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Abstract: Finding optimal meeting points on road networks is becoming more and more
relevant with the growth of ride-sharing services. Optimal meeting points serve as locations
where multiple vehicles can drop their passengers, which will then be pooled in one single (high
capacity) vehicle to reach their common final destination. Finding good meeting points is then
key in ensuring low travel times to the chosen location and therefore high quality of service.
Optimal meeting points are hardy stationary, since variations on traffic conditions, road events,
or drivers predispositions to go slower/faster than predicted could shift optimality from one
location to another one continuously in time. In this paper, we propose online algorithms to find
and track optimal meeting points in such dynamic scenarios, as well as a system architecture to
enable extensive simulations for any selected network of interest. Our algorithms are an extension
of existing static algorithms. First we integrate realistic considerations such as the finite number
of drop-off locations and the proximity radius constant to avoid constant rerouting of vehicles.
Second we adapt those algorithms to the dynamic case, which requires to address the trade-off
between computational time and optimality. With the aid of extensive numerical simulations,
we illustrate and discuss the effectiveness of each algorithm under different scenarios: static
networks, dynamic congested networks and dynamic congested network subject to dynamic
events.
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1. INTRODUCTION

The design of smart, safe and sustainable mobility ap-
plications is essential to the present and future of trans-
portation systems. Novel automotive control systems, see
e.g. Pozzato et al. (2017), freeway traffic control systems,
see e.g. Pasquale et al. (2017); Ferrara et al. (2016);
Iordanidou et al. (2017), urban traffic control systems,
see e.g. Haddad and Mirkin (2017); Donovan and Work
(2017), and ride-sharing systems, see e.g. Alonso-Mora
et al. (2017), are among the hot research topics for car-
centered applications.

In particular, the explosion of shared mobility systems
presents many opportunities to reduce the number of
cars on the roads, while providing users with access to a
certain quality of service and increasing the social aspect of
mobility. One relevant application is the situation in which
customers of a given ride-sharing service are told to meet
at a specific location, the Optimal Meeting Point (OMP),
where a high capacity vehicle will take them to a common
route / destination. This application may be relevant to (i)
optimise the pick-up location so as to minimise travel times
across users, (ii) address the optimal placement problem
of shared cars, (iii) minimise the number of cars used
within a company. However, the cars evolve in a very
dynamic environment and the ride-sharing service might
not have access to extensive traffic state information. In
this context, there is a need to adjust the OMP problem
to its dynamic setting, despite the limited availability of

data sources. Therefore, the obvious criteria to make such
an application sustainable and smart are (i) to minimize
the driving time or distance to reach the OMP across users,
(ii) to avoid constant rerouting of users particularly when
approaching the OMP. This will be the main focus on this
paper.

OMP in the literature The OMP problem can be traced
back to the Fermat-Weber problem which consists in
finding the point that minimises the weighed Euclidean
distances of many distinct points (Kuhn (1973)). Pierre
de Fermat gave a geometric solution for 3 distinct
points (Shmoys et al. (1997)), while Weiszfeld proposed
an exact algorithm (Weiszfeld (1937)). An extension of
this problem is the uncapacitated facility location prob-
lem (Cornuejols G. and A. (1990)), where the number of
possible locations is finite and the costs are defined for
general networks, instead of using the Euclidean distance.
Besides, the set covering problem is a special case of the
uncapacitated facility location problem (Shmoys et al.
(1997)), and known to be NP-complete. Some inapprox-
imability results are available in Slav́ık (1996). In fact,
the OMP problem is the uncapacitated facility location
problem with one single facility. Being aware of these neg-
ative results, the OMP problem was first studied for road
networks in Yan et al. (2011). In their work, the authors
essentially propose to compute an augmented convex hull
before iterating to find the best solutions within that hull.
The more recent work of Sun et al. (2013) makes use of
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the structure of spatial databases to speed up the exact
OMP search process in road networks. While these works
provide appealing solutions for the static OMP problem in
road networks, here we shift the interest to the dynamic
OMP problem.

