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In this article we address the non-preemptive flow shop scheduling problem for 
minimization of the sum of the completion times. We present a new modeling 
framework and give a novel game-theoretic interpretation of the scheduling prob- 
lem. A lower-bound generation scheme is developed by solving appropriately de- 
fined linear assignment problems. This scheme can also be used as a heuristic 
approach for the solution of the problem with satisfactory results. Its main use, 
however, is as a bounding scheme within a branch-and-bound procedure. Our 
branch-and-bound procedure improves significantly upon the best available enu- 
merative procedures in the current literature. Extensive computational results are 
used to qualify the above statements. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

We address the non-preemptive permutation flow shop scheduling problem 
with the sum of completion times as the performance criterion. The above 
problem can be stated as follows. Each of the n jobs, J , ,  J 2 ,  . . . , I,,, has to be 
processed on m machines, M I ,  M2,  . . . , M,,  in that order. The processing of 
job J ,  on machine M, requires an uninterrupted period of processing time p, . , .  
Each machine can process at most one job at a time. The objective is to find a 
permutation schedule, i.e., a single ordering of the jobs on all machines, such 
that the sum of completion times is minimized. Minimizing the sum of completion 
times amounts to minimizing the mean completion time of jobs as well. A 
permutation schedule is represented by a = (a(l), a(2), . . . , a(n) ) ,  where 
a(i) is the ith job in the processing order. In our further discussion when we 
refer to a schedule a w e  mean a permutation schedule, unless specified otherwise. 

Because the problem is NP-hard for m L 2 (see Gonzalez and Sahni [6]), 
enumerative and/or heuristic approaches are essentially unavoidable. For m = 
2, solution procedures have been developed by Ignall and Schrage [7] and Kohler 
and Steiglitz [8]. A lower bounding scheme for m = 2 was proposed by Ignall 
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and Schrage [7]. Their procedure was generalized to arbitrary m by Bansal [3]. 
Ahmadi and Bagchi [ 11 improved upon Bansal’s bounding scheme. Miyazaki, 
Nishiyama, and Hashimoto [ 111, and Szwarc [ 151 have developed sufficient op- 
timality conditions for the problem using a pairwise interchange method. Mi- 
yazaki et al. [ l l ]  presented also a heuristic solution procedure. 

In this article we expand on the modeling framework of Monma and Rinnooy 
Kan [ 121 for permutation flow shops. We model the problem as a two-person 
zero-sum game. Using this new modeling approach, we present a lower-bounding 
scheme that requires the solution of a series of linear assignment problems. 
Using this bounding scheme and a new branching approach, we develop an 
efficient branch-and-bound procedure for the problem. The main ideas of our 
bounding scheme can also be used to generate a good heuristic solution to the 
problem. 

The structure of the article is as follows. In Section 2 we present our modeling 
framework and discuss a class of linear assignment problems which will play an 
important role in the rest of the article. A novel interpretation of the flow shop 
scheduling problem in a game theoretic context is presented in Section 3. In 
Section 4 we discuss a new lower-bound generation approach based on the results 
of Sections 2 and 3. Capitalizing on the results of Section 4, we develop a new 
branch-and-bound scheme for permutation flow shops in Section 5 .  We report 
on our computational experience with this new approach in Section 6. Finally, 
Section 7 summarizes our results and discusses some potential extensions of our 
modeling approach. 

2. CRITICAL PATHS, ASSIGNMENT PROBLEMS, AND THE 
PERMUTATION FLOW SHOP SCHEDULING PROBLEM 

For a schedule w we can define a recursive relationship to find the completion 
time C<,(,),, of job I,,,,) on machine M ,  as follows (for detailed explanations refer 
to Baker [2] and Monma and Rinnooy Kan [12]): 

where Co(o)., = Co(,).o = 0. The recursive structure (1) can be equivalently 
presented, as pointed out by Monma and Rinnooy Kan [12], by the directed 
graph G depicted in Figure 1. Vertices (cr(i), j )  are defined for each element 
o(i) of the permutation and each machine M,. A weight po,,),, is associated 
with vertex ( ( ~ ( i ) ,  j ) .  Directed arcs are defined from each vertex (a(i), j )  toward 
(a(i + l ) ,  j )  and (w(i), j + 1). 

Given the above-defined graph G, the completion time Co,,),, of job .I,,,,,, on 
machine M,,  in the permutation schedule w, is equal to the maximum-weighted 
directed path from (w(l), 1) to (a(i), j )  in the graph. Therefore, the sum of 
completion times of jobs in schedule w, F ( a ) ,  is given by 

Any path from (a ( l ) ,  1) to ( ( ~ ( i ) ,  m) which attains the value Crr(i).nl is called a 
critical path for job J,,,) in schedule (T. Consequently, the problem of finding 
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&&+ . . '  +A, 
Figure 1. Directed graph ( G )  representation of a permutation schedule u. 

the sum of completion times of a schedule is analogous to the determination of 
n maximum paths, one for each job, on an acyclic graph with positive arc lengths. 
The computational complexity of determining all such paths is O(nm) (Lawler 

