
The Permutation Flow Shop Problem with Sum-of-
Completion Times Performance Criterion

Selcuk Karabati
Management Department, Faculty of Business Administration, Bilkent

University, 06533 Bilkent, Ankara, Turkey

Panagiotis Kouvelis
The Fuqua School of Business, Duke University, Durham, North Carolina,

27706

In this article we address the non-preemptive flow shop scheduling problem for
minimization of the sum of the completion times. We present a new modeling
framework and give a novel game-theoretic interpretation of the scheduling prob-
lem. A lower-bound generation scheme is developed by solving appropriately de-
fined linear assignment problems. This scheme can also be used as a heuristic
approach for the solution of the problem with satisfactory results. Its main use,
however, is as a bounding scheme within a branch-and-bound procedure. Our
branch-and-bound procedure improves significantly upon the best available enu-
merative procedures in the current literature. Extensive computational results are
used to qualify the above statements. 0 1993 John Wiley & Sons, Inc.

1. INTRODUCTION

We address the non-preemptive permutation flow shop scheduling problem
with the sum of completion times as the performance criterion. The above
problem can be stated as follows. Each of the n jobs, J , , J 2 , . . . , I,,, has to be
processed on m machines, M I , M2, . . . , M,, in that order. The processing of
job J , on machine M, requires an uninterrupted period of processing time p, . , .
Each machine can process at most one job at a time. The objective is to find a
permutation schedule, i.e., a single ordering of the jobs on all machines, such
that the sum of completion times is minimized. Minimizing the sum of completion
times amounts to minimizing the mean completion time of jobs as well. A
permutation schedule is represented by a = (a(l), a(2), . . . , a(n)) , where
a(i) is the ith job in the processing order. In our further discussion when we
refer to a schedule a w e mean a permutation schedule, unless specified otherwise.

Because the problem is NP-hard for m L 2 (see Gonzalez and Sahni [6]),
enumerative and/or heuristic approaches are essentially unavoidable. For m =
2, solution procedures have been developed by Ignall and Schrage [7] and Kohler
and Steiglitz [8]. A lower bounding scheme for m = 2 was proposed by Ignall

Naval Research Logistics, Vol. 40, pp. 843-862 (1993)
Copyright 0 1993 by John Wiley & Sons, Inc. CCC 0894-069X/93/060843-20

844 Naval Research Logistics, Vol. 40 (1993)

and Schrage [7]. Their procedure was generalized to arbitrary m by Bansal [3].
Ahmadi and Bagchi [11 improved upon Bansal’s bounding scheme. Miyazaki,
Nishiyama, and Hashimoto [111, and Szwarc [151 have developed sufficient op-
timality conditions for the problem using a pairwise interchange method. Mi-
yazaki et al. [l l] presented also a heuristic solution procedure.

In this article we expand on the modeling framework of Monma and Rinnooy
Kan [121 for permutation flow shops. We model the problem as a two-person
zero-sum game. Using this new modeling approach, we present a lower-bounding
scheme that requires the solution of a series of linear assignment problems.
Using this bounding scheme and a new branching approach, we develop an
efficient branch-and-bound procedure for the problem. The main ideas of our
bounding scheme can also be used to generate a good heuristic solution to the
problem.

The structure of the article is as follows. In Section 2 we present our modeling
framework and discuss a class of linear assignment problems which will play an
important role in the rest of the article. A novel interpretation of the flow shop
scheduling problem in a game theoretic context is presented in Section 3. In
Section 4 we discuss a new lower-bound generation approach based on the results
of Sections 2 and 3. Capitalizing on the results of Section 4, we develop a new
branch-and-bound scheme for permutation flow shops in Section 5 . We report
on our computational experience with this new approach in Section 6. Finally,
Section 7 summarizes our results and discusses some potential extensions of our
modeling approach.

2. CRITICAL PATHS, ASSIGNMENT PROBLEMS, AND THE
PERMUTATION FLOW SHOP SCHEDULING PROBLEM

For a schedule w we can define a recursive relationship to find the completion
time C<,(,),, of job I,,,,) on machine M , as follows (for detailed explanations refer
to Baker [2] and Monma and Rinnooy Kan [12]):

where Co(o)., = Co(,).o = 0. The recursive structure (1) can be equivalently
presented, as pointed out by Monma and Rinnooy Kan [12], by the directed
graph G depicted in Figure 1. Vertices (cr(i), j) are defined for each element
o(i) of the permutation and each machine M,. A weight po,,),, is associated
with vertex ((~ (i) , j) . Directed arcs are defined from each vertex (a(i), j) toward
(a(i + l) , j) and (w(i), j + 1).

