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10.1 INTRODUCTION

Early diagnosis is an important aspect of modern medicine and significantly
improves the prognosis of a wide range of life-threatening disorders (Ping
et al., 1997; Wang, 2006). However, early diagnosis is often difficult or
impossible without an appropriate means of detecting small differences in
the patient’s physiology. As such, a great diversity of both general and spe-
cialized methods has been developed to identify the presence of genetic
disorders, cancers, viral or bacterial infections, and other diseases prior to
the point they present their pathological effects (Saravolatz et al., 2003;
Waulfkuhle et al., 2003). These methods principally involve either medical
imaging, in which the patient’s tissues are checked in sifu with or without
the assistance of a dye or contrast agent (see Chapter 9); histopathology, in
which a sample of the patient’s tissues is removed by biopsy for visual
inspection, usually with the help of specific cell and tissue stains; or a variety
of diagnostic assays, in which the patient’s bodily fluids (or tissue samples)
are biochemically analyzed for disease-specific biomarkers.
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While powerful, current medical diagnostic techniques nonetheless
suffer from clinical limitations. Histopathology is the gold standard for the
diagnosis of many diseases but also requires an expert practitioner and
introduces an element of subjectivity to disease diagnosis (Uckermann
et al., 2014). Likewise, medical imaging is commonly used in disease
diagnosis but cannot easily detect early-stage disorders, which often affect
tissues on scales too small to be resolved by the imaging technique. In
contrast, biochemical assays combine low detection limits with objective
criteria of quantification and are therefore more suitable for the diagnosis
of hard-to-detect diseases. Standard biochemical assays are now employed
for the diagnosis of tuberculosis, HIV, hepatitis, Escherichia coli enteritis,
and many other pathological conditions.

Nonetheless, these assays frequently require a laboratory and a human
practitioner, which may not be readily available in rural areas where
infectious diseases are common (Peeling and Mabey, 2010). In addition,
complex diseases often require testing of multiple biomarkers in tandem,
and an automated system would be of considerable advantage for the parallel
testing (or “multiplexing”) of a broad range of molecules. The amount of
analytes and buffer solutions used in these assays can also be reduced if the
protocols of these assays could be replicated on a small device, allowing
the development of cheaper diagnostic methods. The benefits of such fast,
repeatable “autoassay”’ devices are therefore obvious, and numerous attempts
have been made to perform each step of a diagnostic assay on a small device
that ultimately produces an output that can either be confirmed by the naked
eye or quantified by a spectrometer or similar, commonly available equip-
ment. These devices are typically referred to as biosensors.

A biosensor is a compact analytical device that is capable of selectively
identifying biological signals, such as proteins, nucleic acids, small mole-
cules, or secondary metabolites, which are collectively called analytes.
The presence of a specific biological moiety can either be detected directly
(“label-free”) or through the assistance of a label. Label-bearing biosen-
sors usually have a recognition element, which specifically interacts with
the target analyte, and a signal transducer element, which transforms that
interaction into an optical, electrochemical, or mechanical signal. Recog-
nition elements are called bioreceptors if they consist of biological mate-
rials with recognition capability, such as antibodies and complementary
DNA or RNA sequences (due to their specificity, most biosensors employ
bioreceptors as their recognition element). Transducers, in turn, convert
the analyte/recognition element interaction into a measurable signal and
are composed of one or more interface elements, which are device elements
such as thin films and field-effect transistor (FET) devices or nanomaterials
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such as nanoparticles and nanowire arrays. The output of the biosensor is
either confirmed visually (especially in the case of colorimetric biosensors)
or quantified by a readout system (Medley et al., 2008).

The first biosensor, designed for the detection of glucose, was intro-
duced in 1962 by Clark and Lyons (Rapp et al., 2010). Also called an
“enzyme electrode,” it was a biosensor of the amperometric type. Since
then, the number and diversity of biosensors have grown enormously, and
the design of biosensors has become an important field in medical diag-
nostics. As such, this chapter will focus on biosensor types, their detection
limits, analysis times, and the diseases they are suitable for detecting. In
addition, as nanomaterials are an effective means of producing small-scale
diagnostic devices, nanostructures have been commonly employed in bio-
sensor design. Consequently, a section will be devoted to the types of
nanomaterials currently under use in biosensor design.

