
Computer Network Intrusion Detection using
various Classifiers and Ensemble Learning

Ali H. Mirza
Department of Electrical and Electronics Engineering

Bilkent University, Ankara 06800, Turkey
mirza@ee.bilkent.edu.tr

Abstract—In this paper, we execute anomaly detection over
the computer networks using various machine learning algo-
rithms. We then combine these algorithms to boost the overall
performance. We implement three different types of classifiers,
i.e, neural networks, decision trees and logistic regression. We
then boost the overall performance of the intrusion detection
algorithm using ensemble learning. In ensemble learning, we
employ weighted majority voting scheme based on the individual
classifier performance. We demonstrate a significant increase in
the accuracy through a set of experiments KDD Cup 99 data set
for computer network intrusion detection.

Keywords. Network intrusion, ensemble, anomaly, online

learning, classification

I. INTRODUCTION

Anomaly detection [1] is of pivotal interest in the field of

network intrusion detection, medical diagnosis, fraud detection

etc. The basic assumption is that a huge amount of normal

data originates from a particular distribution but unknown.

Whereas, few unlikely and rare observations, i.e., anomalies,

originates from different unknown distributions [2]. In some

domains like network intrusion detection, anomaly detection

is of prime importance. This is because, a single malicious

attack, i.e., an anomaly is sufficient enough to override the

system and may cause severe damage [3]. For example, an

unusual and out of the routine traffic in a computer network

depicts the presence of a network attack. Anomaly detection

deals with identifying data points in the data that does not fit

with the rest of the data [1]. In the era of big data, anomaly

detection helps in identifying rare events and malicious data.

Anomaly detection is a form of classification where we

develop a model that predicts whether a data point belongs

to a given particular distribution or not. The deviated data

points are termed as anomalies or outliers. These anomalies

may or may not belong to a particular distribution and are rare

[2]. Typically, anomaly detection is an unsupervised learning

technique, but the accuracy can be improved by using a semi-

supervised version of anomaly detection [1], [2], [4]. The

anomalies can be point, contextual and collective anomalies

[1].

Bayesian approach is used in classification and regression

problems for detecting outliers in the data [5], [6]. Some distri-

bution based models like kernel or Parzen density estimator is

also used for anomaly detection [7]. Parzen density estimator

has a linear complexity which is quite slow for a very large

amount of data [8], [9]. This method is highly unsuitable for

high dimensional data.

Kernel-based methods are commonly used for anomaly

detection. Among the popular kernel based anomaly detec-

tion techniques, Hidden Markov Anomaly Detection (HMAD)

[10], One class - Support Vector Machine (OC-SVM) [11]

and Support Vector Data Description (SVDD) [12] are widely

used. HMAD is used where there is a latent dependency in

the input data sequence. Whereas, SVDD learns a hyperplane

that encloses the majority of the data such that the outliers are

outside the boundary of the hypersphere. On the other hand,

OC-SVM attempts to learn a hyperplane that separates the data

points from the origin with maximum margin.

In this paper, we employ three different machine learning

algorithms that perform binary classification. We use neural

networks, decision trees and logistic regression as our three

classifiers. Then in order to boost the overall performance,

we use ensemble learning approach. In ensemble learning, we

employ majority voting technique to enhance the classification

performance.

II. PROBLEM DESCRIPTION

Given a computer network data, the task for the classifier

is to learn a predictive model, i.e. a classifier, capable of

distinguishing between legitimate and illegitimate connections

in a computer network. The trained classifier protects a com-

puter network from malicious attacks and unauthorized users.

The attacks that may damage the system fall into four major

categories:

• DOS - Denial Of Service

• R2L - Unauthorized access from a remote machine

• U2R - Unauthorized access to local super-user privileges

• Probing - Surveillance and Port Scanning

In short, the main task is Anomaly Detection where the

illegitimate or bad connections are termed as anomalies or

outliers. In this task, we have a multi-classification problem;

the attacks come from four groups namely DOS, R2L, U2R

and Probing. The fifth class is the normal class. We will

perform binary classification whether the data is anomalous

or not.978-1-5386-1501-0/18/$31.00 c© 2018 IEEE

A. Data Description and Preprocessing

The data set [13] contains 41 variables in an ASCII for-

matted file. There are 5 Million data samples in the original

data set. We are using a 10-percent corrected KDD Cup 99

data set. This reduced data set contains overall 0.5 million

samples. We have divided it in the ratio of 60 percent-20

percent-20 percent,i.e., 0.3 Million (60 percent) is used for

training, 0.1 Million for validation tasks, and remaining 0.1

Million for serve as unseen testing data. The preprocessing

file extracts the variables in double and character strings, as

the data set contains continuous and discrete variables. We

perform one hot encoding on the data set. This preprocessed

data set is then stored in the workspace, which is used for all

the implementation and testing.

