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Director of the Graduate School

ii



ABSTRACT

SIGNALING GAMES IN NETWORKED SYSTEMS

Serkan Sarıtaş

Ph.D. in Electrical and Electronics Engineering

Advisor: Sinan Gezici

Co-Advisor: Serdar Yüksel

July 2018

We investigate decentralized quadratic cheap talk and signaling game problems

when the decision makers (an encoder and a decoder) have misaligned objec-

tive functions. We first extend the classical results of Crawford and Sobel on

cheap talk to multi-dimensional sources and noisy channel setups, as well as to

dynamic (multi-stage) settings. Under each setup, we investigate the equilibria

of both Nash (simultaneous-move) and Stackelberg (leader-follower) games. We

show that for scalar cheap talk, the quantized nature of Nash equilibrium poli-

cies holds for arbitrary sources; whereas Nash equilibria may be of non-quantized

nature, and even linear for multi-dimensional setups. All Stackelberg equilibria

policies are fully informative, unlike the Nash setup. For noisy signaling games, a

Gauss-Markov source is to be transmitted over a memoryless additive Gaussian

channel. Here, conditions for the existence of affine equilibria, as well as informa-

tive equilibria are presented, and a dynamic programming formulation is obtained

for linear equilibria. For all setups, conditions under which equilibria are non-

informative are derived through information theoretic bounds. We then provide

a different construction for signaling games in view of the presence of inconsis-

tent priors among multiple decision makers, where we focus on binary signaling

problems. Here, equilibria are analyzed, a characterization on when informative

equilibria exist, and robustness and continuity properties to misalignment are

presented under Nash and Stackelberg criteria. Lastly, we provide an analysis on

the number of bins at equilibria for the quadratic cheap talk problem under the

Gaussian and exponential source assumptions.

Our findings reveal drastic differences in signaling behavior under team and

game setups and yield a comprehensive analysis on the value of information;

i.e., for the decision makers, whether there is an incentive for information hid-

ing, or not, which have practical consequences in networked control applications.

Furthermore, we provide conditions on when affine policies may be optimal in
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decentralized multi-criteria control problems and for the presence of active infor-

mation transmission even in strategic environments. The results also highlight

that even when the decision makers have the same objective, presence of incon-

sistent priors among the decision makers may lead to a lack of robustness in

equilibrium behavior.

Keywords: Networked control systems, game theory, signaling games, cheap talk,

quantization, hypothesis testing, inconsistent priors, information theory.
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Farklı hedeflere sahip karar vericilerin (kodlayıcı ve kod çözücü) yer aldığı merkezi

olmayan karesel ucuz konuşma ve işaretleme oyunlarını incelemekteyiz. İlk

olarak, Crawford ve Sobel’in ucuz konuşma hakkındaki önemli sonuçlarını, çok

boyutlu, gürültülü kanallı ve dinamik (çok-aşamalı) kurgulara genişletmekteyiz.

Her kurgu için, Nash (eş-zamanlı hamleli) ve Stackelberg (lider-takipçi) oyun-

larının dengelerini incelemekteyiz. Tek boyutlu ucuz konuşma oyunlarında

Nash dengesinin nicemlenmiş mizacının her türlü kaynak için korunduğunu, çok

boyutlu kurgularda ise Nash dengesinin nicemlenmiş olmayabileceğini, hatta

doğrusal olabileceğini göstermekteyiz. Tüm Stackelberg dengelerinde, Nash

dengelerinden farklı olarak, kodlayıcı, elindeki bilgiyi kod çözücü ile gizleme-

den paylaşmaktadır. Gürültülü işaretleme oyunlarında, Gaus-Markov dağılımlı

kaynak, hafızasız eklemeli Gauss kanal üzerinden aktarılmaktadır. Bu kur-

guda, ilgin dengelerin bulunma koşullarının yanında bilgilendirici dengelerin bu-

lunma koşulları da sunulmakta ve doğrusal dengeler için dinamik programlama

formülasyonu elde edilmektedir. Çalışılan tüm kurgularda, hangi dengelerin bil-

gilendirici olmadığının koşulları, bilgi kuramsal sınırlar üzerinden türetilmektedir.

Daha sonra, işaretleme oyunlarında karar vericilerin önsel bilgilerinde tutarsızlık

olduğu durum göz önünde bulundurularak ikili işaretleme oyunlarını modelle-

mekteyiz. Bu kısımda, Nash ve Stackelberg ölçütleri altında dengeler ve hangi

durumlar altında bilgilendirici oldukları çözümlenmekte, tutarsız önsel bilgilere

karşı gürbüzlük ve süreklilik özellikleri sunulmaktadır. Son olarak, karesel

ucuz konuşma probleminde dengedeki nicemleme seviye sayısının Gauss ve üssel

dağılımlı kaynaklar için analizini sağlamaktayız.

Bulgularımız, takım ve oyun kurguları altında işaretleme davranışlarındaki

büyük farklılıkları ortaya koymakta ve bilginin değeri üzerine kapsamlı bir analiz

sağlamaktadır; diğer bir deyişle, ağ tabanlı kontrol uygulamalarında pratik
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sonuçları olan, karar vericiler açısından bilginin gizlenmesi veya paylaşılması

için bir teşvik olup olmadığı araştırılmaktadır. Ayrıca, merkezi olmayan çok

ölçütlü kontrol problemlerinde ilgin politikaların ne zaman en iyi olabileceğinin

ve stratejik ortamlarda bile aktif bilgi aktarımının ne zaman mevcut olabileceğinin

koşullarını sağlamaktayız. Sonuçlarımız, karar vericiler aynı hedefe sahip ol-

salar bile, önsel bilgilerindeki tutarsızlığın dengede gürbüzlük eksikliğine yol

açabileceğinin de altını çizmektedir.

Anahtar sözcükler : Ağ tabanlı kontrol sistemleri, oyun kuramı, işaretleme oyun-

ları, ucuz konuşma, nicemleme, hipotez testi, tutarsız önsel bilgi, bilgi kuramı.
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behaviors of Yeşim Gülseren during the course progress; whenever I feel down,

her energy has made me feel refreshed and even more than refreshed. I would
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Chapter 1

Introduction

1.1 Motivation

”The more information the better”: This is commonly accepted both on the intu-

ition level and more formally in decision theory. One of the earliest mathematical

representation of this idea can be found in Frank Ramsey’s study [1]. In order to

represent and quantify the information more formally, the value of information

was first introduced in decision theory for a decision-maker in a risky environment

by Blackwell [2, 3]. The value of information is defined as the differential utility

that the decision maker obtains by considering that information in addition to

his initial beliefs. For one decision maker, the value of information is known to be

positive: more information is always at least as good. As studied by Blackwell,

there is a well-defined partial order of information structures which provide a

general theory for the value of information [2, 3].

When multiple decision makers are considered, there are two different ap-

proaches depending on the objectives of the decision makers:

(i) Team theory is the field of study on the interaction dynamics among de-

centralized decision makers with identical objective functions. In the team,
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individual decision makers strive for the same goal, using the same (proba-

bilistic) model of the underlying decision process, but not necessarily shar-

ing the same online information (such as measurements) on the uncertainty.

(ii) Game theory deals with setups with misaligned objective functions, where

each decision maker chooses a strategy to maximize its own utility which is

determined by the joint strategies chosen by all decision makers.

Despite the difficulty to obtain solutions under general information structures,

it is evident in team problems that more information provided to any of the

decision makers does not negatively affect the utility of the players; i.e., the value

of information is always positive for team problems. For a detailed account we

refer the reader to [4].

However, usually accepted principle of decision theory that ”the more informa-

tion the better” seemingly breaks down in strategic contexts. More information

can have negative effects on the utilities of some or even all of the players in a

system. For example, [5] shows that public disclosure of information can make

all decision makers worse off. In non-cooperative networks, it is possible that the

addition of resources to the network is accompanied by a degradation of the per-

formance, which is known as Braess paradox [6,7]. Further examples of negative

value of information were given in [8–10]. On the other hand, in game theory,

it is also possible that more information does not hurt the decision makers. [11]

shows that the value of information cannot be negative for a decision maker as

long as the others are not aware of it. The value of information was proved to

be positive in the case of a secret message by [11] or in the case of a private mes-

sage in zero-sum games by [12]. Hence, as discussed above, informational aspects

are very challenging to address for general non-zero sum game problems. For

two-players games with incomplete information, in [13], it is shown that ”almost

every situation is conceivable: information can be beneficial for all players, just

for the one who does receive it, or, less intuitively, just for the one who does not

receive it, or it could be bad for both”. Many examples exhibiting various effects

of information can be found in [13]. Further intricacies on informational aspects

in competitive setups have been discussed in [14, 15]. The main reason why one
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obtains such results is that, in games we cannot consider individual decision mak-

ers in isolation; we need to consider the equilibrium behavior and the effect of

the additional information on the other decision makers.

Since the value of information may be negative in general strategic environ-

ments, the additional information is not always desirable. Although sharing

information makes better utilities possible for the decision makers, it has also

strategic effects that revealing all information to an opponent is not usually the

most advantageous strategy. However, even a completely self-interested decision

maker may prefer to reveal some information to get a higher utility. Within the

scope of the above reasonings, Crawford and Sobel [16] probes ”how much and to

which extent the information should be revealed in accordance with the similarity

of agents’ interests”.

In this dissertation, accordingly, we study the informational aspects in games

in the context of ’signaling games’: Signaling games and cheap talk are con-

cerned with a class of Bayesian games where an informed decision maker (encoder

or transmitter) transmits information to another decision maker (decoder or re-

ceiver). Unlike a team setup in the classical communication problems, however,

the objective functions of the players are not aligned, and due to the Bayesian

assumption, we have games of incomplete information; i.e., the decision makers

may have private information abut their own utilities, about their type and pref-

erences [17]. Such a study has been initiated by Crawford and Sobel [16], who

obtained the surprising result that under some technical conditions on the utility

functions of the decision makers, the cheap talk problem only admits equilibria

that involve quantized encoding policies. This is in significant contrast to the

usual communication/information theoretic case where the goals are aligned.

The cheap talk and signaling game problems are applicable in networked con-

trol systems when a communication channel exists among competitive and non-

cooperative decision makers. For example, in a smart grid application, there may

be strategic sensors in the system [18] that wish to change the equilibrium for

their own interests through reporting incorrect measurement values.
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In this dissertation,

(i) we consider both Nash equilibria and Stackelberg equilibria of the setup of

Crawford and Sobel [16], and provided extensions to multi-dimensional and

noisy setups. We showed that for all scalar sources, the quantized nature

of all equilibrium policies holds under Nash equilibria, whereas policies are

fully informative under Stackelberg equilibria. Single-stage signaling games

were also considered, where Nash and Stackelberg equilibria were studied.

(ii) building on the static (one-stage) analysis, we extend the analysis of the

setup in [16] to the multi-stage case and to the case where the priors may

also be subjective.

(iii) we consider signaling games that refer to a class of two-player games of

incomplete information in which an informed decision maker (encoder or

transmitter) transmits information to another decision maker (decoder or

receiver) in the hypothesis testing context.

(iv) we study the number of bins at the equilibrium under cheap talk setup with

exponential and Gaussian sources as to whether there are finitely many bins

or countably infinite number of bins in any equilibrium.

Even though in this dissertation we only consider quadratic criteria under a

bias term leading to a misalignment, the contrast with the case where there is no

bias (that has been heavily studied in the information theory literature) raises a

number of sharp conclusions for system designers working on networked systems

under competitive environments. Our findings provide further conditions on when

affine policies may be optimal in decentralized multi-criteria control problems and

lead to conditions for the presence of active information transmission in strategic

environments.

In the following, we first provide the preliminaries and introduce the problems

considered in the dissertation, and present the related literature briefly.
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1.2 Preliminaries

Let there be two decision makers (players): An informed player (encoder or trans-

mitter) knows the value of the M-valued random variable M and transmits the

X-valued random variable X to another player (decoder or receiver), who gener-

ates his M-valued optimal decision U upon receiving X. We allow for randomized

decisions, therefore, we let the policy space of the encoder be the set of all stochas-

tic kernels from M to X. 1 Let Γe denote the set of all such policies. We let the

policy space of the decoder be the set of all stochastic kernels from X to M. Let

Γd denote the set of all such stochastic kernels. Given γe ∈ Γe and γd ∈ Γd, the

goal in the classical communications theory is to minimize the expectation

J(γe, γd) =

∫
c(m,u)γe(dx|m)γd(du|x)P (dm),

where c(m,u) is some cost function. One very common case is the setup with

c(m,u) = |m− u|2.

Recall that a collection of decision makers who have an agreement on the

probabilistic description of a system and a cost function to be minimized, but

who may have different on-line information is said to be a team (see, e.g. [4]).

Hence, the classical communications setup may be viewed as a team of an encoder

and a decoder.

In many applications (in networked systems, recommendation systems, and

applications in economics) the objectives of the encoder and the decoder may not

be aligned. For example, the encoder may aim to minimize

Je(γe, γd) = E [ce(m,u)] ,

whereas the decoder may aim to minimize

Jd(γe, γd) = E
[
cd(m,u)

]
,

where ce(m,u) and cd(m,u) denote the cost functions of the encoder and the

decoder, respectively, when the action u is taken for the corresponding message

m.
1P is a stochastic kernel from M to X if P (·|m) is a probability measure on B(X) for every

m ∈M, and P (A|·) is a Borel measurable function of m for every A ∈ B(X).
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Such a problem is known in the economics literature as cheap talk (the trans-

mitted signal does not affect the cost, that is why the game is named as cheap

talk). A more general formulation would be the case when the transmitted signal

x is also an explicit part of the cost functions ce and/or cd, then the communica-

tion between the players is not costless and the formulation turns into a signaling

game problem. We will consider both a noiseless communication setup as cheap

talk and a noisy communication setup, where the problem may be viewed as a

signaling game in this dissertation.

Such problems are studied under the tools and concepts provided by game

theory since the goals are not aligned. We note that when ce = cd, the setup is a

traditional communication theoretic setup. If ce = −cd, that is, if the setup is a

zero-sum game, then an equilibrium is achieved when γ∗,e is non-informative (e.g.,

a kernel with actions statistically independent of the source) and γ∗,d uses only

the prior information (since the received information is non-informative). We call

such an equilibrium a non-informative (babbling) equilibrium. The following is a

useful observation, which follows from [16, Theorem 1] and [17]:

Proposition 1.2.1. A non-informative (babbling) equilibrium always exists for

the cheap talk game.

Although the encoder and decoder act sequentially in the game as described

above, how and when the decisions are made and the nature of the commitments

to the announced policies significantly affect the analysis of the equilibrium struc-

ture. Here, two different types of equilibria are investigated:

(i) Nash game: the encoder and the decoder make simultaneous decisions.

(ii) Stackelberg game : the encoder and the decoder make sequential decisions

where the encoder is the leader and the decoder is the follower.

In this dissertation, the terms Nash game and the simultaneous-move game will be

used interchangeably, and similarly, the Stackelberg game and the leader-follower

game will be used interchangeably.

6



In the simultaneous-move game, the encoder and the decoder announce their

policies at the same time, and a pair of policies (γ∗,e, γ∗,d) is said to be a Nash

equilibrium [19] if

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) ∀γe ∈ Γe ,

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) ∀γd ∈ Γd .
(1.1)

As observed from the definition (1.1), under the Nash equilibrium, each individ-

ual player chooses an optimal strategy given the strategies chosen by the other

players.

On the other hand, in a leader-follower game, the leader (encoder) commits

to and announces his optimal policy before the follower (decoder) does, the fol-

lower observes what the leader is committed to before choosing and announcing

his optimal policy, and a pair of policies (γ∗,e, γ∗,d) is said to be a Stackelberg

equilibrium [19] if

Je(γ∗,e, γ∗,d(γ∗,e)) ≤ Je(γe, γ∗,d(γe)) ∀γe ∈ Γe ,

where γ∗,d(γe) satisfies

Jd(γe, γ∗,d(γe)) ≤ Jd(γe, γd(γe)) ∀γd ∈ Γd .

(1.2)

As observed from the definition (1.2), the decoder takes his optimal action γ∗,d(γe)

after observing the policy of the encoder γe. Further, in the Stackelberg game,

the leader cannot backtrack on his commitment, but has a leadership role since

he can manipulate the follower by anticipating follower’s actions.

Stackelberg games are commonly used to model attacker-defender scenarios in

security domains [20]. In such setups, the defender (leader) acts first by commit-

ting to a strategy, and the attacker (follower) chooses how and where to attack

after observing the defender’s choice. However, in some situations, security mea-

sures may not be observable for the attacker; therefore, a simultaneous-move

game is preferred to model such situations; i.e., the Nash equilibrium analysis is

needed [21].

Heretofore, only single-stage games are considered. If a game is played over a

number of time periods, the game is called a multi-stage game. In this disserta-

tion, with the term dynamic, we will refer to multi-stage game setups; even though

7



strictly speaking a single stage setup may also be viewed to be dynamic [22] since

the information available to the decoder is totally determined by encoder’s ac-

tions. In the multi-stage version of the game, the encoder and the decoder aim

to minimize the expected cost over the total horizon of the game as follows:

Je
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cek(mk, uk)

]
,

Jd
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cdk(mk, uk)

]
.

The Nash and Stackelberg equilibria of the game are defined based on the total

costs defined above.

Besides the static and multi-stage cheap talk and signaling game formulations,

in this dissertation, the binary signaling problem is investigated under the hy-

pothesis testing context. In this direction, the following binary hypothesis-testing

problem is considered:

H0 : Y = S0 +N ,

H1 : Y = S1 +N ,

where Y is the observation (measurement) that belongs to the observation set

Γ = R, S0 and S1 denote the deterministic signals under hypothesis H0 and

hypothesis H1, respectively, and N represents Gaussian noise; i.e., N ∼ N (0, σ2).

In the conventional Bayesian framework, the aim of the receiver is to design the

optimal decision rule (detector) based on Y in order to minimize the Bayes risk.

However, in our game formulation, the transmitter and the receiver are considered

as two decision makers with non-aligned Bayes risks; i.e., they have subjective

priors and costs, and they aim to minimize their own Bayes risks. Based on the

Bayes risks of the decision makers, Nash and Stackelberg equilibria of the binary

hypothesis-testing game are investigated.
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1.3 Literature Review

In many decentralized and networked control problems, decision makers have

either misaligned criteria or have subjective priors, which necessitates solution

concepts from game theory. For example, detecting attacks, anomalies, and ma-

licious behavior with regard to security in networked control systems can be

analyzed under a game theoretic perspective, see e.g., [23–34].

The cheap talk and signaling game problems find applications in networked

control systems when a communication channel/network is present among com-

petitive and non-cooperative decision makers [19]. For example, in a smart grid

application, there may be strategic sensors in the system [18] that wish to alter

the equilibrium decisions at a controller receiving data from the sensors to lead

to a more desirable equilibrium, for example by enforcing an outcome to enhance

its prolonged use in the system. One may also consider a utility company which

wishes to inform users regarding pricing information; if the utility company and

the users engage in selfish behavior, it may be beneficial for the utility company

to hide certain information and the users to be strategic about how they interpret

the given information. One further area of application is recommender systems

(as in rating agencies) [35]. For further applications, see [18, 36]. All of these

applications lead to a drastically new framework where the value of information

and its utilization are very fragile to the system under consideration.

In game theory, Nash and Stackelberg equilibria are drastically different con-

cepts. Both equilibrium concepts find applications depending on the assumptions

on the leader, that is, the encoder, in view of the commitment conditions. Stack-

elberg games are commonly used to model attacker-defender scenarios in security

domains [20]. In many frameworks, the defender (leader) acts first by committing

to a strategy, and the attacker (follower) chooses how and where to attack after

observing defender’s choice. However, in some situations, security measures may

not be observable for the attacker; therefore, a simultaneous-move game is pre-

ferred to model such situations; i.e., the Nash equilibrium analysis is needed [21].
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Crawford and Sobel [16] have made foundational contributions to the study of

cheap talk with misaligned objectives where the cost functions ce and cd satisfy

certain monotonicity and differentiability properties but there is a bias term in the

cost functions. Their result is that the number of bins at the equilibrium is upper

bounded by a function which is negatively correlated to the bias. For the setup

of Crawford and Sobel but when the source admits an exponentially distributed

real random variable, [37] establishes the discrete-nature of equilibria, and obtains

the equilibrium bins with finite upper bounds on the number of bins under any

equilibrium in addition to some structural results on informative equilibria for

general sources.

