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ABSTRACT
In data stream mining, one of the biggest challenges is to develop

algorithms that deal with the changing data. As data evolve over

time, static models become outdated. This phenomenon is called

concept drift, and it is investigated extensively in the literature.

Detecting and subsequently adapting to concept drifts yield more

robust and better performing models. In this study, we present an

unsupervised method called D3 which uses a discriminative classi-

fier with a sliding window to detect concept drift by monitoring

changes in the feature space. It is a simple method that can be used

along with any existing classifier that does not intrinsically have a

drift adaptation mechanism. We experiment on the most prevalent

concept drift detectors using 8 datasets. The results demonstrate

that D3 outperforms the baselines, yielding models with higher

performances on both real-world and synthetic datasets.
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1 INTRODUCTION
Data stream mining has became a major research topic due to the

increasing amount of data generated by various sources such as

social networks, online businesses, and military-financial applica-

tions [8]. These data are mostly wasted because of computational

and memory-related limitations. They need to be processed im-

mediately otherwise they are lost due to the volatile nature of the

streaming environment [13].
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In traditional classification tasks, the main assumption is that

data is static which indicates both train and test environments are

from the same distribution. However, this assumption is often vio-

lated as real-world applications are dynamic and evolve over time.

This is known as concept drift [11]. In such cases, the classification

model becomes obsolete as the data distribution changes and the

predictive function can no longer correctly map features to labels,

hence deteriorating the predictive performance of models.

Concept drift detection is studied under two main categories:

explicit and implicit [20]. Explicit (supervised) detection techniques

require labels to be available just after data arrives, whereas implicit

(unsupervised) methods do not. For most cases, explicit methods

track the performance of the classifier over time. When there is

a significant drop, a drift is flagged. On the other hand, implicit

methods investigate the properties of the features. In many data

streaming environments, labels are not available all the time. For

some cases, only a percentage of them are present, or they arrive

with delay [20].

In this paper, we propose an unsupervised method using a dis-

criminative classifier over a sliding window to monitor the change

in the distribution of data. A classifier is trained and tested period-

ically aiming to distinguish whether the new samples are from a

similar distribution as the old. In a batch setting, a related problem

is covariate shift adaptation [19] where training and test distribu-

tions differ. A method that uses a discriminative classifier similar to

the proposed approach is introduced to detect and correct covariate

shift [3]. In a stream setting, to the best of our knowledge, this is the

first method that utilizes a discriminative classifier for the concept
drift detection task.

The main contributions of this paper are as follows. We (1) intro-
duce a simple yet effective method for unsupervised concept drift

detection; (2) empirically test the proposed method on 8 datasets

against widely used concept drift detection methods; (3) evaluate
the performance of our approach and demonstrate that it outper-

forms the baselines, achieving the highest average rank.

2 PROBLEM DEFINITION
Stream classification is a supervised learning problem that takes

place in data streams, under time and memory constraints [1]. A

data stream consists of data instances that arrive in time order,

i.e. D = {(X0,y0), (X1,y1), . . . (Xt ,yt ), . . . } where Xt represents
features, and yt classes associated with the instance at time t . Class
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Figure 1: Drift detection workflow: (1): Drift detected. The old and the new data are separable. Samples from the old portion
are discarded and partially filled with the samples from the new. (2): No drift. These sets are nested. The oldest wρ samples
are removed and the window is shifted to left where the samples from the new fill the space that becomes empty.

information for a data instance, yt , is available only after testing,

i.e. predicting from Xt . A concept at a given time t is denoted as

pt (X ,y). In such an environment, concept drift detection is a task of

determining whether the joint distribution of inputs X and targets

y differ between times t0 and t1 [11].

pt0 (X ,y) , pt1 (X ,y) (1)

The primary objective for concept drift detection is to design a

method that runs jointly with a classification model, modifying

the model in accordance with the detected drift to provide robust-

ness against changes in the data distribution, thus improving the

classification performance of the model.