Let T ( i )  be a path from ( ~ ( l ) ,  1) to (a(i), m) on the directed graph G. Szwarc 
[15] makes the observation that the length f (a( i ) ,  T ( i ) )  of the path T ( i )  can be 
presented as 

[lo]). 

where 1 5 t(i, 1) 5 t(i, 2) 5 ... 5 t(i, i - 1) 9 m are appropriate integers which 
uniquely define ~ ( i ) .  Let denote the set of all such paths on the direct graph 
G for job .I,,,,). Then F ( a ) ,  the sum of completion times, can be rewritten as 

By letting T = 
T ,  we can rewrite ( 3 )  as 

x T2.n, x ... x T,,nl, and T = ( ~ ( l ) ,  7(2) ,  . . . ; ~ ( n ) )  E 

Then, if S,, is the set of all permutation schedules, the permutation flow shop 
scheduling problem for minimization of the sum of completion times can be 
formulated as follows: 
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Using the above established modeling framework, we can now state the following 
proposition. For presentation convenience, we use the usual abbreviation nlml 
PIC. Ci for the n-job m-machine permutation flow shop scheduling problem with 
the sum-of-completion-times performance criterion. 

PROPOSITION 1: 
holds: 

max min 
YET u€S,, 

For the nlmlPIC Ci problem the following relationship 

I1 n 

PROOF: Let a. E Sn be a specific permutation schedule and E T be a 
path vector on the directed graph G. Then 

n n N 

However, (7) holds for every no E S,, and T , ~  E T ,  therefore the validity of (6) 
follows immediately. 0 

Let F ( a ,  T )  = E:=, f(a(i), T(i)), a E Sn and T E T. Then Proposition 1 states 
that for any path vector T E T ,  the solution to the optimization problem 

( A P ) :  min F ( a ,  T )  
U€ s,, 

provides a lower bound for the problem as formulated in (5 ) .  Some further 
insight on the nature of ( A P )  is provided by the following result. 

PROPOSITION 2: ( A P )  is equivalent to a linear assignment problem. 

PROOF: According to (2), for a specific path T ( i )  in path vector 7 E T ,  
there exists a unique set of integers (t( i ,  l ) ,  t(i, 2 ) ,  . . . , t(i, i - 1 ) )  such that 
for any a E S,, we have the following: 

where 1{.} is an indicator function and the integers t(i, 0) and t(i, i )  assume the 
values 1 and m, respectively. Note that we have 1 5 t(i ,  1 )  5 t(i, 2 )  5 ... 5 t(i, 
i - 1 )  I m. Now by letting t(i, k )  = 0,  i < k 5 n we can rewrite (8) as 

~ 

r = l  ] = I  k = t ( i , j - l )  
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Then F ( a ,  T )  becomes 

By reordering of the above summations we obtain 

Let us denote by 

Then (9) can be rewritten as 

Using relationship (10) one can easily observe that (AP)  is equivalent to a linear 
assignment problem with cost matrix A' = (u;,!). 0 

EXAMPLE: We now present a numerical illustration of Proposition 2. Con- 
sider a three-job, two-machine problem with the paths given in Figure 2. For 
these paths we have the following path weights: 

Machines 

1 

Position 2 

3 

1 2 

E 
Figure 2. The paths for the example problem. 
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We also have 

Now using this relationship we can show that min, F ( a ,  7) is a linear assignment 
problem with the following assignment matrix: 

Location 
Job 1 2 3 

Using Proposition 1, we can easily state a sufficient condition for the optimality 
of a schedule v E S, .  

PROPOSITION 3: Let a,) be a schedule in S,,, and T" be the path vector for  
which F ( q ,  T") = maxTETF(a,,, T ) .  ff F ( q ,  7") = min,Ly,, F ( a ,  T"), then ql is 
an optimal schedule. 

PROOF: From Proposition 1 we know that minOEs,, F ( a ,  T*) is a lower bound 
for the problem. From the statement of the proposition we have 

F(a,,, T*) = max F(a,), T) = min F ( a ,  7"). 
r E  T UtS,, 

Therefore, a,, is an optimal schedule. 0 

Proposition 3 can be useful for the class of scheduling problems for which (6) 
holds as an equality. Our discussion below identifies such a class of problems in 
ordered flow shops and demonstrates how our modeling framework can be 
applied to derive one of the known results in the ordered flow shop literature 
(see Panwalkar and Khan [14]). 

DEFINITION 1: A pow-shop problem is ordered if the following constraints 
are satisfied: 

1. p,., > pk.1, for jobs i and k ,  and for some machine t, also implies p,,j 2 pk.,,  j = 1, 
. . .  , m, 
2. p,., p ,.,, for machines j and I, and for some job r, also implies P , , ~  2 p ,,,, i = 1, 
. . . > n .  