10.2 BIOSENSOR ELEMENTS

Biosensors can be classified according to their recognition element
(e.g., enzymes, antibodies, nucleic acids), output type (e.g., optical, electrical,
mechanical), detection principle (e.g., surface plasmon resonance (SPR)
based, surface-enhanced Raman spectroscopy (SERS) based, quartz crystal
microbalance (QCM) based), or intended use (in vivo or ex vivo). These
factors all play vital roles in determining the sensitivity and selectivity of
a biosensor and will be considered separately.

10.2.1 Recognition Elements

Recognition elements are almost uniformly biological, since enzymes, anti-
bodies, and complementary nucleic acid sequences display specificities
unparalleled by almost any nonbiological material (molecular imprinting,
however, is also capable of creating highly specific binding sites for biological
analytes and can be employed in sensor design). Biological sensing materials
used for analyte recognition include enzymes, antibodies, and DNA or RNA
constructs, which may either be used in purified form or expressed on the
surface of bacteria or viruses (live-cell detection) (Van Dorst et al., 2010).
Enzyme-based biosensors typically detect the breakdown products of an
enzymatic reaction between the analyte and the enzyme (i.e., catalytic recog-
nition) (Iles and Kallichurn, 2012). They are often employed for the detection
of small molecules, as antibody- and nucleic acid-based methods are either
unfeasible (if the analyte isn’t recognized as an antigen) or unnecessary (if
easy-to-produce enzymes are able to yield accurate measurements) for these
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materials. As enzyme targets are often found in both healthy and diseased
tissues, diagnosis often relies on the concentration, rather than the presence,
of the analyte. Enzymes have been used in the design of biosensors for
glucose and other sugars, nerve gas agents, heavy metals, urea, ascorbic acid,
acetylcholine, malate, and other small molecules (Mulchandani et al., 1999;
Tsai and Doong, 2005; Wang, 2001). In addition to acting as the recognition
element, enzymes can also be used as a means of visualizing the analyte—
recognition element, such as by the use of HRP-tagged secondary antibodies.

Antibodies are often considered the gold standard for the detection of
proteins and are commonly used in protein-detecting biosensors. Antibodies
may either be monoclonal or polyclonal; monoclonal antibodies target a
specific recognition site, while polyclonal antibodies bind to different recog-
nition sites on the same antigen. As such, monoclonal antibodies are gener-
ally more specific, although they are costlier to produce and the recognition
specificity of even polyclonal antibodies is considerable. Antibodies are also
selective enough to quantify very small differences in the concentration of
a specific protein, which is of considerable advantage in situations where
small changes in expression patterns are indicative of early-stage disease. In
addition to antibodies, binding peptides with similarly high affinities (down
to the picomolar range) to specific analytes can be used as detector elements
(Sidhu et al., 2000). Antibody-based biosensors have been designed for the
detection of a wide range of proteins, varying from cancer markers to viral
antigens and bacterial cell membrane components (El-Sayed et al., 2005;
Pathirana et al., 2000; Torrance et al., 2006).

The most prominent technique for antibody-based detection is the
enzyme-linked immunosorbent assay (ELISA). Digital ELISA is capable
of detecting analyte concentrations at as low as the femtomolar scale, for
example, prostate-specific antigen (PSA) could be detected at 14fg/ml
(0.4fM) from patients who had undergone radical prostatectomy (Rissin
et al., 2010). However, ELISA is relatively costly as a routine diagnostic
technique and, in some cases, not sensitive enough for use in diagnosis,
especially for the detection of early biomarkers for cancer (Tothill, 2009).
As such, one main focus in biosensor development is on surpassing the
detection limit of conventional ELISA (Park et al., 2009).

While antibodies can be raised against specific nucleic acid sequences,
a complementary DNA or RNA strand can also be used for nucleic acid
detection. These can be used not only for the detection of bacterial or viral
nucleic acids but also to rapidly measure gene expression at the RNA level or
to detect mutations in genomic DNA (Dell’ Atti et al., 2006). However, DNA
and RNA may face stability issues when exposed to serum or other biological
media; as such, nucleic acids with alternative backbones, such as peptide
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nucleic acids (PNAs), have been developed for use as recognition elements
with increased stability (Ray and Norden, 2000). In addition, oligonucleotide
aptamers are promising recognition agents that, much like antibodies, can be
raised against specific protein targets (Du et al., 2013). Aptamer production
does notrequire a cell line or animal to serve as a source, which is an advantage
compared to antibodies (Iliuk et al., 2011). Nucleic acid-based biosensor
probes have been reported for the detection of mutations, human and animal
viruses, and heavy metals, as well as for use in gene expression studies.

