Journal of Network and Computer Applications 146 (2019) 102413

Contents lists available at ScienceDirect .
NETWORK &

COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

N AN

journal homepage: www.elsevier.com/locate/jnca

Generic resource allocation metrics and methods for heterogeneous cloud N
infrastructures

updates J

Cem Mergenci , Ibrahim Korpeoglu

Department of Computer Engineering, Bilkent University, Ankara, Turkey

ARTICLE INFO ABSTRACT

Keywords:
Cloud computing
Resource allocation

With the advent of cloud computing, computation has become a commodity used by customers to access com-
puting resources with no up-front investment, but as an on-demand and pay-as-you-go basis. Cloud providers
make their infrastructure available to public so that anyone can obtain a virtual machine (VM) instance that
can be remotely configured and managed. The cloud infrastructure is a large resource pool, allocated to VM
instances on demand. In a multi-resource heterogeneous cloud, allocation state of the data center needs to be
captured in metrics that can be used by allocation algorithms to make proper assignments of virtual machines to
servers. In this paper, we propose two novel metrics reflecting the current state of VM allocation. These metrics
can be used by online and offline VM placement algorithms in judging which placement would be better. We
also propose multi-dimensional resource allocation heuristic algorithms showing how metrics can be used. We
studied the performance of proposed methods and compared them with the methods from the literature. Results
show that our metrics perform significantly better than the others and can be used to efficiently place virtual
machines with high success rate.

1. Introduction

Cloud computing provides access to seemingly infinite computing
resources in an on-demand and pay-as-you-go basis. Setup time of these
resources are within seconds or minutes. Payment is per minutes or
hours of use. Compared to traditional hosting methods, where setup
time is measured by days and payment is done per month, cloud com-
puting offers rapid and easy scaling for applications without any up
front costs.

NIST defines cloud computing as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction” (Mell and Grance,
2011). The standard also defines three basic models of service for cloud
computing. These are: Software as a Service (SaaS), Platform as a Ser-
vice (PaaS), and Infrastructure as a Service (IaaS).

IaaS gives control to users in configuring and managing computa-
tion, networking, storage and operating systems. IaaS is much flexible
than PaaS. Users can run arbitrary software on the infrastructure, but
have to deal with the complexities it brings. The physical arrangement

Corresponding author.

of the hardware is still hidden from users, therefore limiting architec-
ture specific solutions. Amazon Elastic Compute Cloud (EC2) (AMA-
ZON.com Inc., 2006) and Rackspace Cloud Servers (Rackspace US Inc.,
2008) are two prominent Iaa$S offerings.

The challenge for IaaS provider is to allocate available resources
to VM instance requests. While allocating resources, there are several
factors that can be considered such as utilization, energy consumption,
load balancing, task allocation, and fairness. The fact that instances
are created and terminated dynamically may require the resource allo-
cation to be dynamic as well. Another important issue is to satisfy as
many VM requests as possible for a given limited physical capacity.

In this paper, we address the resource allocation problem in IaaS sys-
tems, running on heterogeneous cloud computing infrastructures, with
a new approach. First, we define what constitutes a good allocation by
examining the nature of multi-dimensional resource allocation where
physical machine (PM) resources are of different types, like CPU, mem-
ory, disk, and network bandwidth. Based on this, we propose metrics
that can reflect the allocation state and can be used by VM allocation
algorithms and performance evaluations to judge how good the allo-
cations are. These metrics can be used to compare different allocation
algorithms. More importantly, they can be used as part of allocation

E-mail addresses: mergenci@cs.bilkent.edu.tr (C. Mergenci), korpe@cs.bilkent.edu.tr (I. Korpeoglu).

https://doi.org/10.1016/j.jnca.2019.102413

Received 22 February 2019; Received in revised form 26 May 2019; Accepted 28 July 2019

Available online 31 July 2019
1084-8045/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2019.102413
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2019.102413&domain=pdf
mailto:mergenci@cs.bilkent.edu.tr
mailto:korpe@cs.bilkent.edu.tr
https://doi.org/10.1016/j.jnca.2019.102413

C. Mergenci, I. Korpeoglu

algorithms to judge the quality of alternative allocations at a certain
iteration of the algorithm or with every request arriving.

We also show how our metrics can be used in online and offline VM
allocation schemes by proposing some heuristic algorithms utilizing the
metrics. We consider non-migrating VMs, hence the cost of migration is
not considered in our study.

We evaluated the proposed metrics and methods through extensive
simulation experiments. We studied how well our metrics can solve
VM placement problem. We also compared our methods with a number
of existing methods. Our evaluation results show that the metrics we
propose accurately capture the resource utilization state and can be
used as part of VM placement algorithms with high satisfaction ratios.
In majority of the cases, our methods perform much better than the
other existing methods in terms of number of VM placement problem
instances that can be solved successfully.

The rest of the paper is organized as follows. In Section 2, we give an
overview of existing VM allocation work in the literature. In Section 3,
we describe multi-dimensional resource allocation problem. In Section
4 and 5, we provide and describe our proposed metrics and methods in
detail. In Section 6, we define our simulation environment, present and
discuss our experiments and results. Finally, in Section 7, we present
our conclusion.

2. Related work

We present related work in the literature under four categories:
network-aware, energy-aware, service level agreement (SLA) based,
and utilization-focused.

2.1. Network-aware

Meng et al. (2010) present a traffic-aware VM placement strategy.
Authors formulate an optimization problem and prove its hardness.
They provide a heuristic algorithm that solves the problem efficiently
for large problem sizes. The algorithm first clusters the set of VMs and
PMs. Then it matches VM clusters with PM clusters, finally assigning
individual VMs to PMs. Experiments evaluate the efficiency of the allo-
cation algorithm for various data center network architectures. A simi-
lar study is presented by Shrivastava et al. (2011), where communica-
tion dependencies and network topology is incorporated as cost metrics
into migration decision.

Another network based allocation method is presented by Alicherry
and Lakshman (2012). The study considers a multiple data center envi-
ronment and proposes algorithms that minimizes latency between VMs
of the same request hosted at different data centers, as well as algo-
rithms that minimize inter-data center traffic and inter-rack traffic
within a data center. The data center selection problem under pre-
sented model is shown to be NP-hard, and a 2-approximation algorithm
is described. Datacenter network is assumed to have a tree topology.
Machine selection aims to allocate VMs so that height of the communi-
cation tree is minimum.

FairCloud (Popa et al., 2012) defines three cloud network service
requirements: min-guarantee, high utilization, and network proportion-
ality. Min-guarantee states that a cloud user should be able to get a
guaranteed minimum bandwidth. High utilization requires available
bandwidth to be used when needed. Network proportionality means
that bandwidth should be distributed among cloud users proportionally
to their payments. The study defines trade-offs between these require-
ments and presents allocation algorithms.

To the best of our knowledge none of the allocation methods that
focus on network resources consider multidimensionality of the PM
resources. They assume a certain VM capacity for PMs, neglecting
request and workload requirements of different VMs. In our study,
we consider network resources just like others, such as CPU or mem-

ory.

Journal of Network and Computer Applications 146 (2019) 102413

2.2. Energy-aware

Mezmaz et al. (2011) propose a genetic algorithm (GA) based task
scheduling optimization for both makespan and energy consumption
metrics. Because there are two objectives, a solution is not unique, but
is a set of Pareto points. The user is able to choose the right amount
of trade-off between makespan and energy consumption among those
points. The study is based on energy-conscious scheduling (ECS) heuris-
tic proposed by Lee and Zomaya (2009), which is a greedy scheduling
algorithm considering makespan and energy consumption. Proposed
method uses GA to find Pareto optimal points among solutions to ECS
instances. Multiple evolutionary algorithms are run in parallel. Asyn-
chronous migrations of solutions between parallel-running instances
enable exploring a larger solution space.

Beloglazov et al. (2012) present a concise survey of energy aware
studies in grid and cloud computing. Authors also define general prin-
ciples in energy-conscious cloud management. The study defines algo-
rithms for initial placement and dynamic migration of VMs to decrease
energy consumption due to CPU utilization. Different from Beloglazov
et al. (2012), our study focuses on multidimensional resources and man-
agement of heterogeneous workloads. These aspects of energy aware
resource allocation are stated as open challenges in the paper.

Whereas many energy-aware studies focus on CPU power consump-
tion, Ye et al. (2017) also consider energy consumption by network
resources while maximizing load-balancing and resource utilization.
Proposed method is an extension to Knee Point-Driven Evolutionary
Algorithm (KnEA) (Zhang et al., 2015), which is a many-objective opti-
mization problem.

In our study, we do not use an energy model to reduce energy con-
sumption. However, as a consequence of packing VMs into fewer PMs
we address energy consumption concerns indirectly.

2.3. SLA-based

MorphoSys (Singh et al., 2000) describes a colocation model for
SLA-based services. SLA model captures periodic resource require-
ments of requests. The study uses first fit and best fit heuristics for
resource allocation in a homogenous environment. Two cases are con-
sidered for allocations: Workload Assignment Service allocate resources
to requests, while Workload Repacking Service migrates VMs such that
resources are used more efficiently. Different repacking and migration
policies are also discussed. The system finds alternative allocations by
transforming SLAs into equivalent forms, in case they do not fit into
any of the PMs in their original forms.

Garg et al. (2014) train an artificial neural network to predict work-
load for two different types of applications (high performance com-
puting and Web applications) and allocate VMs accordingly. Resource
usage is monitored live so that any violations of service level agree-
ments because of errors in prediction could be resolved by migrating
VMs to a better PM. The study focuses on homogeneous cloud infras-
tructures and uses only one resource dimension, CPU.

2.4. Utilization-focused

Mills et al. (2011) propose a two-step resource allocation process,
as inspired by Eucalyptus cloud platform (Nurmi et al., 2009). First, a
cluster is selected within the cloud, then a node is selected within the
cluster. Combinations of three cluster selection and six node selection
heuristics are compared. Heuristics consist of the ones used in Euca-
lyptus, and those inspired by online bin packing literature. Experiment
results show that cluster selection yields statistically significant differ-
ence in the average fraction of VMs obtained. Node selection methods,
on the other hand, do not produce significant difference.

Singh et al. (2008) describe an end-to-end load balancing strategy
between machine and storage virtualization for data centers. Proposed
VectorDot algorithm extends Toyoda heuristic (Toyoda, 1975) for mul-

C. Mergenci, I. Korpeoglu

tidimensional single knapsacks to dynamic case of multiple knapsacks.
VMs above a certain load threshold are migrated to PMs, so that the
dot product of resource vector of the VM and those of required network
resources is minimized, therefore achieving a lower cost migration.