PROPOSITION 4: Consider the ordered f low shop problem. ff the largest 
processing time of each job is on the first machine, then the n lmlPlX C j  problem 
belongs to the special class of scheduling problems for  which relationship (6) holds 
as an equality. The SPT (shortest processing time) sequencing rule provides the 
optimal solution to the above ordered flow shop problem. 
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PROOF: Using results from Panwalkar and Khan [14], we can write the 
critical path vector T* = ( T * ( i ) ,  i = 1, . . . , n )  of the optimal schedule aspT in 
the following form: 

Let us now consider the corresponding linear assignment problem for T*: 

( A P ) :  min F ( a ,  T * ) .  
UES,,  

The entries to the assignment matrix A" = (u;:]) are given by 

l?l 

u;., = ( n  + 1 - j )p , , ,  + C pr,; ,  r = 1, . . . , n;  j = 1, . . . , n .  
;=1 

Note that the second term of a;:! is independent of j .  Therefore the optimal 
solution to ( A P )  sequences the jobs in the SPT order, based on their processing 
times on Machine 1. Then, we have that for the resulting schedule the following 
relationship holds: 

min F ( a ,  T*) = F ( q S p T ,  T*)  = max F(aspr ,  T ) .  
W t S , ,  TE T 

The last equality in the above relationship holds by the definition of T* as the 
critical path vector for aSpT. Therefore, relationship (6) holds as an equal- 
ity. 0 

3. GAME-THEORETIC INTERPRETATION OF THE 
nlmlPII: Ci PROBLEM 

The results of Section 2 point out the min-max nature of the nlrn/PIC C, 
problem. A problem with a similar min-max formulation has appeared in very 
different context, that of game theory. This fact motivated us to provide a game- 
theoretic interpretation of the n / r n / P / C  C j  problem. We will use this interpre- 
tation to directly apply an integer programming formulation of the corresponding 
game-theoretic problem to formulate our sequencing problem. 

We may relate the formulation ( 5 )  of permutation flow shop problems to a 
two-person zero-sum game. Player 1, referred to as the path maker, has a pure 
strategy set T (set of path vectors) and Player 2, referred to as the schedule 
maker, has a pure strategy set S,l .  For Player 1 the payoff of the game for pure 
strategies a E S,, and T E T is F ( a ,  T ) .  Similarly, the loss of Player 2 is F(v, T ) .  

In a two-person zero-sum game, there exists a pure strategy for player 1 by 
which he is certain to obtain at least a payoff of f ,  which is given by 

f = max min F ( a ,  T ) .  
i € T  rrES,, 

- 

Similarly, there exists a pure strategy for the schedule maker that offers him 



850 Naval Research Logistics, Vol. 40 (1993) 

the least loss independently of the actions of the path maker. The minimal loss 
for the schedule maker is given by 7, where 

7 = min max F(P ,  T). 
UES,! r E T  

Observe that 7 is the optimal solution of the permutation flow shop problem. 
From the results of game theory (von Neumann and Morgenstern [18], we can 
immediately conclude that f 5 7, an indirect verification of Proposition 1. In 
case the sufficient conditionstated in Proposition 3 holds, i.e., f - = we say 
that the game has a saddle or equilibrium point. 

The n / m / P / C  C j  problem can also be analyzed as a majorant game. In such 
a game the schedule maker makes his move and then the path maker chooses 
his strategy in full knowledge of the other player's move. It can be seen that 
the equilibrium point of the majorant game is given by 

f *  = min max F(w, T), 
v€S,, r E T  

and is equal to the optimal solution of the n l m l  PIC C, problem. The equilibrium 
value of the majorant game, and as a consequence the solution to the n l m l P l  
2 C, problem, can be found by solving the following integer programming 
formulation: 

(ZP): f *  = min M ,  

subject to 

where f *  is the value of the game (optimal value of the sum of completion 
times), and y ,  = 1 if (T is the optimal pure strategy (schedule) for the schedule 
maker. 

The simple interpretation of the n l m l P I 2  C j  problem as a majorant game 
has led us to formulation (ZP). We now proceed to write an equivalent formu- 
lation (ZP), which is more convenient for our further discussion purposes. We 
can always think of a permutation schedule (T E S, as a one-to-one assignment 
of n numbers (or n positions in a sequence) to n jobs. Therefore we can introduce 
the set of binary integer decision variables x i , j  E (0, l}, to equivalently describe 
a schedule as 
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where 

1, if a(j)  = J; ,  
0, otherwise. 

x . .  = 

Using the above set of decision variables and relationship (10) we can state 
formulation ( f P )  in an equivalent way as follows: 

(IP1): f *  = min M ,  

subject to 

i = l  / = I  

I ,  

T E  T :  

xi.j E (0, l}, i, j = 1, . . . , n.  (17) 

Although the assignment matrix of a given path T (i.e., U [ , ~ ’ S )  can be determined 
in O(n3m) time, ( IP1)  cannot be directly solved with the available integer pro- 
gramming software due to the number of constraints in constraint set (14), which 
increases exponentially with the number of jobs and stations. In the next section 
we present a new lower bounding scheme for the nlmlPIC C, problem based 
on a relaxation of the ( fP1)  formulation which requires generation of a finite 
number of constraints in constraint set (14). 