Given the above-defined graph G, the completion time Co,,),, of job .I,,,,,, on
machine M,, in the permutation schedule w, is equal to the maximum-weighted
directed path from (w(l), 1) to (a(i), j) in the graph. Therefore, the sum of
completion times of jobs in schedule w, F (a) , is given by

Any path from (a (l) , 1) to ((~ (i) , m) which attains the value Crr(i).nl is called a
critical path for job J,,,) in schedule (T. Consequently, the problem of finding

Karabati and Kouvelis: Permutation Flow Shop 845

&&+ . . ' +A,
Figure 1. Directed graph (G) representation of a permutation schedule u.

the sum of completion times of a schedule is analogous to the determination of
n maximum paths, one for each job, on an acyclic graph with positive arc lengths.
The computational complexity of determining all such paths is O(nm) (Lawler

Let T (i) be a path from (~ (l) , 1) to (a(i), m) on the directed graph G. Szwarc
[15] makes the observation that the length f (a(i) , T (i)) of the path T (i) can be
presented as

[lo]).

where 1 5 t(i, 1) 5 t(i, 2) 5 ... 5 t(i, i - 1) 9 m are appropriate integers which
uniquely define ~ (i) . Let denote the set of all such paths on the direct graph
G for job .I,,,,). Then F (a) , the sum of completion times, can be rewritten as

By letting T =
T , we can rewrite (3) as

x T2.n, x ... x T,,nl, and T = (~ (l) , 7(2) , . . . ; ~ (n)) E

Then, if S,, is the set of all permutation schedules, the permutation flow shop
scheduling problem for minimization of the sum of completion times can be
formulated as follows:

846 Naval Research Logistics, Vol. 40 (1993)

Using the above established modeling framework, we can now state the following
proposition. For presentation convenience, we use the usual abbreviation nlml
PIC. Ci for the n-job m-machine permutation flow shop scheduling problem with
the sum-of-completion-times performance criterion.

PROPOSITION 1:
holds:

max min
YET u€S,,

For the nlmlPIC Ci problem the following relationship

I1 n

PROOF: Let a. E Sn be a specific permutation schedule and E T be a
path vector on the directed graph G. Then

n n N

However, (7) holds for every no E S,, and T , ~ E T , therefore the validity of (6)
follows immediately. 0

Let F (a , T) = E:=, f(a(i), T(i)), a E Sn and T E T. Then Proposition 1 states
that for any path vector T E T , the solution to the optimization problem

(A P) : min F (a , T)
U€ s,,

provides a lower bound for the problem as formulated in (5) . Some further
insight on the nature of (A P) is provided by the following result.

PROPOSITION 2: (A P) is equivalent to a linear assignment problem.

PROOF: According to (2), for a specific path T (i) in path vector 7 E T ,
there exists a unique set of integers (t(i , l) , t(i, 2) , . . . , t(i, i - 1)) such that
for any a E S,, we have the following:

where 1{.} is an indicator function and the integers t(i, 0) and t(i, i) assume the
values 1 and m, respectively. Note that we have 1 5 t(i , 1) 5 t(i, 2) 5 ... 5 t(i,
i - 1) I m. Now by letting t(i, k) = 0, i < k 5 n we can rewrite (8) as

~

r = l] = I k = t (i , j - l)

Karabati and Kouvelis: Permutation Flow Shop 847

Then F (a , T) becomes

By reordering of the above summations we obtain

Let us denote by

Then (9) can be rewritten as

Using relationship (10) one can easily observe that (AP) is equivalent to a linear
assignment problem with cost matrix A' = (u;,!). 0

EXAMPLE: We now present a numerical illustration of Proposition 2. Con-
sider a three-job, two-machine problem with the paths given in Figure 2. For
these paths we have the following path weights:

Machines

1

Position 2

3

1 2

E
Figure 2. The paths for the example problem.

848 Naval Research Logistics, Vol. 40 (1993)

We also have

Now using this relationship we can show that min, F (a , 7) is a linear assignment
problem with the following assignment matrix:

Location
Job 1 2 3

Using Proposition 1, we can easily state a sufficient condition for the optimality
of a schedule v E S, .

PROPOSITION 3: Let a,) be a schedule in S,,, and T" be the path vector for
which F (q , T") = maxTETF(a,,, T) . ff F (q , 7") = min,Ly,, F (a , T"), then ql is
an optimal schedule.

PROOF: From Proposition 1 we know that minOEs,, F (a , T*) is a lower bound
for the problem. From the statement of the proposition we have

F(a,,, T*) = max F(a,), T) = min F (a , 7").
r E T UtS,,

Therefore, a,, is an optimal schedule. 0

Proposition 3 can be useful for the class of scheduling problems for which (6)
holds as an equality. Our discussion below identifies such a class of problems in
ordered flow shops and demonstrates how our modeling framework can be
applied to derive one of the known results in the ordered flow shop literature
(see Panwalkar and Khan [14]).

DEFINITION 1: A pow-shop problem is ordered if the following constraints
are satisfied:

1. p,., > pk.1, for jobs i and k , and for some machine t, also implies p,,j 2 pk.,, j = 1,
. . . , m,
2. p,., p ,.,, for machines j and I, and for some job r, also implies P , , ~ 2 p ,,,, i = 1,
. . . > n .

PROPOSITION 4: Consider the ordered f low shop problem. ff the largest
processing time of each job is on the first machine, then the n lmlPlX C j problem
belongs to the special class of scheduling problems for which relationship (6) holds
as an equality. The SPT (shortest processing time) sequencing rule provides the
optimal solution to the above ordered flow shop problem.