Arzuaga and Kaeli (2010) discuss quantifying load imbalance on
PMs and the overall system. Load imbalance of an individual server
is defined to be a weighted sum of the imbalances for each resource
type. Load imbalance of the system is defined as coefficient of variation
in load distribution. The study also describes a greedy algorithm to bal-
ance load among servers. When the load of a server exceeds a threshold,
VMs hosted on that server are chosen as migration candidates. The sys-
tem imbalance values resulting from the migration of every candidate
VM to every PM is calculated. The migration that achieves least imbal-
ance is applied. As shown in experiment results presented by Gabay and
Zaourar (2016), and reproduced in our study, a metric of weighted sum
of dimensions is inferior to others.

Sandpiper (Wood et al., 2009) is a monitoring and profiling frame-
work to detect and remove hotspots by migrating VMs. The gray-box
approach cooperates with VMs in determining workloads, while the
black-box method does not require an integration with VMs. The study
uses the inverse of available resource volume as a metric of multi-
dimensional load. However, this approach has problems as explained
by Mishra and Sahoo (2011).

Mishra and Sahoo (2011) present anomalies of methods in existing
VM placement literature. Based on these anomalies, they define prop-
erties of a good VM allocation and propose algorithms for static VM
placement and dynamic VM placement with load balancing or server
consolidation goals. Authors define properties of a good allocation as
follows: it should capture the shape of the allocation, it should use
total remaining capacity as well as remaining capacity of individual
resources, it should consider overall utilization as well as utilization of
individual dimensions. Our proposed methods obey these rules. Their
proposed method uses planar resource hexagon that consists of triangles
representing different resource utilization categories. VMs are allocated
to PMs in complementary resource triangles (CRT), so that overall uti-
lization is tried to be balanced.

Chen and Shen (2014) use a similar idea of placing complementary
VMs in the same PM. Complementary VMs are chosen by profiling the
performance requirements in terms of resources and time. VMs that
use the same resource at different times, or those that use different
resources at the same time are considered complementary. VMs are
allocated to PMs for which the remaining capacity weighted by weights
assigned to resource dimensions is minimum.

Rather than explicitly finding VMs with complementary resource
requirements, we focus on designing a good fitness function, minimiza-
tion or maximization of which will have the same effect.

Other methods model VM placement as a bin packing problem. For
single dimensional bin packing there are efficient heuristics to approxi-
mate the optimal solution. First-fit decreasing (Johnson, 1974) is a pop-
ular and very simple such heuristic. It sorts the items to be placed in
decreasing order. Beginning from the largest item, it places them in the
first bin they fit, opening a new bin if none of the existing ones are suit-
able. This heuristic does not use more than 11/9 OPT +1 bins, where
OPT defines the value of an optimal solution.

Generalizing the first-fit decreasing heuristic to vector packing case
is not trivial. Different methods are presented by Panigrahy et al.
(2011b). Panigrahy et al. (2011a) propose the dot product metric that
we used in our experiments.

Stillwell et al. (2010) compare the performance of greedy, LP-based,
genetic, and vector packing algorithms. Even though they only consider
clouds with homogeneous resources, they conclude that vector packing
approaches are superior to others.

Gabay and Zaourar (2016) formally define vector bin packing with
heterogeneous bins (VBPHB) problem. A weighted sum of dimensions of
vectors are proposed as a method of ordering multi-dimensional items
and bins. By using different weights and calculating the weighted sum

Journal of Network and Computer Applications 146 (2019) 102413

statically or dynamically, various measures are defined. These measures
are used in combination with item- and bin-centric allocation heuristics
as well as balancing-focused ones. Authors present a benchmark that
consists of five classes of problem instances with different item and
bin properties. Combinations of proposed measures and heuristics are
evaluated on this benchmark. Authors also apply their theoretical work
to a real-world machine reassignment problem. We compare our novel
methods with the ones presented by Gabay and Zaourar (2016). Results
show that our methods perform much better in the majority of the cases.

A survey of VM placement schemes are presented by Masdari et al.
(2016). According to their taxonomy, our method can be considered as
a resource-aware bin packing-based method for heterogeneous environ-
ments. According to another survey of resource provision algorithms in
cloud infrastructures (Zhang et al., 2016), our study classifies as a bin
packing method for server selection with objectives of node cost mini-
mization, energy efficiency, and utility maximization.

There is a need for a VM allocation method for heterogeneous
cloud infrastructures, because clouds rarely consist of homogeneous
resources. As cloud computing develops, ever more types of comput-
ing resources are offered to customers, such as SSD storage, GPUs,
application specific integrated circuits (ASICs); therefore, the allocation
method should support an arbitrary number of dimensions. We know
that simple weighted sum of resource dimensions is not good enough.
We improve upon these points. Our main contributions are as follows:

e We define two design principles to quantify the quality of an alloca-

tion so that allocation alternatives could be compared in a consistent

manner.

Using these design principles, we propose two novel measures.

The measures we propose are parametric so that they could be

adapted to the specific environment in which they will be used.

e Our measures are suitable to be used with different allocation algo-
rithms, as we demonstrate in this study.

e We evaluate the performance of our proposed methods using a
benchmark. Results show that our metrics perform better than the
ones in the literature.

3. Multi-dimensional VM allocation problem

Resource allocation problem for virtual machines in cloud comput-
ing infrastructures can be considered from different perspectives and at
different levels of complexities.

According to the way requests are processed, resource allocation can
be done in an online (incremental) or offline (batch) manner. Online
algorithms process every VM request individually as they arrive. Con-
sidering the current state of the system resources, the request is allo-
cated to the best PM. The algorithm continues allocation with the
next request. Offline algorithms process a set of requests at the same
time, and resources are allocated accordingly. Ideally, an offline method
knows all requests before starting allocation.

In practice, VM requests arrive as the system operates and the
request information is not available to the system beforehand. There-
fore, we consider offline allocation as batch allocation where resource
requests arrive in sets. These sets may consist of dependent or inde-
pendent requests. Online and offline algorithms are reducible to each
other. Individual requests could be buffered to be processed in batches,
or batch requests could be allocated individually. Online algorithms are
simple in expression and should be fast but may not achieve the same
efficiency as offline algorithms. Offline algorithms can be more sophis-
ticated and efficient but it may not be possible to delay requests to form
a batch.

Current virtualization technologies allow VMs to migrate from one
PM to another. Although migration does not interrupt VM operation, it
causes delay and overhead. Migration is also costly to cloud operator.
Depending on the size of the VM, network resources of the infrastruc-
ture, processing and IO resources of PMs will be used. Therefore some

C. Mergenci, I. Korpeoglu

systems may not apply migration, and in those systems VMs will be
static, running in the same PM until termination. Additionally, depend-
ing on the class of applications running on VMs, the lifetime of VMs
may be short or very long. In the latter case, the resource allocation
algorithm can ignore VM termination in a round of execution. As VMs
come and go, the resources can be fragmented since different VMs may
have very different resource requirements. In the case of dynamic VMs,
where VMs can be migrated, efficiency may be increased by migrating
VMs to more suitable PMs. However, as mentioned above, migration
costs are an important concern. More migrations than necessary would
decrease overall performance and consume network resources.

Under the resource model we define, resource allocation problem
is a multi-objective optimization problem. Resource allocation aims
to improve energy efficiency, resource utilization, load balancing, and
server consolidation. Because of the NP-hard nature of the problem, it
is not feasible to search the problem space efficiently and reach an opti-
mal solution. Additionally, a utility function combining different objec-
tives into a single value is usually necessary to decide among alterna-
tive solutions and make search space smaller. Heuristic or metaheuristic
methods can be used to find practically good enough results. Heuristic
algorithms run faster and therefore could be preferable for real time
tasks.

In this paper we focus on request oriented and static VM allocation.
This is very similar to well-known bin-packing problem, which is an
NP-hard combinatorial optimization problem. There are n items, i, of
different sizes, w;. These items are placed into at most m bins, j, with
a certain capacity, C. The objective is to minimize the number of bins
used while placing the items. Bin packing can be described with the
following integer linear program:

m
minimize z Yj (€8}
j=1

1<j<m 2

n
subject to z Wi < Cyj,
i=1

1<i<n 3

D=
&
I
I

-
1l
_

where binary decision variable x; defines whether item i is placed in
bin j, and y; defines whether bin j is used.

VM allocation in cloud infrastructures can be modeled as a bin pack-
ing problem, where VMs correspond to items and PMs correspond to
bins. It would be oversimplification to use the basic model without any
modifications. First of all, properties of VM instances cannot be cap-
tured with a single weight value. VMs are multi-dimensional resource
packs, best defined as a vector of values. Secondly, cloud infrastructures
are heterogeneous environments, where there is no single capacity that
applies to all hardware resources. We can modify Equation (2) to satisfy
these requirements:

n
ZWﬂ(XijSCjk)'j, 1<j<m, 1<k<d C))
i=1

where d is the number of resource types (dimensions). This version of
the problem is called vector bin packing, or simply vector packing prob-
lem.

In this paper, we present our own vector packing approach based
on fitness functions, i.e., utilization metrics. A fitness function maps
each point of a multi-dimensional resource utilization space to a single
numeric value so that different points in space can be compared easily.
At the end, our approach aims to increase the utilization of physical
resources that are powered up in cloud infrastructures so that a mini-
mum number of physical machines are used.

Journal of Network and Computer Applications 146 (2019) 102413

4. Proposed utilization metrics

In this paper, we propose utilization metrics, i.e., fitness functions,
and related methods as a solution to VM placement problem. We will
first introduce our metrics that can reflect how good a possible allo-
cation is. Then we will provide sample algorithms to show how our
metrics can be used in efficient resource allocation. Before describing
our proposed metrics, however, we start with some preliminaries.

We consider a vector-based resource allocation model based on the
following definitions from Mishra and Sahoo (2011):

e Normalized Resource Cube (NRC): A unit cube representing total
available resources of a PM. Each dimension of the cube corre-
sponds to a resource type (such as CPU, memory, disk space, I/0
bandwidth, etc.). All other normalized vectors are located inside
this cube. If there are d different resource types in PM or VM, we
consider the problem as d dimensional resource allocation problem.

e Total Capacity Vector (TCV): The vector along principal diagonal of
NRC. It is equal to the vector 19,

e Resource Requirement Vector (RRV): The amount of resources that
are needed by a VM. RRVs are not normalized, they have absolute
values. However, they are assumed to be normalized by the scaling
factor of the NRC in the context of NRCs.

e Resource Utilization Vector (RUV): The amount of utilized resources
inside an NRC. RUV is the sum of RRVs of VMs that are hosted in a
PM.

e Remaining Capacity Vector (RCV): The amount of unutilized
resources inside an NRC. (RCV = TCV — RUV)

e Resource Imbalance Vector (RIV): The difference between RUV and
its projection onto TCV.

