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ABSTRACT
Dwell time stability conditions of the switched delay systems are derived using multiple clock-dependent
Lyapunov–Krasovskii functionals. The corresponding conditions are approximated by both using piece-
wise linear functions and sum of squares polynomials. The upper bound of the dwell time is minimised
using a combination of a bisection and a golden section search algorithm. Using the results obtained in
the stability case, synthesis of dwell time minimiser controllers are presented. Some numerical examples
are given to illustrate effectiveness of the proposed method, and its performance is compared with the
existing approaches. The resulting values of the dwell time via the proposed technique show that the novel
approach outperforms the previous ones.
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1. Introduction

One of the main methods in the analysis of switched systems
is restricting switching signals to a certain set. We can restrict
the switching signals to those with the property that the time
interval between any consecutive switching times is larger than
a certain value, which is called the dwell time to guarantee
the asymptotic stability of the switched systems. Readers are
referred to Hespanha and Morse (1999), Yuan and Wu (2015),
Mitra and Liberzon (2004), Lin and Antsaklis (2009), Goebel,
Sanfelice, and Teel (2012) and references therein for further
information on this topic.

There is a dwell time between switchings in many appli-
cations such as changing road conditions (dry, wet, dirt) of
a car on the road, or two different dynamics of a teleopera-
tion robotic system either contacting a tissue or not (Allerhand
& Shaked, 2011). Furthermore, fast switching can cause chatter-
ing problems in contrast to the control schemes where switch-
ing is restricted by a dwell time (Ishii & Francis, 2001). As a
result, stability analysis and stabilisation of switched systems
with dwell time are becoming increasingly popular. Further-
more, dwell time-based stability and stabilisation methods are
used in complex systems such as impulsive systems (Briat, 2017;
Chen, Ruan, & Zheng, 2017) and switching systems involving
unstable subsystems (Zhao, Yin, Niu, & Zheng, 2016).

Multiple Lyapunov functions method is a common tech-
nique in dealing with dwell time stability problems. In Geromel
and Colaneri (2006), the dwell time is determined by con-
straints involving exponential terms, i.e. eATTDPi eATD − Pj � 0.
Another approach is employing piecewise linear Lyapunov
functions which form convex sets in system matrices
(Allerhand & Shaked, 2011). In Xiang (2015), it is shown
that stability criteria of Allerhand and Shaked (2011) and

CONTACT Ahmet Taha Koru ahtakoru@gmail.com

Geromel and Colaneri (2006) are equivalent when a suffi-
ciently large number of decision variables and linear matrix
inequalities (LMIs) are included in the stability criterion of
Allerhand and Shaked (2011). A nonconservative dwell time
conditions using homogeneous polynomial Lyapunov functions
and implementing them with sum of squares (SOS) polyno-
mials are presented in Chesi, Colaneri, Geromel, Middleton
and Shorten (2012). In Zhao, Shi, Yin, and Nguang (2017),
tighter bounds on the dwell time are presented using multi-
ple discontinuous Lyapunov functions for the switching systems
involving stable and unstable subsystems. In Briat (2015b), the
dwell time is represented with clock-dependent Lyapunov func-
tions. The piecewise linear functions and approximations of
SOS polynomials are compared. It is shown that the approxi-
mations of SOS polynomials decrease the computational com-
plexity (Briat, 2016).

The literature is abounded with various approaches for the
stability analysis of time-delay systems (see e.g. Briat, 2015a;
Fridman, 2014; Gu, Kharitonov, & Chen, 2003). Model
transformation-based methods are common among the delay-
dependent stability methods. The method deals with the point-
wise delay systems by transferring the system into a distributed
delay system. Stability of the transformed system is a sufficient
condition for the stability of the original system. As a result,
model transformation-based methods are conservative since
the analysis operates on the transformed system instead of the
original system (Gu & Niculescu, 2001). In more recent results,
model transformations are not used, e.g. free-weighting matri-
ces method (He, Wang, Xie, & Lin, 2007; Wu, He, & She, 2010).
There are more recent results based on integral inequalities
such as Jensen’s inequality (Gouaisbaut & Peaucelle, 2006),
Wirtinger’s integral inequality (Liu & Fridman, 2012; Seuret &
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Gouaisbaut, 2013; Seuret, Gouaisbaut, & Fridman, 2013) and
the Bessel–Legendre inequality (Liu, Seuret, & Xia, 2017; Seuret
& Gouaisbaut, 2014). These new methods may further reduce
the conservatism that is inherent in the stability analysis of
time-delay systems.