3 RELATEDWORK
Concept drifts happening on both p(X ) and p(y |X ) simultaneously

are identified as Rigorous Concept Drift [21]. Most implicit detec-

tion techniques focus on concept drift assuming that the changes in

p(X ) lead to changes in P(y |X ), deteriorating the predictive perfor-

mance. There are two approaches for detecting these type of drifts:

novelty detection and multivariate distribution monitoring [20].

Methods based on novelty detection are referred to as clustering or

outlier detection which use distance or density measures to detect

unknown patterns [16].

Approaches based on multivariate distribution monitoring track

the distribution of features individually by identifying each as a

stream. They make tests batch by batch: storing the older batch’s

information as a reference, and inspect the changes in the newer

batch. KL-divergence, Hellinger distance, and correlation are com-

monly used for measuring the differences [6, 14]. A drift is signalled

if there is a significant change in the average.

Page-Hinckley Test [18], DDM [10], EDDM [2] and ADWIN [4]

are the most prevalent methods for concept drift detection. They

are explicit methods relying on labeled data. The Page-Hinckley

Test tracks the cumulative difference between the observed values

and their mean of the chosen metric. It detects a change when

the difference is more than a given threshold. DDM monitors the

probability of error rate and its standard deviation. It signals a drift if

the error rate within a period increases substantially. EDDM tracks

the distance in between two back-to-back errors. It assumes this

distance to be larger if there is no drift and vice versa otherwise.

DDM and EDDM follow the ideas based on control charts and

work one sample at a time. Unlike previous methods, ADWIN

operates with a sliding window whose size is adaptive with respect

to the changes in data. There are two sub-windows storing the

performance metrics for older and new data. A drift is detected

if the mean of these sub-windows differ by more than a certain

threshold.

4 PROPOSED APPROACH: D3
We propose D3 (Discriminative Drift Detector), an unsupervised

drift detection method which uses a discriminative classifier that

can be used with any online algorithm without a built-in drift

detector. We hold a fixed size sliding window of the latest data

having two sets: the old and the new. A simple classifier is trained

to distinguish these sets. We detect a drift with respect to classifier

performance. This process is done repeatedly as long as there is

new data. It is a simple and practical method.

Ideally, the shift between two sets can be observed by estimating

their distributions and measuring the change between them (e.g.

using KL Divergence). However, it is costly in streaming environ-

ments as the estimations need to be done repeatedly and we want

instant results. What we want is to observe whether two sets differ

continuously, not to estimate their distributions. In our intuition, it

may be sufficient to learn the divergence between distributions, to

be able to detect concept drifts implicitly.

We hold a sliding window:W of the latest data with sizew(1+ρ)
(Alg. line 2).w is the size of the old data. ρ is the percentage of new

data with respect to old. The size for the new data is calculated

as wρ. We store the samples without breaking their time order.

The leftmost side (tail) has the older samples whereas the other

side (head) has the newer, which can be seen in Figure 1. In the

initialization phase, when the whole window is empty, we wait

until it gets full (Alg. line 5). Afterwards, we start with the first

check. A new slack variable s is introduced. The oldest members

of size w are labeled as old, and given value 0 (Alg. line 9). The

remaining are labeled new, and given value 1 (Alg. line 10). Later, a

logistic regression model is trained as a discriminative classifier to

distinguish old and new with s as labels (Alg. line 11).
We use AUC as a measure of separability. It expresses to what

degree a model can distinguish two classes [9]. The AUC of a perfect

model is near 1 indicating that the model can discriminate the

classes successfully. A poor model has an AUC near 0.5 when the

distribution of the classes overlap. Depending on the divergence of

the classes, we detect a drift. We expect the class distributions to
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Algorithm 1 D3: Discriminative Drift Detector