4. A NEW LOWER BOUND GENERATION SCHEME FOR THE 
nlmlPIX Ci PROBLEM 

In order to develop lower bounds for the nlmlPIC Ci problem, we are going 
to follow a two step relaxation procedure. At first, we restrict our attention only 
to a subset of T* of the path vector set T. The relaxed formulation ( fP1)  is 
given as follows: 

(RIP1): f: = min M ,  

subject to 

c a[jxi, j 5 M, T E T*,  
;=I j = l  

(15)-( 17). 
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At the second step of our relaxation approach we dualize the constraint set (18). 
Let A = {A,, T E P} be the set of Lagrange multipliers. Then, the Lagrangian 
relaxation of (RZP1) is 

subject to (15)-(17). Observe that f ( A )  is bounded only if ZTrET^ A, = 1. Without 
loss of generality, we can always assume that this is the case because we can 
normalize the Lagrange multipliers A,, T E T",  by their corresponding summation 
Z I E T  A,. Therefore, we can always state (LR(A))  as an equivalent linear as- 
signment problem as follows: 

subject to (15)-( 17). Let f F P  be the optimal objective function value of the linear 
programming relaxation of (RIP1). Using standard results from the Lagrangian 
relaxation theory (for a textbook reference see Nemhauser and Wolsey [ 13]), 
we can state the following property: 

PROPERTY 1:  

f k P  = max fAP(h). 
A.X,,T.A,= I 

From our above discussion, we can conclude that f: is a legitimate lower 
bound for the nlmlPII: C, problem, i.e., f :  5 f* .  We can always approximate 
f :  from below by solving the linear programming relaxation of (RIP1). From 
well-known results of Lagrangian relaxation theory, and since the constraint set 
of (LRAP(A))  has a network structure, we are guaranteed that our Lagrangian 
bound cannot be better than the linear programming relaxation bound. The 
solution of the linear programming relaxation of (RIPl) ,  however, proved to 
be computationally prohibitive when we implemented it within a branch-and- 
bound approach. Thus, we decided to use a slightly different path. To obtain 
f bP ,  or a legitimate approximation of it (i.e., a lower bound on it), we solve the 
linear assignment problem (LRAP(A)) for an appropriately chosen vector A = 
{ A r ,  T E T"}. The use of a subgradient optimization method helps us update the 
multiplier vector A, and within a small number of iterations generates a very 
good approximation of fkP.  Our subgradient optimization procedure starts with 
an initial multiplier vector A' = {A!, T E T*} and then defines iteratively a 
sequence of multiplier vectors A' by use of the following rule 
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where 0‘ is a scalar, f is an upper bound on f f P ,  p = (p,, T E T*)  is a subgradient 
fgr f A p ( A ‘ ) ,  and (Jp(I is the Euclidean norm of the vector p. The notation 2 = 
(A:, T E T*)  denotes the multiplier vector before the required normalization 
procedure for our method. The above subgradient optimization procedure is an 
adaptation of the one presented in Goffin [ 5 ] ,  and based on results therein it is 
guaranteed to converge to f r L P ,  when & p‘ = w and limHm p‘ = 0. For the 
complete specification of the above procedure we need to describe the subgra- 
dient vector p. This is described in Property 2 below. 

PROPERTY 2: Let pT = C:==, Xi .= ,  a;,jxzj - f A p ( h ) ,  r E T * ,  where X *  = 
(x?J is the optimal solution to the (LRAP(A)) problem. Then, p = (p,, T E T * )  
is a subgradient for  f A p ( A ) .  

PROOF: Let A’ be a multiplier vector, where ZrET’ A: = 1. We want to 
show that 

Note that (A’  - A)‘denotes the transpose of the vector (A’ - A). We can rewrite 
the RHS of (19) as follows 

Now using ETET* A, and ZrET* A: = 1, we obtain 

n n  

The last inequality follows from the fact that xzj, i ,  j = 1, . . . , n is a feasible 
solution for the (LRAP(A’))  problem and therefore 

n n  

is an upper bound on f A p ( A ’ ) .  0 

We have used this new lower-bound generation scheme within a branch-and- 
bound algorithm. We will discuss the implementation of the new bounding tech- 
nique in more detail in Section 5 .  The major disadvantages of the new approach 
are as follows. 
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0 Each solution to the (LRAP(A)) problem is also a feasible solution for the n / m / P / B  
C, problem, and the generated solution is usually very good in terms of sum of com- 
pletion times. Therefore, our bounding scheme can be also used as a heuristic pro- 
cedure. 

0 After implementing the subgradient optimization procedure for a specific node in the 
branch-and-bound tree we end up with a multiplier vector A .  Now we can use A as 
the initial multiplier vector of the nodes generated from this particular node. This 
approach decreases the number of iterations required in the subgradient method to 
obtain a good approximation of ff'. 

In Table 1 we compare the tightness of our bounds with those of Ahmadi and 
Bagchi [l], which are the best currently available. Ahmadi and Bagchi [ l ]  bounds 
(AB bounds) are an improved version of Bansal's [3] m machine based bounds. 
The overall complexity of AB bounds is O(mn log n ) .  The worst-case complexity 
of our bounds, on the other hand, is O(k(n3 + IT*[)), where k is the number 
of iterations in the subgradient method. Note that at each iteration the multiplier 
vector A can be updated in O(lT*l) time. 