A survey on the stability of switched delay systems is given
in Mahmoud (2010). In Sun, Zhao, and Hill (2006) and Li,
Gao, Agarwal, and Kaynak (2013), the average dwell time is
represented with constraints involving exponential terms and
bilinear matrix inequalities, which can be classified as a nonde-
terministic polynomial time decidable minimisation problem.
In order to make the problem a tractable one, it is solved for
a given average dwell time and tuned generalised eigenvalues
rather than performing the dwell time minimisation. In the lit-
erature, there are limited studies that address the minimisation
problem on dwell time (Çalışkan, Özbay, & Niculescu, 2013;
Koru, Delibaşı, & Özbay, 2018; Yan & Özbay, 2008; Yan,
Özbay, & Şansal, 2014). Model transformation methods are
used in Çalışkan et al. (2013), Yan and Özbay (2008) and Yan
et al. (2014), whereas a free-weighting matrices method, which
does not include any model transformation, is used in Koru
et al. (2018). In those works, none of the conditions contain a
term that is formed as a product of transcendental function and
its domain to avoid a non-convex representation of the problem.
However, this leads to some conservatism: typically, the upper
bound of the dwell time, leading to stability, is represented as

TD = hmax + T∗,

where hmax is the maximum time delay among all of the sub-
systems and T∗ is the cost function. Hence, the minimum dwell
time is at least hmax even for the systems sharing a common Lya-
punov function which are known to be stable under arbitrary
switching (Lin & Antsaklis, 2009). This is a clear proof that the
above-mentioned approaches cannot give the smallest possible
dwell time in general.

In order to reduce the conservatism, the present paper
derives stability conditions for switched linear delay systems
using clock-dependent Lyapunov–Krasovskii functionals. As a
result, the upper bound of the dwell time is represented with-
out using the hmax term. The minimisation of the dwell time is
formulated as a semidefinite programming problem by approxi-
mating the conditions in terms of piecewise linear functions and
SOS polynomials. Upper bounds of the derivatives of the Lya-
punov–Krasovskii functionals are found via Jensen’s inequality
and reciprocally convex functions (see Park, Ko, & Jeong, 2011).
Using the results of the stability case, the dwell time minimiser
controller synthesis is presented.

1.1 Notation

The notation to be used in the paper is standard: R (R+, R
+
0 )

stands for the set of real numbers (positive real numbers and
non-negative real numbers), S

n denotes the set of symmetric
matrices and Z

+ symbolises the set of positive integers. The
identity matrices are denoted by I. We use X � 0 (� , ≺, � 0)
to denote a positive definite (positive-semidefinite, negative def-
inite and negative-semidefinite) matrix. The asterisk symbol
(*) denotes a complex conjugate transpose of a matrix and xt

denotes the translation operator acting on the trajectory such as
xt(θ) = x(t + θ) for some non-zero interval θ ∈ [−τ , 0].

2. Stability analysis

In this section, we represent an upper bound of the dwell time
for the switched delay systems in terms of clock-dependent Lya-
punov–Krasovskii functionals. Afterwards, those conditions are
approximated by both using SOS polynomials and piecewise
linear functions.