1: procedure D3(D,w, ρ,τ ):
2: Initialize windowW where |W | = w(1 + ρ)
3: Discriminative classifier C ▷e.g: Logistic Regression
4: for (X ,y) in D do ▷class label (y) is not used
5: ifW is not full then
6: W ←W ∪ X ▷i.e., add X to the head ofW
7: else
8: S is vector of s , |W | = |S | ▷s is a slack variable
9: s = 0 forW [1,w] ▷label for old (0) and new (1)
10: s = 1 forW [w + 1, end]
11: Train C(W , S) ▷train C with S as labels ofW
12: if AUC(C, S) ≥ τ then ▷measure AUC score
13: drift = True ▷drift detected
14: Dropw elements from the tail ofW
15: else
16: drift = False ▷no drift
17: Dropwρ elements from the tail ofW

overlap or have slight differences when there is no drift. We set a

threshold (τ ) for AUC to measure how much the classes (old and

new) are separable. If it is over the threshold, we signal a drift (Alg.

line 12-17).

There are two possible outcomes of the discriminative classifier,

as it is illustrated in Figure 1. (1): AUC is greater than or equal to τ .
A drift is detected, the classifier’s performance is high, and the old

and the new data are separable in the feature space. In that case, we

discard the samples from the old data part and replace them with

the ones from the new data. (2): AUC is less than τ . The classifier’s
performance is poor. This indicates that the predictive function fails

to separate the two intertwined distributions. Then, we remove the

oldestwρ samples and shift the window to left where the samples

from the new fill the recently freed space. For both cases, we wait

for new samples to come and check again for drift when the window

is filled. This work-flow can go on, as long as the stream generates

data.

Even though the sizes of the old (w) and new data (wρ) are hyper
parameters of our model, we set the old to be always larger. We

need the old portion of the data to be descriptive enough for the

current distribution and span as much area in the feature space as

possible. However, it should not be very large, otherwise it may con-

tain multiple concepts. Since the old is compared with a relatively

smaller portion (new data) to detect changes, using a metric that

works well in the presence of class imbalance is highly important.

For this reason, we use AUC to measure the performance of the

discriminative classifier, as it works well in such cases [9].

5 EMPIRICAL EVALUATION
5.1 Datasets
We test our approach both on 8 well-known real-world and syn-

thetic datasets. The summary of datasets is shown in Table 1.

5.2 Experimental Setup
Experiments are implemented in scikit-multiflow [17]. A Hoeffding

Tree is used with default parameters for stream classification. For

this purpose, any classifier that supports incremental updates with-

out having a built-in concept drift detector can be used as well. The

Table 1: Datasets with drift

Name |X| |y| |D|

R
ea
l

ELEC [12] 6 2 45,312

COVTYPE [5] 54 7 581,012

Poker Hand [5] 10 10 829,201

Rialto [15] 27 10 82,250

Sy
nt
he

ti
c

Rotating Hyperplane [15] 10 2 200,000

Moving Squares [15] 2 4 200,000

Moving RBF [15] 10 5 200,000

Interchanging RBF [15] 2 15 200,000

Hoeffding Tree is chosen due to its effectiveness and prevalence in

the literature. D3 is compared with 3 baseline methods: ADWIN

[4], DDM [10] and EDDM [2]. They are all operated with default

parameters.

Interleaved-Test-Then-Train (prequential) is used for evaluation.

A new sample is tested by the classifier first, then the evaluation

metric is recorded and the classifier is trained by the instance.When-

ever a drift is detected, the Hoeffding Tree is reset and retrained

with the latestwρ samples (new data portion) for all methods.

As a discriminative classifier, logistic regression is used in D3

with default parameters. D3 is tuned with multiple parameters

of w = [100, 250, 500, 1000, 2500], ρ = [0.1, 0.2, 0.3, 0.4, 0.5] and
τ = [0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90]. We make D3’s implemen-

tation public
1
.