Karabati and Kouvelis: Permutation Flow Shop 849

PROOF: Using results from Panwalkar and Khan [14], we can write the
critical path vector T* = (T * (i) , i = 1, . . . , n) of the optimal schedule aspT in
the following form:

Let us now consider the corresponding linear assignment problem for T*:

(A P) : min F (a , T *) .
UES,,

The entries to the assignment matrix A" = (u;:]) are given by

l?l

u;., = (n + 1 - j)p , , , + C pr,; , r = 1, . . . , n; j = 1, . . . , n .
;=1

Note that the second term of a;:! is independent of j . Therefore the optimal
solution to (A P) sequences the jobs in the SPT order, based on their processing
times on Machine 1. Then, we have that for the resulting schedule the following
relationship holds:

min F (a , T*) = F (q S p T , T*) = max F(aspr , T) .
W t S , , TE T

The last equality in the above relationship holds by the definition of T* as the
critical path vector for aSpT. Therefore, relationship (6) holds as an equal-
ity. 0

3. GAME-THEORETIC INTERPRETATION OF THE
nlmlPII: Ci PROBLEM

The results of Section 2 point out the min-max nature of the nlrn/PIC C,
problem. A problem with a similar min-max formulation has appeared in very
different context, that of game theory. This fact motivated us to provide a game-
theoretic interpretation of the n / r n / P / C C j problem. We will use this interpre-
tation to directly apply an integer programming formulation of the corresponding
game-theoretic problem to formulate our sequencing problem.

We may relate the formulation (5) of permutation flow shop problems to a
two-person zero-sum game. Player 1, referred to as the path maker, has a pure
strategy set T (set of path vectors) and Player 2, referred to as the schedule
maker, has a pure strategy set S,l . For Player 1 the payoff of the game for pure
strategies a E S,, and T E T is F (a , T) . Similarly, the loss of Player 2 is F(v, T) .

In a two-person zero-sum game, there exists a pure strategy for player 1 by
which he is certain to obtain at least a payoff of f , which is given by

f = max min F (a , T) .
i € T rrES,,

-

Similarly, there exists a pure strategy for the schedule maker that offers him

850 Naval Research Logistics, Vol. 40 (1993)

the least loss independently of the actions of the path maker. The minimal loss
for the schedule maker is given by 7, where

7 = min max F(P , T).
UES,! r E T

Observe that 7 is the optimal solution of the permutation flow shop problem.
From the results of game theory (von Neumann and Morgenstern [18], we can
immediately conclude that f 5 7, an indirect verification of Proposition 1. In
case the sufficient conditionstated in Proposition 3 holds, i.e., f - = we say
that the game has a saddle or equilibrium point.

The n / m / P / C C j problem can also be analyzed as a majorant game. In such
a game the schedule maker makes his move and then the path maker chooses
his strategy in full knowledge of the other player's move. It can be seen that
the equilibrium point of the majorant game is given by

f * = min max F(w, T),
v€S,, r E T

and is equal to the optimal solution of the n l m l PIC C, problem. The equilibrium
value of the majorant game, and as a consequence the solution to the n l m l P l
2 C, problem, can be found by solving the following integer programming
formulation:

(ZP): f * = min M ,

subject to

where f * is the value of the game (optimal value of the sum of completion
times), and y , = 1 if (T is the optimal pure strategy (schedule) for the schedule
maker.

The simple interpretation of the n l m l P I 2 C j problem as a majorant game
has led us to formulation (ZP). We now proceed to write an equivalent formu-
lation (ZP), which is more convenient for our further discussion purposes. We
can always think of a permutation schedule (T E S, as a one-to-one assignment
of n numbers (or n positions in a sequence) to n jobs. Therefore we can introduce
the set of binary integer decision variables x i , j E (0, l}, to equivalently describe
a schedule as

Karabati and Kouvelis: Permutation Flow Shop 85 1

where

1, if a(j) = J; ,
0, otherwise.

x . . =

Using the above set of decision variables and relationship (10) we can state
formulation (f P) in an equivalent way as follows:

(IP1): f * = min M ,

subject to

i = l / = I

I ,

T E T :

xi.j E (0, l}, i, j = 1, . . . , n. (17)

Although the assignment matrix of a given path T (i.e., U [, ~ ’ S) can be determined
in O(n3m) time, (IP1) cannot be directly solved with the available integer pro-
gramming software due to the number of constraints in constraint set (14), which
increases exponentially with the number of jobs and stations. In the next section
we present a new lower bounding scheme for the nlmlPIC C, problem based
on a relaxation of the (fP1) formulation which requires generation of a finite
number of constraints in constraint set (14).

4. A NEW LOWER BOUND GENERATION SCHEME FOR THE
nlmlPIX Ci PROBLEM

In order to develop lower bounds for the nlmlPIC Ci problem, we are going
to follow a two step relaxation procedure. At first, we restrict our attention only
to a subset of T* of the path vector set T. The relaxed formulation (fP1) is
given as follows:

(RIP1): f: = min M ,

subject to

c a[jxi, j 5 M, T E T*,
;=I j = l

(15)-(17).