Consider a class of switched delay systems given by

ẋ(t) = Aσ(t)x(t)+ Āσ(t)x(t − r(t)), t ≥ 0,
x(θ) = ψ(θ), ∀θ ∈ [−h, 0] , (1)

where x(t) ∈ R
n is the state and σ(t) is the piecewise con-

stant switching signal such that σ : R
+
0 → I , the index set

I := {1, 2, . . . , N} represents subsystems,N ∈ Z
+ is the num-

ber of subsystems and initial condition ψ(·) belongs to the
Banach space of continuous functions. Time delay, r(t), is a
time-varying differentiable function that satisfies

0 ≤ r(t) ≤ h, ṙ(t) ≤ d ≤ 1,

where h and d are positive constants. We introduce the notation

�i :=
(
Ai, Āi

) ∈ R
n×n × R

n×n

to denote the ith candidate subsystem of (1).
The following lemma will be used to bound the derivative of

the Lyapunov–Krasovskii functional in the main theorem. This
is based on Jensen’s inequality and reciprocally convex combina-
tion of the resulting bound. The corresponding lemma is widely
used in the time-delay system applications (Fridman, 2014; Park
et al., 2011; Seuret et al., 2013).

Lemma 2.1: Let R be a positive symmetric matrix-valued func-
tion satisfying

[
R S12
∗ R

]
� 0. (2)

Then, for a well-defined integration, the following inequality
holds:

− h
∫ t

t−h
ẋT(s)Rẋ(s) ds

≤ ηT1

⎡
⎣−R S12 R − S12

∗ −R R − ST12
∗ ∗ −2R + S12 + ST12

⎤
⎦ η1, (3)

where

η1 = [
xT(t) xT(t − h) xT(t − r(t))

]T . (4)

Proof: Proof can be found in Yang, Zhang, Hui, and
Wang (2012). �



1174 A. T. KORU ET AL.

Let us define the clock-dependent Lyapunov–Krasovskii
functional for the subsystem i as

Vi(t, xt) = xT(t)Pi(τ )x(t)+
∫ t

t−r(t)
eγ (s−t)xT(s)Qi(τ )x(s) ds

+ h
∫ 0

−h

∫ t

t+θ
eγ (s−t)ẋT(s)Ri(τ )ẋ(s) ds dθ , (5)

where τ = min{t − tk,TD}, tk is the last switching instant
and TD is the dwell time. The Lyapunov–Krasovskii func-
tional is clock-dependent in the time interval t ∈ [tk, tk + TD].
After the dwell time, the parameters Pi, Qi, Ri are chosen
to be constant such that Pi(τ ) = Pi(TD) for t ≥ tk + TD. The
Lyapunov–Krasovskii functional of system (1) is a multiple
functional V̄(t, xt , σ) = Vσ (t, xt) and it jumps as the system
switches. In the following theorem, we present the clock-
dependent dwell time conditions for which Vσ (t, xt) is decreas-
ing for any active subsystem between switching instants and the
jumps are non-increasing at the switching instants when they
occur after the dwell time.

Theorem 2.2: For given h ≥ 0, d ∈ [0, 1], tuning parameter
γ > 0 (see Remark 2.1) and the dwell time TD, if there exist
n × n symmetric matrix-valued functions Pi(τ ) � 0, Qi(τ ) � 0,
Ri(τ ) � 0, matrix-valued functions S12i(τ ) such that the follow-
ing inequalities are feasible:

φi(τ ) :=

⎡
⎢⎢⎣
φ11i(τ ) S12i(τ ) φ13i(τ ) hAT

i Ri(τ )
∗ −e−γ hRi(τ ) φ23i(τ ) 0
∗ ∗ φ33i(τ ) hĀT

i Ri(τ )
∗ ∗ ∗ −Ri(τ )

⎤
⎥⎥⎦ ≺ 0,

(6)

ψi(τ ) :=
[
e−γ hRi(τ ) S12i(τ )

∗ e−γ hRi(τ )

]
� 0, (7)

φ(T+
D ) ≺ 0, ψ(TD) � 0,

Pi(TD)− Pj(0) � 0, (8)

Qi(TD)− Qj(0) � 0, (9)

Ri(TD)− Rj(0) � 0, (10)

γQi(τ )− Q̇i(τ ) � 0, γRi(τ )− Ṙi(τ ) � 0 (11)

for all τ ∈ [0, TD], where

φ11i(τ ) = AT
i Pi(τ )+ Pi(τ )Ai + Ṗi(τ )+ Qi(τ )− e−γ hRi(τ ),

φ13i(τ ) = Pi(τ )Āi + e−γ hRi(τ )− S12i(τ ),

φ23i(τ ) = e−γ hRi(τ )− ST12i(τ ),

φ33i(τ ) = −(1 − d) e−γ hQi(τ )− 2 e−γ hRi(τ )

+ S12i(τ )+ ST12i(τ ),

then system (1) is uniformly asymptotically stable for all switching
signals with dwell time larger than or equal to TD.