We have generated 20 12-job six-machine problems using integer processing 
times drawn from a uniform (1-100) distribution. For each problem we have 
generated eight machine based path vectors, i.e., 1T*l = 8. A machine based 
path for position i in the schedule u is given as (t(i, j) = k ,  j = 1, . . . , i - 
l ) ,  where 1 5 k 5 m. We have run the subgradient optimization method for 
four iterations, i.e. , we have solved four consecutive linear assignment problems. 
The linear assignment solution procedure used is that of Tomizawa [ 171 and we 

Table 1. A comparison of alternative methods. 

cpu ms KK/AB KK Miyazaki 
Problem KK AB RIPl KK AB RIPl ratio heuristic heuristic 

Lower bound 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

6541.77 
6321.20 
6213.27 
6059.72 
5763.12 
5805.66 
6982.06 
6150.58 
7369.89 
5750.64 
7319.16 
7284.41 
60 19.20 
6140.56 
6442.93 
5739.64 
6012.45 
5388.45 
5660.77 
591 8.83 

6141 
6182 
6089 
5920 
5686 
5658 
6986 
6166 
7434 
5587 
7477 
7292 
5860 
5818 
6253 
5579 
5864 
5154 
5396 
6171 

6641.11 
6439.66 
6223.96 
6069.82 
5802.37 
5815.55 
6996.30 
6201.04 
7434.48 
5830.13 
7540.00 
7320.80 
6028.90 
6180.91 
6498.20 
5753.34 
6022.56 
5407.08 
5700.6 1 
5986.00 

13 5 1190 1.065 
14 6 1170 1.023 
12 4 2020 1.020 
12 5 980 1.024 
13 5 1660 1.014 
11 4 2340 1.026 
13 6 2080 0.999 
13 3 1790 0.997 
11 5 960 0.991 
14 4 1690 1.029 
11 5 660 0.979 
12 6 1950 0.999 
13 3 1500 1.027 
14 5 1060 1.055 
12 6 1690 1.030 
13 4 2500 1.029 
11 5 1020 1.025 
14 6 1620 1.045 
11 5 1430 1.049 
11 5 1900 0.959 

8189 
7693 
7952 
6975 
7193 
685 1 
8065 
7927 
8442 
7107 
7691 
8397 
6984 
7509 
7188 
6930 
7320 
6268 
6673 
7606 

~ 

8412 
8308 
8859 
8103 
9203 
8033 
9192 
8847 
9445 
8187 
9046 
9885 
7993 
8210 
9192 
8358 
9455 
7828 
8256 
8257 
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have used the code developed by Burkard and Derigs [4]. The initial A vector 
is taken as 

and p' is set equal to 25.0/(t + 1)*, t 2 0. 
In Table 1, Column 1 tabulates the lower bounds generated by the subgradient 

method. AB bounds are presented in Column 2. Optimal solution to the linear 
programming relaxation of the (RIP1) problem is documented in Column 3. A 
comparison of Columns 1 and 3 demonstrates the rapid convergence of the 
subgradient method. Columns 4-6 tabulate the CPU times for these three dif- 
ferent approaches (i.e., our subgradient procedure, the AB bounding scheme, 
and the solution of the linear programming relaxation of (RIP1) using the 
DDLPRS subroutine of IMSL). In Column 7 we present the ratio of our bounds 
to AB bounds. The average improvement is 1.9%, and in 14 problems our 
bounds have been strictly greater than the AB bounds. In Column 8 we report 
on the best upper bound obtained after four iterations of the subgradient ap- 
proach. Note that at each iteration of the subgradient procedure we solve a 
linear assignment problem, and the solution of this problem is a feasible schedule 
for the n/m/P/C C, problem. We refer to the best schedule generated in four 
iterations of the subgradient approach as our heuristic solution (i.e., the KK 
heuristic) to the problem. Finally in Column 9, the performance of the heuristic 
developed by Miyazaki et al. [ l l ]  is tabulated. (The average performance of the 
KK heuristic is 16.5% better than that of Miyazaki heuristic.) 

The overall performance of our approach is very promising. We can generate 
very good upper bounds (i.e., feasible schedules to the problem) while improving 
the currently available lower-bounding scheme. Note that AB bounds are ob- 
tained by generating a preemptive schedule for an n-job one-machine problem 
with ready times and sum of completion times criterion (i.e., n / l / r ,  2 O/C C,  
problem). Therefore, the schedule that provides the lower bound in the AB 
method is not necessarily a feasible schedule for the original n/mlP/C C, prob- 
lem. 

However, the two approaches, i.e., our subgradient method and AB bounds, 
differ in terms of their worst-case computational complexities, and we will ad- 
dress the tradeoff between goodness of a lower bound and its computational 
complexity in Section 6, where we compare the performances of these two 
approaches when they are embedded in an implicit enumeration scheme. 

5. A NEW BRANCH-AND-BOUND APPROACH TO THE 
nlmlPIZ Ci PROBLEM 

Most research on optimal algorithm development for non-preemptive per- 
mutation flow shops has focused on enumerative methods. In this section we 
present a new branch-and-bound approach to the n /m/  PIC C j  problem. 