Recognition elements are typically of biological origin, as it is difficult
to match the efficiency of detection mechanisms that have been continu-
ously improved by natural selection since the emergence of the earliest
immune systems. However, polymers can also be etched to create highly
specific binding sites using a technique called molecular imprinting, which
has been employed in the detection of amino acids, sugars, antibiotics, and
simple organic molecules (Kriz et al., 1997). Electronic noses, devices that
contain no biological elements and instead rely on the differential binding
of gas or solute molecules to the device surface, have also been used in the
development of breath test biosensors for diabetes, pneumonia, fungal
toxins, and blood in urine (Di Natale et al., 1999; Hanson and Thaler,
2005; Logrieco et al., 2005; Ping et al., 1997).

10.2.2 Output Type and Detection Techniques

The signal created by the binding of the analyte to the recognition element
is transformed into a detectable form by a fransducer. The transducer may
detect either the binding event itself or, in the case of an enzymatic reaction,
the products that are formed in the aftermath of catalytic activity. Alter-
natively, the recognition element itself might yield a detectable signal,
such as a change in absorption properties, after binding to the analyte. No
matter the case, the resulting output must be measured and quantified for
the biosensor to function. This output may be optical, electrical, electro-
chemical, gravimetric/piezoelectric, mechanical, or magnetic and may be
amplified and processed to increase signal quality prior to diagnostic
assessment. Secondary equipment, such as spectrometers, is commonly
used in data evaluation in this manner.

The output signal and the method used for its detection are important
factors in determining the sensitivity of the biosensor. A table of biosensor
output types, detection techniques, and the associated sensitivity and anal-
ysis time comparisons is provided in Table 10.1. It is worth noting that
most biosensors provide optical, electrical/electrochemical, or mechanical
output and other detection methods are relatively rare.
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10.2.3 Optical Biosensors

Optical biosensors yield outputs that can be confirmed by the naked eye,
by changes in absorption, fluorescence peaks, or refractive index or by
using other optical or spectroscopic techniques such as fluorescence,
FTIR, and Raman spectroscopies. The widespread availability of optical
detection equipment makes optical biosensor techniques attractive for
the development of low-cost lab-on-a-chip devices for use in areas where
rapid diagnosis of potential disease is essential and more sophisticated
diagnostic methods are not readily available, such as during pathogen
outbreaks in rural regions.

Colorimetric biosensors change color when exposed to their target
analyte, and quantification is performed through changes in absorption at
a specific wavelength. Despite their simplicity, these biosensors may have
considerable sensitivity and selectivities: An absorption wavelength shift-
based biosensor for vesicular stomatitis virus (VSV), pseudotyped Ebola
(PT-Ebola), and vaccinia virus was able to reach a sensitivity figure of merit
(FOM) of 40, a detection limit of below 10°PFU/ml virus and a resolution of
0.05nm (Yanik et al., 2010). Likewise, HIV RNA molecules could be color-
imetrically detected using PNAs bearing different numbers of cyclopentane
chemical groups, with sufficient sensitivity to detect 20—30,000 copies/ml
plasma of this virus (Zhao et al., 2014a).

Changes in chemical composition can also be detected through spec-
troscopic methods, such as Raman or FTIR spectroscopy. These methods
quantify the absorbance, reflectance, or fluorescence of a material follow-
ing exposure to light at a specific wavelength or range of wavelengths and
yield chemical information in the form of molecular interactions, ionic and
covalent bonds, and vibrational and rotational motions. They are useful for
label-free biosensing efforts, as IR absorption and Raman scattering can be
used to detect conformational changes of proteins and structural variations
between materials and molecules, allowing the detailed analysis of chemical
bonds without an intermediary reporter or dye. Alzheimer’s disease, for
example, could be detected by quantifying amyloid f (Af) peptide titers
using an attenuated total reflection Fourier transform infrared (ATR-FTIR)
spectroscopy biosensor (Kleiren et al., 2010).