There have been a number of related contributions in the economics literature

in addition to the seminal work by Crawford and Sobel, which we briefly review in

the following: Reference [38] shows that even if the sender and the decoder have

identical preferences, perfect communication may not be possible at the equilib-

rium because information transmission may be costly. Reference [39] studies the

setup in [16] with two senders and shows that if senders transmit the messages

sequentially once, then the equilibrium is always quantized and if senders trans-

mit the messages simultaneously and their biases are either both positive or both

negative, then a fully revealed equilibrium is possible. Reference [40] studies a

scalar setup and proves that if multiple senders transmit the messages sequen-

tially and their biases have opposite signs, then a fully revealed equilibrium is

possible; this study also considers two-dimensional real valued sources, and shows

that a fully revealed equilibrium occurs if and only if the multiple senders have

perfectly opposing biases. For multi-dimensional cheap talk, [41] shows that it is

possible to have a fully revealing equilibrium on a particular dimension on which

the sender and the decoder agree on so that the interests of the sender and the

decoder are aligned on that particular dimension. Moreover, multi-dimensional

cheap talk with multiple senders is analyzed in [42] and [43] with unbounded

and bounded state spaces, respectively. In [42], it is shown that full revelation

of information is possible in multi-dimensional cheap talk with multiple encoders

when the encoders send messages simultaneously; however, when the encoders

send messages sequentially, fully revealing equilibria exist if they have perfectly
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opposing biases [44]. The study in [45] considers a special noisy channel setup

between the sender and decoder, and shows that there may be infinitely many

actions (countable or uncountable) induced at the equilibrium even though all

equilibria are interval partitions in the noiseless case [16]. Conditions for Nash

equilibria are investigated in [46] for a scenario in which there exists a discrete

noisy channel between an informed sender and an uninformed decoder, and the

source is finitely valued. Furthermore, there are some contributions which modify

the information structure given in Crawford and Sobel’s setup: In [47], the sender

knows that the decoder has partial information about his/her private information;

whereas the sender does not know this in [48,49]. For a detailed literature review

on communication between informed experts and uninformed decision makers,

we refer the reader to [50]. We note also that in the area of information theory,

there exists a vast literature on security aspects of information transmission, see

e.g., [51, 52]. Game theoretic analysis is also useful in various contexts involving

security problems. For example, the security of the smart-grid infrastructure can

be analyzed by considering the adversarial nature of the interaction between an

attacker and a defender [25,26], and a game theoretic setup would be appropriate

to analyze such interactions. For an overview of security and privacy problems

in computer networks that are analyzed within a game-theoretic framework, [53]

can be referred.

On the multi-stage side, much of the literature has focused on Stackelberg

equilibria as we note below. A notable exception is [54], where the multi-stage

extension of the setup of Crawford and Sobel is analyzed for a source which

is a fixed random variable distributed according to some density on [0, 1] (see

Theorem 3.2.5 for a detailed discussion on this very relevant paper). These two

concepts may have equilibria that are quite distinct: As discussed in [55,56], in the

Nash equilibrium case, building on [16], equilibrium properties possess different

characteristics as compared to team problems; whereas for the Stackelberg case,

the leader agent is restricted to be committed to his announced policy, which

leads to similarities with team problem setups [57, 58]. Since there is no such

commitment in the Nash setup; the perturbation in the encoder does not lead

to a functional perturbation in decoder’s policy, unlike the Stackelberg setup.
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However, in the context of binary signaling, we will see that the distinction is

not as sharp as it is in the case of quadratic signaling games [55, 56]. [57] in-

vestigates a Gaussian cheap talk game under the Stackelberg assumption with

quadratic cost functions for a class of single- and multi-terminal setups, and it

is shown that the best response of the encoder is linear by restricting decoder

strategies to be affine. In [59], the non-alignment between the cost functions of

the encoder and the decoder is a function of a Gaussian random variable (r.v.)

and secret to the decoder; whereas, it is fixed and known to the decoder in [16].

The multi-stage Gaussian signaling game is studied in [58] where the linearity of

Stackelberg equilibria is investigated. [60–62] consider the information design and

strategic source-channel coding problem between an encoder and a decoder with

non-aligned utility functions under the Stackelberg equilibrium. [63] studies the

central scheduling problem of allocating channels as a signaling game problem be-

tween the base station and mobile stations under the Stackelberg assumption. [64]

investigates a multi-stage linear quadratic Gaussian game with asymmetric infor-

mation and simultaneous moves, and it is shown that under certain conditions,

players’ strategies are linear in their private types.

Identifying when optimal policies are linear or affine for decentralized systems

involving Gaussian variables under quadratic criteria is a recurring problem in

control theory, starting perhaps from the seminal work of Witsenhausen [65],

where sub-optimality of linear policies for such problems under non-classical in-

formation structures is presented. The reader is referred to Chapters 3 and 11

of [4] for a detailed discussion on when affine policies are and are not optimal.

These include the problem of communicating a Gaussian source over a Gaussian

channel, variations of Witsenhausen’s counterexample [66]; and game theoretic

variations of such problems. For example if the noise variable is viewed as the

maximizer and the encoders/decoders (or the controllers) act as the minimizer,

then affine policies may be optimal for a class of settings, see [67–71]. [71] also

provides a review on Linear Quadratic Gaussian (LQG) problems under non-

classical information including Witsenhausen’s counterexample. Our study pro-

vides further conditions on when affine policies may constitute equilibria for such

decentralized quadratic Gaussian optimization problems.
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Standard binary hypothesis testing has been extensively studied over several

decades under different setups [72,73], which can also be viewed as a decentralized

control/team problem involving a encoder and a decoder who wish to minimize

a common objective function. However, there exist many scenarios in which the

analysis falls within the scope of game theory; either because the goals of the

decision makers are misaligned, or because the probabilistic model of the system

is not common knowledge among the decision makers.

A game theoretic perspective can be utilized for hypothesis testing problem

for a variety of setups. For example, detecting attacks, anomalies, and mali-

cious behavior in network security can be analyzed under the game theoretic

perspective [23–27]. In this direction, the hypothesis testing and the game theory

approaches can be utilized together to investigate attacker-defender type appli-

cations [28–34], multimedia source identification problems [74], and inspection

games [75–77]. In [29], a Nash equilibrium of a zero-sum game between Byzantine

(compromised) nodes and the fusion center (FC) is investigated. The strategy of

the FC is to set the local sensor thresholds that are utilized in the likelihood-ratio

tests, whereas the strategy of Byzantines is to choose their flipping probability

of the bit to be transmitted. In [30], a zero-sum game of a binary hypothesis

testing problem is considered over finite alphabets. The attacker has control over

the channel, and the randomized decision strategy is assumed for the defender.

The dominant strategies in Neyman-Pearson and Bayesian setups are investigated

under the Nash assumption. The authors of [76, 77] investigate both Nash and

Stackelberg equilibria of a zero-sum inspection game where an inspector (envi-

ronmental agency) verifies, with the help of randomly sampled measurements,

whether the amount of pollutant released by the inspectee (management of an

industrial plant) is higher than the permitted ones. The inspector chooses a false

alarm probability α, and determines his optimal strategy over the set of all statis-

tical tests with false alarm probability α to minimize the non-detection probabil-

ity. On the other side, the inspectee chooses the signal levels (violation strategies)

to maximize the non-detection probability. [31] considers a complete-information

zero-sum game between a centralized detection network and a jammer equipped

with multiple antennas and investigates pure strategy Nash equilibria for this
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game. The fusion center (FC) chooses the optimal threshold of a single-threshold

rule in order to minimize his error probability based on the observations coming

from multiple sensors, whereas the jammer disrupts the channel in order to max-

imize FC’s error probability under instantaneous power constraints. However,

unlike the setups described above, in this dissertation, we assume an additive

Gaussian noise channel, and in the game setup, a Bayesian hypothesis testing

setup is considered in which the encoder chooses signal levels to be transmit-

ted and the decoder determines the optimal decision rule. Both players aim to

minimize their individual Bayes risks, which leads to a nonzero-sum game.

1.4 Contributions and Organization of the Dis-

sertation

1.4.1 Chapter 2

In this chapter, we study the decentralized quadratic cheap talk and signaling

game problems when an encoder and a decoder, viewed as two decision mak-

ers, have misaligned objective functions. We investigate the extension of Craw-

ford and Sobel’s cheap talk formulation [16] to multi-dimensional sources and to

noisy channel setups. We consider both (simultaneous-move) Nash equilibria and

(leader-follower) Stackelberg equilibria. We show that for arbitrary scalar sources,

in the presence of misalignment, the quantized nature of all equilibrium policies

holds for Nash equilibria in the sense that all Nash equilibria are equivalent to

those achieved by quantized encoder policies. On the other hand, all Stackelberg

equilibria policies are fully informative. For multi-dimensional setups, unlike the

scalar case, Nash equilibrium policies may be of non-quantized nature, and even

linear. In the noisy setup, a Gaussian source is to be transmitted over an addi-

tive Gaussian channel. The goals of the encoder and the decoder are misaligned

by a bias term and encoder’s cost also includes a penalty term on signal power.

Conditions for the existence of informative affine Nash equilibria are presented.

For the noisy setup, the only Stackelberg equilibrium is the linear equilibrium
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when the variables are scalar. The results of Chapter 2 have appeared in part

in [55,78].

1.4.2 Chapter 3

In this chapter, dynamic (multi-stage) signaling games involving an encoder and

a decoder who have subjective models on the cost functions or the probabilistic

model are considered. Nash (simultaneous-move game) and Stackelberg (leader-

follower game) equilibria of multi-stage cheap talk and signaling game problems

are investigated under a perfect Bayesian formulation and quadratic criteria. For

the multi-stage scalar cheap talk, a zero-delay communication setup is considered

for i.i.d. and Markov sources; it is shown that the final stage equilibrium is always

quantized and under further conditions the equilibria for all time stages must be

quantized. In contrast, the Stackelberg equilibria are always fully revealing. In

the multi-stage signaling game where the transmission of a Gauss-Markov source

over a memoryless Gaussian channel is considered, affine policies constitute an in-

variant subspace under best response maps for Nash equilibria; whereas the Stack-

elberg equilibria always admit linear policies for scalar sources but such policies

may be non-linear for multi-dimensional sources. We obtain an explicit dynamic

recursion for optimal linear encoding policies for multi-dimensional sources, and

derive conditions under which Stackelberg equilibria are non-informative. For the

case where the encoder and the decoder have subjective priors on the source dis-

tribution, under identical costs, we show that there exist fully informative Nash

and Stackelberg equilibria for the dynamic cheap talk as in the team theoretic

setup under an absolute continuity condition. In particular, for the cheap talk

problem, the equilibrium behavior is robust to a class of perturbations in the pri-

ors, but not to the perturbations in the cost models in general. For the signaling

game, however, Stackelberg equilibrium policies are robust to perturbations in the

cost but not to the priors considered in this chapter. The results of Chapter 3

have appeared in part in [79,80].
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1.4.3 Chapter 4

Many communication, sensor network, and networked control problems involve

agents (decision makers) which have either misaligned objective functions or sub-

jective probabilistic models. In the context of such setups, we consider binary sig-

naling problems in which the decision makers (the transmitter and the receiver)

have subjective priors and/or misaligned objective functions. Accordingly, the

binary signaling problem investigated here can be motivated under different ap-

plication contexts: subjective priors and the presence of a bias in the objective

function of the encoder compared to that of the decoder. In the former setup,

players have a common goal but subjective prior information, which necessar-

ily alters the setup from a team problem to a game problem. The latter one

is the adaptation of the biased utility function of the encoder in [16] to the bi-

nary signaling problem considered here. Depending on the commitment nature

of the transmitter to his policies, we formulate the binary signaling problem as

a Bayesian game under either Nash or Stackelberg equilibrium concepts and es-

tablish equilibrium solutions and their properties. It is shown that there can be

informative or non-informative equilibria in the binary signaling game under the

Stackelberg assumption, but there always exists an equilibrium. However, apart

from the informative and non-informative equilibria cases, there may not exist a

Nash equilibrium when the receiver is restricted to use deterministic policies. For

the corresponding team setup, however, an equilibrium typically always exists

and is always informative. Furthermore, we investigate the effects of small per-

turbations in priors and costs on equilibrium values around the team setup (with

identical costs and priors), and show that the Stackelberg equilibrium behavior

is not robust to small perturbations whereas the Nash equilibrium is. The results

of Chapter 4 will appear in part in [81].

1.4.4 Chapter 5

In this chapter, we investigate Crawford and Sobel’s cheap talk formulation [16]

under the exponential and Gaussian source assumptions and derive the upper
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bounds on the number of the quantization bins (if any) are derived depending on

the misalignment between the objective functions of the encoder and the decoder.

Firstly, for a uniform source, we verify the upper bound on the number of the

quantization bins, obtain the total cost at the equilibrium, and show that the

equilibrium with more bins is preferable for both the encoder and the decoder.

Then, it is shown that, for an exponential source, at the equilibrium, the number

of bins can be bounded or unbounded; i.e., infinitely many, depending on the

misalignment between the objective functions of the decision makers. For the

Gaussian case, it is always possible to have an equilibrium with two bins.

1.5 Notation and Conventions

We denote random variables with capital letters, e.g., Y , whereas possible real-

izations are shown by lower-case letters, e.g., y. The absolute value of scalar y is

denoted by |y|. The vectors are denoted by bold-faced letters, e.g., y. For vector

y, yT denotes the transpose and ‖y‖ denotes the Euclidean (L2) norm. 1{D}

represents the indicator function of an event D, ⊕ stands for the exclusive-or

operator, Q denotes the standard Q-function; i.e., Q(x) = 1√
2π

∫∞
x

exp{− t2

2
}dt,

and the sign of x is defined as

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

.
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Chapter 2

Static (One-Stage) Quadratic

Cheap Talk and Signaling Games

In this chapter, Nash and Stackelberg equilibria of static (one-stage) scalar and

multi-dimensional quadratic cheap talk and signaling games are investigated. For

all setups, conditions under which equilibria are non-informative are derived.

The main contributions of this chapter can be summarized as follows:

(i) We prove that for any scalar source, all Nash equilibrium policies at the

encoder are equivalent to some quantized policy, but all Stackelberg equi-

librium policies are fully informative. That is, there is some information

hiding for the Nash setup, as opposed to the Stackelberg setup.

(ii) We show that for multi-dimensional setups, however, unlike the scalar case,

Nash equilibrium policies may be non-quantized and can in fact be linear.

(iii) In the noisy setup, a Gaussian source is to be transmitted over an addi-

tive Gaussian channel. The goals of the encoder and the decoder are mis-

aligned by a bias term and encoder’s cost also includes a penalty term of the

transmitted signal. Conditions for the existence of affine Nash equilibrium

policies are presented.
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(iv) We compare the results with socially optimal costs and information theo-

retic lower bounds, and discuss the effects of the bias term on equilibria.

Furthermore, we prove that the only equilibrium in the Stackelberg noisy

setup is the linear equilibrium for the scalar case.

2.1 Problem Formulation

A single-stage cheap talk problem, which is depicted in Fig. 2.1, can be formulated

as follows: An informed player (encoder) knows the value of the M-valued random

variable M and transmits the X-valued random variable X to another player

(decoder), who generates his M-valued optimal decision U upon receiving X. Let

ce(m,u) and cd(m,u) denote the cost functions of the encoder and the decoder,

respectively, when the action u is taken for the corresponding message m. Then,

given the encoding and decoding policies, the encoder’s induced expected cost is

Je
(
γe, γd

)
= E [ce(m,u)] ,

whereas, the decoder’s induced expected cost is

Jd
(
γe, γd

)
= E

[
cd(m,u)

]
.

Figure 2.1: System model for static cheap talk.

2.2 Static Scalar Quadratic Cheap Talk

We will first consider the scalar setting by taking the cost functions as ce (m,u) =

(m− u− b)2 and cd (m,u) = (m− u)2 where b denotes the bias term. The moti-

vation for such functions stems from the fields of information theory, communi-

cation theory and LQG control; for these fields quadratic criteria are extremely
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important. Recall that for the case with b = 0, the cost functions simply reduce

to those for a minimum mean-square estimation (MMSE) problem.

2.2.1 Nash Equilibrium Analysis

Some existence and deterministic properties of the equilibrium policies of the

encoder and the decoder are stated in [37] and [4, Chp.4].

Theorem 2.2.1. [37] (i) For any γe, there exists an optimal γd, which is de-

terministic. (ii) For any γd, any randomized encoding policy can be replaced with

a deterministic γe without any loss to the encoder. (iii) Suppose γe is an M-cell

quantizer with bins Bi for i = 1, 2, . . . ,M , then there exists an optimal determin-

istic γd, which is the conditional expectation of the respective bin; i.e., the optimal

action of the decoder is E[m|m ∈ Bk] for the k-th bin.

We first review the following classical result from [16, Lemma 1]:

Theorem 2.2.2. [16, Lemma 1] Let there be two players, a Sender (S) and a

Receiver (R). S observes the value of a random variable m (private to S), then

sends a signal x which may be random, and can be viewed as a noisy estimate of

m, to R. Then, R processes the information in S’s signal and chooses an action

u, which determines players’ payoffs. Here, m, which is supported on [0, 1], has

differentiable probability distribution function, F (m), with density f(m), and the

utility functions of the players US(m,u, b) and UR(m,u), where b is a scalar

parameter to measure how nearly agents’ interests coincide, have some technical

properties. Then, the set of actions induced in any equilibrium is finite. Thus,

information is not fully revealed.

As observed from [16, Lemma 1] above, only sources on [0, 1] that admit densi-

ties are considered. However, we note that the analysis here applies to arbitrary

scalar valued random variables. The proof essentially follows from [16].

Theorem 2.2.3. Let m be a real-valued random variable with an arbitrary prob-

ability measure. Let the strategy set of the encoder consist of the set of all mea-

surable (deterministic) functions from M to X. Then,
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(i) an equilibrium encoder policy has to be quantized almost surely (that is, it

is equivalent to a quantized policy for the encoder in the sense that the per-

formance of any equilibrium encoder policy is equivalent to the performance

of a quantized encoder policy),

(ii) the quantization bins are convex.

Remark 2.2.1. Recall that encoder prefers to transmit everything if b = 0. How-

ever, if b 6= 0, encoder prefers the quantized policy. Misalignment changes the

nature of the solutions drastically.

Recall again that for the case when the source admits density on [0, 1], Craw-

ford and Sobel established the discrete nature of the equilibrium policies. For the

case when the source is exponential, [37] (also, Chapter 5 of this dissertation) es-

tablished the discrete-nature, and obtained the equilibrium bins with finite upper

bounds on the number of bins in any equilibrium.

To facilitate our analysis to handle certain intricacies that arise due to the

multi-stage setup in this dissertation, in the following, we state that the result

in Theorem 2.2.3 also holds when the encoder is allowed to adapt randomized

encoding policies by extending [16, Lemma 1] as follows:

Theorem 2.2.4. The conclusion of Theorem 2.2.3, i.e., that an equilibrium policy

of the encoder is equivalent to a quantized policy, also holds if the policy space

of the encoder is extended to the set of all stochastic kernels from M to X for

any arbitrary source. That is, even when the encoder is allowed to use private

randomization, all equilibria are equivalent to those that are attained by quantized

equilibria.

Proof. [16, Lemma 1] proves that all equilibria have finitely many partitions

when the source has bounded support. Theorem 2.2.3 extends this result to a

countable number of partitions for deterministic equilibria for any source with

an arbitrary probability measure. The result follows by utilizing Theorem 2.2.3

and [16, Lemma 1].
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Theorem 2.2.4 will be used crucially to analyze the multi-stage setups; since

in a multi-stage game, at a given time stage, the source variables from the earlier

stages can serve as private randomness for the encoder.

2.2.2 Stackelberg Equilibrium Analysis

We will now observe that the Stackelberg setup is less interesting.

Theorem 2.2.5. The Stackelberg equilibrium is unique and corresponds to a fully

revealing (fully informative) encoder policy.

Proof. Due to the Stackelberg assumption, the encoder knows that the decoder

will use γd(x) = u = E[m|x] as an optimal decoder policy to minimize its cost.

Then the goal of the encoder is to minimize the following:

min
x=γe(m)

E[(m− u− b)2] = min
x=γe(m)

E[(m− E[m|x]− b)2]

(a)
= min

x=γe(m)
E[(m− E[m|x])2] + b2

= min
x=γe(m)

E[(m− u)2] + b2 .

Here, (a) follows from the law of the iterated expectations. Since the goal of the

decoder is to minimize minu=γd(x) E[(m − u)2], the goals of the encoder and the

decoder become essentially the same in the Stackelberg game setup, which effec-

tively reduces the game setup to a team setup. In the team setup, the equilibrium

is fully informative; i.e. the encoder reveals all of its information.

2.3 Static Multi-Dimensional Quadratic Cheap

Talk

The scalar setup considered in Section 2.2 can be extended to the multi-

dimensional cheap talk setup by defining the cost functions of the encoder and
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the decoder as ce(m,u) = ‖m− u− b‖2 and cd(m,u) = ‖m− u‖2, respectively,

where the lengths of the vectors are defined in L2 norm and b is the bias vector.

2.3.1 Nash Equilibrium Analysis

Although the Nash equilibrium is always quantized in a scalar setup, the equilib-

rium structure changes drastically in a multi-dimensional setting as follows:

Theorem 2.3.1. In the multi-dimensional cheap talk, the Nash equilibrium can-

not be fully revealing in the single-stage multi-dimensional cheap talk when the

source has positive measure for every non-empty open set. An equilibrium policy,

unlike the scalar case, can be non-discrete and even linear.

From the discussion in the proof of Theorem 2.3.1, it can be deduced that

if b is orthogonal to the basis vectors or satisfies certain symmetry conditions,

then non-discrete or linear equilibria exist. This approach applies also to the n-

dimensional setup for any n ∈ N. For example, if the bias vector involves only one

nonzero coordinate component and if the source distribution is uniform over an n-

dimensional unit cube, then full information revelation in all the other coordinates

will lead to a non-discrete equilibrium. In particular, if nonzero component of

the bias is greater than 0.25, then there is only one bin in that coordinate and

the full information is sent in other coordinates. Furthermore, if the encoder only

sends the 0 variable for the value of the only bin in the coordinate for which the

bias has nonzero component, then what we have is indeed a linear policy.

2.3.2 Stackelberg Equilibrium Analysis

The Stackelberg equilibria in the multi-dimensional cheap talk can be obtained

by extending its scalar case; i.e., it is unique and corresponds to a fully revealing

(fully informative) encoder policy as in the scalar case.

Theorem 2.3.2. In the multi-dimensional cheap talk, the Stackelberg equilibrium

is unique and corresponds to a fully revealing (fully informative) encoder policy.
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Proof. Due to the Stackelberg assumption, the encoder knows that the decoder

will use γd(x) = u = E[m|x] as an optimal decoder policy to minimize its cost.