Most of the enumerative approaches for permutation flow shop problems use 
as a branching scheme the assignment of jobs to the Ith position in the schedule 
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at the fth level of the search tree. Thus, at a node at that level a partial schedule 
(a(1). a(2), . . . , ~ ( 1 ) )  has been formed. The bounding scheme generates lower 
bounds on the value of all possible completions of the partial schedule. As will 
become clear from the description below, our branching-and-bounding schemes 
are distinctively different than those previously discussed in the literature. 

BRANCHING SCHEME: Let S be a set of schedules and uo be a schedule 
in S. Then the set S\{ao} can be divided into at most n - 1 nonempty, mutually 
exclusive, and collectively exhaustive subsets as follows. 

SI = {a E S and a(1) # a-o(l)}, 

S 2  = {a  E S and a(1) = q)(l), 4 2 )  # a0(2)}, 

S3 = {a-E S and a(1) = q,(l), 4 2 )  = a0(2), u(3) # q,(3)} ,  

and 

S,,-l = { a €  S and a(1) = vI(l), . . . , a(n - 1) # ao(n - 1)). 

The above sets S , ,  Sz, . . . , S,-l satisfy the above-mentioned properties, i.e., 

BOUNDING SCHEME: Let S be a set of schedules. Using the results of 
Section 4 we can conclude that the solutions to the (LRAP(A)) problem, subject 
to the constraint that the resulting schedule is in S, provide lower bounds for 
this particular set S. Due to the special structure of our branching scheme, the 
above-mentioned constraints can be easily incorporated into the objective func- 
tion, so that the resulting assignments (or schedules) are in S. For example, if 
a(1) # ~ ~ ( 1 )  in S, then we set u ; , , ( ~ ) . ~  = B, 7 E T* during the solution of 
(LRAP(A)) ,  where B is arbitrarily large. 

At each node, we choose (T*I path vectors for lower-bound generation. In 
the current version of the algorithm, the path vector set T* contains different 
combinations of machine based paths for different positions in the schedule. For 
example, for location i in the schedule, the following set of integers is a machine 
based path: (t(i, j )  = k ,  k ,  j = 1, . . . , i - 1) where 1 9 k 9 rn. However, as 
we move down in the search tree, the number of fixed jobs increases, and partial 
schedules of significant size are formed. Then, the set T* is formed in a way 
that the selected paths attain the maximum possible value on these partial sched- 
ules. 

The performance of our algorithm is very much affected by the selection of 
the initial multiplier vector A in the subgradient optimization method. Due to 
the above-mentioned selection of T* ,  the path vector sets of a node and its 
children nodes are very similar, and in most cases the multiplier vector obtained 
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in the last iteration of the subgradient method is a very good initial multiplier 
vector for the children nodes of this particular node. 

For each new subset of schedules generated, i.e., each node in our search 
tree, we use the same approach in developing lower and upper bounds. The 
iterations of the subgradient method provide us with lower bounds and feasible 
schedules. The sum of completion times of these schedules give us new upper 
bounds. 

FATHOMING CRITERION: If the current upper bound is less than or 
equal to the lower bound on that subset of schedules. 

NODE TO EXAMINE NEXT CRITERION: In the current version of our 
algorithm we examine next the subset of schedules that has the smallest lower 
bound. 

EXAMPLE: We will illustrate the basic ideas of the algorithm using the 
three-job and two-machine problem given in Table 2. Let S be the set of all 
schedules such that a(1) # 1, i.e., S = ((2, 1, 3 ) ,  (2, 3 ,  l ) ,  ( 3 ,  1, 2), ( 3 ,  2, l)}. 
Let IT:'[ = 2, and let rl and r2 be given as follows: 

The assignment matrices A'' and A"- for S are given in Tables 3 and 4. Let 
A" = (4, 4). Then the assignment matrix for (LRAP(A2))  is as given in Table 5 .  
The solution of assignment problem is (T = (2, 1, 3 )  and fAp(AO) is equal to 19. 
Now, the subgradient is given by p = (20 - 19, 18 - 19) = (1, -1). We can 
also find an upper bound by computing the sum of completion times of schedule 
(T, which is 20. Let Po = 2.5; then the new multiplier vector, before the nor- 
malization, is given by 

2.5(1)(20 - I">, { 1 2 S - 1 ) ( 2 0  - 19) 
2 

max 0, - + 
2 2 

or 1 = (1.75, 0), and therefore A' = (1, 0). In the next iteration we solve the 
linear assignment problem on the matrix A'', and the optimal solution is (T = 
(2, 1, 3 )  and f A P ( A 1 )  = 20, which is equal to the upper bound. Therefore, for 
the set of schedules S ,  (T = (2, 1, 3 )  is an optimal schedule. 

Table 2. Example problem. 

Machine 
Job 1 2 
1 1 2 
2 3 1 
3 4 2 



858 Naval Research Logistics, Vol. 40 (1993) 

Table 3. Assignment matrix A'l. 

Location 
Job 1 2 3 
1 B 4 3 
2 10 7 4  
3 14 10 6 

Table 4. Assignment matrix AT?. 

Location 
Job 1 2 3 
1 B 4 2 
2 12 2 1 
3 18 4 2 

Table 5. Assignment matrix for 
( LRA P( A")). 