852 Naval Research Logistics. Vol. 40 (1993)

At the second step of our relaxation approach we dualize the constraint set (18).
Let A = {A,, T E P} be the set of Lagrange multipliers. Then, the Lagrangian
relaxation of (RZP1) is

subject to (15)-(17). Observe that f (A) is bounded only if ZTrET^ A, = 1. Without
loss of generality, we can always assume that this is the case because we can
normalize the Lagrange multipliers A,, T E T", by their corresponding summation
Z I E T A,. Therefore, we can always state (LR(A)) as an equivalent linear as-
signment problem as follows:

subject to (15)-(17). Let f F P be the optimal objective function value of the linear
programming relaxation of (RIP1). Using standard results from the Lagrangian
relaxation theory (for a textbook reference see Nemhauser and Wolsey [13]),
we can state the following property:

PROPERTY 1:

f k P = max fAP(h).
A.X,,T.A,= I

From our above discussion, we can conclude that f: is a legitimate lower
bound for the nlmlPII: C, problem, i.e., f : 5 f* . We can always approximate
f : from below by solving the linear programming relaxation of (RIP1). From
well-known results of Lagrangian relaxation theory, and since the constraint set
of (LRAP(A)) has a network structure, we are guaranteed that our Lagrangian
bound cannot be better than the linear programming relaxation bound. The
solution of the linear programming relaxation of (RIPl) , however, proved to
be computationally prohibitive when we implemented it within a branch-and-
bound approach. Thus, we decided to use a slightly different path. To obtain
f bP , or a legitimate approximation of it (i.e., a lower bound on it), we solve the
linear assignment problem (LRAP(A)) for an appropriately chosen vector A =
{ A r , T E T"}. The use of a subgradient optimization method helps us update the
multiplier vector A, and within a small number of iterations generates a very
good approximation of fkP. Our subgradient optimization procedure starts with
an initial multiplier vector A' = {A!, T E T*} and then defines iteratively a
sequence of multiplier vectors A' by use of the following rule

Karabati and Kouvelis: Permutation Flow Shop 853

where 0‘ is a scalar, f is an upper bound on f f P , p = (p,, T E T*) is a subgradient
fgr f A p (A ‘) , and (Jp(I is the Euclidean norm of the vector p. The notation 2 =
(A:, T E T*) denotes the multiplier vector before the required normalization
procedure for our method. The above subgradient optimization procedure is an
adaptation of the one presented in Goffin [5] , and based on results therein it is
guaranteed to converge to f r L P , when & p‘ = w and limHm p‘ = 0. For the
complete specification of the above procedure we need to describe the subgra-
dient vector p. This is described in Property 2 below.

PROPERTY 2: Let pT = C:==, Xi .= , a;,jxzj - f A p (h) , r E T * , where X * =
(x?J is the optimal solution to the (LRAP(A)) problem. Then, p = (p,, T E T *)
is a subgradient for f A p (A) .

PROOF: Let A’ be a multiplier vector, where ZrET’ A: = 1. We want to
show that

Note that (A’ - A)‘denotes the transpose of the vector (A’ - A). We can rewrite
the RHS of (19) as follows

Now using ETET* A, and ZrET* A: = 1, we obtain

n n

The last inequality follows from the fact that xzj, i , j = 1, . . . , n is a feasible
solution for the (LRAP(A’)) problem and therefore

n n

is an upper bound on f A p (A ’) . 0

We have used this new lower-bound generation scheme within a branch-and-
bound algorithm. We will discuss the implementation of the new bounding tech-
nique in more detail in Section 5 . The major disadvantages of the new approach
are as follows.

854 Naval Research Logktics, Vol. 40 (1993)

0 Each solution to the (LRAP(A)) problem is also a feasible solution for the n / m / P / B
C, problem, and the generated solution is usually very good in terms of sum of com-
pletion times. Therefore, our bounding scheme can be also used as a heuristic pro-
cedure.

0 After implementing the subgradient optimization procedure for a specific node in the
branch-and-bound tree we end up with a multiplier vector A . Now we can use A as
the initial multiplier vector of the nodes generated from this particular node. This
approach decreases the number of iterations required in the subgradient method to
obtain a good approximation of ff'.

In Table 1 we compare the tightness of our bounds with those of Ahmadi and
Bagchi [l], which are the best currently available. Ahmadi and Bagchi [l] bounds
(AB bounds) are an improved version of Bansal's [3] m machine based bounds.
The overall complexity of AB bounds is O(mn log n) . The worst-case complexity
of our bounds, on the other hand, is O(k(n3 + IT*[)), where k is the number
of iterations in the subgradient method. Note that at each iteration the multiplier
vector A can be updated in O(lT*l) time.

We have generated 20 12-job six-machine problems using integer processing
times drawn from a uniform (1-100) distribution. For each problem we have
generated eight machine based path vectors, i.e., 1T*l = 8. A machine based
path for position i in the schedule u is given as (t(i, j) = k , j = 1, . . . , i -
l) , where 1 5 k 5 m. We have run the subgradient optimization method for
four iterations, i.e. , we have solved four consecutive linear assignment problems.
The linear assignment solution procedure used is that of Tomizawa [171 and we

Table 1. A comparison of alternative methods.

cpu ms KK/AB KK Miyazaki
Problem KK AB RIPl KK AB RIPl ratio heuristic heuristic

Lower bound

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

6541.77
6321.20
6213.27
6059.72
5763.12
5805.66
6982.06
6150.58
7369.89
5750.64
7319.16
7284.41
60 19.20
6140.56
6442.93
5739.64
6012.45
5388.45
5660.77
591 8.83

6141
6182
6089
5920
5686
5658
6986
6166
7434
5587
7477
7292
5860
5818
6253
5579
5864
5154
5396
6171

6641.11
6439.66
6223.96
6069.82
5802.37
5815.55
6996.30
6201.04
7434.48
5830.13
7540.00
7320.80
6028.90
6180.91
6498.20
5753.34
6022.56
5407.08
5700.6 1
5986.00