Then the goal of the encoder is to minimize the following:

min
x=γe(m)

E[(m− u− b)2] = min
x=γe(m)

E[(m− E[m|x]− b)2]

(a)
= min

x=γe(m)
E[(m− E[m|x])2] + b2

= min
x=γe(m)

E[(m− u)2] + b2 .

Here, (a) follows from the law of the iterated expectations. Since the goal of

the decoder is to minimize minu=γd(x) E[(m − u)2], the goals of the encoder and

the decoder become essentially the same in the Stackelberg game setup, which

effectively reduces the game setup to a team setup. In the team setup, the

equilibrium is fully informative; i.e. the encoder reveals all of its information.

2.4 Static Scalar Quadratic Quadratic Signaling

Games

The noisy game setup is similar to the noiseless case except that there exists an

additive Gaussian noise channel between the encoder and decoder, as depicted in

Fig. 2.2, and the encoder has a soft power constraint.

Figure 2.2: System model for static signaling game.

The encoder encodes a zero-mean Gaussian random variable M and sends the

real-valued random variable X. During the transmission, the zero mean Gaussian

noise with a variance of σ2 is added to X; hence, the decoder receives Y =
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X + W , where W ∼ N (0, σ2). Here, the signaling game problem is investigated

where the encoder and the decoder are deterministic rather than randomized;

i.e., γe(dx|m) = 1{fe(m)∈dx} and γd(du|y) = 1{fd(y)∈du} where f e(m) and fd(y)

are some deterministic functions of the encoder and decoder, respectively. The

encoder aims to minimize

Je(γe, γd) = E [ce(m,x, u)] ,

whereas the decoder aims to minimize

Jd(γe, γd) = E
[
cd(m,u)

]
.

The cost functions are modified as ce (m,x, u) = (m− u− b)2 + λx2 and

cd (m,u) = (m− u)2. Note that a power constraint with an associated multi-

plier is appended to the cost function of the encoder, which corresponds to power

limitation for transmitters in practice. If λ = 0, this corresponds to the setup

with no power constraint at the encoder.

2.4.1 Nash Equilibrium Analysis

2.4.1.1 A Supporting Result

Suppose that there is an equilibrium with an arbitrary policy leading to finite

(at least two), countably infinite or uncountably infinite equilibrium bins. Let

two of these bins be Bα and Bβ. Also let mα indicate any point in Bα; i.e.,

mα ∈ Bα; and the encoder encodes mα to xα and sends to the decoder. Similarly,

let mβ represent any point in Bβ; i.e., mβ ∈ Bβ; and the encoder encodes mβ

to xβ and sends to the decoder. Without any loss of generality, we can assume

that mα < mβ. The decoder chooses the action u = E [m|y] (MMSE rule). Let

F (m,x) be the encoder cost when message m is encoded as x; i.e.,

F (m,x) =

∫
y

p
(
γd (y) = u

∣∣γe (m) = x
) (

(m− u− b)2 + λx2
)

dy .

Then, the equilibrium definitions from the view of the encoder require

F (mα, xα) ≤ F (mα, xβ) and F (mβ, xβ) ≤ F (mβ, xα). Now let G(m) =
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F (m,xα) − F (m,xβ). If it can be shown that G(m) is a continuous function

of m on the interval [mα,mβ], then it can be deduced that ∃m ∈ [mα,mβ] such

that G(m) = 0 by the Mean Value Theorem since G(mα) ≤ 0 and G(mβ) ≥ 0.

Proposition 2.4.1. G(m) is a continuous function of m on the interval [mα,mβ].

Proof. It suffices to show that F (m,x) is continuous inm. Let {mn} be a sequence

which converges to m. Recall that (mn − u − b)2 ≤ 2m2
n + 2(u + b)2 < ∞ since

m is bounded from above and below (m ∈ [mα,mβ]), b is a finite bias and

E[u2] = E[(γd (y))2] < ∞ (note that any finite cost E[(m − u2)] inevitably leads

to a finite E[u2] since E[u2] = E[(m + u − m)2] ≤ 2σ2
M + 2E[(m − u)2] < ∞).

Then, by the dominated convergence theorem,

lim
n→∞

F (mn, x) = lim
n→∞

E[(mn − u− b)2 + λx2] = E[(m− u− b)2 + λx2] = F (m,x) ,

which shows the continuity of F (·, x) in the interval (mα,mβ).

From Proposition 2.4.1, ∃m ∈ [mα,mβ] such that G(m) = 0 which implies

F (m,xα) = F (m,xβ), or equivalently,

E[(m− u− b)2 + λ(xα)2] = E[(m− u− b)2 + λ(xβ)2] .

Then,

m =
E[u2|xβ]− E[u2|xα]

2 (E[u|xβ]− E[u|xα])
+

λ
(
(xβ)2 − (xα)2

)
2 (E[u|xβ]− E[u|xα])

+ b (2.1)

is obtained. Recall that the arguments in Theorem 2.2.3 cannot be applied here

because of the presence of noise. However, when there is noise in a communication

channel, the relation between E[u|x], E[u2|x] and m can be constructed as in (2.1).

2.4.1.2 Existence and Uniqueness of Informative Affine Equilibria

We first note that Proposition 1.2.1 is valid also in the noisy formulation; i.e. a

non-informative (babbling) equilibrium is an equilibrium for the noisy signaling
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game, since the appended power constraint is always positive. The following

holds:

Theorem 2.4.1. (i) If λ ≥ σ2
M

σ2
W

, there does not exist an informative affine

equilibrium. The only affine equilibrium is the non-informative one.

(ii) Let 0 < λ <
σ2
M

σ2
W

. For any b ∈ R, there exists a unique informative affine

equilibrium.

(iii) If λ = 0, there exists no informative equilibrium with affine policies.

Remark 2.4.1. The expression
σ2
M

σ2
W

defines a quantity which determines the

Shannon-theoretic capacity of the channel given a signal energy constraint at the

encoder. This can be interpreted as Signal-to-Noise Ratio (SNR) of the received

signal, which is related to the channel attenuation coefficient. If the multiplier of

the signal λ in the cost function is greater than
σ2
M

σ2
W

, it will not be rational for the

encoder to send any signal at all under any equilibrium.

Corollary 2.4.1. If either λ = 0 or σ2
W = 0, an affine equilibrium exists only if

λ = σ2
W = b = 0.

Proof. Note that, from (2.9) and (2.11), we have A = K
K2+λ

, K =
Aσ2

M

A2σ2
M+σ2

W
,

L = −KC and C = −A(L+ b). From these equalities, we observe the following:

1. When λ = 0, it is shown in Theorem 2.4.1 that there is not any fixed

point solution to (2.14). However, if there is not a noisy channel between

the encoder and the decoder; i.e., the noise variance is zero (σ2
W = 0),

then (2.14) has a fixed point solution. Even when (2.14) has a fixed point

solution A, (2.9) and (2.11) cannot hold together unless b = 0.

2. when the noise variance is zero (σ2
W = 0), there is not any fixed point

solution to (2.14) unless λ = 0. Even when (2.14) has a fixed point solution

A, (2.9) and (2.11) cannot hold together unless b = 0.

3. when λ = 0 and the noise variance is zero (σ2
W = 0); the consistency of

(2.9) and (2.11) can be satisfied if only if b = 0. Hence, if b 6= 0, there
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cannot be a affine equilibrium; the equilibrium has to be discrete due to

Theorem 2.2.3.

2.4.1.3 Price of Anarchy and Comparison with Socially Optimal Cost

In a game theoretic setup, the encoder and the decoder try to minimize their

individual costs, thus the game theoretic cost can be found as minγe J
e+minγd J

d.

If the encoder and the decoder work together to minimize the total cost, then the

problem can be regarded as a team problem and the resulting cost is a socially

optimal cost, which is minγe,γd(J
e + Jd). In the game theoretic setup, because

of the selfish behavior of the players, there is some loss from the socially optimal

cost, and this loss is measured by the ratio between the game theoretic cost and

the socially optimal cost, which was proposed as a price of anarchy [82]. In this

part, it will be shown that the game theoretic cost is higher than the socially

optimal cost as expected.

Theorem 2.4.2. (i) Let gi and gu represent the informative and the non-

informative equilibrium game costs, respectively. Then, gi = 3
√
λσ2

Mσ
2
W +

b2
√

σ2
M

λσ2
W
− λσ2

W and gu = 2σ2
M + b2. Further, the total cost in the game

equilibrium is the following

J∗,g =

min{gi, gu} λ < σ2
M/σ

2
W

gu λ ≥ σ2
M/σ

2
W

.

(ii) Let ti and tu represent the informative and the non-informative team costs,

respectively. Then, ti = 2
√

2λσ2
Mσ

2
W+ b2

2
−λσ2

W and tu = 2σ2
M+ b2

2
. Further,

the socially optimal cost (the total cost in the team setup) is the following

J∗,t =

min{ti, tu} λ < 2σ2
M/σ

2
W

tu λ ≥ 2σ2
M/σ

2
W

.

After investigating the game theoretic cost and the socially optimal cost in

Theorem 2.4.2, the price of anarchy can be obtained as follows:
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Theorem 2.4.3. The price of anarchy is always larger than 1, i.e., the sum of

the costs under any Nash equilibria is always larger than the socially optimal cost.

Proof. By Theorem 2.4.2, we have the following

J∗,g =

min{gi, gu} λ < σ2
M/σ

2
W

gu λ ≥ σ2
M/σ

2
W

,

J∗,t =

min{ti, tu} λ < 2σ2
M/σ

2
W

tu λ ≥ 2σ2
M/σ

2
W

.

Notice that we have ti < gi for λ < σ2
M/σ

2
W , and tu < gu always. Consider the

following cases:

1. 0 < λ < σ2
M/σ

2
W : There are four cases to be considered:

(a) min{gi, gu} = gi and min{ti, tu} = ti: Since ti < gi, J
∗,t < J∗,g is sat-

isfied.

(b) min{gi, gu} = gi and min{ti, tu} = tu: Since tu < ti < gi, J
∗,t < J∗,g

is satisfied.

(c) min{gi, gu} = gu and min{ti, tu} = ti: Since ti < tu < gu < gi, J
∗,t <

J∗,g is satisfied.

(d) min{gi, gu} = gu and min{ti, tu} = tu: Since tu < gu, J
∗,t < J∗,g is

satisfied.

2. σ2
M/σ

2
W ≤ λ < 2σ2

M/σ
2
W : There are two cases to be considered:

(a) min{ti, tu} = ti: Since ti < tu < gu, J
∗,t < J∗,g is satisfied.

(b) min{ti, tu} = tu: Since tu < gu, J
∗,t < J∗,g is satisfied.

3. λ ≥ 2σ2
M/σ

2
W : Since tu < gu, J

∗,t < J∗,g is satisfied.

Hence, one can observe that J∗,g > J∗,t always holds, which shows that the price

of anarchy is always greater than 1, i.e., the game theoretic cost is always larger

than the socially optimal cost.
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As discussed in Theorem 2.4.2, even though λ <
σ2
M

σ2
W

, the non-informative

equilibrium may be preferred over the informative one. The following theorem

clarifies the conditions under which the informative equilibrium is preferred over

the non-informative one, or vice-versa.

Theorem 2.4.4. There exists informative affine equilibria in the single-stage

signaling game if and only if
σ2
M−2b2−

√
σ2
M

√
σ2
M−4b2

2σ2
W

< λ <
σ2
M−2b2+

√
σ2
M

√
σ2
M−4b2

2σ2
W

and σ2
M ≥ 4b2.

2.4.2 Stackelberg Equilibrium Analysis1

In this section, the Stackelberg equilibrium of the static scalar signaling game is

investigated; i.e. the encoder knows the policy of the decoder, and it is shown

that the only equilibrium is the linear equilibrium.

Theorem 2.4.5. For 0 < λ < σ2
M/σ

2
W , the only equilibrium (affine or not) in

the Stackelberg setup of the signaling game is the linear equilibrium. Otherwise,

the equilibrium is non-informative.

2.4.3 Information Theoretic Lower Bounds and Nash

Equilibria

In the following, we investigate the performance of Nash equilibria and socially

optimal strategies by comparing their costs with the information theoretic lower

bounds derived in Theorem 2.4.5, and comment on their achievability.

Theorem 2.4.6. (i) For the game setup, if λ ≥ σ2
M

σ2
W

(i.e., non-informative

equilibria), the information theoretic lower bounds on the costs are achiev-

able.

1In our corresponding paper [55, Theorem 4.1], mistakenly, we have used the information
theoretic lower bounds for the Nash equilibrium analysis. However, due to the assumption on
the optimal decoder action; i.e., u = E[m|y], the information theoretic arguments are valid for
the Stackelberg case.
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(ii) For the game setup, if λ <
σ2
M

σ2
W

and b = 0, the information theoretic lower

bounds on the costs are achievable by linear policies.

(iii) For the game setup, if λ <
σ2
M

σ2
W

and b 6= 0, the information theoretic lower

bounds on the costs are not achievable by affine policies.

(iv) For the team setup, the information theoretic lower bounds on the costs are

always (both in the informative and non-informative equilibria) achievable

by affine policies.

2.4.4 The Encoder with a Hard Power Constraint

Now consider the case in which the encoder has a hard power constraint instead

of a soft power constraint. Under this assumption, the goal of the encoder is to

minimize

Je(γe, γd) = E [ce(m,u)]

s.t. E [γe(m)] ≤ P ,

whereas the decoder aims to minimize

Jd(γe, γd) = E
[
cd(m,u)

]
,

where ce (m,u) = (m− u− b)2 and cd (m,u) = (m− u)2.

Unlike the soft power constrained case, there always exist informative Nash

and Stackelberg equilibria for the hard power constrained case as follows:

Theorem 2.4.7. There always exists an informative affine Nash equilibrium in

the hard power constrained scalar quadratic signaling game in contrast to the soft

power constrained scalar quadratic signaling game.

Theorem 2.4.8. The only equilibrium (affine or not) in the Stackelberg setup

of the signaling game is the linear equilibrium under the hard power constraint,

and contrary to the soft power constrained scalar quadratic signaling game, the

Stackelberg equilibrium is always informative.
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2.5 Static Multi-Dimensional Quadratic Signal-

ing Games

The scalar setup considered in Section 2.4 can be extended to the multi-

dimensional Gaussian noisy signaling game problem setup as follows: The encoder

encodes an n-dimensional zero-mean Gaussian random variable M with the co-

variance matrix ΣM and sends the real-valued n-dimensional random variable X.

During the transmission, the n-dimensional zero-mean Gaussian noise with the

covariance matrix ΣW is added to X and the decoder receives Y = X+W, where

W ∼ N (0,ΣW). The encoder aims to minimize

Je(γe, γd) = E [ce(m,x,u)] ,

whereas the decoder aims to minimize

Jd(γe, γd) = E
[
cd(m,u)

]
.

The cost functions are ce (m,x,u) = ‖m − u − b‖2 + λ‖x‖2 and cd (m,u) =

‖m − u‖2 where the lengths of the vectors are defined in L2 norm and b is the

bias vector. Note that we have appended a power constraint and an associated

multiplier. If λ = 0, this corresponds to the setup with no power constraint at

the encoder.

2.5.1 Nash Equilibrium Analysis

Theorem 2.5.1. (i) If the encoder is linear (affine), the decoder, as an MMSE

decoder for a Gaussian source over a Gaussian channel, is linear (affine).

(ii) If the decoder is linear (affine), then an optimal encoder policy for a multi-

dimensional Gaussian source over a multi-dimensional Gaussian channel is

an affine policy.

(iii) An equilibrium encoder policy γe(m) = Am + C satisfies the equation A =

T (A) where T (A) =
(
FF T + λI

)−1
F and F =

(
AΣMA

T + ΣW

)−1
AΣM.
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(iv) There exists at least one equilibrium.

We note, however, that there always exist a non-informative equilibrium (see

Proposition 1.2.1, which also applies to the signaling game discussed in this sec-

tion). However, there exist games with informative affine equilibria as we state

in Theorem 2.5.2.

Proposition 2.5.1. If either λ or ΣW is zero, an informative affine equilibrium

exists only if λ, ΣW and b are all zero.

Proof. Note that, from (2.43) and (2.45), assuming |A| 6= 0, we haveA =
(
KTK+

λI
)−1

KT , K = ΣMA
T
(
AΣMA

T + ΣW

)−1
, L = −KC and C = −A(L + b).

From these equalities, we can analyze the equilibrium as in the scalar case:

1. when λ = 0 and the noise is zero (ΣW = 0), then A = K−1 and K = A−1

are obtained. Then C = −A(L + b) = −A(−KC + b) = AKC−Ab, thus

the consistency of the equalities can be satisfied if only if b = 0. Hence, if

b 6= 0, there cannot exist an informative affine equilibrium. Recall that in

the multi-dimensional noiseless cheap talk, the linearity of the equilibrium

is shown for the uniform source; here the source is Gaussian.

2. when λ = 0, then A = K−1 and AΣMA
T + ΣW = K−1ΣMA

T are obtained.

There does not exist a solution to (2.14) unless the noise is zero (ΣW = 0).

Even when (2.14) has a fixed point solution A, (2.9) and (2.9) cannot hold

together unless b = 0.

3. when the noise is zero (ΣW = 0), then K = A−1 and KTK + λI = KTA−1

are obtained. There does not exist a solution to (2.14) unless λ = 0. Even

when (2.14) has a fixed point solution A, (2.9) and (2.9) cannot hold to-

gether unless b = 0.
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Remark 2.5.1. Unlike the scalar setting, in the multi-dimensional case, fixed

points may not be unique: with λ = 1.0311 and

ΣM =


1.6421 0.1299 0.5713 0.2305

0.1299 1.4803 0.6810 0.4749

0.5713 0.6810 1.7312 0.4292

0.2305 0.4749 0.4292 1.3515

 ,

ΣW =


1.2742 0.1868 0.2318 0.0559

0.1868 1.8266 0.5955 0.3091

0.2318 0.5955 1.2377 0.4951

0.0559 0.3091 0.4951 1.5336

 ,

we can obtain two fixed points with different absolute-valued elements as follows

(recall that if A is a fixed point, −A is also a fixed point):

A =


−0.1543 0.1762 0.0606 0.1117

0.1602 0.0159 0.1036 0.0279

−0.2000 −0.1879 −0.2700 −0.1565

0.0603 0.1052 0.1221 0.0824

 ,

A =


−0.2431 0.0738 −0.0752 0.0285

0.0293 −0.1351 −0.0966 −0.0948

0.1520 0.2181 0.2682 0.1735

−0.1003 −0.0801 −0.1236 −0.0683

 .

Theorem 2.5.2. Let source M be a zero-mean n-dimensional Gaussian random

variable with covariance matrix ΣM = diag{σ2
m1
, . . . , σ2

mn} where diag indicates

a diagonal matrix, and noise W be a zero-mean n-dimensional Gaussian random

variable with covariance matrix ΣW = diag{σ2
w1
, . . . , σ2

wn}. Then an informative

affine equilibrium exists if λ < max{σ
2
m1

σ2
w1

, . . . ,
σ2
mn

σ2
wn
}.

Note that, from (2.43) and (2.45), by assuming |A| 6= 0, we have λAΣMA
T =

KTKΣW which is equivalent to

λ(AT )−1ΣMA
T = (KTK + λI)(KTK + λI)ΣW . (2.2)

Remark 2.5.2. Assuming all channels are informative, i.e., |A| 6= 0, we make

the following observations.
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(i) If the source is i.i.d.; i.e., ΣM = σ2
mI, then (2.2) becomes

λ(AT )−1σ2
mIA

T = (KTK + λI)(KTK + λI)ΣW

⇒ λσ2
m(ΣW)−1 = (KTK + λI)(KTK + λI)

⇒ λσ2
m(ΣW)−1 ≥ λ2I

⇒ λI ≤ σ2
m(ΣW)−1 .

This result implies that λ must satisfy the inequality λI ≤ σ2
m(ΣW)−1 for the

i.i.d. source; otherwise, there must be at least one non-informative channel;

i.e., |A| must be 0.

(ii) If the channel noise is i.i.d.; i.e., ΣW = σ2
wI, (since ΣM is real-symmetric,

it has the eigenvalue decomposition as ΣM = QΛQT ), then (2.2) becomes

λ(AT )−1ΣMA
T = (KTK + λI)(KTK + λI)σ2

wI

⇒ λ

σ2
w

(AT )−1QΛQTAT = (KTK + λI)(KTK + λI)

⇒ (AT )−1QΛQTAT ≥ λσ2
w .

This result implies that for each eigenvalue λM of ΣM, λ must satisfy λ ≤
λM/σ

2
w for the i.i.d. channel noise; otherwise, there must be at least one

non-informative channel; i.e., |A| must be 0.

(iii) For the general case, recall the Minkowski determinant theorem, |A +

B|1/n ≥ |A|1/n + |B|1/n, which holds for any non-negative n × n Hermi-

tian matrix A and B. This implies |A + B| ≥ |A| + |B|. By using this

inequality and (2.45),

|A| = |K|
|KTK + λI|

≤ |K|
|K|2 + λn

.

Assuming |A| 6= 0, recall the equality λAΣMA
T = KTKΣW. Taking the

determinant of both sides,

|K|2|ΣW| = λn|A|2|ΣM| ≤ λn
(

|K|
|K|2 + λn

)2

|ΣM| ≤ λn
|K|2

λ2n
|ΣM|

⇒ λn ≤ |ΣM|
|ΣW|

.
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The result can be interpreted as follows: If λ >
(
|ΣM|
|ΣW|

)1/n

, then |A| =

|K| = 0 at the equilibrium; i.e., there must be at least one non-informative

channel.