Location 
Job 1 2 3 

1 B 4 3.5 
2 11 4.5 2.5 
3 16 7 4 

6. COMPUTATIONAL PERFORMANCE OF THE BRANCH-AND- 
BOUND PROCEDURE 

We have tested the performance of our algorithm using randomly generated 
problems. The method of problem generation follows that given in Lageweg, 
Lenstra, and Rinnooy Ken [9]; i.e., four different problem classes are consid- 
ered: random problems, problems with correlation between the processing times 
of each job, problems for which the processing times of each job have a positive 
trend, and finally problems with both correlation and positive trend. In Table 
6 we present the distributions of these classes, where c(i)  is the correlation 
coefficient of job i ,  i = 1, . . . , n ,  with a uniform [0-41 distribution, and j is 
the machine index. 

In Tables 7 and 8 we present the results comparing the performance of our 
branch-and-bound procedure to the one developed by Bansal [3], with the im- 
proved lower bounds of Ahmadi and Bagchi [l], for n = 8 and n = 10, re- 
spectively. Bansal's algorithm is a general approach which works with partial 
assignments, as described in the beginning of this section. Since AB bounds 
dominate the bounds developed by Bansal, we have used the improved bounds 
in the implementation of this approach. Both methods have been coded in 
FORTRAN, on a multiuser IBM 3081-D system. 

In Tables 7 and 8 Column 1 documents the parameters of a specific set of 
problems, where m is the number of machines, I T*l is the number of path vectors 
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Table 6. Problem classes. 
Problem class Distribution Parameters 

Random (R) Uniform 1,100 
Correlation (C) Uniform 20c(i) + 1, 20c(i) + 20 
Trend (T) 
Correlation/trend (CT) 

Uniform 
Uniform 

12.5(j - 1) + 1, 12.5(j - 1) + 100 
2.5(j - 1) + 2044 + 1, 2.5(j - 1) + 20c(i) + 20 

Table 7. Comparison of branch-and-bound methods for n = 8. 

CPU ms No. of nodes Storage req. Problem 
Parameters class KK Bansal KK Bansal KK Bansal 

R 619 624 108.20 131.65 15.15 95.65 
C 115 286 18.05 53.40 2.80 34.30 m = 2  

T 456 516 78.45 102.80 11.40 74.80 IT*[ = 3 
CT 127 302 19.35 52.50 3.40 40.55 Steps = 2 

m = 3  
/T*l = 4 
Steps = 3 

m = 4  
IT*\ = 5 
Steps = 3 

m = 5 
IT*[ = 6 
Steps = 4 

R 
C 
T 

CT 
R 
C 
T 

CT 
R 
C 
T 

CT 

1262 
268 
92 1 
268 

3860 
289 
920 
609 

4930 
447 

1604 
1055 

1019 
506 
677 
452 

2584 
500 
608 
745 

305 1 
682 

1104 
1074 

190.15 
43.70 

135.80 
41.15 

452.10 
34.20 

108.25 
76.15 

448.25 
40.65 

151.25 
99.95 

186.25 
85.25 

127.45 
76.05 

366.45 
61.30 
79.55 

100.75 
312.85 
64.55 

114.15 
108.65 

23.05 
5.75 

16.20 
5.70 

58.25 
5.50 

12.50 
11.10 
53.05 
6.70 

19.75 
13.80 

Table 8. Comparison of branch-and-bound methods for n = 10. 

134.75 
65.60 
85.80 
58.60 

236.65 
43.60 
57.55 
68.20 

215.40 
44.35 
80.00 
76.20 

CPU ms No. of nodes Storage req. Problem 
Parameters class KK Bansal KK Bansal KK Bansal 