Fig. 1 pictures an NRC with its vectors. The number of dimensions of
the vector space depends on the number of resource types considered.
Here, a three dimensional space is depicted with x, y, and z resource
dimensions. Notice that addition of an RRV cannot decrease the uti-
lization, therefore RUV always increases towards full utilization planes
x = 1,y = 1,z = 1. The best utilization happens when RUV = TCV;
sum of allocated RRVs is (1,1, 1).

Although the best allocation is obvious, it is not trivial to compare
arbitrary allocations. Fig. 2 illustrates a two dimensional vector space
with two utilization vectors. Note that an NRC is a square in two dimen-
sions. Two RUVs may have resulted from two sets of RRVs, which may
share identical subsets. We need to decide whether RUV; or RUV, is
a better allocation. Comparing RUVs is equivalent to comparing corre-
sponding RCVs. We use an RCV-based comparison, because a compar-
ison that is based on the availability of resources is more meaningful
than a comparison based on the used amount.

NRC ,
y !
[0,1,0] / >';
O
o
SR
IS
IV
AN g?_tz@_.____l
[0,0,1] N
el AN
?\?ﬂ‘\ \\\
[0,0,0] 1,00 x

Fig. 1. Normalized Resource Cube (NRC) in vector model for resource request
and allocation representation.

C. Mergenci, I. Korpeoglu

y
[0,1]
AR o
©) >
< O
' E/c-)
/
?\\)\\ ’\/v]WN 2
[0,0] [1,0] x

Fig. 2. Vector comparison.

We would like to achieve the best utilization. Therefore a naive
approach is to use Euclidean distance to TCV, which would correspond
to the magnitude of RCV. Further inspection reveals problems with this
approach. In Fig. 2, |RCV,|| is smaller than ||[RCV, ||. However, RUV, is
very close to full utilization of resource x, while leaving resource y rel-
atively under-utilized. On the other hand RUV; utilizes both resource
types in a more balanced way. Therefore, we conclude that the angle
between TCV and RCV is an important factor in comparison.

Simply prioritizing either the angle or the magnitude would not
work. For two RCVs with the same angle, the one with smaller mag-
nitude is closer to best utilization, therefore is better (Fig. 3a). For two
RCVs with the same magnitude, the one with the smaller angle yields
better balance of resource types, therefore is better (Fig. 3b). We con-
clude that a good fitness function should distinguish allocations based
on both angle and the magnitude of the RCV.

4.1. Our metrics

After these preliminaries, we now present our utilization metrics
that can be used in judging goodness of alternative allocations. We pro-
pose two parametrized metrics: TRfit and UCfit.

4.1.1. Our first metric (TRfit)

We think that the suitability of allocation can be determined by
a fitness function f of RCV. Fitness function defines a total order in
the allocation vector space, therefore providing a way of comparing
allocation alternatives. Although the allocation scheme would work for
an arbitrary definition of f, it is best to define one that achieves an
efficient allocation. We came up with the following fitness function,

y y
[0.1] [0,1] 1
AT ‘\
) \
@ \
K\
<& % N Q@“ &
NN o)
S S e
/ ?‘O\"\ \>[
RUVo,— RUV2 o

[0,0]

Fig. 3. Comparison of two RCVs with the same angle or magnitude.

(a) RCV is better.

[1.0]

X [0.0]

[1.0]

(b) RCV,, is better.

Journal of Network and Computer Applications 146 (2019) 102413

y y

[0,1] [0,1]

0,01 — o X 0] o %
(@a=0 (b) @ =n/12

Fig. 4. TRfit fitness function with different parameters.

which we call TRfit (TCV-RCV fitness). It considers total capacity vector
and remaining capacity vector. It has one parameter, which is a.

IRCV]|

cos™1 <%> — Orcy(RCV) +

where 61cy(RCV) is the angle between TCV and RCV, given by the
formula:

frrar(RCV) = (5)

O1cy(RCV) = cos™ < TCV-RCV >

ITCVIIIIRCV|

— < 1 >¢ RCVIi] >
Vd XL, (RCVIi)?
and « is a parameter that results in fitness functions with different
properties. d is the number of resource types (number of dimensions).
Fig. 4a and b depict isometric curves of fitness functions with differ-
ent « values, « = 0 and « = x/12 respectively. RCVs on the same
curve have the same fitness value. As shown by the figures, our fitness
function is in accordance with the comparison guide described above.
Among two RCVs with the same angle to TCV, the one with less mag-
nitude has better fitness value. Among two RCVs with the same magni-
tude, the one with smaller angle to TCV has better fitness value. Note
that in our definition of fitness function, lower values denote better fit-
ness.

An important property of this function is the fact that the same
fitness value achieved by allocating a new RRV leads to increasingly
higher utilization. In this sense, a is the parameter that defines the
amount of increase. When a = 0, further allocations that yield the
same fitness value lead to full utilization point, where as fora = z/12
the highest achievable utilization for a given fitness value is subop-
timal. Fig. 5 gives TRfit heatmaps for various values of a parameter.
A heatmap renders the multi-dimensional resource space based on the
fitness function values. The smaller the value, the lighter is the color
in the heatmap, and vice versa: the larger the value, the darker is the
color. The points that have the same color have the same fitness value.
As mentioned earlier, smaller values (lighter colors) indicate better fit-
ness.

(6)

4.1.2. Our second metric (UCfit)

There are many fitness functions that conform to our proposed prop-
erties. TRfit function presented in previous section is one of them.
We present an alternative function in Equation (7), which we call
BasicUCfit (utilization-capacity fitness). It considers both resource uti-
lization and remaining capacity. Again, it is a function of RCV. BasicUC-
fit is a simple fitness function that combines the Euclidean distance
to full utilization point (||[RCV||) and the angle between RUV and
RCV (6).

C. Mergenci, I. Korpeoglu

(a) TRAO) (b) TRfit(r/12) (c) TRfit(r/6)

(d) TRfit(r/3) (e) TRfit(27/3) (f) TRAit(4n/3)

Fig. 5. Visualization of TRfit for different parameter values.

(a) sin(0)

(b) R X sin(6)

Fig. 6. BasicUCfit heatmap.

Euclidean distance to full utilization point is visualized in Fig. 8c.
Sin of the angle between RUV and RCV is visualized in Fig. 6a. Mul-
tiplication of both, results in visualization in Fig. 6b. The effect of the
Euclidean distance component to the fitness value is more pronounced
towards full utilization point. In further points, the effect of the angle
is higher.

SBasicucsir(RCV) = ||[RCV] - sin (Ogyv (RCV)))

BasicUCfit function is not flexible in its current form. It would be
much better if contributions of each component in the formula could
be adjusted. Equation (8) introduces its parametrized version, which
we call UCfit. It has three parameters a, b, c. The parameters a and
b adjust the contributions of Euclidean distance and sin terms respec-
tively. One important difference from the original version is the nor-
malization of the Euclidean distance with the magnitude of TCV. Nor-
malization brings the range of Euclidean distance component to [0,1],
same as the range of sin component. This makes values of parameters
meaningful relative to each other. The parameter c is used to make sin
component not equal to zero, so that the metric can distinguish values
along TCV, for which sin term is 0.

Fig. 7 gives heatmaps for various a and b values of UCfit. Parameter
c is zero in those figures.

[IRCV]|
ITCV||

a
fucp(RCV) = <) - (sin (Fguy(RCV)) + ¢)° (8)
The angle 0 is always between 90 and 180°, regardless of the dimen-
sion of the vector space. This property makes applying UCfit fitness
trivial to any number of dimensions.

Journal of Network and Computer Applications 146 (2019) 102413

(a) UCAit(0.5,0.5,0) (b) UCfit(0.5,1.0,0)

(c) UCAit(1.0,0.5,0) (d) UCfit(1.0,1.0,0)

Fig. 7. Visualization of UCfit for different parameter values.

P

(a) RIV (b) Sandpiper ©R

Fig. 8. Heatmaps for other metrics.

4.2. Other metrics

Below we also present some existing metrics that we use in our per-
formance evaluation.

4.2.1. RIV metric

A metric can be based on the RIV vector as well (Mishra and Sahoo,
2011). RIV vector is resource imbalance vector and is a function of
RCV. We will simply call this metric as RIV metric. This metric is not
our contribution. We use it for comparison purposes. Fig. 8a gives the
heatmap for RIV.

4.2.2. SandFit metric

The Sandpiper (Wood et al., 2009) uses a metric based on inverse
of the available volume of a resource. Again it is a function of RCV, but
it is inversely proportional. We call such a metric simply as Sandpiper
metric in this paper. This metric is not our contribution, but we present
and use it here for comparison. Fig. 8b gives the heatmap for Sandpiper.

4.2.3. R metric

R is a very simple metric that directly depends on the Euclidian dis-
tance to full utilization point. It is a naive metric that could be used in
a utilization maximization scenario. Formally, it is equal to magnitude
of RCV. Fig. 8c gives its heatmap.

5. Allocation heuristics based on our metrics

In this section we provide some efficient VM placement heuristic
methods that also show how our metrics can be used.

C. Mergenci, I. Korpeoglu

As the first method, Algorithm 1 presents an online algorithm that
allocates a given VM instance request to a suitable PM among infras-
tructure resources. Main strategy is to allocate the VM to a PM that is
switched on. If the VM does not fit into any of the switched-on PMs,
a sleeping PM is woken up to allocate the VM. It may be the case that
the request exceeds capacity of resources available on the infrastructure
(including switched-off physical machines), in which case the request
is denied.

Algorithm 1 Online VM allocation.
ONLINE-ALLOCATE(Resources, VM)

1: bestOn « nil

2: bestOff « nil

3: for allPM € Resources do

4: if RRVpy (VM) < RCV[PM] then

5 rev « RCV(RUVIPM] + RRVipy, (VM)

6: if On[PM] and f(rcv) < f(bestOnRCV) then
7: bestOnRCV « rcy

8

9

bestOn < PM
else if Off|[PM] and f(rcv) < f(bestOffRCV) then
10: bestOffRCV « rcv
11: bestOff « PM
12: end if
13: end if
14: end for

15: if bestOn # nil then

16: RUV[bestOn] « RUV[bestOn] + RRVj0,(VM)
17: else if bestOff # nil then

18: RUVIbestOff] < RRVyuo5(VM)

19: SwITCH-ON(Resources, bestOff)

20: end if

21: return nil

Capacity constraints are ensured in Line 4. A PM could host a VM if
and only if RRV of VM is less than or equal to RCV of PM (i.e., demand
is less than remaining capacity for all dimensions). This is denoted by
< symbol and formally defined as:

uﬁvéuiSVi,Vi=1...d (9)
Similarly, < symbol is defined as:

u<v2uy <v;,Vi=1...dand
(10)

Allocation vectors of PMs (RUV, RIV, RCV, and TCV) are normal-
ized, they range from 09 to 19, whereas RRVs of VMs are not. In order
to be able to compare RCV and RRV, we scale RRV of VM by the nor-
malization factor of PM. This operation is denoted with a subscript of
the normalization factor on scaled vector, such as RRVpy,(VM).