2.5.2 Stackelberg Equilibrium Analysis2

In this section, the Stackelberg equilibrium of the static multi-dimensional sig-

naling game is investigated; i.e. the encoder knows the policy of the decoder,

u = E[m|y]. We provide an information theoretic lower bound for the encoder

cost; this serves us also to obtain condition for the existence of an informative

equilibrium.

Let e = m−u = m−E[m|y], then we have Σe = E[eeT ] = E[(m−E[m|y])(m−
E[m|y])T ]. Since the differential entropy is h(m) = 1

2
log2((2πe)n|Σm|) for a

Gaussian source M, by following similar information theoretic arguments to those

in (2.23);

I(m; y) = h(m)− h(m|y) = h(m)− h(m− E[m|y]|y)

≥ h(m)− h(m− E[m|y])

≥ 1

2
log2((2πe)n|Σm|)−

1

2
log2((2πe)n|Σe|)

=
1

2
log2(|Σm|/|Σe|) .

Also from the rate-distortion theorem, the data processing theorem and the chan-

nel capacity theorem:

R(D) ≤ min
f(u|m):E[‖m−u‖2]≤D

I(m; u) ≤ I(m; u)

≤ I(x; y) ≤ max
f(x):E[‖x‖2]≤P

I(x; y) ≤ C(P ) .

If we combine these, we obtain the following:

|Σe| ≥ |Σm|2−2R(D) ≥ |Σm|2−2I(m;u) ≥ |Σm|2−2I(x;y) ≥ |Σm|2−2C(P ) . (2.3)

2In our corresponding paper [55, Section V.B], mistakenly, we have used the information
theoretic lower bounds for the Nash equilibrium analysis. However, due to the assumption on
the optimal decoder action; i.e., u = E[m|y], the information theoretic arguments are valid for
the Stackelberg case.
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Now consider the following:

E[‖m− u‖2] = E[‖e‖2] = tr Σe

(a)

≥n
( n∏
i=1

Σe(i, i)
)1/n

(b)

≥n
(
|Σe|

)1/n

(c)

≥n
(
|Σm|2−2C(P )

)1/n

. (2.4)

Here, (a) follows from the inequality for the arithmetic and geometric mean where

Σe(i, i) stands for ith diagonal element of Σe, (b) follows from the Hadamard

inequality (since Σe is a positive semi-definite matrix), and (c) follows from (2.3).

Now we will rewrite [83, Eq. (9.166)] which presents the capacity of the additive

colored Gaussian noise channel with typo corrected:

C(P ) =
1

n

n∑
i=1

1

2
log2

(
1 +

max(ν − λi, 0)

λi

)
,

where P = E[‖x‖2], λ1, λ2, . . . , λn are the eigenvalues of Σw and ν is chosen so

that
∑n

i=1 max(ν − λi, 0) = nP . Then we can obtain the following:

2−2C(P ) = 2
−2 1

n

n∑
i=1

1
2

log2

(
1+

max(ν−λi,0)
λi

)
=

n∏
i=1

(
1 +

max(ν − λi, 0)

λi

)−1/n

=
n∏
i=1

(max(ν, λi)

λi

)−1/n

=
(
∏n

i=1 λi)
1/n

(
∏n

i=1 max(ν, λi))1/n

(a)

≥ (|Σw|)1/n

(P +
∑n

i=1
λi
n

)

=
(
|Σw|

)1/n(
P +

tr Σw

n

)−1

. (2.5)

Here, (a) holds, since our assumption
∑n

i=1 max(ν − λi, 0) = nP implies∑n
i=1 max(ν, λi) = nP+

∑n
i=1 λi and (

∏n
i=1 max(ν, λi))

1/n ≤
∑n

i=1 max(ν, λi)/n =

P +
∑n

i=1 λi/n holds by the inequality for the arithmetic and geometric mean. If

we insert (2.5) to (2.4),

E[‖m− u‖2] ≥n

(
|Σm|

(
|Σw|

)1/n(
P +

tr Σw

n

)−1
)1/n
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=n(|Σm|)1/n(|Σw|)1/n2
(
P +

tr Σw

n

)−1/n

. (2.6)

The encoder costs reduces to Je = E[‖m − u‖2] + λE[‖x‖2] + ‖b‖2 since the

decoder always chooses u = E[m|y]. Then, by (2.6),

Je = ‖b‖2 + λE[‖x‖2] + E[‖m− u‖2]

≥ ‖b‖2 + λP + n(|Σm|)1/n(|Σw|)1/n2
(
P +

tr Σw

n

)−1/n

. (2.7)

The minimizer of this function can be found by the local perturbation condition:

λ−(|Σm|)1/n(|Σw|)1/n2
(
P +

tr Σw

n

)− 1
n
−1

= 0

⇒ λ = (|Σm|)1/n(|Σw|)1/n2
(
P +

tr Σw

n

)− 1
n
−1

(a)

≤ (|Σm|)1/n(|Σw|)1/n2
(

(|Σw|)1/n
)− 1

n
−1

= (|Σm|)1/n(|Σw|)−1/n .

Here, (a) follows from the nonnegativeness of P and the inequality for the

arithmetic and geometric mean and the Hadamard inequality, similar to (2.4).

Hence, if λ < (|Σm|)1/n(|Σw|)−1/n, the lower bound is minimized at a nonzero

P value, but if λ ≥ (|Σm|)1/n(|Σw|)−1/n, the minimizer P becomes zero. Fi-

nally, if channels and source are assumed to be i.i.d.; i.e., Σm = σ2
mI and

Σw = σ2
wI where I is n × n identity matrix, and the encoder and the decoder

use linear policies, then (2.7) becomes tight and can be interpreted as follows:

If λ > (|Σm|)1/n(|Σw|)−1/n = σ2
m/σ

2
w, then (2.7) is minimized at P = 0; that

is, the encoder does not signal any output. Hence, the encoder engages in an

non-informative equilibrium and the minimum cost becomes E [‖m‖2] + ‖b‖2 at

this non-informative equilibrium. Recall that this is analogous to the analysis in

the scalar setup (2.24).

2.6 Conclusion

For a strategic information transmission problem under quadratic criteria with a

non-zero bias term leading to a mismatch in the encoder and the decoder objective
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functions, Nash and Stackelberg equilibria have been investigated in a number

of setups. It has been proven that for any scalar source, the quantized nature

of Nash equilibrium policies hold, whereas all Stackelberg equilibrium policies

are fully informative. Further, it has been shown that the Nash equilibrium

policies may be non-discrete and even linear for a multi-dimensional cheap talk

problem, unlike the scalar case. The additive noisy channel setup with Gaussian

statistics has also been studied, such a case leads to a signaling game due to

the communication constraints in the transmission. Conditions for the existence

of affine Nash equilibrium policies are presented for both the scalar and multi-

dimensional setups. Lastly, we proved that the only equilibrium in the Stackelberg

noisy setup is the linear equilibrium. Table 2.1 summarizes the results of this

chapter.

Table 2.1: Static (one-stage) cheap talk and signaling games

SETUP SOURCE Nash Equilibrium Stackelberg Equilibrium
STATIC
CHEAP
TALK

scalar quantized fully revealing

multi-dimensional
may be of non-quantized nature,

even linear
fully revealing

STATIC
SIGNALING

GAMES

scalar
affine policies constitute invariant subspace

under best response maps
always linear

multi-dimensional
affine policies constitute invariant subspace

under best response maps
no general structure

2.7 Proofs

2.7.1 Proof of Theorem 2.2.3

Let there be an equilibrium in the game (with possibly uncountably infinitely

many bins, countably many bins or finitely many bins). Let two bins be Bα

and Bβ. Also let mα indicate any point in Bα; i.e., mα ∈ Bα. Similarly, let

mβ represent any point in Bβ; i.e., mβ ∈ Bβ. The decoder chooses action uα =

E[m|m ∈ Bα] when the encoder sends mα ∈ Bα and action uβ = E[m|m ∈ Bβ]

when the encoder sends mβ ∈ Bβ in order to minimize its total cost. Without loss

of generality, we can assume that uα < uβ. Let F (m,u) , (m−u−b)2. Because of

the equilibrium definitions from the view of the encoder; F (mα, uα) < F (mα, uβ)
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and F (mβ, uβ) < F (mβ, uα). Hence, ∃ m that satisfies F (m,uα) = F (m,uβ)

which reduces to

m =
uα + uβ

2
+ b ⇐⇒ (m− uα) = (uβ −m) + 2b . (2.8)

Since F (m + ∆, uα) > F (m + ∆, uβ) for any ∆ > 0, Bβ and {m|m < m} are

disjoint sets. Similarly, Bα and {m|m > m} are disjoint sets, too. Thus, from

the definitions of uα and uβ, we have uα < m < uβ which implies m − uα > 0

and uβ −m > 0. Then, from (2.8),

uβ − uα = (uβ −m) + (m− uα) = 2(uβ −m) + 2b > 2b

and

uβ − uα = (uβ −m) + (m− uα) = 2(m− uα)− 2b > −2b

are obtained. Hence, uβ − uα > 2|b|, which implies that there must be at least

2|b| distance between the equilibrium points (decoder’s actions, centroids of the

bins). Further, from the encoder’s point of view, given any two bins Bα and Bβ,

there exists a point m which lies between these two bins. This assures that each

bin must be a single interval; i.e., convex cell except for a possible insignificant set

of points with measure zero. Since there is an injective and monotonic relation

between the convex cells of the encoder and decoder’s actions, the equilibrium

policy must be quantized almost surely.

2.7.2 Proof of Theorem 2.3.1

Similar to the single-stage scalar case in Theorem 2.2.3, at the equilibrium, define

two cells Cα and Cβ, any points in those cells as mα ∈ Cα and mβ ∈ Cβ, and the

actions of the decoder as uα and uβ when the encoder transmits mα and mβ, re-

spectively. Let F (m,u) , ‖m−u−b‖2. Due to the equilibrium definitions from

the view of the encoder; F (mα,uα) < F (mα,uβ) and F (mβ,uβ) < F (mβ,uα).

Hence, there exists a hyperplane defined by F (z,uα) = F (z,uβ) which is equiv-

alent to ‖(z− b)− uα‖2 = ‖(z− b)− uβ‖2. It can be seen that z− b defines a

hyperplane which is a perpendicular bisector of uα and uβ; i.e., the hyperplane
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defined by the points z is a perpendicular bisector of uα and uβ shifted by b.

The hyperplane defined by the points z divides the space into two subspaces: let

Zα that contains uα and Zβ that contains uβ be those subspaces. Cβ and Zα

are disjoint subspaces since F (z + δ(uβ − uα),uα) ≥ F (z + δ(uβ − uα),uβ) for

any positive scalar δ. Similarly, Cα and Zβ are disjoint subspaces, too. Thus, the

hyperplane defined by the points z must lie between uα and uβ which implies

that the length of b along the d , uβ−uα direction should not exceed half of the

distance between uα and uβ; i.e., ‖bd‖ ≤ ‖d‖/2, where bd is the projection of b

along the direction of d. Since d can be any vector at a fully revealing equilib-

rium by the assumption on the source, ‖bd‖ ≤ ‖d‖/2 cannot be satisfied unless

b = 0. Thus, there cannot be a fully revealing equilibrium in the single-stage

multi-dimensional cheap talk.

For a linear equilibrium, it suffices to provide an example. Let the source be

uniform on [0, 1]×[0, 1] and consider b = [0.3 0]. Then, as a (properly interpreted)

limit case of the equilibrium in Fig. 2.3, the following encoder and decoder policies

form an equilibrium:

γe(m1,m2) = (x1, x2) = (0,m2) ,

γd(x1, x2) = (u1, u2) = (0.5,m2) .

Here, the scalar setup is applied on the x-dimension with one quantization bin

(recall that u1 = E[m1|x1]), and a fully-informative equilibrium exists on the

y-dimension since there is no bias on that dimension. It is observed that the

encoder policy is linear due to the unbiased property of the y-dimension.

Besides linear equilibria, there may be multiple (hence, non-unique) quan-

tized equilibria with finite regions in the multi-dimensional case as illustrated in

Fig. 2.4.

2.7.3 Proof of Theorem 2.4.1

(i) If the encoder is linear (affine), the decoder, as an MMSE decoder for a

Gaussian source over a Gaussian channel, is linear (affine); this follows from
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Figure 2.3: Sample linear equilibrium for bx = 0.2 and by = 0. Note that the number of
quantization levels on the y-dimension can be arbitrarily chosen (since b is orthogonal to that
dimension).

Figure 2.4: Sample discrete equilibria in 2D with bx = 0.1 and by = 0.2 where the crosses
indicate the centroids of the bins, the star indicates the middle point and the square indicates
the shifted middle point. Note that the equilibrium is not unique for a given number of bins as
in the scalar case.

the property of the conditional expectation for jointly Gaussian random

variables. In particular, for the given affine encoding policy x = γe(m) =

Am+ C, the optimal decoder policy would be

γd(y) =
Aσ2

M

A2σ2
M + σ2

W

(y − C) , Ky + L . (2.9)

Suppose on the other hand that the decoder is affine so that u = γd(y) =

Ky + L and the encoder policy is x = γe(m). We will show that the

encoder is also affine in this case: With y = γe(m) + w, it follows that

u = Kγe(m) +Kw + L. By completing the square, the optimal cost of the

encoder can be written as

J∗,e = min
x=γe(m)

E[(m− u− b)2 + λx2]
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= min
γe(m)

E
[
(m−Kγe(m)−Kw − L− b)2 + λ(γe(m))2

]
= min

γe(m)
E
[
(m−Kγe(m)− L− b)2 + λ(γe(m))2

]
+K2σ2

W

= min
γe(m)

E
[
(K2 + λ)(γe(m))2 + (m− L− b)2 − 2(m− L− b)Kγe(m)

]
+K2σ2

W

= min
γe(m)

(K2 + λ)E
[
(γe(m))2 +

(m− L− b)2

K2 + λ
− 2(m− L− b)K

K2 + λ
γe(m)

]
+K2σ2

W

= min
γe(m)

(K2 + λ)E
[(
γe(m)− (m− L− b)K

K2 + λ

)2

−
((m− L− b)K

K2 + λ

)2

+
(m− L− b)2

K2 + λ

]
+K2σ2

W

= min
γe(m)

(K2 + λ)E
[(
γe(m)− (m− L− b)K

K2 + λ

)2

+ λ
((m− L− b)

K2 + λ

)2]
+K2σ2

W

= min
γe(m)

(K2 + λ)E
[(
γe(m)− (m− L− b)K

K2 + λ

)2]
+

λ

K2 + λ

(
σ2
M + (L+ b)2

)
+K2σ2

W .

(2.10)

In (2.10), only the E
[(
γe(m)− (m−L−b)K

K2+λ

)2]
part depends on the minimiza-

tion parameter γe(m). Hence, the optimal γe(m) can be chosen as

γ∗,e(m) =
( 1

K + λ/K

)
m+

( −L− b
K + λ/K

)
, Am+ C , (2.11)

and the minimum encoder cost is obtained as

J∗,e =
λ

K2 + λ

(
σ2
M + (L+ b)2

)
+K2σ2

W . (2.12)

Recall that (2.11) implies that an optimal encoder policy for a Gaussian

source over a Gaussian channel is an affine policy if the decoder policy

is chosen as affine. We now wish to see if the sets of optimal policies of

the encoder and the decoder satisfy a fixed point equation. By combining

(2.9) and (2.11), we have A = K
K2+λ

, K =
Aσ2

M

A2σ2
M+σ2

W
, L = −KC and C =
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−A(L + b). Then, for nonzero A, by utilizing A2σ2
M + σ2

W =
Aσ2

M

K
=

σ2
M

K2+λ
,

we have

AK =
K2

K2 + λ
=

A2σ2
M

A2σ2
M + σ2

W

⇒ λ

K2 + λ
=

σ2
W

A2σ2
M + σ2

W

=
σ2
W

σ2
M

(
K2 + λ

)
.

(2.13)

Hence, we have (K2+λ)2σ2
W = λσ2

M ⇒ K2 =
√

λσ2
M

σ2
W
−λ ≥ 0⇒ λ < σ2

M/σ
2
W

for nonzero A. Thus, if λ ≥ σ2
M/σ

2
W , the solution is A = 0; in other

words, there does not exist an informative affine equilibrium, the only affine

equilibrium is the non-informative one; i.e., A = K = C = L = 0.

(ii) For λ <
σ2
M

σ2
W

, if we combine the fixed point equations (2.9) and (2.11) by

using A, and define the resulting mapping as T (A), we obtain

A =
K

K2 + λ
=

A
A2+σ2

W /σ2
M(

A
A2+σ2

W /σ2
M

)2

+ λ
, T (A) . (2.14)

Note now that

A ≥ 1⇒ A

A2 +
σ2
W

σ2
M

< 1⇒ T (A) <
1

λ
,

A < 1⇒ A

A2 +
σ2
W

σ2
M

<
σ2
M

σ2
W

⇒ T (A) <

σ2
M

σ2
W

λ
,

which implies that the mapping defined by T (A) = A can be viewed as a

continuous function mapping the compact convex set [0,max(σ2
M/σ

2
W , 1)/λ]

to itself. Therefore, by Brouwer’s fixed point theorem [84], there exists

A = T (A). Indeed, we can find nonzero A,K,C, L for every 0 < λ <
σ2
M

σ2
W

as

in (2.15).

For the uniqueness of an informative fixed point, suppose that there are

two different nonzero fixed points: A1 = T (A1) and A2 = T (A2) and let

γ = σ2
W/σ

2
M for simplicity. Then A1/T (A1) = A2/T (A2) implies

A2
1

A2
1 + γ

+ λ(A2
1 + γ) =

A2
2

A2
2 + γ

+ λ(A2
2 + γ)

⇒ (A2
1 − A2

2)
( γ

(A2
1 + γ)(A2

2 + γ)
+ λ
)

= 0 .
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Hence, |A1| = |A2| is obtained, and since the mapping is defined from

[0,max(σ2
M/σ

2
W , 1)/λ] to itself, the nonzero fixed point is unique. Then the

encoder may choose the nonzero fixed point for the informative equilibrium

if it results in a lower cost than the non-informative equilibrium (due to

the cost of communication, an informative equilibrium is not always ben-

eficial to the encoder compared to the non-informative one as shown in

Theorem 2.4.4).

(iii) It is proved in (2.11) that an optimal encoder is affine such that x = γe(m) =

Am+C when the decoder is affine, that is, u = γd(y) = Ky+L. Then, by

inserting λ = 0 to (2.1), m is obtained as m = KA (mα+mβ)
2

+KC + L+ b.

This holds for all mα and mβ with mα ≤ m ≤ mβ. Thus, if the distance

between mα and mβ is made arbitrarily small, then it must be that KA = 1

and KC + L + b = 0. On the other hand, it was shown that an optimal

decoder policy is affine if an encoder is affine in (2.9). By combining KA = 1

and K =
Aσ2

M

A2σ2
M+σ2

W
, it follows that a real-valued solution does not exist for

any given affine coding parameter.

2.7.4 Proof of Theorem 2.4.2

(i) From (2.9) and (2.11), we have the following equalities for λ <
σ2
M

σ2
W

:

K = ±

√√√√√λσ2
M

σ2
W

− λ ,

A =
K

K2 + λ
= ±

√√√√√ σ2
W

λσ2
M

− σ2
W

σ2
M

,

AK =

√√√√(√ σ2
W

λσ2
M

− σ2
W

σ2
M

)(√λσ2
M

σ2
W

− λ
)

=

∣∣∣∣∣1−
√
λσ2

W

σ2
M

∣∣∣∣∣ = 1−

√
λσ2

W

σ2
M

,

C = −A(L+ b) = −A(−KC + b) = AKC − Ab

⇒ C =
Ab

AK − 1
=
±b
√√

σ2
W

λσ2
M
− σ2

W

σ2
M

−
√

λσ2
W

σ2
M

= ∓b

√√√√1

λ

(√ σ2
M

λσ2
W

− 1
)
,
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L+ b = −C
A
⇒ (L+ b)2 =

C2

A2
= b2 1

λ

σ2
M

σ2
W

. (2.15)

Utilizing (2.15) in the optimal encoder cost (2.12) results in:

J∗,e =
λ

K2 + λ

(
σ2
M + (L+ b)2

)
+K2σ2

W

=
λ√
λσ2
M

σ2
W

(
σ2
M + b2 1

λ

σ2
M

σ2
W

)
+
(√λσ2

M

σ2
W

− λ
)
σ2
W

=
√
λσ2

Mσ
2
W + b2

√
σ2
M

λσ2
W

+
√
λσ2

Mσ
2
W − λσ

2
W

= 2
√
λσ2

Mσ
2
W + b2

√
σ2
M

λσ2
W

− λσ2
W .

Now recall that the optimal decoder policy is u∗ = E[m|(y = Am+C+w)] =
Aσ2

M

A2σ2
M+σ2

W
(y − C). Then, the optimal decoder cost becomes

J∗,d = min
u=γd(y)

E[(m− u)2] = E[(m− E[m|y])2]

= σ2
M −

σ2
MY

σ2
Y

= σ2
M −

A2(σ2
M)2

A2σ2
M + σ2

W

=
σ2
Mσ

2
W

A2σ2
M + σ2

W

=
σ2
Mσ

2
W(√

σ2
W

λσ2
M
− σ2

W

σ2
M

)
σ2
M + σ2

W

=
√
λσ2

Mσ
2
W .