B. Principal Component Analysis

In a classification problem, feature extraction is treated as

pre-processing technique. The aim is not only to reduce the

computation complexity but also to obtain better classification

accuracy. Feature extraction can be treated as a transformation

of data, Y = T (X), X ∈ RD, T ∈ Rd, and the transfor-

mation T , which reduces the dimensions of data from D

to d, is obtained via optimization suitable objectives. Hence,

the feature extraction is responsible for formulating suitable

objectives and determining the corresponding optimal solution

of T . Principal Component Analysis is performed to extract

only 2 weighted features from original 41 features, making it

computationally efficient data set. The eigenvalues and vectors

are obtained via Singular Value Decomposition in sorted form.

The singular value decomposition of m × n matrix Q is

a factorization of the form UΣV ∗. The diagonal matrix Σ
contains eigenvalues of the matrix. The columns of U and V

are vectors corresponding to eigenvalues. We extract first 2

principal components and use this transformed featured data

set in our experiments for training logistic regression, decision

trees and neural networks classifiers. For comparison purposes,

we show the effect of the number of features of the data set

on the time taken for training, individual class performances

and overall performance. We demonstrate this performance

by using Logistic Regression classifier. Fig. 1 and Fig. 2

depicts the effect of feature reduction on the performance

and computational complexity. For a number of PCA features

equal to 2, we observe that we have a comparable high

individual class performance and overall performance. For

class 1, we have anomalies there, the class 1 and overall class

performance deteriorates for a number of features equal to

3 and 4. After that, the performance again increases but at

the cost of time taken for training. So, as a result, we use

this transformed data set in order to reduce the computational

complexity while maintaining a high efficiency.

III. CLASSIFIERS

We use three types of classifiers namely: Logistic Regres-

sion, Neural Networks and Decision Trees. The details of these

classifiers are as follows:

0 10 20 30 40 50

Number of Features

0

50

100

150

T
im

e
 T

a
k
e

n
 F

o
r

T
ra

in
in

g

0 10 20 30 40 50

Number of Features

0

20

40

60

80

C
la

s
s
 1

 P
e

rf
o

rm
a

n
c
e

0 10 20 30 40 50

Number of Features

70

80

90

100

C
la

s
s
 2

 P
e

rf
o

rm
a

n
c
e

0 10 20 30 40 50

Number of Features

40

60

80

100

O
v
e

ra
ll

P
e

rf
o

rm
a

n
c
e

X: 2

Y: 0.97

X: 2

Y: 79

X: 2

Y: 99
X: 2

Y: 95

Fig. 1. Effect of feature reduction on performance and computational
complexity.

Time Taken

1

1.2

1.4

1.6

1.8

Class1 Performance

60

65

70

75

80

85

Class2 Performance

99.2

99.4

99.6

99.8

Overall Performance

92

93

94

95

96

Fig. 2. 2-fold Validation of the feature Reduction.

A. Classifier # 1 : Logistic Regression

The first method used is the logistic Regression [14]. It is

variant of linear regression used for the classification task.

The sigmoid function is used to provide the conversion from

a continuous variable into discrete occurrences. We have not

used the ordinary equation formula. As we have millions

of data and calculating the inverse and other multiplication

can be inaccurate. We defined a loss function, and then

using optimization gradient function, we minimized over loss

function. The loss function used is the cross-entropy and is

defined as:

J(β) =
1

n

n
∑

i=1

[

− y(i) log
(

hβ(x(i))
)

−

(

1− y(i)
)

log
(

1− hβ(x(i))
)

]

(1)

TABLE I
TRAINING AND TESTING DATA ACCURACIES FOR NORMAL AND

INTRUSION DETECTION USING LOGISTIC REGRESSION CLASSIFIER

Classes/Datasets Training Testing

Normal Connection 89.30 80.92
Intrusion Detection 98.96 99.86

Overall 96.66 96.13

Where the gradient is calculated as for each input feature

vector as,

∂

∂βj

J(β) =
1

n

n
∑

i=1

(

hβ(x(i))− y(i)
)

xj(i). (2)