Raman signals can be enhanced through a method called SERS, which
utilizes the fact that the Raman signal becomes much more prominent (up
to a factor of 10', although typical values are in the 10°-108® range) when
the analyte molecules are situated between gold and silver surfaces set
apart by distances around 20-30um (Kneipp et al., 1997). The interstruc-
tural distances required for SERS are usually created using nanoparticles
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or nanopatterned surfaces, and gold and silver are often the materials of
choice because their plasmon resonances (and, therefore, Raman enhance-
ments) are in the near-infrared and visible spectral ranges, respectively.
SERS-active substrates for protein detection may also be designed to
display a tunable resonance in the infrared range in order to produce a
signal enhancement effect around the spectral positions of amide bands; or
the samples may be labeled by a Raman-active dye for easier detection
(Han et al., 2009). A detection level of 7 fg/ml could be achieved in a cancer
biomarker detection study from plasma using SERS with 3D hierarchical
plasmonic nanoarchitectures, including Au nanospheres and Au stars, as
well as with a Raman dye (malachite green isothiocyanate, MGITC) and
silica nanoparticles (Li et al., 2013b).

Surface plasmons can be used for the enhancement of other spectro-
scopic detection methods, often using noble metal nanoparticles or metallic
thin films. SPR reflectivity measurements in particular are useful for the
detection of molecular interactions and may reach very high sensitivities.
SPR-based sensing systems measure the coupling of light with the plas-
mons (electron cloud oscillations) present at the surface of a nanoscale thin
film of gold or silver. Recognition agents for SPR sensing and imaging are
generally antibodies. Picogram per milliliter-level sensitivities can be
obtained using SPR; for example, testosterone detection limits in one SPR-
based system was found to be 3.7pg/ml in standard running buffer and
15.4pg/ml in a human saliva matrix (Mitchell and Lowe, 2009). Biological
assays, nonetheless, may prove superior in detection capacity: In another
study, the detection capacity of SPR for retinol binding protein 4 (RBP4,
a useful marker for type 2 diabetes) was found to be greater than ELISA but
lower than Western blot (Lee et al., 2008).

A variant technique of SPR, called localized SPR (LSPR), uses metal
nanoparticles (usually gold or silver) of specific sizes and geometries to further
improve the detection limits of this technique (Swierczewska et al., 2012).
LSPR nanostructures may be employed for biomolecule detection through the
measurement of refractive index changes and colorimetric SPR imaging, and
it has been shown in a theoretical study that the detection capacity of LSPR-
based methods can exceed that of systems based on traditional Kretschmann
geometry systems in terms of wavelength shift sensitivity outperforming the
detection system with Kretschmann geometry (Kaya et al., 2014). LSPR-
based detection of colon cancer was also achieved using Au nanorods, and the
width- and length-dependent changes in the plasmonic and photonic prop-
erties of nanorod antennae were investigated to identify optimal geometries
for nanorod arrays for use in cancer biosensors (Dodson et al., 2015).
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10.2.4 Electrical and Electrochemical Biosensors

Like optical signals, electrical signals are generally easy to detect and
quantify. Electrical and electrochemical biosensors consequently see
common use in both research and commercial purposes. Electrical bio-
sensors typically use an electrode as their transducer, and the recognition
element (usually an enzyme) is immobilized onto this electrode. The
enzyme-ligand interaction creates a change in the electrical properties
of the electrode (this may be electrical potential, resistivity, impedance,
conductivity, or capacitance, as well as the current running between the
recognition element-bound electrode and a reference electrode), which
is measured and quantified to determine the concentration of the analyte.
Cyclic voltammetry, chronoamperometry, chronopotentiometry, imped-
ance spectroscopy, and various FET-based methods are some common
tools that are used in the measurement of the output signal. More sensitive
measurements may be performed with the use of nanomaterials such as
nanowires, nanotubes, and nanoparticles.

As one of the most popular biosensor types, amperometric biosensors
quantify changes in current, which is usually linear with the change in ana-
lyte concentration within the detection range (Wang, 1999). Amperometric
biosensors typically display relatively modest detection capabilities; for
example, a biosensor based on a multiwalled carbon nanotube (CNT)—gold
nanoparticle composite yielded a limit of detection of 0.01 mM for uric acid
(Chauhan and Pundir, 2011). Likewise, a detection range of 0.001 -5 mM
was obtained for glucose detection using an early biosensor based on
Prussian blue-functionalized electrodes (Wu et al., 2012). In addition to
gold, nanoparticles of other metals, such as zinc and platinum, can also be
used in biosensor design (Chawla and Pundir, 2012; Wu et al., 2009).