As a result, the game theoretic cost at the equilibrium is found as

J∗,g = J∗,e + J∗,d = 3
√
λσ2

Mσ
2
W + b2

√
σ2
M

λσ2
W

− λσ2
W . (2.16)

Recall that, if λ ≥ σ2
M/σ

2
W , since A = K = C = L = 0, J∗,e = σ2

M + b2

and J∗,d = σ2
M are obtained; hence, the game theoretic cost becomes J∗,g =

2σ2
M + b2. If there were no cost of communication (consider the cheap talk;

i.e., remove λx2 from the encoder cost function), then one could say that

the informative equilibria would always be beneficial to both the encoder

and the decoder; however, due to the cost of communication, an informative

equilibrium is not always beneficial to the encoder when compared with the

non-informative one (i.e., for λ < σ2
M/σ

2
W , it does not always hold that
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2
√
λσ2

Mσ
2
W + b2

√
σ2
M

λσ2
W
− λσ2

W < σ2
M + b2, see Theorem 2.4.4 for details).

For the receiver, however, information never hurts the performance and

the informative equilibria are more desirable (i.e., for λ < σ2
M/σ

2
W , the

inequality
√
λσ2

Mσ
2
W < σ2

M always holds). As a result, one can expect a

non-informative equilibrium even if λ < σ2
M/σ

2
W , as shown in Theorem 2.4.4.

(ii) The part below aims to construct the socially optimal affine setup. In this

part, Je,t represents the team cost minimized over the encoder policies for

a given decoder policy, Jd,t represents the team cost minimized over the

decoder policies for a given encoder policy, and J∗,t represents the optimum

team cost; i.e., minimization over all affine encoding and decoding policies

as follows:

J∗,t = min
x=γe(m),u=γd(y)

E[(m− u− b)2 + λx2 + (m− u)2] .

Similar to the game theoretic analysis above, with the given affine encoding

policy x = γe(m) = Am+C (then y = x+w = Am+C +w), the optimal

decoder policy can be found as follows (by completing the square):

Jd,t = min
u=γd(y)

E[(m− u− b)2 + λx2 + (m− u)2]

= min
u=γd(y)

E[2(m− u)2 − 2(m− u)b+ λx2]

= min
u=γd(y)

2E
[
(m− u− b

2
)2 +

b2

4
+ λ

x2

2

]
.

Hence the optimal decoder policy can be chosen as γd,t(y) = E[m − b
2
| y].

Due to the joint Gaussanity of m and y, the minimizer decoder policy is

affine:

γd
∗,t(y) =

Aσ2
M

A2σ2
M + σ2

W

(y − C)− b

2
, Ky + L . (2.17)

Similar to the game theoretic analysis above, for any affine decoder policy

γd(y) = Ky + L with y = γe(m) + w, the optimal encoder policy for the

team setup can be obtained as follows (by completing the square):

Je,t = min
x=γe(m)

E[(m− u− b)2 + λx2 + (m− u)2]
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= min
γe(m)

E
[
(m−Kγe(m)−Kw − L− b)2 + λ(γe(m))2

+ (m−Kγe(m)−Kw − L)2
]

= min
γe(m)

E
[
(m−Kγe(m)− L− b)2 + λ(γe(m))2 + (m−Kγe(m)− L)2

]
+ 2K2σ2

W

= min
γe(m)

E
[
(2K2 + λ)(γe(m))2 + (m− L− b)2 + (m− L)2

− 2(2m− 2L− b)Kγe(m)
]

+ 2K2σ2
W

= min
γe(m)

(2K2 + λ)E

[
(γe(m))2 +

(m− L− b)2

2K2 + λ
+

(m− L)2

2K2 + λ

− 2(2m− 2L− b)K
2K2 + λ

γe(m)

]
+ 2K2σ2

W

= min
γe(m)

(2K2 + λ)E

[(
γe(m)− (2m− 2L− b)K

2K2 + λ

)2

−
((2m− 2L− b)K

2K2 + λ

)2

+
(m− L− b)2

2K2 + λ
+

(m− L)2

2K2 + λ

]
+ 2K2σ2

W

= min
γe(m)

(2K2 + λ)E

[(
γe(m)− (2m− 2L− b)K

2K2 + λ

)2

+
b2K2 + λ ((m− L− b)2 + (m− L)2)

(2K2 + λ)2

]
+ 2K2σ2

W

= min
γe(m)

(2K2 + λ)E

[(
γe(m)− (2m− 2L− b)K

2K2 + λ

)2
]

+
b2K2 + λ (2σ2

M + (L+ b)2 + L2)

2K2 + λ
+ 2K2σ2

W .

Hence, the optimal encoder γe(m) is

γe
∗,t(m) =

(2m− 2L− b)
2K + λ/K

, Am+ C , (2.18)

and the minimum team cost is obtained as

J∗,t =
b2K2 + λ (2σ2

M + (L+ b)2 + L2)

2K2 + λ
+ 2K2σ2

W . (2.19)

This implies that, in the team setup, an optimal encoder policy for a Gaus-

sian source over a Gaussian channel is a affine policy if the decoder policy

is chosen as affine.
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In order to achieve the socially optimal cost J∗,t, the optimal encoder policy

γe
∗,t(m) and the optimal decoder policy γd

∗,t(y) must satify the following

equalities by (2.17) and (2.18):

A =
2

2K + λ/K
, K =

Aσ2
M

A2σ2
M + σ2

W

,

C =
A

2
(−2L− b) = −AL− Ab

2
, L = −KC − b

2

⇒C = −A
(
−KC − b

2

)
− Ab

2
= AKC .

Here, either AK = 1 or C = 0. If AK = 1, then it becomes that 1 =

AK =
A2σ2

M

A2σ2
M+σ2

W
⇒ σ2

W = 0, which contradicts with the noise assumption.

Then C = 0 and L = −b/2. By using the equalities for A and K above,

one can obtain 2(K2 + λ/2)2σ2
W = λσ2

M by assuming A 6= 0; which implies

K2 =
√

λσ2
M

2σ2
W
− λ

2
. Since K2 is positive, λ cannot be greater than

2σ2
M

σ2
W

;

otherwise, because of our assumption, A must be equal to 0 which implies

that K = 0, and there does not exist an informative affine team setup.

Then K2 =
√

λσ2
M

2σ2
W
− λ

2
and λ <

2σ2
M

σ2
W

for nonzero A. Thus, for λ <
2σ2
M

σ2
W

, by

using K2 =
√

λσ2
M

2σ2
W
− λ

2
, A = 2K

2K2+λ
, C = 0 and L = − b

2
in (2.19), we have

J∗,t =
b2K2 + λ (2σ2

M + (L+ b)2 + L2)

2K2 + λ
+ 2K2σ2

W

=
b2
(√

λσ2
M

2σ2
W
− λ

2

)
+ 2λσ2

M + λ
(
( b

2
)2 + (− b

2
)2
)

2
√

λσ2
M

2σ2
W

+ 2

(√
λσ2

M

2σ2
W

− λ

2

)
σ2
W

=
b2

2
+
√

2λσ2
Mσ

2
W +

√
2λσ2

Mσ
2
W − λσ

2
W

= 2
√

2λσ2
Mσ

2
W +

b2

2
− λσ2

W . (2.20)

Recall that, if λ ≥ 2σ2
M/σ

2
W , then J∗,t = 2σ2

M + b2

2
. Since 2

√
2λσ2

Mσ
2
W +

b2

2
− λσ2

W < 2σ2
M + b2

2
always holds (this can be shown by using the

fact (2σ2
M − λσ2

W )
2
> 0), which implies that the informative equilibrium

should always be preferred over the non-informative one. However, for

λ ≥ 2σ2
M/σ

2
W , the team equilibrium is always non-informative as shown

above.
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2.7.5 Proof of Theorem 2.4.4

Recall that in the single-stage Nash signaling game, the optimal affine encoder

cost is obtained as J∗,e = σ2
M +b2 for λ ≥ σ2

M/σ
2
W (at the non-informative equilib-

rium) and J∗,e = 2
√
λσ2

Mσ
2
W +b2

√
σ2
M

λσ2
W
−λσ2

W for λ < σ2
M/σ

2
W (at the informative

affine equilibrium). Even though σ2
M + b2 ≥ 2

√
λσ2

Mσ
2
W + b2

√
σ2
M

λσ2
W
− λσ2

W for

λ ≥ σ2
M/σ

2
W (since

(√
σ2
M −

√
λσ2

W

)2

≥ 0), the non-informative equilibrium is

preferred over the informative affine equilibrium since there does not exist any

informative affine equilibrium for λ ≥ σ2
M/σ

2
W as shown in Theorem 2.4.1. How-

ever, the non-informative equilibrium can also be preferred even if λ < σ2
M/σ

2
W .

Now, we analyze the conditions under which the informative affine equilibrium

has strictly lower cost than the non-informative one for λ < σ2
M/σ

2
W :

σ2
M + b2 > 2

√
λσ2

Mσ
2
W + b2

√
σ2
M

λσ2
W

− λσ2
W

⇒
(√

σ2
M −

√
λσ2

W

)2

+ b2

(
1−

√
σ2
M

λσ2
W

)
> 0

⇒
(√

σ2
M −

√
λσ2

W

)(√
λσ2

W

(√
σ2
M −

√
λσ2

W

)
− b2

)
> 0 . (2.21)

Since λ < σ2
M/σ

2
W , (2.21) reduces to

√
λσ2

W

(√
σ2
M −

√
λσ2

W

)
− b2 > 0. Let

t ,
√
λσ2

W , then the inequality becomes t2 −
√
σ2
M t+ b2 < 0. If σ2

M < 4b2, then

t2 −
√
σ2
M t + b2 is always positive, which implies that the non-informative equi-

librium has strictly less cost than the informative affine equilibrium. Otherwise;

i.e., if σ2
M ≥ 4b2, then t2 −

√
σ2
M t + b2 < 0 holds when

√
σ2
M−
√
σ2
M−4b2

2
< t <√

σ2
M+
√
σ2
M−4b2

2
. Then, the result follows through inserting t ,

√
λσ2

W :√
σ2
M −

√
σ2
M − 4b2

2
<
√
λσ2

W <

√
σ2
M +

√
σ2
M − 4b2

2

σ2
M − 2b2 −

√
σ2
M

√
σ2
M − 4b2

2
< λσ2

W <
σ2
M − 2b2 +

√
σ2
M

√
σ2
M − 4b2

2

0 <
σ2
M − 2b2 −

√
σ2
M

√
σ2
M − 4b2

2σ2
W

< λ <
σ2
M − 2b2 +

√
σ2
M

√
σ2
M − 4b2

2σ2
W

<
σ2
M

σ2
W

.

(2.22)

50



Thus, the encoder prefers the informative affine equilibrium when
σ2
M−2b2−

√
σ2
M

√
σ2
M−4b2

2σ2
W

<

λ <
σ2
M−2b2+

√
σ2
M

√
σ2
M−4b2

2σ2
W

and σ2
M ≥ 4b2; otherwise, the non-informative equilib-

rium is preferred.

2.7.6 Proof of Theorem 2.4.5

Due to the Stackelberg assumption, the encoder knows that the optimal decoder

policy will be u = E[m|y]. Then, by the law of the iterated expectations, the

encoder cost Je = E[(m−u−b)2 +λx2] reduces to Je = E[(m−u)2]+λE[x2]+b2.

Further, let P , E[x2], and D be defined as the squared error distortion; i.e.,

D , E[(m− u)2] = E[(m− E[m|y])2]. Then,

I(M ;Y ) =h(M)− h(M |Y ) = h(M)− h(M − E[M |Y ]|Y )

≥h(M)− h(M − E[M |Y ])
(a)

≥ 1

2
log2(2πeσ2

M)− 1

2
log2(2πeD) =

1

2
log2(

σ2
M

D
)

⇒D ≥ σ2
M2−2I(m;y)

(b)

≥ σ2
M2−2I(x;y) ≥ σ2

M2−2 sup I(x;y) (c)
= σ2

M2
−2 1

2
log2

(
1+ P

σ2
W

)
⇒D = E[(m− u)2] ≥ σ2

M

1 + P/σ2
W

. (2.23)

Here, (a) holds since the differential entropy is h(M) = 1
2

log2(2πeσ2
M) for a Gaus-

sian source M , (b) follows from the data-processing inequality, and (c) follows

from the channel capacity of the Gaussian channel (see [4, p. 96] for another exam-

ple of a rate-distortion theoretic bound through the data-processing inequality).

Then, the following leads to a lower bound on the encoder cost:

Je = b2 + λE[x2] + E[(m− u)2]

≥ b2 + λP +
σ2
M

1 + P/σ2
W

. (2.24)

Let h(P ) , λP +
σ2
M

1+P/σ2
W

, then dh(P )
dP

= λ− σ2
M

σ2
W

(
1 + P

σ2
W

)−2

. Since dh(P )
dP
≥ 0 when

λ ≥ σ2
M/σ

2
W , (2.24) is minimized at P = 0; that is, the encoder does not signal

any output. Hence, the encoder engages in a non-informative equilibrium and

the minimum encoder cost becomes σ2
M + b2 at this non-informative equilibrium.

Otherwise; i.e., λ < σ2
M/σ

2
W , h(P ) is minimized when dh(P )

dP
= 0⇒ P =

√
σ2
Mσ

2
W

λ
−
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σ2
W since d2h(P )

dP 2 =
2σ2
M

σ4
W

(
1 + P

σ2
W

)−3

> 0. In this case, the lower bound on the

encoder cost in (2.24) becomes 2
√
λσ2

Mσ
2
W + b2 − λσ2

W .

After obtaining the information theoretic lower bounds on the encoder cost

above, now we assume the linear encoding policy and show that the lower bounds

are achieved, then we conclude that the encoder policy must be linear. Let the

encoder policy be x = γe(m) = Am + C. Due to the Stackelberg assumption,

the encoder knows that the decoder will use γd(y) = u = E[m|y] as an optimal

decoder policy to minimize the decoder cost, thus u = γd(y) =
Aσ2

M

A2σ2
M+σ2

W
(y − C)

where y = Am+C+w. Then the goal of the encoder is to minimize the following:

J∗,e = min
x=γe(m)=Am+C

E[(m− u− b)2 + λx2]

= min
A, C

E
[(mσ2

W − Aσ2
Mw

A2σ2
M + σ2

W

− b
)2

+ λ(Am+ C)2
]

= min
A, C

σ2
M(σ2

W )2 + A2(σ2
M)2σ2

W

(A2σ2
M + σ2

W )2
+ b2 + λA2σ2

M + λC2

= min
A, C

σ2
Mσ

2
W

A2σ2
M + σ2

W

+ b2 + λA2σ2
M + λC2 . (2.25)

The optimal encoder cost in (2.25) is achieved for C∗ = 0, and A∗ = 0 for

λ ≥ σ2
M/σ

2
W and A∗ =

√√
σ2
W

λσ2
M
− σ2

W

σ2
M

for λ < σ2
M/σ

2
W . Then, the optimal encoder

cost is obtained as J∗,e = σ2
M+b2 for λ ≥ σ2

M/σ
2
W and J∗,e = 2

√
λσ2

Mσ
2
W+b2−λσ2

W

for λ < σ2
M/σ

2
W . Note that these are the information theoretic lower bounds

above, and these lower bounds are achieved when the encoder and the decoder

use linear policies jointly, which is valid for the current case.

Recall that, in the static Stackelberg signaling game, the optimal encoder cost

is obtained as J∗,e = σ2
M + b2 for λ ≥ σ2

M/σ
2
W and J∗,e = 2

√
λσ2

Mσ
2
W + b2 −

λσ2
W for λ < σ2

M/σ
2
W . Notice that σ2

M + b2 ≥ 2
√
λσ2

Mσ
2
W + b2 − λσ2

W holds

always (since
(√

σ2
M −

√
λσ2

W

)2

≥ 0); i.e., the informative equilibrium should

always be preferred over the non-informative one. However, as proved above, the

equilibrium is always non-informative for λ ≥ σ2
M/σ

2
W .
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2.7.7 Proof of Theorem 2.4.6

(i) From (2.24), we have a bound on the encoder cost Je ≥ b2 + λP +
σ2
M

1+P/σ2
W

where P , E[x2] represents the power. This bound is tight when the en-

coder and the decoder use linear policies leading to jointly Gaussian random

variables. For λ < σ2
M/σ

2
W , a minimizer of this cost is P ∗ =

√
σ2
Mσ

2
W

λ
−σ2

W . If

we insert this value into (2.24), we have Je ≥ 2
√
λσ2

Mσ
2
W +b2−λσ2

W . By the

same reasoning above, we also have Jd = E[(m−u)2] ≥ σ2
M

1+ P

σ2
W

≥
√
λσ2

Mσ
2
W .

Hence, the information theoretic lower bound on the game cost Jg = Je+Jd

is found as

Jg ≥ 3
√
λσ2

Mσ
2
W + b2 − λσ2

W . (2.26)

Through an analysis similar to the one in [4], one can see that when λ ≥
σ2
M/σ

2
W , (2.24) is minimized at P = 0 (the encoder does not signal any

output); thus we obtain a non-informative equilibrium: The encoder and

the decoder do not engage in communications; i.e., A = 0 and K = 0 is

an equilibrium. In this case, the encoder may be considered to be linear,

but this is a degenerate coding policy. This implies Jg ≥ 2σ2
M + b2, and

remember that J∗,g = 2σ2
M + b2 when λ ≥ σ2

M/σ
2
W , hence the information

theoretic lower bound is achievable at the non-informative equilibria.

(ii) From (2.16) and (2.26), it can be deduced that when b = 0, the lower bound

of the encoder cost is achievable by linear policies; i.e., C = 0 and L = 0.

When b = 0, the problem corresponds to what is known as a soft-constrained

version of the quadratic signaling problem where we append the constraint

to the cost functional (see [4, p. 96]).

(iii) If b 6= 0, then, from (2.16) and (2.26), one can observe that the lower

bound becomes unachievable by affine policies since the power constraint

related part of the cost function, λx2, contains b2 related parameters (recall

C = Ab
AK−1

). In this case, by modifying the power from P to P − C2

(which must be positive) in the information theoretic inequalities; i.e., Je ≥
b2 + λP +

σ2
M

1+(P−C2)/σ2
W

, then the minimum game cost is obtained as Jg ≥

3
√
λσ2

Mσ
2
W + b2

√
σ2
M

λσ2
W
− λσ2

W , which is the same cost that is achieved by
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affine policies.

(iv) By following a similar approach to (2.24) for finding the lower bound on

the socially optimal cost, we can obtain:

J t = E[(m− u− b)2 + λx2 + (m− u)2]

=
b2

2
+ λE[x2] + 2E

[(
m− u− b

2

)2
]

(a)

≥ b2

2
+ λP +

2σ2
M

1 + P/σ2
W

.

Here (a) holds since the decoder chooses u = E[m− b
2
|y] and shifting does not

affect the differential entropy. Similar to the previous analysis, a minimizer

of this cost is P ∗ =

√
2σ2
Mσ

2
W

λ
− σ2

W for λ < 2σ2
M/σ

2
W . If we insert this value

into the total cost, we have

J t ≥ 2
√

2λσ2
Mσ

2
W +

b2

2
− λσ2

W . (2.27)

Recall that, if λ ≥ 2σ2
M/σ

2
W , then P = 0 becomes the minimizer, hence J t ≥

2σ2
M + b2

2
in the non-informative equilibrium. For this case, remember that

J∗,t = 2σ2
M + b2

2
, thus the information theoretic lower bound is achievable

at the non-informative equilibria. In addition, from (2.20) and (2.27), for

λ < 2σ2
M/σ

2
W (which implies the informative equilibria), it can easily be seen

that the information theoretic lower bound is achievable by affine policies

(actually the encoder policy is linear and the decoder policy is affine).

2.7.8 Proof of Theorem 2.4.7

For an affine encoder; i.e., x = γe(m) = Am+ C which satisfies E[x2] = A2σ2
M +

C2 ≤ P , the optimal decoder is affine :

γd(y) =
Aσ2

M

A2σ2
M + σ2

W

(y − C) .

For an affine decoder; i.e., u = γd(y) = Ky+L, we will investigate the optimal

encoder. With y = γe(m)+w, it follows that u = Kγe(m)+Kw+L. Then, under
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the hard power constraint E
[
(γe(m))2] ≤ P , the optimal cost of the encoder can

be written as

J∗,e = min
x=γe(m)

E
[
(m− u− b)2

]
= min

γe(m)
E
[
(m−Kγe(m)−Kw − L− b)2

]
= min

γe(m)
E
[
(m−Kγe(m)− L− b)2

]
+K2σ2

W . (2.28)

For the optimization problem in (2.28), the corresponding Lagrangian function

is expressed as

L (γe(m), µ) = E
[
(m−Kγe(m)− L− b)2

]
+K2σ2

W + µ
(
E
[
(γe(m))2]− P)

= E
[(
K2 + µ

)
(γe(m))2 − 2(m− L− b)Kγe(m) + (m− L− b)2

]
+K2σ2

W − µP

=
(
K2 + µ

)
E

[(
γe(m)− (m− L− b)K

K2 + µ

)2
]

+
µ

K2 + µ

(
σ2
M + (L+ b)2

)
+K2σ2

W − µP , (2.29)

and the dual function is given by

g(µ) , inf
γe(m)

L (γe(m), µ) , (2.30)

and the Lagrangian dual problem of (2.28) is defined as

min
µ

g (µ) s.t. µ ≥ 0 . (2.31)

Since the optimization problem is convex, the duality gap between the solutions

of the primal and the dual problem is zero.