When a sleeping PM is determined to host the request, Switch — On()
method is called to bring machine into operation. Basically, it removes
the given PM from the set of sleeping machines, Off[Resources], and
adds it to the set of machines in operation, On[Resources].

Online allocation runs in O(m) time, where m is the number of
resources.

We can also use our metrics in offline allocation methods that have
a batch of VMs to place into a set of PMs. Next we describe an offline
method using our metrics. But before describing it in detail, we intro-
duce an auxiliary procedure, Algorithm 2, which allocates as much VMs
as possible from a given set of requests onto a given PM. At each itera-
tion, R contains requests that could fit into remaining space of the PM.
This invariant is satisfied by the Lines 2 and 8. Among the requests
in R the best fitting VM is allocated, until either all of the requests
are allocated or there are no requests left that could fit into remaining
space.

Journal of Network and Computer Applications 146 (2019) 102413

Algorithm 2 VM allocation to a given PM.
FILLPM(PM, Requests)

1: Allocated < @
2: R < {VM € Requests | RRVpy (VM) < RCV[PM]}
3: whileR # @ do

4: BestVM « argmin f(RCV(RUV[PM]+ RRVpy(VM)))
VMER
RUV[PM] < RUV[PM] + RRVp,(BestVM)

Allocated < Allocated U { BestVM}
R <« R — {BestVM}
R<R — {VM € R|RCV[PM] < RRVpy,(VM)}
>Remove VMs requesting larger than remaining capacity
9: end while
10: Requests < Requests — Allocated
11: return Allocated

Arg min operation in Line 4 can be implemented by scanning the
set of requests and keeping the running minimum of calculated fitness
function and the VM for which it is minimum. This takes O(n) time,
where n is the number of requests. Similarly, eliminating VMs in Lines
2,7, and 8 could be achieved with a single pass over R, therefore taking
O(n) time. Line 10 could be performed by iterating over allocated items
and removing them from requests in O(kn) time, where k is the number
of requests that could be allocated to the PM. The while loop iterates
k times allocating a single VM in each iteration; therefore, total time
complexity of the algorithm is O(n + kn). In case of an allocation, kn
term dominates. In the worst case, all of the requests could be allocated,
which takes O(n2) time.

Algorithm 3 is our offline method that allocates a set of VM requests
to a set of physical machines. It chooses a suitable PM for a given VM.
Our offline algorithm uses complementary strategy, choosing suitable
VMs for each PM. The offline algorithm begins by allocating requests to
PMs that are currently switched on. Switched-on machines are sorted
in descending order of their fitness value, so that imbalanced PMs
are given priority to choose the best fitting VM for them. Remaining
requests are allocated to sleeping/switched-off machines.

Algorithm 3 Offline VM allocation.
OFFLINE-ALLOCATE(Resources, Requests)

1: for all PM € Sort,, JReY) On[Resources] do
2: FILLPM(PM, Requests)

3: end for

4: Total < ZVMeRequemRRV[VM]

5: R < SORT_ RV Off[Resources]

6: for allPM € R

7: if FILLPM(PM, Requests) # @ then
8 R<R - {PM},

9 SWITCH-ON(Resources, PM)

10: else >PM cannot host any of the VMs
11: R<R - {r € R|r = PM},

12: endif

13: end for

Sum of RRVs of remaining requests are calculated so that PMs with
resource ratios similar to that of overall requests get allocated first.
Resource ratio similarity is calculated by the fitness function. Normally,
RCVs of different PMs are not comparable, because they are normal-
ized by different factors. Therefore, we renormalize them with the sum
of RRVs to be able to compare. Beginning from the best fitting PM to
worst fitting one, offline algorithm uses Algorithm 2 to allocate VMs.
Note that for practical reasons, it would be wise to return from the
procedure immediately when all of the requests are satisfied. The algo-
rithm terminates when there are no requests left to allocate, or when
remaining requests would not fit into any of the PMs because of capac-
ity constraints.

It is important to define the data structures of resources,
On[Resources] and Off[Resources], properly. On[Resources] is the set

C. Mergenci, I. Korpeoglu

of PMs that are switched on. We use a simple list to implement this
set. We could use a simple list to also keep the set of sleeping PMs,
Off[Resources], but that would cause redundancy; instead, we use a
counted set. Switched off PMs of the same type can be represented
by a single element, since all of them have the same amount of each
resource. There are many fewer distinct types of PMs than there are
individual PMs, therefore it would be better to keep the list of PM
types along with the number of individual machines of that type. This
approach would not be suitable for On[Resources], because individ-
ual PMs would have different allocations resulting in different residual
capacities even though they belong to the same PM type. Therefore,
they cannot be practically aggregated as a single element.

Algorithm 3 wuses counted set operations while processing
Off[Resources]. Sorting in Line 5 is done with respect to elements (PM
types) regardless of associated counts (individual machines). For loop
in Line 6 iterates over individual machines. Loop variable PM is set to
PMs corresponding to each count of each element in R. Note that R is
modified inside the loop, therefore the loop should be considered to get
the first element at each iteration rather than passing over a static list.

When a PM gets allocated some requests, count of its type is
decreased by one. The iteration continues with next instance of the
same type, assuming the count has not reached zero. When count of an
element reaches zero, it is removed from the set. If a PM could not be
allocated any requests, none of the instances of the same type could be.
Therefore, corresponding PM type element is removed from the counted
set, and iteration continues with an instance of next PM type.

Modifications on R is formally defined as a set difference operation.
For counted sets, set difference operator returns a set in which the asso-
ciated counts of elements in the first set is decreased by the associated
counts of corresponding elements in the second set. Elements that have
a count of zero are assumed to be removed from the set. In Line 8 only
a single instance of a PM type is differentiated from R, therefore caus-
ing the count of the PM type decrease by one. In Line 11 the count of
the PM type is set to zero by differentiating the set of all instances of a
certain type. Therefore, the type of the PM is removed from R. Counted
set is denoted by a subscripted n on closing set brace.

Allocating requests to On[Resources] takes O(tlogt + tn + ky,n)
time, where t = |On[Resources]| and k., is the number of requests
that could be allocated to On[Resources]. t log t term is due to sorting.
tn term comes from iterating all requests for each PM. Time complexity
of allocating k,, requests is independent of the number of PMs to which
they are allocated, therefore it takes O(k,,n) time.

Line 4 takes linear time in n. Line 5 takes O(s log s) time, where s is
the number of PM types.

Allocating requests to Off[Resources] takes O(sn + ky(n + s))
time, where kg is the number of requests that could be allocated to
Off[Resources]. Allocating k¢ resources takes O(k,gn) time. For each
allocation, PM type is removed from R and Off[Resources] in O(s) time.
When no resources could be allocated to a PM type, the for loop iterates
s times scanning the list of requests for a suitable VM; hence the term sn.

Overall time complexity of Algorithm 3 is

O(tlogt + tn + kyyn + slogs + sn + kog(n +).
Ordering the terms semantically, we obtain
O(tlogt + slogs + n(t + s) + n(ky, + kogg) + skog). To sim-
plify the terms, we can consider a common configuration of the
cloud where s < t < m, in which case the time complexity becomes
O(mlogm + n(m + k)), where k = ko, + kg

An alternative offline allocation algorithm is presented in Algo-
rithm 4. It shares the outline of Algorithm 3, except it calculates the
sum of remaining requests at each iteration and chooses the best fitting
PM accordingly. Although costlier than the previous version, it handles
high variance request sets better, since remaining requests would result
in a different overall resource balance after each allocation to a PM.
In terms of time complexity, slogs term is replaced by s? term because
of the arg min calculation in each iteration of the while loop. The
other difference, Line 13, takes O(k,gn) time in the aggregate, there-

Journal of Network and Computer Applications 146 (2019) 102413

fore doesn’t affect the time complexity because k,gn term is already
accounted for. Time complexity of the whole algorithm is, therefore,
O(tlogt + s + n(t + s) + n(kyy + kog) + ko). Common case still
runs in O(mlogm + n(m + k)), assuming that s> < m log m, which
is a safe assumption for large-scale cloud infrastructures.

Algorithm 4 Offline VM allocation alternative.
OFFLINE-ALLOCATE(Resources, Requests)

1: for all PM € Sort,, T On[Resources] do
FILLPM(PM, Requests)

: end for

: Allocated < ¢

: R « Off[Resources]

: Total < ZVMeRequemRRV[VM]

: While R # §J or Total # 0 do

BestPM « argmin f(RCVyy,,[PM])
PMeR

Allocated < FiLLPM(BestPM, Requests)

if Allocated # @

R < R — {BestPM},

12: SWITCH-ON(Resources, BestPM)
13: Total « Total — Y yurcatiocatedRRVIVMI
14: else >BestPM cannot host arny of the VMs
15 R<R — {PM € R|PM = BestPM},
16: end if
17: end While

If all PMs are turned on and we have all VM requests in hand to
place, we can look to each possible VM-PM pair while placing VMs
into PMs to find out the best metric value. More specifically, we can
consider VMs one by one and for each VM we can calculate the fitness
value of placing that VM to each of the PMs and select the best fitting
PV, and place the VM there. Then we can continue with the next VM in
the list. The pseudocode of the method is shown in Algorithm 5. This is
the algorithm that we use to compare various metrics in the evaluation
section of the paper. We use this algorithm in our evaluations to do a
fair comparison with other methods in literature (Gabay and Zaourar,
2016).

© N U A WN

— =
= O

Algorithm 5 Offline VM allocation considering all pairs.
ALLOCATE(Resources, Requests)

1: for all PM € Resources do
for all VM € Requests do
if RRVpy (VM) < RCV[PM] then
rev — RCV(RUVIPM] + RRVpy (VM)))
fitness[PM, VM| « f(rcv)
else
fitness[PM, VM] « oo
end if
end for
10: end for
11: While min{fitness|[PM, VM] | VPM € Res,YVM € Req} # oo do

12: BestPM,BestVM < argmin fitness[PM, VM]
PMe€ERes,VMEReq

13: RUV[BestPM]| < RUV[BestPM] + RRVpyspy; (BestVM)
14: Requests < Requests — {BestVM}

15: for all VM € Requests do

16: if RRVgepy (VM) < RCV[BestPM] then

&

CENDIADA®

17: rev « RCV(RUV]BestPM] + RRVi,spar (VM)))
18: fitness[BestPM, VM] « f(rcv)

19: else

20: fitness[BestPM, VM] < oo

21: end if

22: end for

23: end While

Fitness values are initialized in O(mn) time. The while loop iterates k
times by definition, because minimum of fitness values is co when there

C. Mergenci, I. Korpeoglu

are no more requests that could be allocated to any PM. Each iteration
takes O(mn) time due to arg min operation in Line 12 which considers
all VM-PM pairs. Therefore, the whole algorithm runs in O(kmn) time.