The transducer electrode can be modified to produce amperometric
sensors with much higher sensitivities. Sotiropoulou and Chaniotakis
have reported dichlorvos detection limits at the picomolar level using a
biosensor with a nanoporous carbon electrode, which enhances enzyme-—
ligand interactions by adsorbing the enzyme on its surface (Sotiropoulou
and Chaniotakis, 2005). Salimi et al. also reported picomolar-level detec-
tion capacity using a modified electrode; their system used a glassy carbon
electrode modified by guanine and nickel oxide nanoparticles with the
help of cyclic voltammetry (Salimi et al., 2008). Likewise, an electrical
detection-based FET biosensor was used to detect prion proteins through
the use of thiamine molecules immobilized on a glutaraldehyde-modified
SiO, gate surface on p-Si (Wustoni et al., 2014). Another biosensor design,
using an antibody-immobilized single-walled carbon nanotube (SWNT)
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FET, was hypothesized to be able to detect the Lyme disease antigen at
concentrations up to 1 ng/ml in buffer (Lerner et al., 2013).

Potentiometric biosensors measure changes in the electrical potential of
the electrode and are less common than amperometric biosensors. None-
theless, potentiometry-based biosensors using modified electrodes have
been described for biomaterials such as urea and polyglycerides, with
working ranges between 102 and 30mM (Lakard et al., 2004; Saurina
etal., 1998). Due to the relative rarity of this detection type, high-sensitivity
studies involving potentiometric biosensors are lacking, although a com-
bined SPR—potentiometric analysis method for nerve gas detection at
nanomolar-to-picomolar detection ranges was reported (Taranekar et al.,
2006). Biosensors that utilize changes in conductivity, capacitance, admit-
tance, and impedance have also been recorded in the literature, although
nonamperometric output types are somewhat uncommon (Berggren et al.,
2001; Gerard et al., 2002; Varshney and Li, 2007).

10.2.5 Mechanical Biosensors

The binding interaction between the recognition element and the ana-
lyte imposes an additional weight on the surface on which the former is
immobilized. This change can be quantified using specialized devices and
measurement methods, such as microcantilevers, QCM, microring resona-
tors (MRR), suspended microchannel resonators (SMR), or atomic force
microscopy (AFM). Many of these methods have exceptionally high sen-
sitivities; QCM biosensors, for example, can detect femtomolar concentra-
tions of DNA. However, they also have long analysis times and require
uncommon and highly sensitive equipment for analysis (Arlett et al., 2011).
As such, these techniques are generally suitable for research purposes
rather than point-of-care diagnostics.

Mechanical biosensors can broadly be divided into two types, those that
experience a surface deflection following analyte binding (surface stress
mechanical biosensors) and those that change their oscillation frequency in
the presence of the analyte (dynamic-mode mechanical biosensors) (Arlett
etal., 2011). Cantilever biosensors can be of both types and have been used
for sensing cancer biomarkers by using the change in cantilever frequency
or deflection following antigen binding (Choi et al., 2010). Microcantilever
array biosensors can be used with protein—ligand interactions to detect viruses
at sensitivity levels down to subpicomolar concentrations (Braun et al., 2009).
QCM biosensors can likewise reach picomolar sensitivities and have been
developed for the detection of biomaterials such as human antibodies and
bacterial toxins (Alfonta et al., 2001; Das et al., 2003; Yao et al., 2010).
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Other types of mechanical biosensors include nanoelectromechanical
systems (NEMS), such as nanomechanical resonators, which may possess
single-molecule detection capacities. NEMS devices may use mass, elastic
modulus, and surface stress changes as sensing parameters and can possess
complex device designs that render them ideal for lab-on-a-chip applica-
tions that require more sophisticated assay conditions than the detection
of a recognition element—analyte binding interaction. In addition, while
not generally employed for the analysis of biosensor outputs, AFM is an
exceptionally sensitive material characterization and manipulation tool
that has seen extensive use in medical proteomics and potential diagnosis
of cancer and infectious disease (Archakov and Ivanov, 2007). AFM is
not an ideal technique for commercial biosensors; however, its subatomic
detection capacity is effective for mechanically characterizing the recogni-
tion element—analyte interactions that drive biosensor development, and
the similarity of AFM probes to mechanical biosensor cantilevers allows
this technique to yield potentially valuable information about the design of
novel mechanical biosensors (Baselt et al., 1998).