Contributions of the paper In this paper, we work with
the realistic assumption that no traffic information is
provided to the ride-sharing system, however, the ride-
sharing system may be aware of information on planned
traffic events such as road closure, or even real-time events
that could be made available to the service via an IoT
platform. Our contributions are the following: (i) inspired
from previous work we propose three static algorithms and
tailor them to the dynamic case, in particular we introduce
a threshold constant to avoid the re-routing of vehicles as
they get close to the computed OMP, thereby considering
the comfort of driving; (ii) we address the dynamic OMP
problem by recomputing the proposed static OMP algo-
rithms for fixed time intervals; (iii) we propose an architec-
ture for the extensive testing of algorithms, based on open-
source systems; (iv) in the case of traffic congestion we
confirm that the dynamic OMP consistently contributes
to reducing travel times for all users, in comparison with
the static OMP; (v) in the case of traffic congestion with
apriori knowledge of events, the travel time gain is even
better; (vi) we conclude that future work is needed to
improve the existing approximation algorithms for the
OMP problem in road networks, which would further help
the tracking of dynamical OMPs, and make ride-sharing
applications even more sustainable.

Organisation of the paper The remainder of the paper
is as follows. In Section 2 we formulate the dynamical
OMP problem. In Section 3 we present the architecture of
our system. Section 4 introduces the static and dynamic
algorithms under consideration. In Section 5 we present
a discussion of the simulation results. In Section 6 we
conclude with a summary of our findings and a discussion
over future research directions.

2. PROBLEM FORMULATION

Let n be the number of vehicles that request a meeting
point. Let xiptq P R

2, i P t1, . . . , nu be their location at
time t ě 0. Let G “ pV,Eq be the road network on which
the vehicles and the meeting point live. The vertex set V
represents all the possible locations that are reachable by
the vehicles travelling through the edge set E. Each edge
in E is weighted to model how easy is to transverse such an
edge (typically highways have low weights, while country
roads have high weights). We further denote with P the
set of parkable locations in the graph G.

We define the network distance over G as the distance that
a vehicle would have to drive to go from point x to point
y in the network, and we write Dpx, y,Gq. Similarly, we
define the network time over G as the time a vehicle would
have to take to go from point x to point y in the free-flow
network, and we write T px, y,Gq.

We call the static optimal distance meeting point problem
as the problem formulated as finding a point in the set
P Ď V , say OD, such that the sum of the network distances
from each xip0q and OD is minimized:

OD :“ argmin
yPP

n
ÿ

i“1

Dpxip0q, y,Gq. (1)

Similarly, we call the static optimal time meeting point
problem as the problem formulated as finding a point in
the set P Ď V , say OT , such that the sum of the network
times from each xip0q and OT is minimized:

OT :“ argmin
yPP

n
ÿ

i“1

T pxip0q, y,Gq. (2)

Naturally, both static optimal meeting points OD and OT

are closely related to each other and in this paper we will
drop the subscript and consider a generic optimal meeting
point O.

Whenever some external events (congestion, route clo-
sures, diversions), or internal events (natural low/high
speed predisposition) occur, then the static optimal meet-
ing point, determined at time t “ 0 is not optimal any-
more. This is because some of the vehicles will not be at
the location they were supposed to be if everything was
going as predicted at time t “ 0. In this context, it is
reasonable to formulate a dynamic version. We formulated
the dynamical optimal meeting point as follows. (Here
formulated only for time, but equivalent for distances).

Dynamical optimal (time) meeting point problem.
Find and track a point in the set P Ď V , say Optq, such
that the sum of the network times from each xiptq and Optq
is minimized for each time t:

Optq :“ argmin
yPP

n
ÿ

i“1

T pxiptq, y,Gq. (3)

The Dynamical optimal (time) meeting point problem,
DOMP for short, is a time-varying optimization problem
[Cf. Simonetto and Dall’Anese (2017) for theoretical
background]. What this means is that at each time t one
has to find a new optimal meeting point Optq based on the
actual vehicles’ locations xiptq. By sampling the DOMP
problem (3) at discrete time instances tk, k “ 0, 1, . . ., we
can arrive back at a static OMP that needs to be solved
at each time instance,

Optkq :“ argmin
yPP

n
ÿ

i“1

T pxiptkq, y,Gq. (4)

The sequence of problems (4) (one for each tk) determines
the solution Optq with arbitrary accuracy as long as the
sampling period h :“ tk ´ tk´1 is chosen smaller and
smaller.

Solving (4) at each time instance (and within the sampling
period) is often not an option for a large number of
vehicles. In particular, the problem (4) is non-convex and
an approximate solution has to be sought (with some
heuristics); this typically does not scale well with the
number of vehicles.