6. Simulation experiments and evaluation

To measure the performance of the proposed resource allocation
metrics and methods, we developed two custom simulation environ-
ments.

The first one is implemented in Java and measures the effect of het-
erogeneity in cloud resources to allocation performance. The design
is simple with few components. PhysicalMachine and VirtualMachine
classes are subclasses of AllocationResource which is a model of vector
operations. Cloud class consists of allocation algorithms and random
generation of PM resources and VM requests. Many instances of Cloud
are generated and allocation results are gathered by Simulation class.
The code runs on any system with Java 5 or above.

The second simulation environment we developed aims to measure
the performance of allocation methods we proposed and compare them
with the ones from literature. It is based on open-source Python code
provided by TeamJ19ROADEF2012 (2016). The codebase consists of
four main files. container.py file models a problem Instance that consists
of Items and Bins. generator.py file generates problem Instances accord-
ing to different set of specifications and parameters. measures.py file
contains allocation metrics which are used by the allocation algorithms
defined in heuristics.py file. Finally, benchmark.py file runs a simulation
consisting of many different problems.

We extended the existing code by implementing our fitness func-
tions and integration code with the rest of the simulation environment
in measures.py file. We also implemented trace.py file that keeps a trace
of the simulation so that results are persisted and could be analyzed by
importing them into pandas (NumFOCUS Foundation, 2008). We modu-
larized benchmark.py file by introducing a config.py file that keeps a set
of parameters and measures for which a simulation was run. Using these
configuration files, we were able to implement parallel py file that runs
many simulations with different parameters in parallel, taking advan-
tage of many-core architectures. The code runs on a Linux system with
python 2.7 and numpy (NumFOCUS Foundation, 2006).

6.1. Effect of resource heterogeneity to allocation performance

Before evaluating our metrics and comparing them with others, we
wanted to see the effect of heterogeneity. For this experiment we con-
sidered number of physical machine types as the metric of heterogene-
ity. When the cloud infrastructure consists of a single type of physical
machine, it has a homogenous architecture. The more types of differ-
ent physical machines make it more heterogeneous. Physical machine
types are specified by the number of resource dimensions and mini-
mum and maximum capacities for each dimension. The capacity of a
resource in a dimension is drawn uniform randomly between the mini-
mum and maximum capacity for that dimension. The number of physi-
cal machines available in the cloud for each type is also drawn uniform
randomly from a specified interval. We examined the effect of number
of machine types to request satisfaction ratio, i.e., the ratio of VMs that
are requested and placed, to all VMs that are requested. In order to
minimize the effect of randomness to simulation results, an average of
200 runs is presented.

Fig. 9 shows that request satisfaction increases as heterogeneity
increases. Having a more heterogeneous infrastructure enables virtual
machines of different resource demand compositions to find suitable
resources, therefore increasing the request satisfaction ratio. As can be
seen, request satisfaction ratio does not increase monotonically as the
number of types of PMs increases. Peaks and lows of request satisfaction
ratio correlate with those of cloud capacity in dimension 1, which is the
resource constrained capacity that dominates the satisfaction ratio for
this scenario.

Journal of Network and Computer Applications 146 (2019) 102413

0.90

o0.88

0.86

0.84

Mean allocation ratio

0.76

a 5 6 7
Number of PM types

Fig. 9. Effect of heterogeneity.

6.2. Performance of proposed methods

Next we present our main results: the results of performance and
comparison experiments. In these experiments, we want to compare
various metrics and algorithms in terms of how well VMs are placed. For
this we consider the following evaluation strategy. We generate feasible
problem instances. A problem instance has a set of VMs (items) with d
dimensional resource requirements to be placed into a set of PMs (bins)
with d dimensional resource capacities. In a feasible problem instance
all VMs can be placed into PMs. Various resource dimensions (d) and
number of bins (PMs) are considered. A problem instance can be for
example: place 300 items with some random request requirements into
50 bins with some random capacities. We generate the items to make
an instance feasible. If placed in the generation order, all items will be
placed. But while placing the items, the algorithm does not know the
feasible order (which is very hard to enumerate).

Consider a toy-example cloud of 2 PMs with 2 resource dimensions.

PMs have capacities (RCVs) of (7) and (5). 3 VM requests are to
7 6
be allocated with resource requirements (RRVs) of < 4), (2), and
3 4

(z) VMs 1 and 2 could be allocated to PM 1, and VM 3 could be
allocated to PM 2. Therefore, the problem is feasible.

We consider 5 different problem instance classes, as defined by
Gabay and Zaourar (2016). These are: 1) random uniform, where bin
capacities are chosen independently and in a uniform random manner
(we call it as uniform in our result tables); 2) random uniform with
rare resources, where bin capacities are again chosen randomly but
one resource dimension is scarce (we call it as uniform-rare); 3) corre-
lated capacities, where dimension capacities of a bin are correlated but
resource requests are not (we call it as correlated-false); 4) correlated
capacities and requirements, where both bin dimension capacities and
resource dimension requirements are correlated (we call it as correlated-
true); 5) similar items and bins, where resource requests are similar to
bin capacities (we call it as similar).

Depending on the metric, not all VMs can be placed. If at least one
VM in a problem instance cannot be placed, we consider that instance
as unsolved (unsuccessful). If all VMs in a problem instance are placed,

C. Mergenci, I. Korpeoglu

Table 1

Journal of Network and Computer Applications 146 (2019) 102413

Number of problem instances solved (i.e., success count) by various methods for various number of
resource dimensions (d). Each column gives the results for a different d value. There are 30 physical

machines. Success count can be at most 500.

bins 30 30 30 30 30 30 30 Total
resources 2 3 4 5 6 7 8

UCfit-2-1-02 480 384 289 193 123 121 121 1711
UCfit-2-1-025 475 392 287 191 129 111 117 1702
UCfit-2-15-02 465 368 289 191 130 119 123 1685
UCfit-3-2-01 469 378 282 197 125 119 115 1685
UCfit-2-1-03 477 386 289 194 118 110 105 1679
UCfit-3-1-01 476 386 293 183 119 111 111 1679
UCfit-2-1-01 463 374 279 189 124 120 128 1677
TRfit-pi-3 453 414 231 181 122 103 100 1604
TRfit-pi-2 470 399 228 177 119 100 100 1593
TRfit-pi-6 436 385 252 179 125 105 100 1582
TRfit-pi-12 410 348 256 160 109 102 100 1485
dp 450 366 186 129 103 99 100 1433
dp_normC 425 312 196 116 100 100 100 1349
be_dyn_1/C 417 281 142 102 100 100 100 1242
be_dyn R/C 414 272 150 103 100 100 100 1239
R/C 410 270 145 104 100 100 100 1229
bc_dyn_1/R 403 269 132 100 100 100 100 1204
1/C 385 273 142 103 100 100 100 1203
1/R 378 263 141 103 100 100 100 1185
ic_dyn R/C 350 254 152 104 100 100 100 1160
ic.dyn 1/C 344 245 144 103 100 100 100 1136
ic.dyn_1/R 323 232 141 105 100 100 100 1101
sbb_st R/C 368 190 108 100 100 100 100 1066
sbb_st_1/R 363 193 108 100 100 100 100 1064
sbb_dyn_R/C 370 181 107 100 100 100 100 1058
sbb_st_1/C 366 184 107 100 100 100 100 1057
sbb_dyn_1/C 331 186 104 100 100 100 100 1021
sbb_dyn_1/R 318 186 108 100 100 100 100 1012
bb_dyn_1/R 221 128 101 100 100 100 100 850
bb_dyn_1/C 215 130 102 100 100 100 100 847
bb_st_1/R 214 125 100 100 100 100 100 839
bb_st R/C 212 122 100 100 100 100 100 834
bb_st 1/C 207 125 101 100 100 100 100 833
bb_dyn R/C 197 128 101 100 100 100 100 826
sandpiper 101 100 100 100 100 100 100 701
shuffl 141 81 85 71 65 68 68 579
nothing 152 78 73 75 64 67 66 575
dp_normR 173 100 36 15 30 46 56 456
sbb_nothing 63 40 33 31 16 20 17 220
sbb_shuff1l 58 35 28 29 24 13 22 209
riv 92 34 6 1 0 1 6 140
be_shuff 26 14 8 5 3 3 4 63
sbb_shuff 12 2 6 4 2 1 1 28
ic_shuff 8 1 0 0 0 0 0 9
bb_shuffl 4 1 0 1 0 0 1 7
bb_nothing 1 0 0 0 1 0 0 2
bb_shuff 0 0 0 0 0 0 2 2

we consider that as solved (success). We count, for each algorithm, the
number of instances solved. The more, the better. For example, if use
of a metric A enables 4200 of 5000 instances to be solved, we consider
it better than a metric B that enables only 3700 of the same instances
to be solved.

Consider the toy-example cloud defined above. Using UCfit(2, 1, 0.2)
we first calculate fitness values for all VM-PM pairs. Among 6 pairs VM

3 < 5) -PM 2 < 5) pair has the best fitness value of 0.013, therefore
5 6

VM 3 is allocated to PM 2. PM 2 now has residual capacity (RCV) (0),
1

which is less than RRVs of VM 1 or 2. Next, VM 1 < 4) is placed into
3

10

PM 1 (7) because its fitness value, 0.12, is better than that of VM 2
7
< 2), 0.25. Finally, VM 2 is placed into remaining capacity of PM 1
4

< 3). As a result, UCfit(2, 1, 0.2) is able to find a feasible solution to
4

this problem instance.
Using dot product (dp) metric, for example, results in a different
allocation. dp metric calculates dot products of RCV and RRV, and con-

2)

siders higher values to fit better. Among all VM-PM pairs, VM 3 <

C. Mergenci, I. Korpeoglu

Table 2

Journal of Network and Computer Applications 146 (2019) 102413

Success count of various methods for various instance classes. Each column is for a different
instance class. Success count of a method for a class can be at most 5400: 9 different d values and 6
different bin count values are used. That means a total of 54 different configurations considered.

For each configuration, there are 100 instances.