10.2.6 Other Biosensor Types

In addition to optical, electrical, and mechanical detection methods,
changes in the magnetic field of an analyte-bound material can be quanti-
fied for biological detection. One example in the literature involves quan-
tification of magnetic responsivity with a high-density sensor array that
exhibits giant magnetoresistance (GMR), and the method was shown reach
very high antigen—antibody binding sensitivities. A solute sensitivity of 20
zeptomoles, which is difficult to reach even with SPR and mechanical
detection methods, was obtained using this strategy (Gaster et al., 2011).

Acoustic biosensors are another uncommon type and can be regarded
as a subtype of mechanical biosensors. In these biosensors, changes in the
properties of an acoustic wave are used to gain information about the
binding interaction, usually by measuring the mass increase that results
when the recognition element binds to the analyte. QCM and other types
of acoustic resonators are employed in biosensors of this type and such
devices have been shown to detect bacteria at sensitivities up to 0.4 cells/ul
(Ferreira et al., 2009; Rocha-Gaso et al., 2009).

Entire cells can also be used for biosensor applications, especially
for the detection of pollutants and other chemicals. In these biosensors,
the physiological response of the cell is used as an indicator of analyte
presence, and the complex sensory systems of cells are employed in place
of advanced device design. The cells used may be bacteria, yeasts, and
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fungi and are often genetically modified to yield an easily detectable signal
in the presence of the analyte. These “one-cell biosensors” may be exposed
to a water or soil sample to yield a bioluminescent or fluorescent response
that is subsequently quantified in an assay-like process or the cells may be
immobilized in an integrated system that truly qualifies as a biosensor
(Belkin, 2003).

While analytes are typically presented in a solution, volatile organic
compounds (VOCs) in gas form can also be quantified through mass spec-
troscopy methods for disease diagnosis. Gas chromatography—mass spec-
trometry (GC-MS), for example, was used to detect VOCs in human breath
for the diagnosis of lung cancer (Dragonieri et al., 2009). Sensors for VOCs
typically display sensitivities in the ppm range (Adiguzel and Kulah, 2014).

10.3 THE IMPACT OF NANOTECHNOLOGY AND
NANOMATERIALS IN BIOSENSOR DESIGN

Although the analytes and recognition elements involved are often in the
nanoscale, nanomaterials in the strict sense are not required for the design
of biosensors. Nonetheless, the large total surface areas associated with
nanomaterials, as well as the small amounts of analytes and buffers required
for nanoscale device-based assays, render them attractive for biosensor
applications. In addition, nanostructures may present ideal surface prop-
erties for analyte or recognition element immobilization or offer increased
detection capacity through phenomena such as self-assembly or plasmon
enhancement. Nanospheres, nanorods, nanowires, graphene- and CNT-
based structures, quantum dots, magnetic nanoparticles, NEMS systems,
and other nanoscale materials are therefore often used in biosensor design.

Nanospheres are the most common nanoscale biosensor components
and may be functionalized with surface groups such as thiols to better bind
to an enzyme, antibody, or other recognition molecules. In addition, they
may be organized into nanostructure arrays to better present their enzyme
or antibody load (Xu and Han, 2004). The total surface area presented
by nanoparticles is larger relative to the bulk material of equal volume; as
such, nanospheres and similar nanostructures can immobilize a greater
amount of recognition molecule per volume compared to their macroscale
counterparts (Li et al., 2008). In addition, the size, composition, or material
properties of the nanospheres might allow enhanced detection capability,
as is the case with magnetic nanoparticles: Cross-linked magnetic nanopar-
ticles (CLIOs), manganese-doped magnetic nanoparticles, and core—shell
structures such as elemental iron-ferrite nanoparticles are among the
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magnetic materials used in biosensor applications (Haun et al., 2010).
Quantum dots can also be used to improve the detection capacity of con-
ventional recognition elements, and QD sensors that react to a broad range
of factors, such as pH change, protein or nucleic acid cleavage, or DNA
synthesis, have been reported in the literature (Suzuki et al., 2008). A
quantum dot—aptamer conjugate was also shown to possess a detection
limit in the attomolar scale, while conventional aptamer-based biosensors
generally display nanomolar-level sensitivity (Hansen et al., 2006).