Proof: Derivative of V given by (5) is

V̇i(t, xt) ≤ 2xT(t)Pi(τ )ẋ(t)+ xT(t)Ṗi(τ )x(t)

+ xT(t)Qi(τ )x(t)− (1 − d) e−γ hxT(t − r(t))

Qi(τ )x(t − r(t))

+
∫ t

t−r(t)
eγ (s−t)xT(s)

[
Q̇i(τ )− γQi(τ )

]
(τ )x(s) ds

+ h2ẋT(t)Ri(τ )ẋ(t)− h
∫ t

t−h
ẋT(s) e−γ hRi(τ )ẋ(s) ds

+ h
∫ 0

−h

∫ t

t+θ
eγ (s−t)ẋT(s)

[
Ṙi(τ )− γRi(τ )

]

ẋ(s) ds dθ .

The derivative of the Lyapunov–Krasovskii functional can be
bounded as

V̇i(t, xt) ≤ 2xT(t)Pi(τ )ẋ(t)+ xT(t)Ṗi(τ )x(t)

+ γixT(t)P(τ )x(t)+ xT(t)Qi(τ )x(t)

− (1 − d) e−γ hxT(t − r(t))Qi(τ )x(t − r(t))

+ h2ẋT(t)Ri(τ )ẋ(t)− h
∫ t

t−h
ẋT(s)e−γ hRi(τ )ẋ(s) ds

(12)

if (11) holds. After using Lemma 2.1 to bound the integral
term, (12) can be represented in matrix form as

V̇i(t, xt) ≤ ηT1 (t)

⎡
⎣φ11i(τ ) S12i(τ ) φ13i(τ )

∗ −e−γ hRi(τ ) φ23i(τ )
∗ ∗ φ33i(τ )

⎤
⎦

η1(t)+ h2ẋT(t)Ri(τ )x(t),

where η1 is defined in (4). The Schur complement of the
latter equation is (6). This condition guarantees the Lya-
punov–Krasovskii functional in (5) is decreasing for any sub-
system i in time interval t ∈ [tk, tk + TD]. Let Pi(τ ) = Pi(TD),
Qi(τ ) = Qi(TD) and Ri(τ ) = Ri(TD) for all t ≥ tk + TD until
the next switching instant tj. As φ(TD) ≺ 0, ψ(TD) � 0, the
functional is decreasing for any non-switching subsystem i,
∀t ≥ tk.

Assume that the system is switched from the ith to the arbi-
trary jth subsystem at a switching instant tj ≥ tk + TD. For such
an instant, the change in the Lyapunov–Krasovskii functional is

Vi(t−j , xt)− Vj(t+j , xt)

= xT(t)
[
Pi(TD)− Pj(0)

]
x(t)

+
∫ tj

tj−r(t)
e−γ (s−tj)xT(s)

[
Qi(TD)− Qj(0)

]
x(s) ds

+ h
∫ 0

−h

∫ tj

tj+θ
e−γ (s−tj)ẋT(s)

[
Ri(TD)− Rj(0)

]
ẋ(s) ds dθ .

The Lyapunov–Krasovskii functional cannot increase at
switching instants as Vi(t−j , xt)− Vj(t+j , xt) ≥ 0 if (8), (9)
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and (10) hold. Then, system (1) is uniformly asymptotically
stable. �

Remark 2.1: The parameter γ does not represent the decay
rate of the switched system. An initial γ can be found or can
be maximised via a bisection algorithm before calculating the
dwell time using the conditions φ ≺ 0 and ψ � 0 for constant
parameters Pi, Qi, Ri and S12i. In the numerical examples, we
found the upper and lower bounds of the γ for a large dwell
time. The minimum dwell time is searched via a golden section
algorithm over γ , and a bisection algorithm over TD for each
given γ .