It is observed from (2.29) that the Lagrangian function L (γe(m), µ) can be

decomposed into

L (γe(m), µ) =

∫
m∈R
Lm (γe(m), µ) p(m) dm

+
µ

K2 + µ

(
σ2
M + (L+ b)2

)
+K2σ2

W − µP , (2.32)
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where Lm (γe(m), µ) ,
(
γe(m)− (m−L−b)K

K2+µ

)2

. Evidently, the optimal encoder

policy that minimizes L (γe(m), µ) obtained from (2.30) should also minimize

Lm (γe(m), µ) for each given value of m. This is known as dual decomposition

and it facilitates the decomposition of the dual problem into sub-optimization

problems which are coupled only through m. More explicitly, we need the com-

pute

min
γe(m)
Lm (γe(m), µ) = min

γe(m)

(
γe(m)− (m− L− b)K

K2 + µ

)2

(2.33)

for each value of m ∈ R.

The Karush-Kuhn-Tucker (KKT) conditions can be obtained for the optimiza-

tion problem in (2.28) as follows:

∂Lm (γe(m), µ)

∂ (γe(m))
= 0 , (2.34)

µ
(
E
[
(γe(m))2]− P) = 0 , (2.35)

µ ≥ 0 , (2.36)

E
[
(γe(m))2]− P ≤ 0 . (2.37)

From (2.34), the optimal encoder policy is γe(m) = K
K2+µ

m − K
K2+µ

(L + b).

By (2.35), we must have either µ = 0 or E
[
(γe(m))2] = P . If µ = 0, for

an informative affine equilibrium, K =
Aσ2

M

A2σ2
M+σ2

W
and A = K

K2+µ
= 1

K
must

be satisfied simultaneously, which is not possible. Thus, we must investigate

E
[
(γe(m))2] = P case with µ > 0 to obtain the conditions for the informative

affine equilibria.

E
[
(γe(m))2] = E

[(
K

K2 + µ
m− K

K2 + µ
(L+ b)

)2
]

=
K2

(K2 + µ)2

(
σ2
M + (L+ b)2

)
= P

⇒ µ =

√
K2 (σ2

M + (L+ b)2)

P
−K2 > 0 (2.38)

⇒ P <
σ2
M + (L+ b)2

K2
. (2.39)

56



At the equilibrium, we have

K =
Aσ2

M

A2σ2
M + σ2

W

,

L = −KC = − ACσ2
M

A2σ2
M + σ2

W

,

A =
K

K2 + µ
=

K√
K2(σ2

M+(L+b)2)
P

= sgn(K)

√
P

σ2
M + (L+ b)2

,

C = −A(L+ b) = −K(L+ b)

K2 + µ
= −sgn(K)(L+ b)

√
P

σ2
M + (L+ b)2

.

Since A and K must have the same sign, we can assume the positive (A,K) pair.

Then,

A =

√
P

σ2
M + (L+ b)2

,

K =
Aσ2

M

A2σ2
M + σ2

W

=

√
P

σ2
M+(L+b)2

σ2
M

P
σ2
M+(L+b)2

σ2
M + σ2

W

=

√
P (σ2

M + (L+ b)2)σ2
M

Pσ2
M + σ2

W (σ2
M + (L+ b)2)

,

L = −KC =

√
P (σ2

M + (L+ b)2)σ2
M

Pσ2
M + σ2

W (σ2
M + (L+ b)2)

(L+ b)

√
P

σ2
M + (L+ b)2

=
P (L+ b)σ2

M

Pσ2
M + σ2

W (σ2
M + (L+ b)2)

⇒L
(
Pσ2

M + σ2
W (σ2

M + (L+ b)2)
)

= P (L+ b)σ2
M

⇒Lσ2
W (σ2

M + (L+ b)2) = Pbσ2
M . (2.40)

By solving the cubic equation (2.40), we can find a real solution for L, then A,

K and C can be obtained.

For the informative equilibria, (2.39) must be satisfied.

P
?
<
σ2
M + (L+ b)2

K2
=

σ2
M + (L+ b)2

P (σ2
M+(L+b)2)σ4

M

(Pσ2
M+σ2

W (σ2
M+(L+b)2))

2

=

(
Pσ2

M + σ2
W (σ2

M + (L+ b)2)
)2

Pσ4
M

> P

Thus, the condition (2.39) for the informative equilibria always holds. Also we can

find always at least one real L which implies that the equilibrium is informative.
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2.7.9 Proof of Theorem 2.4.8

Due to the Stackelberg assumption, the encoder knows that the optimal decoder

policy will be u = E[m|y]. Then, by the law of the iterated expectations, the

encoder cost Je = E[(m−u−b)2 +λx2] reduces to Je = E[(m−u)2]+λE[x2]+b2.

Let P , E[x2], then, by following a similar approach to (2.23), the lower bound

on the encoder cost can be achieved as follows:

Je ≥ b2 +
σ2
M

1 + P/σ2
W

. (2.41)

Since
σ2
M

1+P/σ2
W

is a decreasing function of P , in order to minimize the lower bound

in (2.41), P should be chosen as maximum; i.e., P = P . Further, the lower bound

(2.41) can be achieved when the encoder and the decoder use linear policies jointly,

thus there always exist a linear equilibrium in the static quadratic signaling game

with a hard-power constraint.

As a further demonstration, we will show that, the linear policies achieve the

lower bound in (2.41) indeed. Let the encoder policy be x = γe(m) = Am + C.

Then, the hard power constraint becomes E[x2] = A2σ2
M + C2 ≤ P . Due to the

Stackelberg assumption, the encoder knows that the decoder will use γd(y) =

u = E[m|y] as an optimal decoder policy to minimize the decoder cost, thus

u = γd(y) =
Aσ2

M

A2σ2
M+σ2

W
(y − C) where y = Am + C + w. Then, by following a

similar approach to (2.25), the goal of the encoder can be found as follows:

J∗,e = min
A, C

σ2
Mσ

2
W

A2σ2
M + σ2

W

+ b2 s.t. A2σ2
M + σ2

W ≤ P . (2.42)

J∗,e is minimized for C∗ = 0 and maximum A∗, which can be chosen as (A∗)2 σ2
M+

(C∗)2 = P ⇒ A∗ =
√

P
σ2
M

. Then, the encoder cost becomes J∗,e =
σ2
Mσ

2
W

P+σ2
W

=

σ2
M

1+P/σ2
W

, which is the lower bound in (2.41), as expected.

2.7.10 Proof of Theorem 2.5.1

(i) Let the affine encoding policy be x = γe(m) = Am+C where A is an n×n
matrix and C is an n × 1 vector. Then y = x + w = Am + C + w. The
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optimal cost of the decoder, by the law of the iterated expectations, can be

expressed as J∗,d = minu=γd(y) E [‖m− u‖2|y]. Hence, a minimizer policy

of the decoder is u = γ∗,d(y) = E [m|y]. Since both m and y are Gaussian,

then the optimal decoder is

E [m|y] = E[m] + ΣMYΣ−1
YY(y − E[y])

= ΣMA
T
(
AΣMA

T + ΣW

)−1
(y −C) , Ky + L . (2.43)

(ii) Let the affine decoding policy be u = γd(y) = Ky + L where K is an n×n
matrix and L is an n × 1 vector. Then u = Ky + L = K(x + w) + L =

Kγe(m) + Kw + L. By using the completion of the squares method, the

optimal cost is

J∗,e = min
x=γe(m)

E
[
‖m− u− b‖2 + λ‖x‖2

]
= min

x=γe(m)
E
[
‖m− u− b‖2 + λ‖x‖2

∣∣∣m]
= min

γe(m)
E
[
‖m−Kγe(m)−Kw − L− b‖2 + λ‖γe(m)‖2

∣∣∣m]
= min

γe(m)
E

[(
m−Kγe(m)−Kw − L− b

)T(
m−Kγe(m)−Kw − L− b

)
+ λ
(
γe(m)

)T(
γe(m)

)∣∣∣m]

= min
γe(m)

E

[(
m−Kγe(m)− L− b

)T(
m−Kγe(m)− L− b

)
+ λ
(
γe(m)

)T(
γe(m)

)∣∣∣m]+ E
[
wTKTKw

]
= min

γe(m)
E

[(
m− L− b

)T(
m− L− b

)
− 2
(
m− L− b

)T
Kγe(m)

+
(
γe(m)

)T
KTK

(
γe(m)

)
+ λ
(
γe(m)

)T(
γe(m)

)∣∣∣m]
+ E

[
wTKTKw

]
= min

γe(m)
E

[(
(KTK + λI)γe(m)−KT (m− L− b)

)T(
KTK + λI

)−1

(
(KTK + λI)γe(m)−KT (m− L− b)

)
+
(
m− L− b

)T
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(
I −K(KTK + λI)−1KT

)(
m− L− b

)∣∣∣m]+ E
[
wTKTKw

]
.

(2.44)

Hence, the optimal γe(m) can be chosen as follows:

γ∗,e(m) =
(
KTK + λI

)−1

KT
(
m− L− b

)
, Am + C . (2.45)

(iii) We have K = ΣMA
T
(
AΣMA

T + ΣW

)−1
and A =

(
KTK +λI

)−1

KT from

(2.43) and (2.45). By combining these, A = T (A) =
(
FF T + λI

)−1
F can

be obtained.

(iv) Since FF T is a real and symmetric matrix, it is diagonalizable and can be

written as FF T = QΥQ−1 for a diagonal Υ. Now consider ‖T (A)‖F where

‖ · ‖F denotes the Frobenius norm:

‖T (A)‖F = tr

(((
FF T + λI

)−1
F
)( (

FF T + λI
)−1

F
)T)

= tr

((
FF T + λI

)−1
FF T

(
FF T + λI

)−1

)

= tr

((
QΥQ−1 + λI

)−1
QΥQ−1

(
QΥQ−1 + λI

)−1

)

= tr

((
Q(Υ + λI)Q−1

)−1
QΥQ−1

(
Q(Υ + λI)Q−1

)−1

)

= tr

(
Q(Υ + λI)−1Q−1QΥQ−1Q(Υ + λI)−1Q−1

)

= tr

(
Q(Υ + λI)−1Υ(Υ + λI)−1Q−1

)

= tr

(
(Υ + λI)−1Υ(Υ + λI)−1Q−1Q

)

= tr

(
(Υ + λI)−1Υ(Υ + λI)−1

)

=
n∑
i=1

υi
(υi + λ)2

, (2.46)
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where υi, i = 1, . . . , n are the eigenvalues of FF T and since FF T is positive

semi-definite, all these eigenvalues are nonnegative. Since λ > 0, we observe

the following:

υi ∈ [0, 1]⇒ υi
(υi + λ)2

<
1

λ2
,

υi ∈ (1,∞)⇒ υi
(υi + λ)2

<
υi
υ2
i

=
1

υi
< 1 .

Hence, υi/(υi + λ)2 < max(1, 1/λ2) always holds. Then, by (2.46),

we have ‖T (A)‖F < nmax(1, 1/λ2), which implies that T (A) can be

viewed as a continuous function mapping the compact convex set ‖A‖F ∈
[0, nmax(1, 1/λ2)] to itself. Therefore, by Brouwer’s fixed point theo-

rem [84], there exists A = T (A).

2.7.11 Proof of Theorem 2.5.2

Since the source components are independent and the noise components are in-

dependent, the n-dimensional noisy signaling game problem turns into n inde-

pendent scalar noisy signaling game problems as follows:

(i) If the decoder uses the channels independently; i.e., ui = γdi (yi) for i =

1, . . . , n, then the optimal cost of the encoder will be

J∗,e = min
x=γe(m)

E
[
‖m− u− b‖2 + λ‖x‖2

]
= min

x=γe(m)

n∑
i=1

E[(mi − γdi (yi)− bi)2 + λx2
i ]

=
n∑
i=1

min
x=γe(m)

E[(mi − γdi (yi)− bi)2 + λx2
i ] .

Since, yi = xi + wi for each i = 1, . . . , n, the optimal encoder also uses the

channels independently; i.e., xi = γei (mi) for i = 1, . . . , n.

(ii) Similarly, if the encoder uses the channels independently; i.e., xi = γei (mi)

for i = 1, . . . , n, then the optimal cost of the decoder will be

J∗,d = min
u=γd(y)

E
[
‖m− u‖2

]
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=
n∑
i=1

min
u=γd(y)

E[(mi − ui)2] .

Since, yi = γei (mi) + wi for each i = 1, . . . , n, the optimal decoder will also

use channels independently; i.e., ui = γdi (yi) for i = 1, . . . , n.

Thus, we have, in each dimension i (i = 1, . . . , n);

(i) the source Mi is a zero-mean Gaussian with variance σ2
mi

,

(ii) the channel has the Gaussian noise Wi with zero-mean and variance σ2
wi

,

(iii) the encoder’s goal is to find the optimal policy which minimizes its cost

minxi=γe(mi) E[(mi − ui − bi)2 + λx2
i ],

(iv) the decoder’s goal is to find the optimal policy which minimizes its cost

minui=γd(yi) E[(mi − ui)2].

For each dimension, the informative affine equilibrium exists if λ < σ2
mi
/σ2

wi
. For

the multi-dimensional setup, the existence of the informative equilibrium in at

least one dimension implies the existence of the informative equilibrium for the

whole sytem. Hence, it is sufficient that the inequality λ < σ2
mi
/σ2

wi
is valid for at

least one dimension. As a result, the condition for the existence of the informative

affine equilibrium becomes λ < max{σ
2
m1

σ2
w1

, . . . ,
σ2
mn

σ2
wn
}.
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Chapter 3

Multi-Stage Quadratic Cheap

Talk and Signaling Games under

Subjective Models

In this chapter Nash and Stackelberg equilibria of multi-stage scalar and multi-

dimensional quadratic cheap talk and signaling games are investigated under the

consistent and subjective priors assumptions. A characterization on when infor-

mative equilibria exist, and robustness properties to misalignment are presented

under Nash and Stackelberg criteria.

The main contributions of this chapter can be summarized as follows:

(i) We show that in the multi-stage cheap talk game under Nash equilibria, the

last stage equilibria are quantized for i.i.d. and Markov sources with ar-

bitrary conditional probability measures, whereas the equilibrium must be

fully revealing in the multi-stage scalar cheap talk game under Stackelberg

equilibria. Further, for i.i.d. sources, the quantized nature of the Nash equi-

librium for all stages is established under mild conditions. We further show

that the equilibria are fully revealing in the multi-stage multi-dimensional

cheap talk under Stackelberg equilibria whereas the equilibrium cannot be
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fully revealing under Nash equilibria.

(ii) For the multi-stage signaling game under Nash equilibria, it is shown that

affine encoder and decoder policies constitute an invariant subspace under

best response dynamics. We provide conditions for the existence of infor-

mative Stackelberg equilibria for scalar Gauss-Markov sources and scalar

Gaussian channels where we also show that Stackelberg equilibria are always

linear for scalar sources and channels, which is not always the case for multi-

dimensional setups. For multi-dimensional setups, a dynamic programming

formulation is presented for Stackelberg equilibria when the encoders are

linear.

(iii) For the case where the encoder and the decoder have subjective priors on

the source distribution, under identical costs, provided that the priors are

mutually absolutely continuous (that is, both measures agree the set of sets

with zero measure; i.e. the Radon-Nikodym derivative of either measure

with respect to the other exists), we show that there exist fully informative

Nash and Stackelberg equilibria for the dynamic cheap talk as in the team

theoretic setup. Thus, the equilibrium behavior is robust to perturbations

in the priors, which is not necessarily the case for the perturbations in

the cost models. On the other hand, for the signaling game, Stackelberg

equilibrium policies are robust to perturbations in the cost but not to the

priors considered in this chapter.

3.1 Problem Formulation

In this chapter, the problems are investigated where the encoder and the de-

coder are deterministic rather than randomized; i.e., γe(dx|m) = 1{fe(m)∈dx} and

γd(du|x) = 1{fd(x)∈du}, and f e(m) and fd(x) are some deterministic functions of

the encoder and decoder, respectively. The policies of the encoder and decoder

are assumed to be deterministic; i.e., x = γe(m) and u = γd(x) = γd(γe(m)).

In Chapter 2, only single-stage games are considered. If a game is played
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over a number of time periods, the game is called a multi-stage game. In this

dissertation, with the term dynamic, we will refer to multi-stage game setups,

which also has been the usage in the prior literature [54]; even though strictly

speaking a single stage setup may also be viewed to be dynamic [22] since the

information available to the decoder is totally determined by encoder’s actions.

Let m[0,N−1] = {m0,m1, . . . ,mN−1} be a collection of random variables to be

encoded sequentially (causally) to a decoder. At the k-th stage of an N -stage

game, the encoder knows the values of Iek = {m[0,k], x[0,k−1]} with Ie0 = {m0},
and transmits xk to the decoder who generates his optimal decision by knowing

the values of Idk = {x[0,k]}. Thus, under the policies considered, xk = γek(Iek) and

uk = γdk(Idk). The encoder’s goal is to minimize

Je
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cek(mk, uk)

]
, (3.1)

whereas the decoder’s goal is to minimize

Jd
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cdk(mk, uk)

]
(3.2)

by finding the optimal policy sequences γ∗,e[0,N−1] = {γ∗,e0 , γ∗,e1 , · · · , γ∗,eN−1} and

γ∗,d[0,N−1] = {γ∗,d0 , γ∗,d1 , · · · , γ∗,dN−1}, respectively. Using the encoder cost in (3.1) and

the decoder cost in (3.2), the Nash equilibrium and the Stackelberg equilibrium

for multi-stage games can be defined similarly as in (1.1) and (1.2), respectively.

Under both equilibria concepts, we consider the setups where the decision

makers act optimally for each history path of the game (available to each decision

maker) and the updates are Bayesian; thus the equilibria are to be interpreted

under a perfect Bayesian equilibria concept. Since we assume such a (perfect

Bayesian) framework, the equilibria lead to sub-game perfection and each decision

maker performs optimal Bayesian decisions for every realized play path. For

example, more general Nash equilibrium scenarios such as non-credible threats

[17] or equilibria that are not strong time-consistent [85], [4, Definition 2.4.1] may

not be considered.

Subjectivity in the model can also manifest itself in the probability measures,
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in particular the encoder and the decoder may have subjective/inconsistent priors

with respect to the probability measure which defines the random source {mk}.
We note that decentralized stochastic control with subjective priors has been

studied extensively in the literature [81,86–88]. In this setup, players may have a

common goal but subjective prior information, which necessarily alters the setup

from a team problem to a game problem involving strategy/policy spaces. Build-

ing on this motivation, in Section 3.6, we investigate such a setup in the context of

quadratic cost criteria where the encoder and the decoder have subjective priors.

In this chapter, the quadratic cost functions are assumed; i.e., cek(mk, uk) =

(mk − uk − b)2 and cdk(mk, uk) = (mk − uk)2 where b is the bias term as in the

previous chapter.

3.2 Multi-Stage Scalar Quadratic Cheap Talk

For the purpose of illustration, the system model of the 2-stage cheap talk is

depicted in Fig. 3.1.

Figure 3.1: 2-stage cheap talk.
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3.2.1 Nash Equilibrium Analysis

As a prelude to the more general Markov source setup, we first analyze the multi-

stage cheap talk game with an i.i.d. scalar source.

3.2.1.1 Multi-Stage Game with an i.i.d. Source

Theorem 3.2.1. In the N-stage repeated cheap talk game, the equilibrium poli-

cies for the final stage encoder must be quantized for any collection of policies(
γe[0,N−2], γ

d
[0,N−2]

)
and for any real-valued source model with arbitrary probability

measure P (dmN−1).

Proof. Here, we prove the result for the 2-stage setup, the extension to multiple

stages is merely technical, as we comment on at the end of the proof.

Let ce1(m1, u1) be the second stage cost function of the encoder. Then the

expected cost of the second stage encoder Je1 can be written as follows:

Je1 =

∫
P (dm0, dm1, dx0, dx1) ce1(m1, u1)

=

∫
P (dx0)P (dm1|x0)P (dm0|m1, x0)P (dx1|m0,m1, x0) ce1(m1, u1)

(a)
=

∫
P (dx0)

∫
P (dm1)P (dm0|x0)1{x1=γe1(m0,m1,x0)} c

e
1(m1, u1)

=

∫
P (dx0)

∫
P (dm1)P (dm0|x0)ce1(m1, γ

d
1(x0, γ

e
1(m0,m1, x0))) . (3.3)

Here, (a) holds due to the i.i.d. source and the deterministic encoder assumptions.

The inner integral of (3.3) can be considered as an expression for a given x0. Thus,

given the second stage encoder and decoder policies γe1(m0,m1, x0) and γd1(x0, x1),

it is possible to define policies which are parametrized by the common information

x0 almost surely so that γ̂ex0(m0,m1) , γe1(m0,m1, x0) and γ̂dx0(x1) , γd1(x0, x1).

Now fix the first stage policies γe0 and γd0 . Suppose that the second stage en-

coder does not use m0; i.e., γ̂e′x0(m1) is the policy of the second stage encoder. For
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the policies γ̂e′x0(m1) and γ̂dx0(x1), by using the second stage encoder cost function

Hx0(m1, u1) , E[(m1 − u1 − b)2|x0] and the bin arguments from Theorem 2.2.3,

it can be deduced that, due to the continuity of Hx0(m1, u1) in m1, the equilib-

rium policies for the second stage must be quantized for any collection of policies

(γe0, γ
d
0) and for any given x0. Now let the second stage encoder use m0; i.e.,

γ̂ex0(m0,m1) is the policy of the second stage encoder. Here, even if γ̂ex0(m0,m1)

is a deterministic policy, it can be regarded as an equivalent randomized encoder

policy (as a stochastic kernel from M1 to X1) where m0 is a real valued random

variable independent of the source, m1. From Theorem 2.2.4, the equilibrium is

achievable with an encoder policy which uses only m1; i.e., γ̂e∗x0(m1) is an encoder

policy at the equilibrium and thus the equilibria are quantized.