Class ==> cor-False cor-True similar unif unif-rare Total
UCfit-2-1-02 2175 5395 3030 1240 700 12,540
UCfit-2-1-03 2198 5394 2790 1307 718 12,407
UCfit-2-1-01 2115 5394 3095 1158 629 12,391
UCfit-3-1 2088 5387 3021 1190 609 12,295
UCfit-2-2-02 2142 5394 3009 1091 610 12,246
UCfit-3-1-02 2192 5395 2219 1329 758 11,893
TRfit-pi-4 2595 5396 1443 1426 603 11,463
UCfit-2-3-02 1846 5395 2444 1081 621 11,387
UCfit-2-1 1802 5292 2885 884 443 11,306
TRfit-pi-2 2480 5393 1072 1477 803 11,225
TRfit-3pi-4 2365 5391 869 1394 842 10,861
UCfit-1-1-02 1330 5370 2691 768 460 10,619
dp 1695 5372 1142 1441 595 10,245
dp_normC 1919 5388 817 1325 319 9768
T 2003 5387 405 1035 667 9497
TRfit-0 593 5390 2341 647 111 9082
sandpiper 47 5369 5 3 7 5431
dp_normR 402 219 3027 122 177 3947
UCfit-1-1 100 387 2161 119 175 2942
riv 0 1 1573 0 38 1612

7
7

into PM 1, RCV of PM 1 becomes <

and PM 1 < > has the best fitness value of 70. Once VM 3 is placed

2) which is not large enough to
2

hold any of the remaining VMs. Next, VM 1 < 4> is allocated to PM 2
3

)
4 b

>, therefore VM 2 is

< 5 >, because its dot product, 35, is better than that of VM 2 (
5

1
3

left unallocated. dp metric is considered to be unsuccessful because it
fails to find a feasible allocation.

30. Residual capacity (RCV) of PM 2 is now <

Table 3

We compare our metrics, TRfit and UCfit, with some other metrics
that are defined in other studies and by Gabay and Zaourar (2016).
Table 1 shows the first set of results. The number of resource dimensions
d is varied between 2 and 8. There are 30 physical machines (bin count
is 30). There are 5 problem classes. For each class 100 instances are
generated. Hence, for each resource dimension count d there are a total
of 500 instances. Therefore the maximum success count can be 500
for a given resource dimension count, meaning that all 500 problem
instances are solved. Total number of problems is 3500.

As can be seen in Table 1, our methods TRfit and UCfit perform
much better than various other methods proposed in literature and by
Gabay and Zaourar (2016). While our two methods with various param-
eters achieve a total success count of at least 1485, 42.4% of the prob-
lems for all resource dimensions, a lot of other methods are providing
a total success count below 1000 (28.5%). Our best result is obtained
by UCfit with 1711 problems (48.8%) solved successfully, whereas the

Success counts of methods for various number of resource types (d) for correlated capacities (correlated-false) instance class.
d is varied between 2 and 10. Each column shows the results for a different d value. There are 6 different bin counts
considered (10, 20, 30, 40, 50, 100). The success count can be at most 600.

d==> 2 3 4 5 6 7 8 9 10
TRfit-pi-4 599 576 524 427 279 134 55 1 0
TRfit-pi-2 599 589 536 415 232 102 6 1 0
TRfit-3pi-4 600 590 530 392 184 68 1 0 0
UCfit-2-1-03 594 567 502 335 151 48 0 0 1
UCfit-3-1-02 595 581 504 329 145 38 0 0 0
UCfit-2-1-02 593 559 490 335 152 46 0 0 0
UCfit-2-2-02 587 545 474 322 151 61 2 0 0
UCfit-2-1-01 585 549 477 320 136 48 0 0 0
UCfit-3-1 580 553 481 306 138 28 1 0 1
T 599 572 476 266 85 5 0 0 0
dp_normC 595 562 469 217 75 1 0 0 0
UCfit-2-3-02 590 521 394 231 91 18 1 0 0
UCfit-2-1 554 486 398 244 102 18 0 0 0
dp 590 517 367 169 48 3 1 0 0
UCfit-1-1-02 556 403 244 101 23 3 0 0 0
TRfit-0 315 176 67 30 5 0 0 0 0
dp_normR 271 113 17 1 0 0 0 0 0
UCfit-1-1 94 5 1 0 0 0 0 0 0
sandpiper 39 7 1 0 0 0 0 0 0
riv 0 0 0 0 0 0 0 0 0

11

C. Mergenci, I. Korpeoglu

Journal of Network and Computer Applications 146 (2019) 102413

Table 4

Success counts of methods for different d values and for uniform instance class. Success count can be at

most 600.
d==> 2 3 4 5 6 7 8 9 10
TRfit-pi-2 598 519 255 52 1 2 12 13 25
dp 590 508 231 42 1 7 11 20 31
TRfit-pi-4 592 491 237 52 3 5 10 11 25
TRfit-3pi-4 597 508 210 22 1 4 13 13 26
UCfit-3-1-02 589 482 197 6 1 2 12 14 26
dp_normC 586 468 201 16 2 1 5 15 31
UCfit-2-1-03 582 456 197 20 1 2 11 12 26
UCfit-2-1-02 575 423 174 18 1 1 11 12 25
UCfit-3-1 553 423 152 9 1 2 11 13 26
UCfit-2-1-01 564 397 142 4 1 0 10 14 26
UCfit-2-2-02 570 372 101 2 1 1 8 13 23
UCfit-2-3-02 575 386 86 1 2 2 5 9 15
T 580 375 39 1 0 2 10 10 18
UCfit-2-1 488 289 57 0 1 1 9 13 26
UCfit-1-1-02 521 200 13 0 1 2 6 6 19
TRfit-0 478 138 8 0 1 0 4 3 15
dp_normR 103 7 0 0 0 0 1 0 11
UCfit-1-1 84 18 0 0 1 0 4 3 9
sandpiper 3 0 0 0 0 0 0 0 0
riv 0 0 0 0 0 0 0 0 0

closest performing other method, dp, provides 1433 feasible solutions
(40.9%). Our metric improves over performance of dp by 19.3%. There
are metrics with very poor performance (less than 2.0%), which proves
that choosing a good heuristic is important.

In the subsequent experiments we compared our parametric meth-
ods TRfit and UCfit with the best performing three methods from Gabay
and Zaourar (2016), dp, dp_normC, and dp_normR, and three other
methods from literature, r, riv, and sandpiper. 6 different bin counts
are considered, 10, 20, 30, 40, 50, and 100, each having 9 different
resource dimensions: 2-10. For each bin count and dimension count
pair, we generate 100 problem instances for each instance class. There-
fore, a total of 5400 instances are generated for each class, and the total
number of instances is 27,000 across all classes.

Table 2 shows the performance of the selected best performing
methods and our methods with different parameters for various prob-
lem classes. When the bin capacities at various dimensions are corre-
lated, heuristics perform the best compared to other problem classes.
When overall success count is considered, our UCfit metric performs the

Table 5

best. In total, it finds a feasible solution to 12,540 problem instances
(46.4% of all problems). Our TRfit metric performs close to UCfit,
where the best TRfit value is 11,463 (42.4%). Performance of other
metrics from the literature is worse. The closest one, dp, solves 10,240
instances (37.9%), Compared to dp, UCfit performs 22.4% better. Riv
performs the worst among the compared algorithms, satisfying just
1612 instances (5.9%), which is only 12.8% of our best result.

Tables 3 and 4 compare various methods for different number of
resource dimensions (d). In Table 3 we see results for correlated capac-
ities only (correlated-False class). The first thing that we notice is
that when d increases, the placement becomes more difficult and the
number of satisfied problem instances decreases dramatically for all
metrics. For d > 8, problems become practically unsolvable with the
proposed heuristics. TRfit achieves highest scores compared to other
metrics, solving 2595 of 6000 problems (43.2%). Closest performing
method from literature, r, is able to solve 2003 problems (33.3%). TRfit
achieves 29.5% better performance than r. The difference between two
methods are lower for easier problems. Both methods achieve above

Success counts of methods for different bin count values and for correlated-false instance class
(that means only dimension capacities are correlated not the dimension requirements).

Success count can be at most 900.

bin count ==> 10 20 30 40 50 100 Total
TRfit-pi-4 236 333 410 463 504 649 2595
TRfit-pi-2 254 328 394 428 481 595 2480
TRfit-3pi-4 254 319 372 401 452 567 2365
UCfit-2-1-03 224 285 352 388 417 532 2198
UCfit-3-1-02 230 294 344 386 412 526 2192
UCfit-2-1-02 223 286 340 382 416 528 2175
UCfit-2-2-02 191 269 341 385 417 539 2142
UCfit-2-1-01 212 275 332 369 405 522 2115
UCfit-3-1 206 267 331 368 406 510 2088
T 222 271 321 349 371 469 2003
dp_normC 206 257 297 336 360 463 1919
UCfit-2-3-02 195 239 295 321 362 434 1846
UCfit-2-1 141 212 284 323 368 474 1802
dp 219 255 275 302 310 334 1695
UCfit-1-1-02 110 157 197 237 257 372 1330
TRfit-0 101 108 107 102 99 76 593
dp_normR 44 38 46 57 71 146 402
UCfit-1-1 25 15 10 17 13 20 100
sandpiper 38 8 1 0 0 0 47
riv 0 0 0 0 0 0 0

12

C. Mergenci, I. Korpeoglu

Table 6

Journal of Network and Computer Applications 146 (2019) 102413

Success counts of methods for different bin count values and for correlated-true instance class
(both dimension capacities and requirements are correlated). Success count can be at most

900.

bin count ==> 10 20 30 40 50 100 Total
TRfit-pi-4 896 900 900 900 900 900 5396
UCfit-2-1-02 895 900 900 900 900 900 5395
UCfit-2-3-02 895 900 900 900 900 900 5395
UCfit-3-1-02 895 900 900 900 900 900 5395
UCfit-2-1-01 894 900 900 900 900 900 5394
UCfit-2-1-03 894 900 900 900 900 900 5394
UCfit-2-2-02 894 900 900 900 900 900 5394
TRfit-pi-2 893 900 900 900 900 900 5393
TRfit-3pi-4 892 899 900 900 900 900 5391
TRfit-0 890 900 900 900 900 900 5390
dp_normC 889 899 900 900 900 900 5388
T 888 899 900 900 900 900 5387
UCfit-3-1 889 898 900 900 900 900 5387
dp 873 900 899 900 900 900 5372
UCfit-1-1-02 885 894 899 896 897 899 5370
sandpiper 875 895 899 900 900 900 5369
UCfit-2-1 842 876 887 894 894 899 5292
UCfit-1-1 125 72 59 53 48 30 387
dp_normR 97 54 31 23 10 4 219
riv 1 0 0 0 0 0 1

95% performance for d < 4. The difference becomes larger for harder
problems with d > 4, where TRfit solves 24.8% of the problems while
r solves just 9.8%.