In this paper, we propose three different algorithms to
tackle the challenge to provide an approximate solution
for (4) within the sampling period. The three algorithms
leverage the dynamic nature of the problem at hand and
restrict the search space P while the algorithms converge
towards an approximate DOMP. The three algorithms
trade-off computational complexity and quality of the
approximation.
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Fig. 1. Architecture of the developed system.

3. SYSTEM ARCHITECTURE

In this section we rapidly present the proposed architec-
ture. Its aim is to enable the extensive testing in simulation
of the algorithms for different network instances.

3.1 Generic architecture

We work with vehicles which are at different locations and
desire to meet at an optimal point. These vehicles com-
municate with the Vehicle Data Manager, VDM, which is
the main component of our architecture. VDM interacts
with a spatial network database and the meeting point
algorithms. In addition, we assume that event information
(accident, road closures, etc.) will be reported to VDM
and it would subsequently update the edge weights in
E. For routing, we leverage OSRM (OSRM (2017)), and
we construct contracted map files (which can be changed
online by the algorithms in case of events). With the help
of contracted routings, the algorithms avoid to choose
the event-detected roads. Lastly, the characteristics of the
network are stored in MongoDB (Chodorow (2013)) – that
is a database – to facilitate geospatial query features such
as finding nearest nodes to a location within a given radius.
The types of queries are employed in different types of
OMP algorithms, and their efficient implementation is key.

3.2 Visualisation of results

An additional component resides in the visualisation of
the OMP solutions in time. We exploit Leaflet interactive
maps with Folium library in Python. This visualization is
a property of VDM, and it is not share with the vehicles.
The only information that is provided to the vehicles is
online GPS navigation.

4. ONLINE ALGORITHMS

In this section we describe three dynamic OMP algo-
rithms, namely Pruning, Greedy, and Convex – starting
with the most computational demanding and finishing
with the least computational demanding. The main dif-
ference among the algorithms will be how they restrict
the solution space P by making use of pruning, greedy,
and convex search strategies. All three algorithms receive
as input the current location of the vehicles xiptkq at time
tk and generate an approximate meeting point Optkq. The
sampling period is fixed and indicated as h.

Fig. 2. An example of the visualization in Dublin with five
vehicles.

4.1 Pruning Algorithm

The dynamic pruning algorithm exploits a fast-pruning
approach to search for the most promising points in the
set P and it is loosely inspired by the merged aggregate
nearest neighbor (MANN) queries (Sun et al. (2013)).

In the algorithm, we first find the geolocational center (i.e.,
the Euclidean center of the convex hull) of the query set
Qpt0q :“ txipt0quni“1

, i.e.,

xCpt0q “
1

n

n
ÿ

i“1

xipt0q, (5)

and we project it onto the candidate location set P.
The projected point is assigned as the first approximate

optimal meeting point Ô0 to be improved with successive
iterations.

We define a search radius rptkq as the distance between

Ôk and the closest vehicle, i.e.,

rptkq :“ min
i

}xiptkq ´ Ôk}2, for all k “ 0, 1, . . . , (6)

and we further define the ball Bδ,k Ă R
2 as the ball

centered at Ôk with radius rptkqδ, with δ P p0, 1s to be
chosen by the user to trade-off approximation quality and
computational-time.

At time instance k+1 we restrict the search for the candi-
date location in the set P 1

k :“ pP X Bδ,kq. The candidate
set is further reduced by the pruning approach described
in Sun et al. (2013) (without loss of approximation quality)
and the final resulting set is indicated as P2

k`1
Ă P 1

k.

The final algorithm is then the following.

Dynamic pruning algorithm

(1) Compute the initial approximation as

Ô0 “ ProjP rxCpt0qs,

where ProjP indicates the projection operator;
(2) For all k from k “ 1 till termination:

‚ Compute the search set P2

k
;

‚ Evaluate the cost function
řn

i“1
T pxiptkq, y,Gq for the

points y in P2

k
until the sampling time h is reached;

‚ The point with minimum cost is the new approximate
optimal meeting point Ôk.
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We notice that the pruning algorithm is an exhaustive
search type of algorithm, whose search is terminated when
the sampling time is reached. In the implementation, a
heuristic queue system is put in place, so one evaluates
first better “looking” points and subsequently worse “look-
ing” ones. If the sampling time is sufficiently large, and
assuming that the optimal meeting point is in P2

k (which is
reasonable in practice 1 ) the pruning algorithm will find it.
In this sense, the pruning algorithm is an anytime optimal
algorithm, and it will be our baseline.