2.1 Euler-based discretisation

The conditions in Theorem 2.2 can be approximated by the K
many piecewise linear functions. For given scalars K and TD,
time intervals can be chosen equidistant as

δ = TD

K
.

Let us define Pi,k, Qi,k, Ri,k, S12i,k, k = 0, . . . , K and

Pi(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 − t − kδ

δ

)
Pi,k +

(
t − kδ
δ

)
Pi,k+1,

τ ∈ [kδ, (k + 1)δ] ,Pi,K , τ ≥ TD,

and the derivative is

Ṗi(τ )

⎧⎪⎨
⎪⎩
1
δ

(
Pi,k+1 − Pi,k

)
, τ ∈ [kδ, (k + 1)δ) ,

0, τ ≥ TD.

Let Qi(τ ), Ri(τ ) and S12i(τ ) be defined similar to Pi(τ ).
Note that, there are discontinuities in the derivatives at all kδ

instants,

Ṗi(kδ−) = (
Pi,k − Pi,k−1

)
/δ,

Ṗi(kδ+) = (
Pi,k+1 − Pi,k

)
/δ.

With those definitions, all of the conditions in Theorem 2.2
are LMIs given as

Pi,k � 0, Qi,k � 0, Ri,k � 0, ∀k = 0, . . . , K,
φi(kδ+) ≺ 0, ψi(kδ) � 0, ∀k = 0, . . . , K,
φi(kδ−) ≺ 0, ∀k = 1, . . . , K,
Pi,K − Pj,0 � 0, j �= i,
Qi,K − Qj,0 � 0, j �= i,
Ri,K − Rj,0 � 0, j �= i,
γiQi,k − 1/δ

(
Qi,k+1 − Qi,k

)
, ∀k = 0, . . . , K − 1,

γiQi,k+1 − 1/δ
(
Qi,k+1 − Qi,k

)
, ∀k = 0, . . . , K − 1,

γiRi,k − 1/δ
(
Ri,k+1 − Ri,k

)
, ∀k = 0, . . . , K − 1,

γiRi,k+1 − 1/δ
(
Ri,k+1 − Ri,k

)
, ∀k = 0, . . . , K − 1.

By virtue of the proposed representation for the stability
condition, one can derive the dwell time by using a bisection
algorithm. In the numerical examples, we solved the problems
by using SeDuMi (Sturm, 1999).

A discussion on the effect of the selection of K for the non-
delayed case can be found in Xiang (2015). As K increases, the
results are less conservative. On the other hand, the increment
in K leads to high computational cost.

2.2 SOS programming

Clock-dependent conditions can be approximated well by using
SOS polynomials with a lower computational cost when it is
compared to Euler-based discretisation. For more details and
dwell time calculation for the non-delayed switching systems,
see Briat (2015b). In this section, we only present the SOS
program with similar methods to those of the corresponding
paper.

The following theorem is used to relax the ‘whenever’ condi-
tions such as (6), (7) and (11) in SOS programs, similar to the
S-procedure in LMI techniques.

Theorem 2.3 (Theorem 4 of Briat (2015b)): Let the semi-
algebraic set be G := {τ ∈ R | g(τ ) := −τ(TD − τ) ≤ 0}. A
symmetric matrix-valued function Q(τ ) � 0 over G if and only
if there exists an SOS matrix S(τ ) ∈ S

n such that the matrix
Q(τ )+ S(τ )g(τ ) is SOS.

The following SOS program is associated with the conditions
of Theorem 2.2:

Find polynomials Pi, Qi, Ri : [0, TD] → S
n,

S12i : [0, TD] → R
n×n,

�
Q̇
i , �

Ṙ
i : [0, TD] → S

n,

�
φ
i : [0, TD] → S

4n,

�
ψ
i : [0, TD] → S

2n,

such that Pi, Qi, Ri, �
Q̇
i , �

Ṙ
i , �

φ
i , �

ψ
i are SOS

γiQi(τ )− Q̇i(τ )− �
Q̇
i (τ )τ (TD − τ) is SOS

γiRi(τ )− Ṙi(τ )− �Ṙ
i (τ )τ (TD − τ) is SOS

− φi(τ )− �
φ
i (τ )τ (TD − τ)− εI is SOS

ψi(τ )− �
ψ
i (τ )τ (TD − τ) is SOS

− φi(TD)− εI � 0, ψi(TD) � 0.