13 5 1190 1.065
14 6 1170 1.023
12 4 2020 1.020
12 5 980 1.024
13 5 1660 1.014
11 4 2340 1.026
13 6 2080 0.999
13 3 1790 0.997
11 5 960 0.991
14 4 1690 1.029
11 5 660 0.979
12 6 1950 0.999
13 3 1500 1.027
14 5 1060 1.055
12 6 1690 1.030
13 4 2500 1.029
11 5 1020 1.025
14 6 1620 1.045
11 5 1430 1.049
11 5 1900 0.959

8189
7693
7952
6975
7193
685 1
8065
7927
8442
7107
7691
8397
6984
7509
7188
6930
7320
6268
6673
7606

~

8412
8308
8859
8103
9203
8033
9192
8847
9445
8187
9046
9885
7993
8210
9192
8358
9455
7828
8256
8257

Karabati and Kouvelis: Permutation Flow Shop 855

have used the code developed by Burkard and Derigs [4]. The initial A vector
is taken as

and p' is set equal to 25.0/(t + 1)*, t 2 0.
In Table 1, Column 1 tabulates the lower bounds generated by the subgradient

method. AB bounds are presented in Column 2. Optimal solution to the linear
programming relaxation of the (RIP1) problem is documented in Column 3. A
comparison of Columns 1 and 3 demonstrates the rapid convergence of the
subgradient method. Columns 4-6 tabulate the CPU times for these three dif-
ferent approaches (i.e., our subgradient procedure, the AB bounding scheme,
and the solution of the linear programming relaxation of (RIP1) using the
DDLPRS subroutine of IMSL). In Column 7 we present the ratio of our bounds
to AB bounds. The average improvement is 1.9%, and in 14 problems our
bounds have been strictly greater than the AB bounds. In Column 8 we report
on the best upper bound obtained after four iterations of the subgradient ap-
proach. Note that at each iteration of the subgradient procedure we solve a
linear assignment problem, and the solution of this problem is a feasible schedule
for the n/m/P/C C, problem. We refer to the best schedule generated in four
iterations of the subgradient approach as our heuristic solution (i.e., the KK
heuristic) to the problem. Finally in Column 9, the performance of the heuristic
developed by Miyazaki et al. [l l] is tabulated. (The average performance of the
KK heuristic is 16.5% better than that of Miyazaki heuristic.)

The overall performance of our approach is very promising. We can generate
very good upper bounds (i.e., feasible schedules to the problem) while improving
the currently available lower-bounding scheme. Note that AB bounds are ob-
tained by generating a preemptive schedule for an n-job one-machine problem
with ready times and sum of completion times criterion (i.e., n / l / r , 2 O/C C,
problem). Therefore, the schedule that provides the lower bound in the AB
method is not necessarily a feasible schedule for the original n/mlP/C C, prob-
lem.

However, the two approaches, i.e., our subgradient method and AB bounds,
differ in terms of their worst-case computational complexities, and we will ad-
dress the tradeoff between goodness of a lower bound and its computational
complexity in Section 6, where we compare the performances of these two
approaches when they are embedded in an implicit enumeration scheme.

5. A NEW BRANCH-AND-BOUND APPROACH TO THE
nlmlPIZ Ci PROBLEM

Most research on optimal algorithm development for non-preemptive per-
mutation flow shops has focused on enumerative methods. In this section we
present a new branch-and-bound approach to the n /m/ PIC C j problem.

Most of the enumerative approaches for permutation flow shop problems use
as a branching scheme the assignment of jobs to the Ith position in the schedule

856 Naval Research Logistics, Vol. 40 (1993)

at the fth level of the search tree. Thus, at a node at that level a partial schedule
(a(1). a(2), . . . , ~ (1)) has been formed. The bounding scheme generates lower
bounds on the value of all possible completions of the partial schedule. As will
become clear from the description below, our branching-and-bounding schemes
are distinctively different than those previously discussed in the literature.

BRANCHING SCHEME: Let S be a set of schedules and uo be a schedule
in S. Then the set S\{ao} can be divided into at most n - 1 nonempty, mutually
exclusive, and collectively exhaustive subsets as follows.

SI = {a E S and a(1) # a-o(l)},

S 2 = {a E S and a(1) = q)(l), 4 2) # a0(2)},

S3 = {a-E S and a(1) = q,(l), 4 2) = a0(2), u(3) # q,(3)} ,

and

S,,-l = { a € S and a(1) = vI(l), . . . , a(n - 1) # ao(n - 1)).

The above sets S , , Sz, . . . , S,-l satisfy the above-mentioned properties, i.e.,

BOUNDING SCHEME: Let S be a set of schedules. Using the results of
Section 4 we can conclude that the solutions to the (LRAP(A)) problem, subject
to the constraint that the resulting schedule is in S, provide lower bounds for
this particular set S. Due to the special structure of our branching scheme, the
above-mentioned constraints can be easily incorporated into the objective func-
tion, so that the resulting assignments (or schedules) are in S. For example, if
a(1) # ~ ~ (1) in S, then we set u ; , , (~) . ~ = B, 7 E T* during the solution of
(LRAP(A)) , where B is arbitrarily large.

