization for CEA detection. (a, b) Reproduced with permission
from ref 152. Copyright 2017 American Chemical Society. (c, d) Reproduced with the permission from ref 153. Copyright 2017Wiley Online Library.
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interactions that occurred when a nanocavity array was
incorporated in a 3D tapered nanocup plasmonic substrate.
Thus, prepared sensor allowed very sensitive sensing of changes
in refractive index with respect to changes in transmission peak
intensity without any shift in the resonance peak wavelength.
Unlike the conventional plasmonic sensors, there is a consistent
and selective change in the transmission peak intensity at the
resonance peak wavelength without any spectral shift. The as-
fabricated sensor was used as a biomarker to detect cancer, called
carcino-embryonic antigen (CEA), which was found to have a
detection limit of around 1.0 ng/mL or 5× 10−12 M.

4. FUTURE PROSPECTS AND OUTLOOK

Wearable skin-patchable sensors are a step forward toward the
development of health monitoring and diagnostic technologies.
A variety of health related parameters can be observed via skin-
patchable sensors like body temperature, heartbeat, respiration
rate, movements of different body parts and sweat composition
after interfacing them with the skin. Day-to-day advances in the
field of thin film and flexible electronics as well as a number of
efforts to integrate two or more sensors in a single substrate for
the development of multisensor devices have contributed much
toward the development of skin-patchable sensors.
When compared to conventional diagnostic methods, skin-

patchable devices are promising for easy and rapid detection of
vital disease symptoms to monitor routine health-related
parameters like heart beat, blood pressure, pulse rate, and
body temperature. However, the materials used for device
fabrication and the current fabrication methods seem to increase
the overall cost. The overall device cost can be successfully
reduced by the use of carbon-based substrates and sensing
materials such as graphene, CNTs, and polymers as well as by
simplifying the fabricationmethods. However, there still seem to
be some challenges.
Overall, skin-patchable sensing materials can be the useful

tools in the future for quick diagnosis and monitoring of health-
related issues like blood pressure and symptoms of different
diseases like malaria. The early diagnosis can be of much help for
diabetic patients to monitor their sugar levels. This can be also
helpful for researchers working medical science area because it
can lead to further developments of medicines for treating
different diseases.

5. CONCLUSIONS

Flexible and wearable skin-patchable sensors can enable the
monitoring of human health and also help for quick diagnosis of
some critical symptoms of the diseases. There have been a
number of skin-patchable sensors developed that aim at
measuring the blood pressure, heart beat, pulse rate, and body
temperature. Apart from this, there are sensors that can detect
sleep and motion of the human limbs. There are also sweat
sensors that can measure the sweat pH and detect the presence
of different ions in sweat fluids and sensors to test other body
fluids such as saliva, blood, tears, and exhaled air. On the basis of
their working pattern, these sensors fall into categories such as
skin patchable chemical sensors, which are meant for sweat,
blood, and saliva analysis, mechanosensors for measuring the
strain, blood pressure, heart beat, and human motion,
temperature sensors, and sleep monitoring sensors.
Efforts are underway to integrate one or more sensors into a

single chip to create a multisensor. Stacking of two sensor
materials has been achieved to create a bimodal sensor capable

of sensing two different variables by a single chip. In this regard,
the temperature and pressure sensors have been integrated as
the bimodal sensor to measure simultaneously blood pressure
and body temperature. Optical sensors, which work on the basis
of wavelength, intensity, and polarization of light from the
tissues, can be very promising to provide symptoms of deadly
cancer, presence of harmful chemicals, and malfunctioning of
important organs such as the heart. Overall, the development of
skin-patchable sensors can be a revolution to healthcare and
allied industries.
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