For the N -stage game, the common information of the final stage encoder and

decoder becomes x[0,N−2], and m[0,N−2] is a vector valued random variable inde-

pendent of the final stage source mN−1.

Before studying the equilibrium structure of the other stages, we make the

following assumption on the source structure.

Assumption 3.2.2. The source mk is so that the single-stage cheap-talk game

satisfies the following:

(i) There exists a finite upper bound on the number of quantization bins that

any equilibrium admits.

(ii) There exists finitely many equilibria corresponding to a given number of

quantization bins.

A number of comments on Assumption 3.2.2 is in order: This assumption is

not unrealistic, e.g., it will hold if the source is a bounded uniform source, or if

the source is exponentially distributed [37]. A sufficient condition for Assump-

tion 3.2.2 is that the source admits a bounded support (which would require

by [16, Lemma 1] that there exists an upper bound on the number of bins in any

equilibrium), and that a monotonicity condition (M) (or equivalently (M′)) in [16]

holds, which characterize the behavior of equilibrium policies. Note though that
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this condition is much more than what is needed in Assumption 3.2.2, since it

entails the uniqueness of equilibria for a given number of bins: The uniqueness

of equilibria even for team problems with b = 0 requires restrictive log-concavity

conditions [89, p. 1475], [90].

Theorem 3.2.3. Suppose Assumption 3.2.2 holds. Then, all stages must have

quantized equilibria in the N-stage repeated cheap talk game.

Proof. Consider first the 2-stage setup; i.e., given that the second stage has a

quantized equilibrium by Theorem 3.2.1, the quantized nature of the first stage

will be established. Let F (m0, x0) be a cost function for the first stage encoder if

it encodes message m0 as x0. Since the second stage equilibrium cost does not de-

pend on m0 (since m0 is a random variable independent of the source m1 as shown

in Theorem 3.2.1), F (m0, x0) can be written as F (m0, x0) =
(
m0 − γd0(x0)− b

)2
+

G(x0) where G(x0) , Em1

[(
m1 − γ∗,d1 (x0, γ

∗,e
1 (m1, x0))− b

)2 ∣∣∣x0

]
is the expected

cost of the second stage encoder, and γ∗,e1 and γ∗,d1 are the second stage encoder

and decoder policies at the equilibrium, respectively. Note that the second stage

encoder cost can take finitely many different values by Assumption 3.2.2-(ii); i.e.,

G(x0) can take finitely many values.

Now define the equivalence classes Txp for every xp ∈ X as Txp = {x ∈ X :

G(x) = G(xp)}. As it can be seen from the definition, G(x) takes the first stage

encoding value as input, and gives the expected cost of the second stage encoder.

Thus, the equivalence classes Txp keep the first stage encoder actions that result

in the same second stage cost in the same set. Note that there are finitely many

equivalence classes Txp since G(x0) can take finitely many different values.

If the number of bins of the first stage equilibrium is less than or equal to the

number of the equivalence classes Txp , then the proof is complete; i.e., the first

stage equilibrium is already quantized with finitely may bins. Otherwise; i.e.,

the number of bins of the first stage equilibrium is greater than the number of

the equivalence classes Txp , then one of the equivalence classes Txp has at least

two elements; say xα0 and xβ0 , that implies G(xα0 ) = G(xβ0 ). Let corresponding

bins of the actions xα0 and xβ0 be Bα0 and Bβ0 , respectively. Also let mα
0 indicate
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any point in Bα0 ; i.e., mα
0 ∈ Bα0 . Similarly, let mβ

0 represent any point in Bβ0 ; i.e.,

mβ
0 ∈ B

β
0 . The decoder chooses an action uα0 = γd0(xα0 ) when the encoder sends

xα0 = γe0(mα
0 ), and an action uβ0 = γd0(xβ0 ) when the encoder sends xβ0 = γe0(mβ

0 )

in order to minimize his total cost; further, we can assume that uα0 < uβ0 without

loss of generality. Due to the equilibrium definitions from the view of the encoder,

F (mα
0 , x

α
0 ) < F (mα

0 , x
β
0 ) and F (mβ

0 , x
β
0 ) < F (mβ

0 , x
α
0 ). These inequalities imply

that

(mα
0 − uα0 − b)2 +G(xα0 ) < (mα

0 − u
β
0 − b)2 +G(xβ0 )

⇒ (uα0 − u
β
0 )(uα0 + uβ0 − 2(mα

0 − b)) < 0 ,

(mβ
0 − u

β
0 − b)2 +G(xβ0 ) < (mβ

0 − uα0 − b)2 +G(xα0 )

⇒ (uβ0 − uα0 )(uα0 + uβ0 − 2(mβ
0 − b)) < 0 .

Thus, we have uα0 + uβ0 − 2(mα
0 − b) > 0 and uα0 + uβ0 − 2(mβ

0 − b) < 0 that reduce

to mα
0 <

uα0 +uβ0
2

+ b < mβ
0 . Since uα = E[m|m ∈ Bα] and uβ = E[m|m ∈ Bβ] at

the equilibrium, uα0 <
uα0 +uβ0

2
+ b < uβ0 is obtained. After simplifications, the last

inequality becomes uβ0 − uα0 > 2|b|. Hence, there must be at least 2|b| distance

between the actions of the first stage decoder that are in the same equivalence

class. Therefore, the cardinality of any equivalence class Txp is finite due to

Assumption 3.2.2-(i). Further, there are finitely many equivalence classes Txp

as shown above. These two results imply that the first stage equilibrium must

be quantized with finitely many bins. Due to Assumption 3.2.2, the quantized

equilibrium with finitely many bins in the first stage implies that there are finitely

many equilibria in the first stage; i.e., the first stage encoder cost can take finitely

many values.

For the N -stage game, we apply the similar recursion from the final stage to

the first stage. It is already proven that the last two stage encoder cost can

take finitely many values; thus, the same methods can be applied to show the

quantized structure (with finitely many bins) of the equilibria for all stages.

Remark 3.2.1. It is important to note that the first stage encoder minimizes

his expected cost Je0 = E[F (m0, x0)] by minimizing his cost F (m0, x0) for every

realizable m0; this property will be later used as well.
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3.2.1.2 Multi-Stage Game with a Markov Source

Here, the source Mk is assumed to be real valued Markovian for k = 0, 1, . . . , N−
1. The following result generalizes Theorem 3.2.1, which only considered i.i.d.

sources.

Theorem 3.2.4. In the N-stage cheap talk game with a Markov source, the

equilibrium policies for the final stage encoder must be quantized for any collection

of policies
(
γe[0,N−2], γ

d
[0,N−2]

)
and for any real-valued source model with arbitrary

probability measure.

Proof. Here, we prove the results for the 2-stage games as the extension is merely

technical. The expected cost of the second stage encoder Je1 can be written as

follows similar to that in Theorem 3.2.1:

Je1 =

∫
P (dm0, dm1, dx0, dx1) ce1(m1, u1)

=

∫
P (dx0)

∫
P (dm1|x0)P (dm0|m1, x0)ce1(m1, γ

d
1(x0, γ

e
1(m0,m1, x0))) .

After following similar arguments to those in the proof of Theorem 3.2.1, the sec-

ond stage encoder policy becomes γ̂ex0(m0,m1)
(a)
= γ̂ex0(g(m1, r),m1) = γ̃ex0(m1, r)

where (a) holds since any stochastic kernel from a complete, separable and metric

space to another one, P (dm0|m1), can be realized by some measurable function

m0 = g(m1, r) where r is a [0, 1]-valued independent random variable (see [91,

Lemma 1.2], or in [92, Lemma 3.1]). Hence, the equilibria are quantized by

Theorem 3.2.1.

As it can be observed from Theorem 3.2.3, to be able to claim that the equi-

libria for all stages are quantized, we require very strong conditions. In fact, in

the absence of such conditions, the equilibria for a Markov source can be quite

counterintuitive and even fully revealing as we observe in the following theorem

due to [54].

Theorem 3.2.5. [54] There exist multi-stage cheap talk games with a Markov

source which admit fully revealing equilibria.
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Proof. An example is presented in Golosov et. al. [54], where an individual source

is transmitted repeatedly (thus the Markov source is a constant source) for a suffi-

ciently small bias value. For such a source, the terminal stage conditional measure

can be made atomic via a careful construction of equilibrium policies for earlier

time stages; i.e., the defined separable groups/types and discrete/quantized stage-

wise equilibria through multiple stages can lead to a fully informative equilibrium

for the complete game.

3.2.2 Stackelberg Equilibrium Analysis

In this part, the cheap talk game is analyzed under the Stackelberg assumption;

i.e., the encoder knows the policy of the decoder. In this case, admittedly the

problem is less interesting.

Theorem 3.2.6. An equilibrium has to be fully revealing in the multi-stage Stack-

elberg cheap talk game regardless of the source model.

Proof. This result follows as a special case of Theorem 3.3.2, but the proof is

provided for completeness.

We will use the properties of iterated expectations in the analysis. Recall that

the total decoder cost is Jd(γe[0,N−1], γ
d
[0,N−1]) = E

[
N−1∑
k=0

(mk − uk)2

]
. Consider-

ing the last stage, the goal of the decoder is to minimize JdN−1(γeN−1, γ
d
N−1) =

E[(mN−1 − uN−1)2|IdN−1] by choosing the optimal action u∗N−1 = γ∗,dN−1(IdN−1) =

E[mN−1|IdN−1]. For the previous stage, the goal of the decoder is to minimize

JdN−2(γ∗,eN−1, γ
e
N−2, γ

∗,d
N−1, γ

d
N−2) = E[(mN−2 − uN−2)2 + J∗,dN−1(γ∗,eN−1, γ

∗,d
N−1)|IdN−2] by

choosing the optimal action u∗N−2 = γ∗,dN−2(IdN−2). Since J∗,dN−1(γ∗,eN−1, γ
∗,d
N−1) is not

affected by the choice of γdN−2, the goal of the decoder is equivalent to the min-

imization of E[(mN−2 − uN−2)2|IdN−2] at this stage. Thus, the optimal policy

is u∗N−2 = γ∗,dN−2(IdN−2) = E[mN−2|IdN−2]. Similarly, since the actions taken by

the decoder do not affect the future states and encoder policies, the optimal

decoder actions can be found as u∗k = γ∗,dk (Idk) = E[mk|Idk ] = E[mk|x[0,k]] for

k = 0, 1, . . . , N − 1.
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Due to the Stackelberg assumption, the encoder knows that the decoder will

use u∗k = γ∗,dk (Idk) = E[mk|Idk ] for each stage k = 0, 1, . . . , N − 1. By using

this assumption and the smoothing property of the expectation, the total en-

coder cost can be written as Je(γe[0,N−1], γ
∗,d
[0,N−1]) = E

[
N−1∑
k=0

(mk − uk − b)2

]
=

E
[
N−1∑
k=0

(mk − uk)2

]
+ Nb2. Thus, as in the one-stage game setup [55, Theorem

3.3], the goals of the encoder and the decoder become essentially the same in

the Stackelberg game setup, which effectively reduces the game setup to a team

setup, resulting in fully informative equilibria; i.e., the encoder reveals all of his

information.

3.3 Multi-Stage Multi-Dimensional Quadratic

Cheap Talk

In this section, Nash and Stackelberg equilibria of the multi-stage multi-

dimensional cheap talk are analyzed.

3.3.1 Nash Equilibrium Analysis

Now, Nash equilibria of the multi-stage multi-dimensional cheap talk are ana-

lyzed. Since there may be discrete, non-discrete or even linear Nash equilibria in

the single-stage multi-dimensional cheap talk by Theorem 2.3.1, the equilibrium

policies are more difficult to characterize; however, we state the following:

Theorem 3.3.1. The final stage Nash equilibria cannot be fully revealing in the

multi-stage multi-dimensional cheap talk for i.i.d. and Markov sources when the

conditional distribution P (dmN−1|mN−2) has positive measure for every non-

empty open set.

Proof. The proof is the multi-dimensional extension of Theorem 3.2.1 for i.i.d.

sources, and Theorem 3.2.4 for Markov sources.

73



3.3.2 Stackelberg Equilibrium Analysis

Unlike the different characteristics between Nash equilibria of the multi-stage

scalar and multi-dimensional cheap talk, fully revealing characteristics of the

Stackelberg equilibrium still hold for the multi-stage multi-dimensional cheap

talk, as for the scalar case:

Theorem 3.3.2. The Stackelberg equilibria in the multi-stage multi-dimensional

cheap talk can be obtained by extending its scalar case; i.e., it is unique and

corresponds to a fully revealing encoder policy as in the scalar case.

Proof. We will use the properties of iterated expectations in the analysis. Recall

that the total decoder cost is Jd(γe[0,N−1], γ
d
[0,N−1]) = E

[
N−1∑
k=0

‖mk − uk‖2

]
. Con-

sidering the last stage, the goal of the decoder is to minimize JdN−1(γeN−1, γ
d
N−1) =

E[‖mN−1 − uN−1‖2|IdN−1] by choosing the optimal action u∗N−1 = γ∗,dN−1(IdN−1) =

E[mN−1|IdN−1]. For the previous stage, the goal of the decoder is to minimize

JdN−2(γ∗,eN−1, γ
e
N−2, γ

∗,d
N−1, γ

d
N−2) = E[‖mN−2 − uN−2‖2 + J∗,dN−1(γ∗,eN−1, γ

∗,d
N−1)|IdN−2]

by choosing the optimal action u∗N−2 = γ∗,dN−2(IdN−2). Since J∗,dN−1(γ∗,eN−1, γ
∗,d
N−1) is

not affected by the choice of γdN−2, the goal of the decoder is equivalent to the

minimization of E[‖mN−2 − uN−2‖2|IdN−2] at this stage. Thus, the optimal pol-

icy is u∗N−2 = γ∗,dN−2(IdN−2) = E[mN−2|IdN−2]. Similarly, since the actions taken

by the decoder do not affect the future states and encoder policies, the optimal

decoder actions can be found as u∗k = γ∗,dk (Idk) = E[mk|Idk ] = E[mk|x[0,k]] for

k = 0, 1, . . . , N − 1.

Due to the Stackelberg assumption, the encoder knows that the decoder will

use u∗k = γ∗,dk (Idk) = E[mk|Idk ] for each stage k = 0, 1, . . . , N − 1. By using

this assumption and the smoothing property of the expectation, the total en-

coder cost can be written as Je(γe[0,N−1], γ
∗,d
[0,N−1]) = E

[
N−1∑
k=0

‖mk − uk − b‖2

]
=

E
[
N−1∑
k=0

‖mk − uk‖2

]
+ N‖b‖2. Thus, as in the scalar setup Theorem 3.2.6, the

goals of the encoder and the decoder become essentially the same in the Stack-

elberg game setup, which effectively reduces the game setup to a team setup,
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resulting in fully informative equilibria; i.e., the encoder reveals all of his infor-

mation.

As in the scalar case, the equilibria under the Nash and Stackelberg assump-

tions are drastically different: There cannot be fully revealing Nash equilibria in

the multi-stage multi-dimensional cheap talk whereas the equilibrium is always

fully revealing under the Stackelberg assumption.

Remark 3.3.1. Note that there is no constraint on the source and channel di-

mensions in Section 3.3: the source and channel dimensions can be different,

and further, the source and channel dimensions can change at every stage; i.e.,

Theorem 3.3.1 and Theorem 3.3.2 hold for an nk-dimensional source and an rk-

dimensional channel at the k-th stage for any nk, rk ∈ Z and k ∈ {0, . . . , N − 1}.

3.4 Multi-Stage Scalar Quadratic Signaling

Games

The multi-stage signaling game setup is similar to the multi-stage cheap talk setup

except that there exists an additive Gaussian noise channel between the encoder

and the decoder at each stage, and the encoder has a soft power constraint. For

the purpose of illustration, the system model of the 2-stage signaling game is

depicted in Fig. 3.2.

Here, source is assumed to be a Markov source with an initial Gaussian dis-

tribution; i.e., M0 ∼ N (0, σ2
M0

) and Mk+1 = gMk + Vk where g ∈ R and

Vk ∼ N (0, σ2
Vk

) is an i.i.d. Gaussian noise sequence for k = 0, 1, . . . , N − 2.

The channels between the encoder and the decoder are assumed to be i.i.d. addi-

tive Gaussian channels; i.e., Wk ∼ N (0, σ2
Wk

), and Wk and Vl are independent for

k = 0, 1, . . . , N−1 and l = 0, 1, . . . , N−2. Since the messages transmitted by the

encoder and received by the decoder are not the same due to the noisy channel,

the information available to the encoder and the decoder slightly changes com-

pared to that in the cheap talk setup. At the k-th stage of the N -stage game, the
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Figure 3.2: 2-stage signaling game.

encoder knows the values of Iek = {m[0,k], y[0,k−1]} (a noiseless feedback channel is

assumed) and the decoder knows the values of Idk = {y[0,k]} with yk = xk + wk.

Thus, under the policies considered, xk = γek(Iek) and uk = γdk(Idk). The encoder’s

goal is to minimize

Je
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cek(mk, xk, uk)

]
,

whereas, the decoder’s goal is to minimize

Jd
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cdk(mk, uk)

]
.

by finding the optimal policy sequences γe[0,N−1] and γd[0,N−1], respectively. The cost

functions are modified as cek (mk, xk, uk) = (mk − uk − b)2 +λx2
k and cdk (mk, uk) =

(mk − uk)2. Note that a power constraint with an associated multiplier is ap-

pended to the cost function of the encoder, which corresponds to power limitation

for transmitters in practice. If λ = 0, this corresponds to the setup with no power

constraint at the encoder.
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3.4.1 Nash Equilibrium Analysis

In multi-stage scalar signaling games, affine policies constitute an invariant sub-

space under best response maps for Nash equilibria which is stated as follows:

Theorem 3.4.1. (i) If the encoder uses affine policies at all stages, then the

decoder will also be affine at all stages.

(ii) If the decoder uses affine policies at all stages, then the encoder will also be

affine at all stages.

While it provides a structural result on the plausibility of affine equilibria,

Theorem 3.4.1 does not lead to a conclusion about the existence of an affine

informative equilibrium. It may be tempting to apply fixed point theorems (such

as Brouwer’s fixed point theorem [84]) to establish the existence of informative

equilibria; however, that there always exists a non-informative equilibrium for the

cheap talk game also applies to the signaling game as mentioned in Section 2.4.1.2.

Later on, we will make information theoretic arguments (in Theorem 3.4.3) for

the existence of informative equilibria for the Stackelberg setup, but this is not

feasible for the Nash setup.

Even though Theorem 3.4.1 does not provide a result on the existence of an

informative affine equilibrium for the n-stage signaling game, a conclusive argu-

ment can be established for the 2-stage signaling game. Theorem 2.4.4 will be

utilized in the following theorem where informative affine equilibria for a 2-stage

signaling game are analyzed.

Theorem 3.4.2. For the 2-stage signaling game setup under affine encoder and

decoder assumptions,

(i) if λ > max
{

(g2+1)σ2
M0

σ2
W0

,
σ2
M1

σ2
W1

}
, then there does not exist an informative affine

equilibrium,

(ii) if min
{

(g2+1)σ2
M0

σ2
W0

,
σ2
M1

σ2
W1

}
< λ ≤ max

{
(g2+1)σ2

M0

σ2
W0

,
σ2
M1

σ2
W1

}
, then;
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(a) for
(g2+1)σ2

M0

σ2
W0

<
σ2
M1

σ2
W1

, the equilibrium is informative if and only if

σ2
M1
≥ 4b2 and max

{
σ2
M1
−2b2−

√
σ2
M1

√
σ2
M1
−4b2

2σ2
W1

, (g2 + 1)
σ2
M0

σ2
W0

}
< λ <

σ2
M1
−2b2+

√
σ2
M1

√
σ2
M1
−4b2

2σ2
W1

.

(b) for
σ2
M1

σ2
W1

<
(g2+1)σ2

M0

σ2
W0

, the second stage message m1 is not used in the

game.

The analysis in Theorem 3.4.2 can be carried over to the N -stage signaling

game; however, for an N -stage problem, this would involve (3N2 + 5N)/2 equa-

tions and as many unknowns.

3.4.2 Stackelberg Equilibrium Analysis

In this section, the signaling game is analyzed under the Stackelberg concept. The

bibliographical notes regarding the optimality of the linear policies are included

at the beginning of Section 3.5.2. In the following, we provide an information

theoretic analysis to establish the existence of informative equilibria:

Theorem 3.4.3. If λ ≥ maxk=0,1,...,N−1

σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i, there does not exist an

informative (affine or non-linear) equilibrium in the N-stage scalar signaling

game under the Stackelberg assumption; i.e., the only equilibrium is the non-

informative one. Otherwise, an equilibrium has to be always linear.

Remark 3.4.1. Notice that, in Theorem 3.4.3, due to the Stackelberg assumption

and the smoothing property of the expectation, the bias term in the total encoder

cost can be decoupled. Thus, the bound is independent of the bias terms, which is

the exact same bound when there is no bias term. However, when the priors are

subjective, even for the single-stage game, it may not possible to construct optimal

encoder policies without considering the bias term, as shown in Section 3.6.2.2

and Remark 3.6.2.
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Now consider the multi-stage Stackelberg signaling game with a dis-

counted infinite horizon and a discount factor β ∈ (0, 1); i.e., Je(γe, γd) =

E
[∑∞

i=0 β
i
(
(mi − ui − b)2 + λx2

i

)]
and Jd(γe, γd) = E

[∑∞
i=0 β

i (mi − ui)2].
Corollary 3.4.1. If λ ≥ maxk=0,1,...