Pi(TD)− Pj(0) � 0,

Qi(TD)− Qj(0) � 0,

Ri(TD)− Rj(0) � 0.

Combination of SOSTools (Prajna, Papachristodoulou, &
Parrilo, 2002) and SeDuMi can be used to solve such SOS
programs in Matlab environment.

2.3 Numerical examples for the stability analysis

In this section, the examples are taken frompublished papers for
comparison purposes. Examples 2.1, 2.2 and 2.3 can be found
in Çalışkan et al. (2013), Chen and Zheng (2010) and Koru
et al. (2018), respectively.
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Figure 1. Dwell time results for various time delay and delay derivative upper bounds of Example 2.1. When d= 0, the system admits common Lyapunov functionals for
h< 2.13 s.

Example 2.1: Let�1 and�2 be

A1 =
[−2 0
0 −0.9

]
, Ā1 =

[ −1 0
−0.5 −1

]
,

A2 =
[−1 0.5
0 −1

]
, Ā2 =

[−1 0
0.1 −1

]
.

Upper bounds for the time delay are h= 0.6 and d= 0. The
resulting dwell time is TD = 7.6 × 10−5 s for γ = 1.757. For
those parameters, it is shown by LMI feasibility tests that the
switched delay system admits common Lyapunov functionals in
the form

V(x, t) = xT(t)Px(t)+
∫ t

t−r(t)
xT(s)Qx(s) ds

+
∫ 0

−h

∫ t

t+θ
ẋ(s)Rẋ(s) ds dθ

up to h < 2.13 s.
Dwell time values for different h and d values are illustrated

in Figure 1 with the proposed algorithm. As seen in the figure,
the required dwell time is increasing as the time delay increases.
Since subsystems are not stable independent of delay, it is not
possible to stabilise systems with slow switching strategies if
time delay is larger than a certain value, which is approximately
4.5 s.

Example 2.2: This example is Case 2 of the first example of the
paper Chen and Zheng (2010). Let�1 be

A1 =
[

0 1
−10 −1

]
, Ā1 =

[
0.1 0

−0.01 0.05

]
,

and�2 be:

A2 =
[

0 1
−0.1 −0.5

]
, Ā2 =

[
0.02 0

−0.01 0.02

]
,

h= 20.25, d= 0. The resulting dwell time is 6.671 s for γ =
0.0133;.

Example 2.3: This example is a slightly modified version of
Example 1.1 of Sun and Ge (2011). In the example, a system is
not guaranteed to be stable under arbitrary switching.

Let�1 be

A1 =
[−0.05 1.1

−0.9 −1

]
, Ā1 =

[
0.05 −0.1
−0.1 0

]
,

and�2 be

A2 =
[−0.05 1
−150 −50

]
, Ā2 =

[
0.05 0
−1 −1

]
.

Forh= 0.05 and d= 0.2, the resulting dwell time isTD = 0.198 s
for γ = 21.58. Simulation results for two different switching
scenarios can be seen in Figure 2. In the figure, it can be seen
that for the switching signal with a dwell time 0.06 s (on the left
bottomof the figure), systembehaviour is unstable.On the other
hand, the dwell time is 0.198 s for the switching signal on the
right bottom and the resulting behaviour is stable.

Comparison of the present paper with previous works for
all examples can be seen in Table 1. For Example 2.1, the sys-
tem admits a common Lyapunov functions and the presented
algorithm calculates a minimum dwell time less than 1 × 10−4.
For Examples 2.2 and 2.3, there is a significant decrease in the
calculated upper bound for the dwell time. It can be seen from
the table that the presented algorithm outperforms the other
works.