The sigmoid function used is defined as

hβ(x) = g(βTx)

g(z) =
1

1 + exp(−z)
(3)

The cost function decreases with increase in a number of

iterations, as the gradient tries to approach towards optimal

minima. The classifier is trained over training data and then

tested over testing data. For the simulations part, we are

using PCA transformed data set that contains 2 principal

components. The training and testing set are of 300, 000 × 2
and 94, 021 × 2 dimensions. The class-based and overall

accuracies are shown in Table. I

The accuracy obtained describes the outcome of this classi-

fier, as we want to be sure in the case when we give intrusion

detection, that is the reason we have increased performance,

in this case, we dont want to ignore any intruder.

B. Classifier # 2 : Neural Networks

We implemented single hidden layer multilayer perceptron

[4] as our second method. We selected the corresponding

network parameters as: number of neurons in hidden layer

= p = 3 and learning rate = η = 0.01. Since we have binary

classification task at our hand, we used Binary Cross Entropy

as our loss function. The definition of a cross entropy function

is as follows:

E = −

nclass
∑

i=1

ti log(xi) (4)

where nclass is the total number of classes and xi represents

the softmax output of the ith output layer of MLP. Here, ti
is the true label. We use stochastic gradient descent to learn

the model parameters. We used η = 0.01 as the optimal

learning rate value after doing cross-validation. We perform

our experiments over a given number of epochs. As the data set

is highly unbalanced, in order to train the network smoothly,

we down-sampled the majority class, i.e., anomaly class in

our case, so that we can get best results. Also, the KDD Cup

data is highly rigorous, in order to obtain the best result out

of the neural network, we selected the best subset of training

data after down-sampling it. After obtaining such subset, we

then validate our training and testing performance. We use

TABLE II
TRAINING AND TESTING DATA ACCURACIES FOR NORMAL AND

INTRUSION DETECTION USING NEURAL NETWORKS CLASSIFIER

Classes/Datasets Training Testing

Normal Connection 92.72 91.73
Intrusion Detection 96.93 91.93

Overall 90.67 89.83

TABLE III
TRAINING AND TESTING DATA ACCURACIES FOR NORMAL AND

INTRUSION DETECTION USING DECISION TREES CLASSIFIER

Classes/Datasets Training Testing

Normal Connection 91.08 88.71
Intrusion Detection 95.00 93.02

Overall 92.08 91.66

sigmoid as an activation function in the hidden layer and

softmax function in the output layer. The gradient with respect

to Hidden-Ouptut Layer and Input-Hidden weights is given as

δvi = (ti − xi) ∗ net (5)

δwj =

nclass
∑

i=1

(ti − xi)(net)(wji)(netj(1− netj))x (6)

where vi is the hidden to ith output layer weight coefficient

matrix. Similarly, wj is the input to jth hidden layer weight

coefficient matrix. Also netj is the sigmoid output to the

product of input and input-hidden weight matrix. The values

for weight matrices are updated as follow

vi = vi + ηδvi (7)

wj = wj + ηδwj (8)

In the simulation setup, after cross-validation on parameters,

we selected p = 3, η = 0.01 as our final best parameters. We

randomized the data by shuffling the samples so that we can

have an overall feasible and steady result. We observed that

in our network, the error stops decreasing after 24 epochs.

We show the cumulative cross-entropy error vs. number of

epochs and report class-based accuracies, overall accuracy and

confusion matrices for training and testing. Here again, we are

using the PCA transformed version of the data. The training,

validation and testing data sets are of 300, 000×2,100, 000×2
and 94, 021× 2 dimensions respectively. The class-based and

over all accuracies are shown in Table. II

C. Classifier # 3 : Decision Trees

As our third method of classification, we used decision

trees to perform intrusion detection. The tree model we

implemented is CART model [15]. Since the task at hand is to

declare whether the current sample belongs to a normal class

or not. We have two classes to classify using decision trees. We

implemented the decision trees using pre-pruning approach.