6 RESULTS AND DISCUSSION
The hyper parameter choice is important for D3’s performance.

After evaluating it with multiple parameters, we found that it works

best overall whenw = 100 , ρ = 0.1 and τ = 0.70. They are set as

the default parameters of our model. Parameters may be optimized

for a selected dataset to achieve better individual scores.

We analyze the results of D3 with default parameters. The over-

all accuracy for every method on each dataset is given in Table 2.

The best scores are highlighted in bold. D3 does not utilize class

labels unlike the other concept drift detectors. With less informa-

tion, it outperforms them in most cases. When the accuracies for

each dataset are ranked from best to worst, D3 comes first with an

average rank of 1.38.

Table 2: Averaged prequential accuracy and the rankings of
the methods for each dataset

Datasets Accuracy (%)
D3 ADWIN DDM EDDM

ELEC 86.69 81.33 79.30 78.25

COVTYPE 87.17 80.48 83.36 82.76

Poker Hand 75.59 66.96 73.42 71.31

Rialto 52.39 46.64 38.44 51.01

Rotating Hyperplane 85.29 87.28 84.01 80.27

Moving Squares 66.28 67.89 45.13 33.68

Moving RBF 51.59 40.21 35.04 35.33

Interchanging RBF 82.81 88.65 41.23 60.06

Average Rank 1.38 2.25 3.13 3.25

The other methods track the performance of the classifier and

signal a drift when there is a significant drop. They wait for the new

1
The source code is available on:

https://github.com/ogozuacik/d3-discriminative-drift-detector-concept-drift
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(a) ELEC (b) COVTYPE (c) Poker Hand (d) Moving RBF

D3 ADWIN DDM EDDM

Figure 2: Prequential accuracy of the methods for the selected datasets. Each dataset is divided into 30 chunks and the results
are the averaged prequential accuracies within them.

concept to affect the performance of the classifier adversely and act

afterwards. According to the results, we see that D3 acts quicker

by signaling a drift when there is a change in P(X ). In Figure 2,

we give the prequential accuracy scores for 4 different datasets. It

shows that the locations of the drifts (declines in accuracy) are in

similar areas, but the classifier adapts to it faster with D3.

However, this does not apply for all cases. D3 cannot detect

concept drifts caused by changes only in P(y |X ) which are referred

to as real concept drift. In such cases, P(X ) stays the same; therefore,

our method cannot detect the change. Furthermore, it detects drifts

unnecessarily when the change in P(X ) does not affect P(y |X )
(virtual drift). D3’s performance on real-world datasets is better

compared to synthetics. This can be caused by the properties of the

datasets. In synthetic datasets, real and virtual concept drifts can be

more dominant. Even under these drawbacks, the results presented

in Table 2 and Figure 2 confirm that D3 works well compared to

the other methods.

We used the Friedman Test with Nemenyi post-hoc analysis to
check the statistical significance of the used methods. The critical

distance for Nemenyi Significance is calculated by plugging in

values specific for our setting from the Critical Values Table for Two
Tailed Nemenyi Test [7]. We find CD = 1.658 resulting D3 to be

statistically significantly better than DDM and EDDM.

1 2 3 4

D3
ADWIN DDM

EDDM

CD

Figure 3: Critical distance diagram for the overall accuracy.

7 CONCLUSION
In this paper, we show an unsupervised method for concept drift

detection, D3, using a discriminative classifier over a slidingwindow

of latest elements to monitor whether the old and the new samples

vary in their distributions. The experimental results show that D3

performs better overall, compared to the most extensively used

methods for drift detection.

As a future work, we plan to investigate the kernelized version of

our model. Throughout the experiments, we use logistic regression

in D3, which limits us to detect drifts that show a linear pattern

on P(X ). We also want to test our approach with different types

of classifiers, including non-linear ones, such as: SVMs and Deci-

sion Trees. Even though we use default parameters for D3, there

exist better individual scores when using different parameters on

some of the datasets. Therefore, we also plan to work on the auto-

parameterization of our model, depending on the properties of the

stream.
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