At each node, we choose (T*I path vectors for lower-bound generation. In
the current version of the algorithm, the path vector set T* contains different
combinations of machine based paths for different positions in the schedule. For
example, for location i in the schedule, the following set of integers is a machine
based path: (t(i, j) = k , k , j = 1, . . . , i - 1) where 1 9 k 9 rn. However, as
we move down in the search tree, the number of fixed jobs increases, and partial
schedules of significant size are formed. Then, the set T* is formed in a way
that the selected paths attain the maximum possible value on these partial sched-
ules.

The performance of our algorithm is very much affected by the selection of
the initial multiplier vector A in the subgradient optimization method. Due to
the above-mentioned selection of T* , the path vector sets of a node and its
children nodes are very similar, and in most cases the multiplier vector obtained

Karabati and Kouvelis: Permutation Flow Shop 857

in the last iteration of the subgradient method is a very good initial multiplier
vector for the children nodes of this particular node.

For each new subset of schedules generated, i.e., each node in our search
tree, we use the same approach in developing lower and upper bounds. The
iterations of the subgradient method provide us with lower bounds and feasible
schedules. The sum of completion times of these schedules give us new upper
bounds.

FATHOMING CRITERION: If the current upper bound is less than or
equal to the lower bound on that subset of schedules.

NODE TO EXAMINE NEXT CRITERION: In the current version of our
algorithm we examine next the subset of schedules that has the smallest lower
bound.

EXAMPLE: We will illustrate the basic ideas of the algorithm using the
three-job and two-machine problem given in Table 2. Let S be the set of all
schedules such that a(1) # 1, i.e., S = ((2, 1, 3) , (2, 3 , l) , (3 , 1, 2), (3 , 2, l)}.
Let IT:'[= 2, and let rl and r2 be given as follows:

The assignment matrices A'' and A"- for S are given in Tables 3 and 4. Let
A" = (4, 4). Then the assignment matrix for (LRAP(A2)) is as given in Table 5 .
The solution of assignment problem is (T = (2, 1, 3) and fAp(AO) is equal to 19.
Now, the subgradient is given by p = (20 - 19, 18 - 19) = (1, -1). We can
also find an upper bound by computing the sum of completion times of schedule
(T, which is 20. Let Po = 2.5; then the new multiplier vector, before the nor-
malization, is given by

2.5(1)(20 - I">, { 1 2 S - 1) (2 0 - 19)
2

max 0, - +
2 2

or 1 = (1.75, 0), and therefore A' = (1, 0). In the next iteration we solve the
linear assignment problem on the matrix A'', and the optimal solution is (T =
(2, 1, 3) and f A P (A 1) = 20, which is equal to the upper bound. Therefore, for
the set of schedules S , (T = (2, 1, 3) is an optimal schedule.

Table 2. Example problem.

Machine
Job 1 2
1 1 2
2 3 1
3 4 2

858 Naval Research Logistics, Vol. 40 (1993)

Table 3. Assignment matrix A'l.

Location
Job 1 2 3
1 B 4 3
2 10 7 4
3 14 10 6

Table 4. Assignment matrix AT?.

Location
Job 1 2 3
1 B 4 2
2 12 2 1
3 18 4 2

Table 5. Assignment matrix for
(LRA P(A")).

Location
Job 1 2 3

1 B 4 3.5
2 11 4.5 2.5
3 16 7 4

6. COMPUTATIONAL PERFORMANCE OF THE BRANCH-AND-
BOUND PROCEDURE

We have tested the performance of our algorithm using randomly generated
problems. The method of problem generation follows that given in Lageweg,
Lenstra, and Rinnooy Ken [9]; i.e., four different problem classes are consid-
ered: random problems, problems with correlation between the processing times
of each job, problems for which the processing times of each job have a positive
trend, and finally problems with both correlation and positive trend. In Table
6 we present the distributions of these classes, where c(i) is the correlation
coefficient of job i , i = 1, . . . , n , with a uniform [0-41 distribution, and j is
the machine index.

In Tables 7 and 8 we present the results comparing the performance of our
branch-and-bound procedure to the one developed by Bansal [3], with the im-
proved lower bounds of Ahmadi and Bagchi [l], for n = 8 and n = 10, re-
spectively. Bansal's algorithm is a general approach which works with partial
assignments, as described in the beginning of this section. Since AB bounds
dominate the bounds developed by Bansal, we have used the improved bounds
in the implementation of this approach. Both methods have been coded in
FORTRAN, on a multiuser IBM 3081-D system.

In Tables 7 and 8 Column 1 documents the parameters of a specific set of
problems, where m is the number of machines, I T*l is the number of path vectors

Karabati and Kouvelis: Permutation Flow Shop 859

Table 6. Problem classes.
Problem class Distribution Parameters

Random (R) Uniform 1,100
Correlation (C) Uniform 20c(i) + 1, 20c(i) + 20
Trend (T)
Correlation/trend (CT)

Uniform
Uniform

12.5(j - 1) + 1, 12.5(j - 1) + 100
2.5(j - 1) + 2044 + 1, 2.5(j - 1) + 20c(i) + 20

Table 7. Comparison of branch-and-bound methods for n = 8.