Among the popular pre-pruning approaches like a minimum

limit on entropy, probability limit etc, we used a minimum

number of samples in node criteria. This means that whenever

the number of samples for a certain class decreases below

TABLE IV
TRAINING AND TESTING DATA ACCURACIES FOR NORMAL AND

INTRUSION DETECTION USING ENSEMBLE LEARNING CLASSIFIER

Classes/Datasets Training Testing

Normal Connection 92.48 92.00
Intrusion Detection 99.73 99.94

Overall 97.53 96.14

Fig. 3. Ensemble Learning Model.

a certain threshold (pre-pruning parameter), it is considered

to be a pure node and stops further splitting. The splitting

criterion is based on selecting the tree node that has the

minimum entropy among all the possible splits calculated for

all discrete and continuous features. Since the training data

is highly unbalanced, we down-sampled the training data to

construct a tree. After constructing the tree, we then used the

whole unbalanced training data and testing data and compute

the accuracies and confusion matrices. The class-based and

over all accuracies are shown in Table. III

Decision Trees were more adaptable for class 0. It did

not performed better on class 1. So in order to handle such

incompetences in all implemented classification methods, we

then decided to use Ensemble Learning.

IV. ENSEMBLE LEARNING

In order to boost the overall performance, we implemented

ensemble learning technique [16]. We combined the results of

all the classifiers in training and testing phase by extracting

the most useful information out of all the classifiers. To extract

the class 1, we gave more weight to neural networks output.

To extract the class 0, we gave more weight to decision trees

output As a whole, on the average, we gave 50 percent weight

to the neural network, 20 percent weight to logistic regression

and 30 percent weight to decision trees. Then we classified as

class 0 if the value is less than 0.5 threshold and vice versa.

The ensemble learning scheme is shown in Fig. 3. The class-

based and over all accuracies are shown in Table. IV

V. CONCLUSION

We implemented three classifiers (logistic regression, neural

networks, decision trees) for network intrusion detection.

We reduced the dimensions of the dataset by using PCA.

We observe that each classifier works for a particular class

of decision trees favours more normal class. On the other

hand, neural networks and logistic regression favours both

classes. We boosted the overall performance by introducing

ensemble learning. By designating certain weights to each of

the classifiers, we decide whether the sample is anomalous or

not. Since the main assumption of anomaly detection is that

anomaly ratio should be very small. But in our data set, the

anomaly rate is very high, i.e., approximately 80 percent. With

this problem, we still managed to get good results by using

ensemble learning.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[2] M. Markou and S. Singh, “Novelty detection: a reviewpart 1: statistical
approaches,” Signal processing, vol. 83, no. 12, pp. 2481–2497, 2003.

[3] J. P. Anderson, “Computer security threat monitoring and surveillance,”
Technical Report, James P. Anderson Company, 1980.

[4] M. Markou and S. Singh, “Novelty detection: a reviewpart 2:: neural
network based approaches,” Signal processing, vol. 83, no. 12, pp. 2499–
2521, 2003.

[5] C. M. Bishop, Neural networks for pattern recognition. Oxford univer-
sity press, 1995.

[6] D. J. MacKay, Bayesian methods for adaptive models. PhD thesis,
California Institute of Technology, 1992.

[7] V. Barnett and T. Lewis, Outliers in statistical data. Wiley, 1974.
[8] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady, “Novelty detection

for the identification of masses in mammograms,” 1995.
[9] G. Ritter and M. T. Gallegos, “Outliers in statistical pattern recognition

and an application to automatic chromosome classification,” Pattern

Recognition Letters, vol. 18, no. 6, pp. 525–539, 1997.
[10] N. Görnitz, M. Braun, and M. Kloft, “Hidden markov anomaly detec-

tion,” in International Conference on Machine Learning, pp. 1833–1842,
2015.

[11] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[12] D. M. Tax and R. P. Duin, “Support vector data description,” Machine

learning, vol. 54, no. 1, pp. 45–66, 2004.
[13] S. D. Bay, D. F. Kibler, M. J. Pazzani, and P. Smyth, “The uci kdd

archive of large data sets for data mining research and experimentation,”
SIGKDD Explorations, vol. 2, p. 81, 2000.

[14] S. Menard, Applied logistic regression analysis, vol. 106. SAGE
publications, 2018.

[15] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[16] T. G. Dietterich, “Ensemble learning,” The handbook of brain theory

and neural networks, vol. 2, pp. 110–125, 2002.