3. Controller design

Consider a class of switched delay systems given by

�̃σ(t) :

⎧⎪⎨
⎪⎩
ẋ(t) = Aσ(t)x(t)
+Āσ(t)x(t − rσ(t)(t))+ Bσ(t)u(t), t ≥ 0,
x(θ) = ϕ(θ), ∀θ ∈ [−h, 0] .

(13)
We introduce the trio

�̃i :=
(
Ai, Āi,Bi

) ∈ R
n×n × R

n×n × R
n×m

to describe the ith candidate subsystem.

Theorem 3.1: For given h ≥ 0, d ∈ [0, 1], tuning parameters
εQ, εR and the dwell time TD, if there exist n × n symmet-
ric matrix-valued functions P̄i(τ ) � 0, matrix-valued functions
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Figure 2. Simulation results of Example 2.3 for two different switching scenarios.

Table 1. Comparative dwell time results of Examples 2.1, 2.2 and 2.3.

Example 2.1 Example 2.2 Example 2.3

Chen and Zheng (2010) – 14.79 s –
Yan and Özbay (2008) 6.51 s – –
Çalışkan et al. (2013) 3.4 s – –
Koru et al. (2018) 1.11 s 16.60 s 1.68 s
Present paper 7.6 × 10−5 s 6.671 s 0.198 s

Li(τ ), S̄12(τ ) with appropriate dimensions such that following
linear matrix-valued function inequalities are feasible:

φ̄i(τ ) :=

⎡
⎢⎢⎣
φ̄11i(τ ) S̄12i(τ ) φ̄13i(τ )

∗ −εR e−γ hP̄i(τ ) φ̄23i(τ )

∗ ∗ φ̄33i(τ )
∗ ∗ ∗

hεR
(
P̄i(τ )AT

i + LTi (τ )B
T
i
)

0
hεRP̄i(τ )ĀT

i
−εRP̄i(τ )

⎤
⎥⎥⎦ ≺ 0, (14)

ψ̄i(τ ) :=
[
εR e−γ hP̄i(τ ) S̄12i(τ )

∗ εR e−γ hP̄i(τ )

]
� 0, (15)

φ(T+
D ) ≺ 0, ψ(TD) � 0,

− P̄i(TD)+ P̄j(0) � 0, (16)

γ P̄i(τ )+ ˙̄Pi(τ ) � 0 (17)

for all τ ∈ [0,TD], where

φ̄11i(τ ) = P̄i(τ )AT
i + AiP̄i(τ )+ BiLi(τ )+ LTi (τ )B

T
i − ˙̄Pi(τ )

+ Q̄i(τ )− εR e−γ hP̄i(τ ),

φ̄13i(τ ) = ĀiP̄i(τ )+ εR e−γ hP̄i(τ )− S̄12i(τ ),

φ̄23i(τ ) = εR e−γ hP̄i(τ )− S̄T12i(τ ),

φ̄33i(τ ) = −(1 − d)e−γ hQ̄i(τ )− 2εRe−γ hP̄i(τ )

+ S̄12i(τ )+ S̄T12i(τ ),

then system (13) can be stabilised by the control law ui(t) =
Gi(τ )x(t) with the controller gains Gi(τ ) = Li(τ )P̄−1

i (τ ) for all
switching signals with dwell time larger than TD.

Proof: For the memoryless feedback Gi(τ )x(t), we replace
Ai with Ai + BiGi(τ ). If we pre- and post-multiply (6) by
diag[P−1

i (τ ),P−1
i (τ ),P−1

i (τ ),R−1
i (τ )] and (7) by diag[P−1

i (τ ),
P−1
i (τ )],make the change of variables P̄i(τ ) = P−1

i (τ ), S̄12i(τ ) =
P−1
i (τ ), S12i(τ )P−1

i (τ ) and choose Qi(τ ) = εQPi(τ ), Ri(τ ) =
εRPi(τ ), then we derive the conditions. �

Similar to the stability case, the conditions of Theorem 3.1
can be approximated by piecewise linear functions and SOS
polynomials.