CPU ms No. of nodes Storage req. Problem
Parameters class KK Bansal KK Bansal KK Bansal

R 619 624 108.20 131.65 15.15 95.65
C 115 286 18.05 53.40 2.80 34.30 m = 2

T 456 516 78.45 102.80 11.40 74.80 IT*[= 3
CT 127 302 19.35 52.50 3.40 40.55 Steps = 2

m = 3
/T*l = 4
Steps = 3

m = 4
IT*\ = 5
Steps = 3

m = 5
IT*[= 6
Steps = 4

R
C
T

CT
R
C
T

CT
R
C
T

CT

1262
268
92 1
268

3860
289
920
609

4930
447

1604
1055

1019
506
677
452

2584
500
608
745

305 1
682

1104
1074

190.15
43.70

135.80
41.15

452.10
34.20

108.25
76.15

448.25
40.65

151.25
99.95

186.25
85.25

127.45
76.05

366.45
61.30
79.55

100.75
312.85
64.55

114.15
108.65

23.05
5.75

16.20
5.70

58.25
5.50

12.50
11.10
53.05
6.70

19.75
13.80

Table 8. Comparison of branch-and-bound methods for n = 10.

134.75
65.60
85.80
58.60

236.65
43.60
57.55
68.20

215.40
44.35
80.00
76.20

CPU ms No. of nodes Storage req. Problem
Parameters class KK Bansal KK Bansal KK Bansal

R 6,119 7,381 714.84
C 461 672 52.75
T 4,199 5,337 491.25

CT 562 808 76.15
R 10,045 8,094 1,095.95
C 673 1,140 69.95
T 6,183 5,107 699.10

CT 2,575 3,354 302.35
R 28,602 25,396 2,233.75
C 2,064 3,281 211.05
T 5,705 4,510 562.80

2,636 3,056 231.05

m = 2
IT*[= 3
Steps = 3

m = 3
IT*l = 4
Steps = 3

m = 4
IT*/ = 5
Steps = 3 CT

R 44,903 32,797 3,394.10
C 2,281 3,298 176.55
T 6,163 4,600 485.00
CT 5.859 7.514 472.90

m = 5
IT*l = 6
Steps = 4

1,009.70
129.75
675.70
169.85
883.50
141.80
590.80
412.15

1,783.65
290.40
406.45
270.40

2,515.55
241.30
312.80
544.30

75.25
6.45

61.50
9.45

102.45
9.65

63.65
30.10

197.75
25.40
56.70
24.45

304.85
22.00
50.20
59.65

785.80
106.25
524.50
128.30
681.10
112.70
473.25
325.45

1,416.25
28.20

324.15
210.70

1,977.00
186.05
251.55
418.65

860 Naval Research Logistics, Vol. 40 (1993)

used in our lower-bound generation scheme and “Steps” is the number of it-
erations in the subgradient method. Column 2 of Tables 7 and 8 denotes the
problem class. For each class we have generated 20 problems; hence each entry
in Tables 7 and 8 represents the average of 20 problems. In Columns 3 and 4
of Tables 7 and 8, we compare the computational effort required by our method
(KK) and by Bansal’s procedure, respectively. In Columns 5 and 6 we present
the average number of nodes generated by the two different approaches. In
Columns 7 and 8, we report the average maximum number of nodes stored by
our method, and by Bansal’s method, respectively. Note that the maximum
number of nodes stored denotes the maximum number of active nodes (i.e.,
nodes that have been generated but not eliminated) at any time point during
the actual run of the branch-and-bound procedure. This could be an important
factor for large-size problems, especially if the storage constraints are more
pressing than the CPU time constraint.

In two-machine eight-job and two-machine ten-job problems our approach
dominates Bansal’s method, in terms of both CPU times and the number of
nodes, in all of the four problem classes. For rn = 3, 4, and 5 , our method
dominates Bansal’s approach in problems with correlation (C), and with cor-
relation and trend (CT). In random problems (R) and problems with trend (T),
Bansal’s method dominates our approach. Apparently for these problems the
subgradient method cannot generate a good approximation of f F P , within the
allowed number of iterations. Increasing the number of iterations in the subgra-
dient method has resulted in larger CPU times, although the number of nodes
generated by our approach dominated that of Bansal’s method for some prob-
lems in classes (R) and (T). In all problems our approach has dominated Bansal’s
method in terms of storage requirement. The dominance of our method in this
category also indicates that our approach generates very good upper bounds
early in the search tree so that the number of active nodes is kept at a minimum
level.

In order to illustrate the relative importance of this property, we have used
our optimal method as a heuristic for large size problems. In Table 9, we doc-

Table 9.
Stopping Problem No. of Storage UB - LB

Heuristic run of the optimal algorithm.