While nanospheres are commonly used for their ease of production,
nanorods and other nonspherical nanoparticles may present advantages over
the nanosphere morphology. Thiol groups, for example, prefer to bind to the
tips of gold nanorods, and this effect can be used to produce self-assembled
nanoparticle chains by attaching thiolated oligonucleotides to gold nanorods
and allowing complementary sequences to link individual nanoparticles
(Sepulveda et al., 2009). Nonspherical morphologies also alter the optical
response of nanoparticles; both theoretical and experimental reports suggest
that triangular silver nanoparticles enhance sensitivity in SPR-based bio-
sensors (Haes and Van Duyne, 2002; Peng and Miller, 2011; Xu and Kall,
2002). Another study on a ZnO-based biosensor found that biotin-bound
Zn0O nanorods could detect streptavidin at concentrations lower than that
previously reported for ZnO nanospheres (Kim et al., 2006).

Nanowires of silicon and noble metals can also be incorporated into
sensor design. An Au nanowire waveguide, for example, was successfully
used for plasmonic waveguide sensing in water and other liquids (Wang
et al., 2014). Nanowires can also be organized into larger assemblies using
techniques such as flow-assisted, Langmuir—Blodgett, bubble-blown,
electric-field, smearing-transfer, roll-printing, and PDMS-transfer assem-
bly processes (Chen et al., 2011). In addition to metal or metal oxide
nanowires, single- or multiwalled CNTs can also be used for biosensor
applications. In these biosensors, the carbon structure is used to modify
the electrode of an amperometric biosensor and may be functionalized to
carry the recognition molecule of interest. Different configurations can
be used for CNT-based biosensors: CNTs may be coated onto the electrode
or synthesized in aligned networks around it or the CNT itself may serve
as the electrode. Submicromolar detection limits have been obtained in
CNT-based biosensors for glucose monitoring (Wang, 2005).

Nanoporous silica and similar materials have also been used in the
design of biosensors. Light reflected off a thin, porous layer of silicon
creates interference patterns (Fabry—Perot fringes) that change following
the binding of the target analyte to a recognition element immobilized on
the surface of the silicon film. The extent of this change depends on the
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change in the refractive index of the silicon layer and can be quantified
to detect DNA, proteins, and other organic molecules at picomolar-to-
femtomolar scales (Lin et al., 1997). Molecular imprinting can also be
employed to create polymer matrices with “holes” that serve as recogni-
tion sites for specific biomolecules and may reach detection levels of
0.1 pM for small organic molecules (Yano and Karube, 1999). Lipid mem-
branes can also be employed as biosensors, either serving as a platform to
support an enzyme or antibody or acting as the recognition element itself;
however, these sensors are more suited to membrane transport-related
research than clinical diagnosis (Nikolelis and Krull, 1992; Reimhult and
Kumar, 2008). Pore-bearing proteins that mimic the structure and selectivity
of biological pore components can also be used in biosensor applications
(Braha et al., 1997).

In addition to nanoparticle-, thin film-, and nanoporous matrix-based
detection methods, the techniques used in biosensor design and quanti-
fication are often deeply rooted in nanotechnology. As such, advances in
nanomaterial-based detection methods, such as QCM (the sensitivity of which
depends on crystal thickness) and SERS, or nanofabrication methods, such as
laser, AFM, or electron beam lithographies (which are used for the fabrication
of cantilevers used in mechanical biosensors), will indirectly improve the
sensitivity of current biosensors. However, while nanostructures offer several
advantages over conventional biosensors, it must be kept in mind the in vivo
use of nanoparticles in disease diagnosis is largely still in preclinical stages of
development (Thakor and Gambhir, 2013). Further advances are no doubt
necessary for the use of these devices in clinical settings.