4.2 Greedy Algorithm

We present here the dynamic greedy algorithm, closely
related to the static greedy approach in (Yan et al. (2011)),
but adapted here to parkable locations and dynamics.

The algorithm is initialized as the pruning one and P 1

k

is computed in the same way. We now define an auxiliary
sequence tzℓCu and a ball Bd,ℓ,k`1 centered in zℓC with radius
d.

At each instance k+1 the algorithm sets z0C “ Ôk and
search for better optimal meeting points in the set P 1

k X

Bd,0,k`1. If no better one is found, then we set Ôk`1 “ z0C,
otherwise we set z1C as the new best and the search is
continued in the new set P 1

k X Bd,1,k`1, and so on. The
greedy approach is tuned by the radius d. Small d’s lead
to small computational effort but lower quality solution
than large d’s.

The final algorithm is reported below.

Dynamic greedy algorithm

(1) Compute the initial approximation as

Ô0 “ ProjP rxCpt0qs,

where ProjP indicates the projection operator;
(2) For all k from k “ 1 till termination:

‚ Set z0
C

“ Ôk´1

‚ For ℓ “ 0 till sampling period h is reached
¨ Compute the search set P2

ℓ
“ P 1

k´1
X Bd,ℓ,k;

¨ Evaluate the cost function
řn

i“1
T pxiptkq, y,Gq for

the points y in P2

ℓ
;

¨ The point with minimum cost is the new zℓ`1

C
;

¨ If zℓ`1

C
“ zℓ

C
then stop, else continue.

‚ Set Ôk`1 “ zℓ`1

C

4.3 Convex Algorithm

The convex algorithm is the most computational light
among the others. It is in fact only the first step of the
pruning algorithm (or equivalently of the greedy algo-
rithm). Specifically, we compute the Euclidean center of
the convex hull of the queries as in (5) and we project it
onto P 1

k.

Dynamic convex algorithm

(1) Compute the initial approximation as

Ô0 “ ProjP rxCpt0qs,

where ProjP indicates the projection operator;

1 I.e., whenever the optimal point is in the convex hull of the
queries, and the optimal points do not change significantly between
subsequent time instances.

(2) For all k from k “ 1 till termination:
‚ Compute P 1

k´1
;

‚ Compute the new approximation as

Ôk “ ProjP1

k´1

rxCptkqs.

We notice that the quality of the approximate solution

Ôk maybe quite distant from the optimal solution. As a
matter of fact this convex algorithm is nothing else than
the solution of the optimization problem,

Optkq :“ argmin
yPP 1

k´1

n
ÿ

i“1

}xiptkq ´ y}2
2

(7)

where we have substituted the time distance T with the
Euclidean distance. While this may be rather arbitrary
in many situations, in regular urban environments this is
not the heresy that it may seem. Consider for example a
regular rectangular lattice, as one may find in many neigh-
borhood of New York City, where each road is identical to
any other road. In this case, the time distance is in fact
the ℓ1 norm. Adding diagonal segments would shift the
ℓ1 norm to a ℓ2 norm. Obviously, real situations are more
complex than this, and yet it seems rather reasonable that
the time distance T could be close enough to a convex
function, such as the Euclidean distance. We further elab-
orate on the quality of this approximation in the numerical
experiments.

Finally, notice that the convex algorithm is nothing else
than an online projection onto non-convex sets (extension
of the usual POCS algorithms). This handle could be used
to study its convergence (rate).

5. NUMERICAL RESULTS

5.1 Experimental Setup

For the experiment, we prepare 50 instances for three
different problem sizes, i.e., number of vehicles: 5, 10,
20. A large number of vehicles may be justified when
ride-sharing systems employ mini-buses as well as normal
capacity vehicles. We randomly build the instances on the
map of Dublin, Ireland. All experiments are conducted
on a Windows 7 machine with 8 GB RAM size and 8-
core processor. In all the simulations the threshold is set
empirically to δ “ 0.5, while d of the greedy approach is
set to d “ 1 km. In the dynamic setup, the sampling period
is set to h “ 30 s. On average, the trip time is 15 minutes.

5.2 Static Case Comparison

First, we compare the performance of the three algorithms
with respect to average travel time per vehicle in the
static scenario. We use the pruning algorithm as a baseline
(since in this case one can run it at optimality). The
results are captured in Figure 3, where we indicate the
loss of performance (i.e., gain in travel time) of the
greedy and convex approaches w.r.t. the pruning one.
As we notice, the loss can be significative – but not
dramatically so, especially with large problem sizes. The
gain in computational time is however very interesting for
real implementations, giving an average of r10.9, 24.1, 48.8s
minutes for static pruning for increasing vehicle fleets,
r1.2, 2.2, 3.9s s for static greedy, and r0.08, 0.13, 0.26s s for
static convex.
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Fig. 3. Comparison of the algorithms in the static case.