In Table 4 we see results for instances with uniform random capaci-
ties (uniform class). First of all, compared to correlated capacities, suc-
cess rate of the methods are in general lower for uniform instance class.
It is easier to place VMs into instances with correlated capacities, than
with uniform random capacities. It is also interesting to note that when
d gets larger, sometimes the success count can increase as well. For
example, for various versions of UCfit heuristic, success count is more
when d is 10 compared to when d is 5. This shows that depending on the
capacities, having more dimensional resources does not always mean
less success rate. The performance difference between TRfit and clos-
est performing method from literature, dp, is significantly lower com-
pared to correlated capacities class. TRfit solves 1477 of 6000 problems
(24.6%) and dp solves 1441 (24.0%).

Tables 5-9 evaluate the performance of various methods for dif-
ferent classes and bin counts. Instances with correlated capacities and

Table 7

requirements (correlated-True class) enable the best success rate for
the methods. Because both capacities and requirements are correlated,
it is easier to find good placements for VMs compared to other prob-
lem classes where it is harder to distinguish between good and bad
placements. Uniform random capacities with rare resources (uniform-
rare class), on the other hand, is the most difficult to solve instance
class.

Table 5 gives the success rate of the methods for various bin counts
for the class of instances where only resource capacities but not require-
ments are correlated (correlated-False class). Note that the problem gets
easier as the number of bins increases. The best performing method is
TRfit with « /4. 1t solves 2595 of 5400 problems (48.0%). Other
TRfit metrics with different parameters are at the top as well, except
TRfit(0). Then comes UCfit. The metrics r and dp rank around the mid-
dle, by solving 37.0% and 31.3% of the problems respectively. TRfit-pi-
4 improves over the performance of r by 29.5%. The metrics sandpiper
and riv are at the bottom. sandpiper is able to solve less than 1% of the
problems, where riv fails to solve any.

Success counts of methods for different bin count values and for similar instance class. Success

count can be at most 900.

bin count ==> 10 20 30 40 50 100 Total
UCfit-2-1-01 733 571 466 425 431 469 3095
UCfit-2-1-02 708 553 463 414 414 478 3030
dp_normR 779 614 518 437 378 301 3027
UCfit-3-1 714 553 459 403 413 479 3021
UCfit-2-2-02 729 548 462 425 401 444 3009
UCfit-2-1 703 539 438 398 377 430 2885
UCfit-2-1-03 671 496 399 386 391 447 2790
UCfit-1-1-02 681 502 397 365 353 393 2691
UCfit-2-3-02 604 417 350 338 339 396 2444
TRfit-0 571 385 332 333 334 386 2341
UCfit-3-1-02 553 353 307 301 321 384 2219
UCfit-1-1 608 383 297 281 272 320 2161
riv 548 291 192 179 170 193 1573
TRfit-pi-4 239 202 218 236 250 298 1443
dp 160 157 186 200 202 237 1142
TRfit-pi-2 129 149 182 190 195 227 1072
TRfit-3pi-4 93 116 140 150 169 201 869
dp_normC 105 113 123 135 146 195 817
r 35 50 65 74 82 99 405
sandpiper 5 0 0 0 0 0 5

13

C. Mergenci, I. Korpeoglu

Table 8

Journal of Network and Computer Applications 146 (2019) 102413

Success counts of methods for different bin count values and for uniform instance class. Success

count can be at most 900.

bin count ==> 10 20 30 40 50 100 Total
TRfit-pi-2 201 188 213 247 280 348 1477
dp 210 184 210 236 263 338 1441
TRfit-pi-4 194 176 208 241 263 344 1426
TRfit-3pi-4 205 176 197 235 261 320 1394
UCfit-3-1-02 182 172 198 229 243 305 1329
dp_normC 176 161 199 227 248 314 1325
UCfit-2-1-03 172 156 192 217 250 320 1307
UCfit-2-1-02 154 140 181 215 233 317 1240
UCfit-3-1 146 138 171 206 225 304 1190
UCfit-2-1-01 147 132 169 198 216 296 1158
UCfit-2-2-02 148 123 159 181 207 273 1091
UCfit-2-3-02 142 132 156 184 201 266 1081
T 145 128 158 174 200 230 1035
UCfit-2-1 110 85 117 156 172 244 884
UCfit-1-1-02 93 80 107 132 153 203 768
TRfit-0 81 80 94 111 124 157 647
dp_normR 32 14 11 11 7 47 122
UCfit-1-1 35 14 10 11 15 34 119
sandpiper 3 0 0 0 0 0 3

riv 0 0 0 0 0 0 0

Table 6 gives the success rate of the methods for various bin
counts for class of instances with correlated capacities and requirements
(correlated-True). This is the easiest class of all instance classes. Almost
all methods perform above 98.0%.

Table 7 gives the success count of the methods for various bin counts
for the class of instances that have similar capacities (similar). The
problems become harder to solve as the number of bins increases. This
time UCfit method performs the best, solving 3095 of 5400 problems
(57.3%). The metric dp_normR is very close with 56.0% performance.
This is the only class of problems for which dp_normR shows reason-
able performance. It performs poorly in all other cases. riv has the same
performance characteristic with dp_normR, though it has worse perfor-
mance, 29.1%. The metric r performs poorly, 7.5%, and sandpiper is
the worst.

Table 8 gives the success count of the methods for various bin counts
when bin capacities are drawn randomly from a uniform distribution
(uniform). The problems become easier to solve as the number of bins

Table 9

increases. TRfit-pi-2 and dp are performing the best, with 27.3% and
26.6% performance respectively. In general, TRfit is ahead of UCfit for
this class of instances. The best performing TRfit improves over the
performance of the best performing UCfit by 11.1%. sandpiper and riv
have the worst performance.

Table 9 gives the success count of the methods for various bin counts
when bins are generated in the same manner as in uniform class, but
the capacity of the last dimension is set to zero with certain probability,
indicating a rare resource in the cloud (uniform-rare). Note that this is
the most difficult of all problem classes. The problems become slightly
harder to solve for intermediate number of bins. They are easier for
lower and higher number of bins. The best performing TRfit solves 842
of 5400 problems (15.5%). The best performing UCfit is slightly behind
with 758 problems (14.0%). Performance of metric r is relatively good
(12.3%), but TRfit is able to achieve 26.2% better performance. Metrics
riv and sandpiper again perform the worst with less than 1% perfor-
mance.

Success counts of methods for different bin count values and for uniform-rare instance class.

Success count can be at most 900.

bin count ==> 10 20 30 40 50 100 Total
TRfit-3pi-4 228 115 114 109 116 160 842
TRfit-pi-2 229 114 104 95 101 160 803
UCfit-3-1-02 220 103 98 98 100 139 758
UCfit-2-1-03 205 94 86 93 103 137 718
UCfit-2-1-02 205 90 93 91 93 128 700
r 183 89 92 91 94 118 667
UCfit-2-1-01 187 82 82 81 87 110 629
UCfit-2-3-02 159 80 83 86 93 120 621
UCfit-2-2-02 169 82 78 81 84 116 610
UCfit-3-1 182 75 72 76 82 122 609
TRfit-pi-4 219 91 73 58 65 97 603
dp 196 79 63 65 75 117 595
UCfit-1-1-02 136 65 51 58 60 90 460
UCfit-2-1 145 53 49 51 60 85 443
dp_normC 116 31 30 31 37 74 319
dp_normR 93 31 21 9 13 10 177
UCfit-1-1 79 31 18 18 11 18 175
TRfit-0 82 15 10 2 1 1 111
riv 31 6 0 0 1 0 38
sandpiper 7 0 0 0 0 0 7

14

C. Mergenci, I. Korpeoglu

7. Conclusion

As a cloud computing service, Infrastructure as a Service (IaaS) oper-
ators provide public access to their infrastructures. Cloud customers use
cloud resources via virtual machines, on which they can run arbitrary
software. One of the challenges faced by providers in this type of cloud
computing is efficient allocation of physical resources to VM requests
so that the number of customers whose requests are satisfied can be
increased.

In this paper we provide metrics and methods that enable effi-
cient packing of VMs into physical machines so that consumer requests
are totally satisfied in as many cases as possible. For this, we first
propose two novel and generic resource utilization metrics, called
TRfit and UCfit, that measure the goodness of a current allocation.
A measure is always monitored and used while virtual machines are
being placed into physical machines to have a utilization state that
is as suitable as possible. Hence the metrics are used in selecting
VMs and PMs to make a good assignment. We also show how these
metrics can be used as part of some sample VM placement algo-
rithms. In this way we provide complete and generic VM placement
methods that can be applied for various resource types and counts.
Our measures are parametric. Each different selection of a parame-
ter enables a new sub-metric that can be more suited for particular
cases. The methods are heuristic-based, therefore they run very fast
and in polynomial time with respect to request count and machine
count.

We compared our methods both internally, for different parame-
ter settings, and also externally with some other methods from litera-
ture in terms of number of VM placement problems that can be solved
completely—without having any unplaced VMs. We investigated the
effect of physical machine count, resource type count, and also problem
instance classes. For all cases, our methods perform better than existing
methods, by 22.4% overall, and by up to 29.1% when individual prob-
lem classes are considered. Relative ranks of our methods against each
other varies depending on the case.

As a future work, the methods we proposed could be extended for
allocating requests with physical proximity constraints, so that VMs that
would serve for the same application could communicate faster among
each other. Such a method could consider cloud as a tree of resources,
and allocate subsets of a set of VMs in neighboring sub-trees according
to fitness values.

Declaration of interests
None.
Acknowledgements

This work is partially supported by The Scientific and Technological
Research Council of Turkey (TUBITAK) projects 113E274 and 116E048.

References

Alicherry, M., Lakshman, T.V., 2012. Network aware resource allocation in distributed
clouds. In: IEEE INFOCOM, pp. 963-971, https://doi.org/10.1109/INFCOM.2012.
6195847.

AMAZON.com Inc, 2006. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.
amazon.com/ec2/. (Accessed 26 June 2012).

Arzuaga, E., Kaeli, D.R., 2010. Quantifying load imbalance on virtualized enterprise
servers. In: Workshop on Software and Performance, pp. 235-242, https://doi.org/
10.1145/1712605.1712641.

Beloglazov, A., Abawajy, J., Buyya, R., 2012. Energy-aware resource allocation
heuristics for efficient management of data centers for Cloud computing. Future
Gener. Comput. Syst., https://doi.org/10.1016/j.future.2011.04.017.

Chen, L., Shen, H., 2014. Consolidating complementary vms with
spatial/temporal-awareness in cloud datacenters. In: IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications, pp. 1033-1041, https://doi.org/10.
1109/INFOCOM.2014.6848033.