Parameters criterion class c p u ms nodes req. L B

n = 20
m = 5
IT”1 = 6
Steps = 5

n = 25
m = 5
IT*/ = 6
Steps = 5

n = 30
m = 5
IT*l = 6
Steps = 5

CPU 5,000
or

UB - LB
5 0.02

L B
CPU 2 7,500

or
UB - L B

5 0.02
L B

CPU 2 12,500
or

UB - LB
5 0.02 LB

R
C
T

CT

R
C
T

CT

R
C
T

CT

5,000
1,946
5,000
4,615

7,500
3,093
6,849
7,500

12,500
7,476

11,657
12,500

508.45
145.90
508.89
446.95

512.50
138.55
488.35
510.05

513.10
215.45
514.20
487.70

202.20
81.55

105.45
244.00

214.65
89.45

110.10
292.05

243.65
136.35
119.90
283.50

0.1716
0.0192
0.0601
0.0312

0.1797
0.0170
0.0599
0.0378

0.1888
0.0188
0.0801
0.0363

Karabati and Kouvelis: Permutation Flow Shop 86 1

ument the performance of the heuristic run of our optimal method. In Table 9,
Column 1 tabulates the parameters of a specific set of problems. Column 2
documents the stopping criterion used in the heuristic run of our optimal al-
gorithm. For example, in 20-job five-machine problems, we have terminated
the optimal algorithm when the total CPU time exceeded 5000 ms or when we
found an upper bound which was within 2% of the lower bound. Column 3
documents the different problem classes. For each class we have generated 20
problems, and each entry represents the average of 20 problems. The average
CPU time, number of nodes generated, and maximum number of nodes stored
for each problem class are presented in Columns 4-6, respectively. In Column
7, we report the average performance of the heuristic run of the our optimal
approach. Except for random problems, the heuristic has performed exception-
ally well.

We have also used Bansal’s approach for the same problems; however, the
only complete schedules generated by the Bansal’s method with the AB bounds
have been the schedules generated when developing the lower bounds on the
first machine, and the heuristic schedules developed by our approach dominated
all of these schedules.

7. CONCLUSION

In this article we have developed a new modeling framework for the per-
mutation flow shop scheduling problem for the minimization of the sum of
completion times. The modeling framework is based on a game-theoretic inter-
pretation of the problem. A Lagrangian relaxation approach on the resulting
integer programming formulation is used to develop lower bounds for the prob-
lem. Those bounds are implemented in an efficient branch-and-bound algorithm.

The methodology developed in this article is quite flexible and it can handle,
with minor modifications, a more general class of problems for the sum-of-
completion-times criterion in permutation flow shops: the class of scheduling
problems with finite buffer capacities. We have already undertaken research in
this direction and we will report our research progress on these problems in a
subsequent article.

REFERENCES

[l] Ahmadi, R.H., and Bagchi, U., “Improved Lower Bounds for Minimizing the Sum
of Completion Times of n Jobs over m Machines in a Flow Shop,” European Journal
of Operational Research, 44, 331-336 (1990).

[2] Baker, K.R., “A Comparative Study of Flow Shop Algorithms,” Operations Re-
search, 23(2), 62-73 (1975).

[3] Bansal, S.P., “Minimizing the Sum of Completion Times of n Jobs over m Machines
in a Flow Shop-a Branch-and-Bound Algorithm,” AIIE, 9 , 306-31 1 (1977).

[4] Burkard, R.E., and Derigs, U., Assignment and Matching Problems: Solution Meth-
ods with FORTRAN Programs, Springer-Verlag, Berlin, 1980.

[5] Goffin, J.L., “On Convergence Rates of Subgradient Optimization Methods,” Math-
ematical Programming, 13, 329-347 (1977).

[6] Gonzalez, T., and Sahni, S . , “Flow Shop and Job Shop Schedules: Complexity and
Approximation,” Operations Research, 26(l) , 36-52 (1978).

862 Naval Research Logistics, Vol. 40 (1993)

[7] Ignall, E., and Schrage, L.E., “Application of the Branch-and-Bound Technique
to Some Flow Shop Problems,” Operations Research, 13, 400-412 (1965).

[8] Kohler, W.H., and Steiglitz, K., “Exact, Approgmate, and Guaranteed Accuracy
Algorithms for the Flow Shop Problem nlmlFIF,” Journal of the Association for
Computing Machinery, 22, 106-114 (1975).

[9] Lageweg, B.J., Lenstra, J.K., and Rinnooy Kan, A.H.G., “A General Bounding
Scheme for the Permutation Flowshop,” Operations Research, 26, 53-67 (1978).

[lo] Lawler, E.L., Combinatorial Optimization: Networks and Matroids, Rinehart and
Winston, 1976.

[l l] Miyazaki, S. , Nishiyama, N., and Hashimoto, F., “An Adjacent Pairwise Inter-
change Approach to the Mean Flow Time Scheduling Problem,” Journal of the
Operations Research Society of Japan, 21(2), 287-299 (1978).

[12] Monma, C.L., and Rinnooy Kan, A.H.G., “A Concise Survey of Efficiently Solvable
Special Cases of the Permutation Flowshop Problem,” RAIRO, 17, 105-119 (1983).

[13] Nemhauser, G.L., and Wolsey, L.A., Integer and Combinatorial Optimization, John
Wiley and Sons, New York, 1988.

[14] Panwalkar, S.S., and Khan, A.W., “An Ordered Flow Shop Sequencing Problem
with Mean Completion Time Criterion,” International Journal of Production Re-
search, 14(5), 631-635 ‘(1976).

[151 Szwarc, W., “Permutation Flowshop Theory Revisited,” Naval Research Logistics
Quarterly, 26, 557-570 (1978).

1161 Szwarc, W., “The Flow Shop Problem with Mean Completion Time Criterion,” IIE
Transactions, 15(2), 172-176 (1983).

[17] Tomizawa, N., “On Some Techniques Useful for Solution of Transportation Net-
work Problems,” Networks, 2, 179-194 (1972).

[18] von Neumann, J. , and Morgenstern, O., Theory of Games and Economic Behavior,
Princeton University Press, Princeton, NJ, 1947.

Manuscript received April 29, 1991
Revised manuscript received December 31, 1992
Accepted April 27, 1993