5.3 Dynamic Case Setup

We proceed with the dynamic simulations. To simulate
realistic variations from the a priori travel times (which
assume no congestion), we introduce a simplified model of
traffic congestion. For each network edge a cost function
is introduced as per e.g. Krichene et al. (2014), assuming
a triangular Fundamental Diagram (FD) of traffic flow.
Each link is taken at a density state functional point of
the FD, either in the free-flow part or in the congested
part, which translates into a speed value and therefore a
travel time for the link. The effect of varying demand with
time is simulated by changing this functional point in a
smooth fashion. The links heading towards the city center
are assumed to be more congested than the others, and
more so if close to the city center. We acknowledge that
such a representation of traffic flow is very crude, but this
may be refined with the use of a traffic micro-simulator,
for instance.

5.4 Dynamic Algorithms Evaluation

We evaluate the dynamic algorithms both w.r.t. the static
pruning one and w.r.t. the static version of each algorithm.
The idea is to showcase both the gain in performance
in terms of less average travel time in considering an
approximate dynamical approach vs. (exact) static one,
and to showcase how the different algorithms behave w.r.t.
each other. Figure 4 depicts the behavior in terms of
gain in performance (less average travel time) of the three
dynamic algorithms compared to the static pruning one.
The result suggests that a dynamic approach is helpful
when dynamic traffic is taken into account. We see also
that the gain is greater for a larger fleet. Finally, the
dynamic pruning algorithm (even if terminated at the
sampling period) yields the best results, while a dynamic
convex approach is performing the worst, sometimes worse
than the static pruning approach. On the computational
complexity side, the dynamic pruning approach takes on
average 20 s per iteration independently of the fleet size (at
the beginning 30 s, since it is stopped at h, but successively
it takes less due to a reduced search space), the greedy

approach 1 ´ 3 s depending on the fleet size, while the
convex approach 0.05 ´ 0.2 s.

Fig. 4. Comparison of the dynamic vs. static pruning
versions of the algorithms

In addition, Figure 5 show the difference of performance
of the dynamic algorithms w.r.t. their static versions,
suggesting that the dynamic versions perform consistently
better than the static ones.

Fig. 5. Comparison of the dynamic vs. static versions of
the algorithms

5.5 Events

In the final simulation setup, we consider important traffic
events that would lead to a considerable change in the
travel times for the vehicles. In particular, we consider two
randomly located congestion events, which appears after
5 minutes from the starting of the simulations. The events
lower the velocity of the vehicles on the selected edges (up
to 10) to 1 km/h. The events affect the algorithms through
a changing of the contract files of OSRM.

Figure 6 reports the results for the event case. As we see,
the effect is more pronounced for small fleet sizes and
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generally in line with the conclusions we reached in the
absence of events, even though the variance is higher than
before, as expected.

Fig. 6. Comparison of the dynamic vs. static pruning
versions of the algorithms in case of events

6. CONCLUSIONS

We have presented the first computational study of the
dynamical OMP problem. We believe that this is a very
relevant problem for ride-sharing applications, as the total
travel time of users should be minimised in a dynamical
and optimal fashion, for improved sustainability and cus-
tomers’ satisfaction. In particular we have considered 3
algorithms inspired from recent work and we tailored them
to the dynamic setting. Results show that the proposed al-
gorithms consistently perform better in a dynamic setting,
with travel time gains sometimes above 10%, even without
knowledge on travel time information. In the case of traffic
events, the positive effects are amplified. We should also
note that the travel time gains grow with the number of
vehicles considered for the OMP.

We hope that the promising results presented here will
stimulate further research on the topic. In particular, on
the simulation side, there is the need to test the algorithms
with a more realistic model of traffic demand and traffic
events, e.g. using a traffic simulator. On the algorithm
side, more sophisticated approximations with competitive
running times are needed. Indeed, in the static case, the
greedy and convex algorithms suffer from a 10% loss
when compared to the near-optimal (pruning) algorithm,
and this effect is again observed in the dynamic case.
It also remains to be seen how the dynamic algorithms
with higher frequency updates or more timely frequency
updates would perform.
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