3.1 Numerical examples for the stabilisation

Example 3.1: This example is fromYan et al. (2014). In the cor-
responding paper, stabilisation of a linear time-varying (LTV)
system is guaranteed with a switching controller. In order to

Figure 3. Time-varying controllers for Example 3.1. Controller starts at switching
instant tj and reaches to value at tj + TD and stays there until the next switching
instant.
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Figure 4. Time-varying controllers for Example 3.2, gi is the ith element of the controller gains. Dashed black lines are the 2D projections of the controller gains on to
planes.

achieve that, the LTV system is represented as a switching delay
system with two nominal subsystems and uncertainty bounds
are determined. Then, controllers are designed with robust
stability conditions. Synthesised controllers are

G1 = [ 0.9681, 0.0465 ] , G2 = [−0.2708, 0.3715 ]

and the resulting dwell time is found to be 0.92 s. In this paper,
we only considered the nominal subsystems of the switching
delay system representation. The two nominal subsystems are
defined as

A1 =
[−3 −1
−1 −1.9

]
, Ā1 =

[ −1 0
−0.45 −1

]
,

B1 =
[
1
1

]
,

A2 =
[−2 −0.5
−1 −2

]
, Ā2 =

[ −1 0
0.05 −1

]
,

B2 =
[
1
1

]
,

and h= 0.2 s. Resulting controllers can be seen in Figure 3,
where g1 and g2 are the first and second entries of the con-
troller gainG. The resulting dwell time isTd = 7.58 × 10−9 s. In
this example, the pre-chosen parameterK = 2 and the algorithm
finds common Lyapunov functionals as

P̄i,k =
[
1.02 −0.02

−0.02 1.01

]
:= P̄, ∀i ∈ { 1, 2 } , ∀k = { 1, 2 } .

Since Gi(τ ) = Li(τ )P̄−1, the controllers are affine functions.
Hence, the switched delay system is stable under arbitrary
switching evenwhen controlledwith a static feedback controller
Gi = Li(τ )P̄−1 for any τ ∈ [ 0, TD ].

Example 3.2: This example is a slightly modified version of
the example of Yuan and Wu (2015), where the switched sys-
tem in question is a non-delayed system which does not admit
a common Lyapunov function. In the corresponding example,

Table 2. Comparative dwell time results of Examples 3.1 and 3.2.

Example 3.1 Example 3.2

Yan et al. (2014) 0.92 s
Koru et al. (2018) 0.49 s 0.58 s
Present Paper 7.58 × 10−9 s 0.33 s

the switched linear plant is in the form:

ẋ = A0,σ(t)x + B0,σ(t)w + B1,σ(t)u,

where w is the disturbance,

A0,1 =
⎡
⎣ 0.5108 −0.9147 −0.2

−0.6563 0.1798 0.113
0.881 −0.7841 0.1

⎤
⎦ , B1,1 =

⎡
⎣0.3257
1.2963
2.43

⎤
⎦ ,

A0,2 =
⎡
⎣ −0.125 −0.9833 −0.34

−0.5305 0.3848 0.58
1.0306 0.6521 0.1

⎤
⎦ , B1,2 =

⎡
⎣1.0992
0.6532
3.5

⎤
⎦ .

By using A0,i and B1,i, we generated our example. Let�1 and
�2 be

A1 = (1 − λ) · A0,1, Ā1 = λ · A0,1, B1 = B1,1,
A2 = (1 − λ) · A0,2, Ā2 = λ · A0,2, B2 = B1,2.

For λ = 0.2 and h= 0.45 s, we choose εQ = 0.1, εR = 0.6,
γ = 1; the resulting dwell time is 0.33 s for degree 6 SOS poly-
nomials. The synthesised controllers can be seen in Figure 4.

The comparison of the presented method with previous works
can be seen in Table 2. There is a significant decrease in the dwell
time results.

4. Conclusions

In this paper, clock-dependent Lyapunov–Krasovskii function-
als are used to derive the dwell time stability conditions of
switched delay systems. Feasibility of the represented dwell time
is solved using SDP techniques and minimised using a combi-
nation of a bisection and a golden section search algorithm.

Then, the conditions to synthesise the dwell time minimiser
controllers are derived. Numerical examples show that the pre-
sented algorithms outperform previous works for both the sta-
bility and the stabilisation case.
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