15

Journal of Network and Computer Applications 146 (2019) 102413

Gabay, M., Zaourar, S., 2016. Vector bin packing with heterogeneous bins: application
to the machine reassignment problem. Ann. Oper. Res. 242, 161-194, https://doi.
0rg/10.1007/5s10479-015-1973-7.

Garg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R., 2014. Sla-based virtual machine
management for heterogeneous workloads in a cloud datacenter. J. Network
Comput. Appl. 45, 108-120, https://doi.org/10.1016/j.jnca.2014.07.030.

Johnson, D.S., 1974. Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256-278, https://doi.org/10.1016,/50022-0000(74)80044-9.

Lee, Y.C., Zomaya, A.Y., 2009. Minimizing energy consumption for
precedence-constrained applications using dynamic voltage scaling. In: Cluster
Computing and the Grid, pp. 92-99, https://doi.org/10.1109/CCGRID.2009.16.

Masdari, M., Nabavi, S.S., Ahmadi, V., 2016. An overview of virtual machine placement
schemes in cloud computing. J. Netw.Comput. Appl. 66, 106-127, https://doi.org/
10.1016/j.jnca.2016.01.011.

Mell, P., Grance, T., 2011. The Nist Definition of Cloud Computing. NIST Special
Publication 800-145. .

Meng, X., Pappas, V., Zhang, L., 2010. Improving the scalability of data center networks
with traffic-aware virtual machine placement. In: IEEE INFOCOM, pp. 1154-1162,
https://doi.org/10.1109/INFCOM.2010.5461930.

Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.G., Zomaya, A.Y., Tuyttens, D.,
2011. A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for
cloud computing systems. J. Parallel Distrib. Comput. 71, 1497-1508, https://doi.
0rg/10.1016/j.jpdc.2011.04.007.

Mills, K., Filliben, J., Dabrowski, C., 2011. Comparing VM-placement algorithms for
on-demand clouds. In: IEEE International Conference on Cloud Computing
Technology and Science, https://doi.org/10.1109/CloudCom.2011.22.

Mishra, M., Sahoo, A., 2011. On theory of VM placement: anomalies in existing
methodologies and their mitigation using a novel vector based approach. In: IEEE
International Conference on Cloud Computing, pp. 275-282, https://doi.org/10.
1109/CLOUD.2011.38.

NumFOCUS Foundation, 2006. NumPy. https://www.numpy.org. (Accessed 15 May
2019).

NumFOCUS Foundation, 2008. Pandas: Python Data Analysis Library. https://pandas.
pydata.org. (Accessed 15 May 2019).

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,
D., 2009. The eucalyptus open-source cloud-computing system. In: 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp.
124-131, https://doi.org/10.1109/CCGRID.2009.93.

Panigrahy, R., Prabhakaran, V., Talwar, K., Wieder, U., Ramasubramanian, R., 2011a.
Validating Heuristics for Virtual Machines Consolidation. Technical Report https://
www.microsoft.com/en-us/research/publication/validating- heuristics-for-virtual-
machines-consolidation/.

Panigrahy, Rina, Talwar, Kunal, Uyeda, Lincoln, Wieder, Udi, 2011b. Heuristics for
Vector Bin Packing. Technical Report. Microsoft Research.

Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Ratnasamy, S., Stoica, I., 2012.
FairCloud: Sharing the Network in Cloud Computing, pp. 187-198, https://doi.org/
10.1145/2342356.2342396.

Rackspace US Inc, 2008. Cloud Server and Virtual Server Hosting by Rackspace. http://
www.rackspace.com/cloud/servers. (Accessed 26 June 2012).

Shrivastava, V., Zerfos, P., won Lee, K., Jamjoom, H., Liu, Y.H., Banerjee, S., 2011.
Application-aware virtual machine migration in data centers. In: IEEE INFOCOM,
pp. 66-70, https://doi.org/10.1109/INFCOM.2011.5935247.

Singh, H., hau Lee, M., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Filho, E.M.C., 2000.
MorphoSys: an integrated reconfigurable system for data-parallel and
computation-intensive applications. IEEE Trans. Comput. 49, 465-481, https://doi.
0rg/10.1109/12.859540.

Singh, A., Korupolu, M., Mohapatra, D., 2008. Server-storage virtualization: integration
and load balancing in data centers. In: Supercomputing Conference, https://doi.org/
10.1109/SC.2008.5222625.

Stillwell, M., Schanzenbach, D., Vivien, F., Casanova, H., 2010. Resource allocation
algorithms for virtualized service hosting platforms. J. Parallel Distrib. Comput. 70,
962-974, https://doi.org/10.1016/j.jpdc.2010.05.006.

TeamJ19ROADEF2012, 2016. Variable-Size-Vector-Bin-Packing. https://github.com/
TeamJ19ROADEF2012/Variable-Size-Vector-Bin-Packing. (Accessed 15 May 2019).

Toyoda, Y., 1975. A Simplified Algorithm for Obtaining Approximate Solutions to
Zero-One Programming Problems.

Wood, T., Shenoy, P.J., Venkataramani, A., Yousif, M.S., 2009. Sandpiper: blackbox and
gray-box resource management for virtual machines. Comput. Netw. 53,
2923-2938, https://doi.org/10.1016/j.comnet.2009.04.014.

Ye, X., Yin, Y., Lan, L., 2017. Energy-efficient many-objective virtual machine placement
optimization in a cloud computing environment. IEEE Access 5, 16006-16020,
https://doi.org/10.1109/ACCESS.2017.2733723.

Zhang, X., Tian, Y., Jin, Y., 2015. A knee point-driven evolutionary algorithm for
many-objective optimization. IEEE Trans. Evolut. Comput. 19, 761-776, https://doi.
0rg/10.1109/TEVC.2014.2378512.

Zhang, J., Huang, H., Wang, X., 2016. Resource provision algorithms in cloud
computing: a survey. J. Netw. Comput. Appl. 64, 23-42, https://doi.org/10.1016/j.
jnca.2015.12.018.

https://doi.org/10.1109/INFCOM.2012.6195847
https://doi.org/10.1109/INFCOM.2012.6195847
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
https://doi.org/10.1145/1712605.1712641
https://doi.org/10.1145/1712605.1712641
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1109/INFOCOM.2014.6848033
https://doi.org/10.1109/INFOCOM.2014.6848033
https://doi.org/10.1007/s10479-015-1973-7
https://doi.org/10.1007/s10479-015-1973-7
https://doi.org/10.1016/j.jnca.2014.07.030
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1109/CCGRID.2009.16
https://doi.org/10.1016/j.jnca.2016.01.011
https://doi.org/10.1016/j.jnca.2016.01.011
http://refhub.elsevier.com/S1084-8045(19)30247-4/sref11
https://doi.org/10.1109/INFCOM.2010.5461930
https://doi.org/10.1016/j.jpdc.2011.04.007
https://doi.org/10.1016/j.jpdc.2011.04.007
https://doi.org/10.1109/CloudCom.2011.22
https://doi.org/10.1109/CLOUD.2011.38
https://doi.org/10.1109/CLOUD.2011.38
https://www.numpy.org
https://pandas.pydata.org
https://pandas.pydata.org
https://doi.org/10.1109/CCGRID.2009.93
https://www.microsoft.com/en-us/research/publication/validating-heuristics-for-virtual-machines-consolidation/
https://www.microsoft.com/en-us/research/publication/validating-heuristics-for-virtual-machines-consolidation/
https://www.microsoft.com/en-us/research/publication/validating-heuristics-for-virtual-machines-consolidation/
http://refhub.elsevier.com/S1084-8045(19)30247-4/sref20
https://doi.org/10.1145/2342356.2342396
https://doi.org/10.1145/2342356.2342396
http://www.rackspace.com/cloud/servers
http://www.rackspace.com/cloud/servers
https://doi.org/10.1109/INFCOM.2011.5935247
https://doi.org/10.1109/12.859540
https://doi.org/10.1109/12.859540
https://doi.org/10.1109/SC.2008.5222625
https://doi.org/10.1109/SC.2008.5222625
https://doi.org/10.1016/j.jpdc.2010.05.006
https://github.com/TeamJ19ROADEF2012/Variable-Size-Vector-Bin-Packing
https://github.com/TeamJ19ROADEF2012/Variable-Size-Vector-Bin-Packing
http://refhub.elsevier.com/S1084-8045(19)30247-4/sref28
https://doi.org/10.1016/j.comnet.2009.04.014
https://doi.org/10.1109/ACCESS.2017.2733723
https://doi.org/10.1109/TEVC.2014.2378512
https://doi.org/10.1109/TEVC.2014.2378512
https://doi.org/10.1016/j.jnca.2015.12.018
https://doi.org/10.1016/j.jnca.2015.12.018

C. Mergenci, I. Korpeoglu

Cem Mergenci is currently a PhD candidate in the Com-
puter Engineering Department at Bilkent University, Turkey.
He received his MS and BS degrees from Bilkent University,
both in Computer Engineering. His research interests are cloud
computing, resource allocation algorithms, wireless networks
and distributed systems.

16

Journal of Network and Computer Applications 146 (2019) 102413

Ibrahim Korpeoglu received his Ph.D. and M.S. in Computer
Science from University of Maryland at College Park in 2000
and 1996, respectively, under the supervision of Prof. Satish
Tripathi. He received his B.S. degree (summa cum laude) in
Computer Engineering, from Bilkent University in 1994. He
is a full professor in Department of Computer Engineering at
Bilkent University. Before joining Bilkent, he worked in Erics-
son, IBM T.J. Watson Research Center, Bell Laboratories, and
Bellcore, in USA. He received Bilkent University Distinguished
Teaching Award in 2006 and IBM Faculty Award in 2009. He
speaks Turkish, English and German. His research interests
include computer networks, wireless networks, cloud comput-
ing, and distributed systems. He is a member of ACM and a
senior member of IEEE.

	Generic resource allocation metrics and methods for heterogeneous cloud infrastructures
	1. Introduction
	2. Related work
	2.1. Network-aware
	2.2. Energy-aware
	2.3. SLA-based
	2.4. Utilization-focused

	3. Multi-dimensional VM allocation problem
	4. Proposed utilization metrics
	4.1. Our metrics
	4.1.1. Our first metric (TRfit)
	4.1.2. Our second metric (UCfit)

	4.2. Other metrics
	4.2.1. RIV metric
	4.2.2. SandFit metric
	4.2.3. R metric

	5. Allocation heuristics based on our metrics
	6. Simulation experiments and evaluation
	6.1. Effect of resource heterogeneity to allocation performance
	6.2. Performance of proposed methods

	7. Conclusion
	Declaration of interests
	Acknowledgements
	References