10.4 EARLY DIAGNOSIS AND BIOSENSOR-BASED
DISEASE DETECTION

The greatest potential of biosensors lies in their medical applications.
While the detection of a broad spectrum of biomaterials is feasible using
biosensors, the sheer incidence rates, physiological diversity, and diffi-
culty of treatment that is characteristic of cancer, heart disease, and similar
disorders ensure that a substantial amount of biosensor-related research
is directed toward their diagnosis. Likewise, the detection of widespread
foodborne pathogens such as Salmonella, Klebsiella, and Staphylococcus
or viruses such as HIV and dengue virus is vital for the control of the asso-
ciated diseases. As such, a list of diseases and target molecules that have
been the subject of high-sensitivity biosensor development efforts is pro-
vided in the present section (Table 10.2).
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Cancer markers are some of the most common targets for biosensor
design, as early detection is vital for successful treatment in many cancers.
Early diagnosis of oral cancer, for example, increases survival rates from
50 to 80%, while pancreatic cancer, which is often diagnosed after the
initial tumor has either spread locally or metastasized into another tissue,
has a 5-year survival rate of about 5% (Pannala et al., 2009; Silverman,
1988). Diagnosis of cervical cancer, likewise, must be performed at an
early stage or “the cancer metastasizes to the rest of the uterus, bladder,
rectum and abdominal wall and eventually reaches pelvic lymph nodes,
thereby invading other organs and leading to death” (Chandra et al., 2011).
As such, biosensors using protein markers, DNA sequences, membrane
glycans, and cancer-associated estrogen derivatives have been developed
for the early detection of cancer, and the responses of cancer cells, such as
drug resistance after taxane treatment in breast cancer cells, hydrogen per-
oxide production in human hepatoma cells, or formaldehyde presence in
glioblastoma cells following treatment with a formaldehyde-releasing
drug, have been observed using various biosensor designs (Bareket et al.,
2010; Braunhut et al., 2005; Cavalieri et al., 2006; Feng et al., 2006;
Myung et al., 2011; Rui et al., 2010; Zhang et al., 2010).

Advancements in nanoscience have also created the prospect of devel-
oping small biosensors that are implanted to the body of a prospective
patient and trigger at the onset of disease state or other changes in
physiological conditions. This type of in vivo diagnostic method is useful
for the detection of diseases that are nonsymptomatic in their early stages
and for the monitoring of chronic conditions, such as diabetes, that require
regular treatment. In addition to their direct healthcare benefits, these bio-
sensors may also serve as a means of collecting physiological data from a
large set of patients, which would in turn enable the development of better
treatment options. These sensors typically detect glucose and are designed
for the management of diabetes; although biosensors that use fluorescein
(introduced by the biosensor) or lactate for the detection of internal
bleeding have also been developed (Kotanen et al., 2012; Mo and Smart,
2004; Ryou et al., 2011). Some glucose sensors of this type are approved
for use by the FDA (Klonoff, 2007).

10.5 CONCLUSION AND FUTURE DIRECTIONS

Biosensor research combines the investigation of biochemical recognition
processes, signal transduction systems, and output-specific detection
methods, which makes it a highly multidisciplinary research field. As
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such, the development of highly specific recognition elements and
advancements in various signal detection techniques will indirectly result
in the development of more accurate biosensors. Recent discoveries in
gene regulation and biological signaling mechanisms have revealed the
presence of various regulatory elements that are highly specific to their
targets and may be used in biosensor applications. In addition, methods for
the synthesis of proteins and nucleic acids incorporating nonstandard
chemical groups have advanced greatly in the recent years; as such,
combination systems incorporating signal detecting, amplifying, and
transducing elements can now be produced with considerable ease.

As resolution limits are bypassed and more selective biomolecular rec-
ognition agents are discovered, the detection efficiency of future biosen-
sors will no doubt continue to increase. Furthermore, advances in
nanotechnology and material fabrication methods may both allow novel
detection techniques that employ nanoscale phenomena to be used in bio-
sensor design and decrease costs by lowering biosensor dimensions and
the quantities of biological materials incorporated into the sensor struc-
ture. Consequently, it would appear that the multifaceted nature of bio-
sensor design, as well as the advantages it offers in terms of assay
sensitivity, selectivity, and detection time and costs, will continue attract-
ing commercial and research efforts and may allow the early detection of
diseases that currently are undetectable during periods for which their
treatment would have been the most effective.
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