R 6,119 7,381 714.84 
C 461 672 52.75 
T 4,199 5,337 491.25 

CT 562 808 76.15 
R 10,045 8,094 1,095.95 
C 673 1,140 69.95 
T 6,183 5,107 699.10 

CT 2,575 3,354 302.35 
R 28,602 25,396 2,233.75 
C 2,064 3,281 211.05 
T 5,705 4,510 562.80 

2,636 3,056 231.05 

m = 2  
IT*[ = 3 
Steps = 3 

m = 3  
IT*l = 4 
Steps = 3 

m = 4  
IT*/ = 5 
Steps = 3 CT 

R 44,903 32,797 3,394.10 
C 2,281 3,298 176.55 
T 6,163 4,600 485.00 
CT 5.859 7.514 472.90 

m = 5  
IT*l = 6 
Steps = 4 

1,009.70 
129.75 
675.70 
169.85 
883.50 
141.80 
590.80 
412.15 

1,783.65 
290.40 
406.45 
270.40 

2,515.55 
241.30 
312.80 
544.30 

75.25 
6.45 

61.50 
9.45 

102.45 
9.65 

63.65 
30.10 

197.75 
25.40 
56.70 
24.45 

304.85 
22.00 
50.20 
59.65 

785.80 
106.25 
524.50 
128.30 
681.10 
112.70 
473.25 
325.45 

1,416.25 
28.20 

324.15 
210.70 

1,977.00 
186.05 
251.55 
418.65 
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used in our lower-bound generation scheme and “Steps” is the number of it- 
erations in the subgradient method. Column 2 of Tables 7 and 8 denotes the 
problem class. For each class we have generated 20 problems; hence each entry 
in Tables 7 and 8 represents the average of 20 problems. In Columns 3 and 4 
of Tables 7 and 8, we compare the computational effort required by our method 
(KK) and by Bansal’s procedure, respectively. In Columns 5 and 6 we present 
the average number of nodes generated by the two different approaches. In 
Columns 7 and 8, we report the average maximum number of nodes stored by 
our method, and by Bansal’s method, respectively. Note that the maximum 
number of nodes stored denotes the maximum number of active nodes (i.e., 
nodes that have been generated but not eliminated) at any time point during 
the actual run of the branch-and-bound procedure. This could be an important 
factor for large-size problems, especially if the storage constraints are more 
pressing than the CPU time constraint. 

In two-machine eight-job and two-machine ten-job problems our approach 
dominates Bansal’s method, in terms of both CPU times and the number of 
nodes, in all of the four problem classes. For rn = 3, 4, and 5 ,  our method 
dominates Bansal’s approach in problems with correlation (C), and with cor- 
relation and trend (CT). In random problems (R) and problems with trend (T), 
Bansal’s method dominates our approach. Apparently for these problems the 
subgradient method cannot generate a good approximation of f F P ,  within the 
allowed number of iterations. Increasing the number of iterations in the subgra- 
dient method has resulted in larger CPU times, although the number of nodes 
generated by our approach dominated that of Bansal’s method for some prob- 
lems in classes (R) and (T). In all problems our approach has dominated Bansal’s 
method in terms of storage requirement. The dominance of our method in this 
category also indicates that our approach generates very good upper bounds 
early in the search tree so that the number of active nodes is kept at a minimum 
level. 

In order to illustrate the relative importance of this property, we have used 
our optimal method as a heuristic for large size problems. In Table 9, we doc- 

Table 9. 
Stopping Problem No. of Storage UB - LB 

Heuristic run of the optimal algorithm. 

Parameters criterion class c p u  ms nodes req. L B  

n = 20 
m = 5  
IT”1 = 6 
Steps = 5 

n = 25 
m = 5  
IT*/ = 6 
Steps = 5 

n = 30 
m = 5  
IT*l = 6 
Steps = 5 

CPU 5,000 
or 

UB - LB 
5 0.02 

L B  
CPU 2 7,500 

or 
UB - L B  

5 0.02 
L B  

CPU 2 12,500 
or 

UB - LB 
5 0.02 LB 

R 
C 
T 

CT 

R 
C 
T 

CT 

R 
C 
T 

CT 

5,000 
1,946 
5,000 
4,615 

7,500 
3,093 
6,849 
7,500 

12,500 
7,476 

11,657 
12,500 

508.45 
145.90 
508.89 
446.95 

512.50 
138.55 
488.35 
510.05 

513.10 
215.45 
514.20 
487.70 

202.20 
81.55 

105.45 
244.00 

214.65 
89.45 

110.10 
292.05 

243.65 
136.35 
119.90 
283.50 

0.1716 
0.0192 
0.0601 
0.0312 

0.1797 
0.0170 
0.0599 
0.0378 

0.1888 
0.0188 
0.0801 
0.0363 
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ument the performance of the heuristic run of our optimal method. In Table 9, 
Column 1 tabulates the parameters of a specific set of problems. Column 2 
documents the stopping criterion used in the heuristic run of our optimal al- 
gorithm. For example, in 20-job five-machine problems, we have terminated 
the optimal algorithm when the total CPU time exceeded 5000 ms or when we 
found an upper bound which was within 2% of the lower bound. Column 3 
documents the different problem classes. For each class we have generated 20 
problems, and each entry represents the average of 20 problems. The average 
CPU time, number of nodes generated, and maximum number of nodes stored 
for each problem class are presented in Columns 4-6, respectively. In Column 
7, we report the average performance of the heuristic run of the our optimal 
approach. Except for random problems, the heuristic has performed exception- 
ally well. 

We have also used Bansal’s approach for the same problems; however, the 
only complete schedules generated by the Bansal’s method with the AB bounds 
have been the schedules generated when developing the lower bounds on the 
first machine, and the heuristic schedules developed by our approach dominated 
all of these schedules. 

7. CONCLUSION 

In this article we have developed a new modeling framework for the per- 
mutation flow shop scheduling problem for the minimization of the sum of 
completion times. The modeling framework is based on a game-theoretic inter- 
pretation of the problem. A Lagrangian relaxation approach on the resulting 
integer programming formulation is used to develop lower bounds for the prob- 
lem. Those bounds are implemented in an efficient branch-and-bound algorithm. 

The methodology developed in this article is quite flexible and it can handle, 
with minor modifications, a more general class of problems for the sum-of- 
completion-times criterion in permutation flow shops: the class of scheduling 
problems with finite buffer capacities. We have already undertaken research in 
this direction and we will report our research progress on these problems in a 
subsequent article. 
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