σ2
Mk

σ2
Wk

1
1−βg2 where βg2 < 1, there does not exist

an informative (affine or non-linear) equilibrium in the infinite horizon discounted

multi-stage Stackelberg signaling game for scalar Gauss-Markov sources; i.e., the

only equilibrium is the non-informative one,

Proof. Firstly, consider the finite horizon discounted case; i.e., Je(γe[0,N−1], γ
d
[0,N−1]) =∑N−1

i=0 βkE
[
(mi − ui − b)2 + λx2

i

]
. Then, applying the similar steps as in Theo-

rem 3.4.3, we will have Je,lower0 =
∑N−1

i=0 βi (∆i + λPi + b2). Then, the critical

value of λ becomes λ > maxk=0,1,...,N−1

σ2
Mk

σ2
Wk

∑N−k−1
i=0 βig2i for the non-informative

equilibrium.

For the infinite horizon case, it can be observed

inf
γe
[0,N−1]

lim
N→∞

Je(γe[0,N−1], γ
d
[0,N−1])

= inf
γe
[0,N−1]

lim
N→∞

N−1∑
i=0

βiE
[
(mi − ui − b)2 + λx2

i

]
≥ lim sup

N→∞
inf

γe
[0,N−1]

N−1∑
i=0

βiE
[
(mi − ui − b)2 + λx2

i

]
≥ lim sup

N→∞
inf

γe
[0,N−1]

N−1∑
i=0

βi
(
∆i + λPi + b2

)
. (3.4)

As discussed above, infγe
∑N−1

i=0 βi (∆i + λPi + b2) is achieved at non-informative

equilibrium if λ > maxk=0,1,...,N−1

σ2
Mk

σ2
Wk

∑N−k−1
i=0 βig2i. Thus, the lower bound in

(3.4) is achieved at a non-informative equilibrium if

λ > lim sup
N→∞

max
k=0,1,...,N−1

σ2
Mk

σ2
Wk

N−k−1∑
i=0

βig2i =
σ2
Mk

σ2
Wk

1

1− βg2
for βg2 < 1 .

Hence, if λ ≥ maxk=0,1,...

σ2
Mk

σ2
Wk

1
1−βg2 , then the lower bound Je,lower0 of the encoder

costs Je0 is minimized by choosing P0 = P1 = · · · = 0, and the minimum cost

becomes Je0 = Je,lower0 =
∑∞

i=0 β
i
(
σ2
Mi

+ b2
)

at this non-informative equilibrium.
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3.5 Multi-Stage Multi-Dimensional Quadratic

Signaling Games

In this section, the scalar setup considered in Section 3.4 is extended to the

n-dimensional setup as follows: The source is assumed to be an n-dimensional

Markovian source with initial Gaussian distribution; i.e., M0 ∼ N (0,ΣM0) and

Mk+1 = GMk + Vk where G is an n × n matrix and Vk ∼ N (0,ΣVk
) is an

i.i.d. Gaussian noise sequence for k = 0, 1, . . . , N − 2. The channels between the

encoder and the decoder are assumed to be i.i.d. additive Gaussian channels; i.e.,

Wk ∼ N (0,ΣWk
), and Wk and Vl are independent for k = 0, 1, . . . , N − 1 and

l = 0, 1, . . . , N − 2. At the k-th stage of the N -stage game, the encoder knows

the values of Iek = {m[0,k],y[0,k−1]} (a noiseless feedback channel is assumed) and

the decoder knows the values of Idk = {y[0,k]} with yk = xk + wk. Thus, under

the policies considered, xk = γek(Iek) and uk = γdk(Idk), the encoder’s goal is to

minimize

Je
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cek(mk,xk,uk)

]
,

whereas, the decoder’s goal is to minimize

Jd
(
γe[0,N−1], γ

d
[0,N−1]

)
= E

[
N−1∑
k=0

cdk(mk,uk)

]

by finding the optimal policy sequences γ∗,e[0,N−1] and γ∗,d[0,N−1], respectively. The

cost functions are ce (mk,xk,uk) = ‖mk − uk − b‖2 + λ‖xk‖2 and cd (mk,uk) =

‖mk−uk‖2, where the lengths of the vectors are defined in L2 norm and b is the

bias vector.

3.5.1 Nash Equilibrium Analysis

Similar to the scalar source case, affine policies constitute an invariant subspace

under the best response maps for Nash equilibria when the source is multi-

dimensional in the multi-stage signaling games as shown below:
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Theorem 3.5.1. (i) If the encoder uses affine policies at all stages, then the

decoder will be affine at all stages.

(ii) If the decoder uses affine policies at all stages, then the encoder will be affine

at all stages.

Please see the discussion following Theorem 3.4.1: The existence of an in-

formative equilibrium cannot be deduced by utilizing the Brouwer’s fixed point

theorem [84] since there always exist a non-informative equilibrium.

Remark 3.5.1. Note that there is no constraint on the source and channel di-

mensions for Theorem 3.5.1: the source and channel dimensions can be different,

and further, the source and channel dimensions can change at every stage; i.e.,

Theorem 3.5.1 holds for an nk-dimensional source and an rk-dimensional channel

at the k-th stage for any nk, rk ∈ Z and k ∈ {0, . . . , N − 1}.

3.5.2 Stackelberg Equilibrium Analysis

Linear policies are optimal for scalar sources as shown in Section 3.4.2. Before

analyzing the Stackelberg equilibrium for the multi-dimensional setup, it will be

appropriate to review the optimality of linear policies in Gaussian setups for the

classical communication theoretic setup when the bias term is absent:

Optimality of linear coding policies for scalar Gaussian source-channel pairs

with noiseless feedback has been known since 1960s, see e.g. [93–95], [96, Chapter

16]. Further, the transmission over scalar Gaussian channels has been studied also

in [96, Chapter 16], [97] and [98], where the error exponents have been shown

to be unbounded (and it has been shown that the error probability decreases

at least doubly exponentially in the block-length). However, when there is a

noisy feedback, this result does not hold [99]. There is also a recent work for

Gaussian channels with memory, where the aim is to design controllers (encoders

and decoders) that both stabilize the unstable dynamical channels and achieve

the capacity [100].
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Even when the encoder and the decoder have identical (non-biased) quadratic

cost functions, when the source and the channel are multi-dimensional, linear

policies may not be optimal. The case where there is a mismatch in the source

and the channel is a challenging one. Partial results are known regarding opti-

mal zero-delay policies. Matching essentially requires that the capacity achieving

source probabilities and the rate-distortion achieving channel probabilistic char-

acteristics are simultaneously realized for a given system; this is precisely the case

for a scalar Gaussian source transmitted over a scalar additive Gaussian channel.

One special case where such a matching holds is the case when the noise and signal

power levels are identical in every channel and the distortion criterion is identical

for all scalar components [101]. In particular, except for settings where matching

between the source and the channel exists (building on [102], [103]), the optimality

of linear policies is quite rare [4,101,104]. Optimal linear encoders for single-stage

setups have been studied [105–107]. Partially observed settings have been consid-

ered in [108–111]. Gastpar [112] has considered various settings of multi-access

and broadcast channels. For further discussions on multi-dimensional Gaussian

source and channel pairs, we refer the reader to [101,103–105,113–116]. A compre-

hensive discussion and literature review is available at [105,117] and [4, Chapter

11].

It is evident from Theorem 3.5.1 that when the encoder is linear, the opti-

mal decoder is linear. In this case, a relevant problem is to find the optimal

Stackelberg policy among the linear or affine class. In the following, a dynamic

programming approach is adapted to find such Stackelberg equilibria. Building

on the optimality of linear innovation encoders, we restrict the analysis to such

encoders; i.e., we consider a sub-optimal scenario. Our analysis builds on and

generalizes the arguments in [117, Theorem 3] and [118].

Theorem 3.5.2. Suppose that G, ΣM0 and Σvk are diagonal. Suppose further

that the innovation is given by m̃k , mk−E[mk|y[0,k−1]] with m̃0 = m0, and that

the encoder linearly encodes the innovation. Then, an optimal such linear policy

can be computed through dynamic programming with value functions Vk (Σm̃k
) ,

tr (KkΣm̃k
+ Lk) that satisfy the terminal condition VN (Σm̃N

) = 0 with diagonal

Kk matrices for k = 0, 1, . . . , N − 1.
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Remark 3.5.2. In Theorem 3.5.2, similar to the scalar case (Theorem 3.4.3),

the bias term in the total encoder cost can be decoupled and the optimal encoder

parameters become independent of the bias terms. However, when the priors

are subjective, decoupling the bias related parameters may not be possible (see

Remark 3.6.2 in Section 3.6.2.2, and Remark 3.4.1). Further, Theorem 3.5.2

provides the vector channel extension of [117, Theorem 2.3], which considers a

scalar channel.

3.6 Quadratic Cheap Talk and Signaling Games

with Subjective Priors

The setup in decentralized decision making where the priors of the decision mak-

ers may be different is a practically important and researched area: For exam-

ple, [87, 88] have investigated optimal decentralized decision making with sub-

jective priors, a team problem is converted into a game problem as mappings

on policies/strategies (see [4, Section 12.2.3] for a literature review on subjec-

tive priors also from a statistical decision making perspective). In this section,

we consider such a setup where the source is perceived to be different from the

perspectives of the encoder and the decoder; i.e., M ∼ fe(m) and M ∼ fd(m)

from encoder’s and decoder’s perspectives, respectively. The expected cost of

the encoder and the decoder, under given policies, become different even if the

costs ce(m,u) and cd(m,u) are the same, i.e., the expectation is taken over dif-

ferent probability measures, and in order to reflect this, Ee and Ed will be used

to denote the expectations from the perspective of the encoder and the decoder,

respectively. Hence, the discrepancy in the perception of the source alters the

problem to the game problem, and, in this direction, the effects of inconsistent

priors in cheap talk and signaling game will be investigated in the following.
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3.6.1 Quadratic Cheap Talk with Subjective Priors

In this section, we consider encoders and decoders with subjective priors, and to

reflect mainly the effects of the subjectivity in the priors we assume that the costs

are identical with ce(m,u) = cd(m,u) = ‖m−u‖2. Let M ∼ fe and M ∼ fd from

encoder’s and decoder’s perspectives, respectively. We assume mutual absolute

continuity of fe and fd; that is, for any Borel B, fe(B) = 0 =⇒ fd(B) = 0 and

fd(B) = 0 =⇒ fe(B) = 0.

Theorem 3.6.1. (i) If the priors are mutually absolutely continuous, there ex-

ists a fully informative Nash equilibrium.

(ii) If the priors are mutually absolutely continuous, there exists a fully infor-

mative Stackelberg equilibrium.

Proof. (i) Let the encoder and the decoder use fully informative policies; i.e.,

the encoder transmits every individual message distinctly as x = γe(m) =

m, and the decoder takes unique actions for each distinct message he re-

ceives as u = γd(x) = x. Then, the cost of the encoder and the decoder is

zero almost surely (due to the mutual absolute continuity assumption, the

set of m values in the support of both the encoder and the decoder priors

has measure 1 under either the encoder and the decoder prior); and thus

Je = Efe [‖m − u]‖2] = 0 and Jd = Efd [‖m − u]‖2] = 0. Since both the

encoder and the decoder achieves the minimum possible cost, none of the

players deviates from their current choices; i.e., they prefer to stick at the

fully informative policies, which implies that there exists a fully informative

equilibrium.

(ii) Under the Stackelberg assumption, the optimal decoder action is u∗ =

γ∗,d(x) = Efd [m|x]. Then, the encoder aims to choose the optimal encoding

policy γ∗,e(m) = x∗ = arg min
x

Efe [‖m − Efd [m|x]‖2]. Thus, for every

possible realization of m, the encoder can choose x = γe(m) such that

m = Efd [m|x], and this is achievable at fully informative equilibria; i.e.,

γ∗,e(m) = x∗ = m. Under this encoding policy and due to the mutual
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absolute continuity assumption, the optimal encoder cost is zero almost

surely, and the optimal decoder policy is u∗ = γ∗,d(x) = x = m, which

entails the zero decoder cost almost surely.

Remark 3.6.1. The subjective priors assumption does not make a difference

when the priors are mutually absolutely continuous; i.e., both the team setup and

game setup result in fully informative equilibria.

Theorem 3.6.1 and Remark 3.6.1 also apply to the multi-stage case; i.e., if the

priors are mutually absolutely continuous, there exists a fully informative Nash

and Stackelberg equilibria in multi-stage cheap talk as in the team theoretic setup.

3.6.2 Quadratic Signaling Games with Subjective Priors

Here, we will adapt the subjective priors assumption to the single-stage signaling

games as follows: Let the Gaussian source have different mean and variance from

the perspectives of the encoder and the decoder; i.e., the source is M ∼ N (µe, σ
2
e)

and M ∼ N (µd, σ
2
d) from encoder’s and decoder’s perspective, respectively. The

channel between the encoder and the decoder is assumed to be additive Gaussian

channel with distribution W ∼ N (0, σ2
W ) and independent of the source M .

3.6.2.1 Nash Equilibria Analysis

We first study the single-stage Nash equilibria.

Theorem 3.6.2. If λ >
σ2
d

σ2
W

, the affine equilibrium is non-informative; otherwise,

the affine equilibrium is unique and informative.

Proof. If the encoder is affine; i.e., x = γe(m) = Am + C, then the optimal

decoder becomes

u∗ = γ∗,d(y) = Ed[m|y] = Ed[m|Am+ C + w]
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= µd +
Aσ2

d

A2σ2
d + σ2

W

(y − Aµd − C)

=
Aσ2

d

A2σ2
d + σ2

W

y +
σ2
Wµd − ACσ2

d

A2σ2
d + σ2

W

.

Now suppose that the decoder is affine; i.e., u = γd(y) = Ky+L, then the optimal

encoder is (2.11):

x∗ = γ∗,e(m) =
K

K2 + λ
m− K(L+ b)

K2 + λ
.

We now wish to see if these optimal sets of policies satisfy a fixed point equation.

By combining the optimal policies, we get

A =
K

K2 + λ
, C = −A(L+ b) ,

K =
Aσ2

d

A2σ2
d + σ2

W

, L = µd
σ2
W

A2σ2
d + σ2

W

−KC .

Similar to Theorem 2.4.1, we obtain (K2 + λ)2σ2
W = λσ2

d by assuming A 6=
0. Here, for λ >

σ2
d

σ2
W

, (K2 + λ)2σ2
W = λσ2

d cannot be satisfied, thus A = 0

and the affine equilibrium is non-informative. Otherwise, the affine equilibrium

is informative and the optimal policy parameters can be determined uniquely

(actually, if {A∗, C∗, K∗, L∗} constitutes optimal policies of the encoder and the

decoder, then {−A∗,−C∗,−K∗, L∗} is also a parameter set for optimal policies):

A =

√√√√√ σ2
W

λσ2
d

− σ2
W

σ2
d

,

C = −

µd
√√√√√ σ2

W

λσ2
d

− σ2
W

σ2
d

+ b

√√√√1

λ

(√
σ2
d

λσ2
W

− 1

) ,

K =

√√√√√λσ2
d

σ2
W

− λ ,

L = µd + b

(√
σ2
d

λσ2
W

− 1

)
.

Note that none of the parameters depend on the parameters of the perspective of

the encoder since the encoder minimizes his cost for every realization m of source

M without considering its distribution.
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It can be shown that, when the priors are subjective, the encoder (decoder) is

affine for an affine decoder (encoder) in the multi-dimensional signaling game by

using a similar analysis to that of Theorem 2.4.1 as follows:

Theorem 3.6.3. Let the source be M ∼ N (µe,Σe) and M ∼ N (µd,Σd) from

encoder’s and decoder’s perspective, respectively, and let the channel noise be

W ∼ N (0,ΣW). Then, encoder (decoder) is affine for an affine decoder (encoder)

in multi-dimensional signaling game when the priors are inconsistent.

Proof. For the affine encoder x = γe(m) = Am + C, the optimal decoder will be

u∗ = γ∗,d(y) = Ed[m|y] = Ed[m|Am + C + w]

= µd + ΣdA
T (AΣdA

T + ΣW)−1(y − Aµd −C)

= ΣdA
T (AΣdA

T + ΣW)−1(y −C) + (I − ΣdA
T (AΣdA

T + ΣW)−1A)µd
(a)
= ΣdA

T (AΣdA
T + ΣW)−1(y −C) + (I + ΣdA

TΣ−1
WA)−1µd

= ΣdA
T (AΣdA

T + ΣW)−1(y −C) + (A−1(ΣW + AΣdA
T )Σ−1

WA)−1µd

= ΣdA
T (AΣdA

T + ΣW)−1(y −C) + A−1ΣW(ΣW + AΣdA
T )−1Aµd .

Here, (a) is due to the matrix inversion lemma, (I + UWV )−1 = I − U(W−1 + V U)−1V ,

where U = ΣdA
T , W = Σ−1

W , and V = A. Now suppose that the decoder is affine;

i.e., u = γd(y) = Ky + L, then the optimal encoder is (2.45):

x∗ = γ∗,e(m) =
(
KTK + λI

)−1

KT
(
m− L− b

)
.

As it can be seen from Theorem 3.6.2 and Theorem 3.6.3, the following con-

clusion can be made by utilizing Theorem 3.4.1 and Theorem 3.5.1:

Corollary 3.6.1. Even if the priors are inconsistent from the perspectives of

the encoder and the decoder in the multi-stage signaling game, affine policies

constitute an invariant subspace under best response maps for scalar and multi-

dimensional sources under Nash equilibria.
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3.6.2.2 Stackelberg Equilibria Analysis

Theorem 3.6.4. The optimal encoder policy γ∗,e(m) = A∗m + C∗ among the

affine class can be characterized by the following:

A∗ = arg min
A

(
σ2
W (µd − µe)
A2σ2

d + σ2
W

+ b

)2

+
σ4
W

(A2σ2
d + σ2

W )2
(σ2

e − σ2
d) +

σ2
dσ

2
W

A2σ2
d + σ2

W

+ λA2σ2
e ,

C∗ = −A∗µe . (3.5)

Proof. Assuming the affine encoder; i.e., x = γe(m) = Am+C, by Theorem 3.6.2,

we know that the optimal decoder is u∗ = γ∗,d(y) =
Aσ2

d

A2σ2
d+σ2

W
y +

σ2
Wµd−ACσ2

d

A2σ2
d+σ2

W
,

Ky + L, where y = Am + C + w. Then the goal of the encoder is to minimize

the following:

J∗,e = min
x=γe(m)=Am+C

Ee
[
(m− u− b)2 + λx2

]
= min

A, C
Ee
[
(m− AKm−KC −Kw − L− b)2 + λ(Am+ C)2

]
= min

A, C
Ee
[
m2(1− AK)2 − 2(1− AK)(KC + L+ b)m+ (KC + L+ b)2

+ λA2m2 + 2λACm+ λC2
]

+K2σ2
W

= min
A, C

(µ2
e + σ2

e)
σ4
W

(A2σ2
d + σ2

W )2
− 2

σ2
W

A2σ2
d + σ2

W

(
σ2
Wµd

A2σ2
d + σ2

W

+ b

)
µe

+

(
σ2
Wµd

A2σ2
d + σ2

W

+ b

)2

+ λA2(µ2
e + σ2

e) + 2λACµe

+ λC2 +
A2σ4

d

(A2σ2
d + σ2

W )2
σ2
W

= min
A, C

(µ2
e + σ2

e)σ
4
W − 2σ4

Wµeµd + σ4
Wµ

2
d + A2σ2

Wσ
4
d

(A2σ2
d + σ2

W )2

+
−2σ2

Wµeb+ 2σ2
Wµdb

A2σ2
d + σ2

W

+ b2 + λA2σ2
e + λ(Aµe + C)2

= min
A, C

σ4
W (µd − µe)2 + σ4

Wσ
2
e + A2σ2

Wσ
4
d + σ4

Wσ
2
d − σ4

Wσ
2
d

(A2σ2
d + σ2

W )2
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+
2σ2

W b

A2σ2
d + σ2

W

(µd − µe) + b2 + λA2σ2
e + λ(Aµe + C)2

= min
A, C

(
σ2
W (µd − µe)
A2σ2

d + σ2
W

+ b

)2

+
σ4
W

(A2σ2
d + σ2

W )2
(σ2

e − σ2
d)

+
σ2
dσ

2
W

A2σ2
d + σ2

W

+ λA2σ2
e + λ(Aµe + C)2 . (3.6)

Here, the optimal encoder cost is achieved when C∗ = −A∗µe, and A∗ can be

found by analyzing the 6th order equation of A.

Remark 3.6.2. When the consistent priors and the zero-mean Gaussian source

are assumed; i.e., µe = µd = 0 and σ2
e = σ2

d, then (3.6) turns into (2.25) as

expected. Further, note that, in (3.6), unless µe 6= µd, the optimal encoder policy

is independent of the bias term b; i.e., the bias term has no effect on the optimal

policies of the encoder and the decoder.

The analysis in Theorem 3.6.4 can be carried over to the N -stage signaling

game: the encoder searches over the affine class to find his optimal policy by

anticipating the best response of the decoder, and this would involve the opti-

mization over N2 +N parameters for an N -stage problem.

Remark 3.6.3. Note that, under the Nash assumption, the agents do not need to

know their subjective priors; they know only their policies as they (simultaneously)

announce to each other. On the other hand, for the Stackelberg case, the encoder

must know the decoder’s subjective prior so that he, as a leader, can anticipate

the decoder’s optimal actions.

3.7 Conclusion

In this chapter, we studied Nash and Stackelberg equilibria for multi-stage

quadratic cheap talk and signaling games. We established qualitative (e.g.

on full revelation, quantization nature, linearity, informativeness and non-

informativeness) and quantitative properties (on linearity or explicit computa-

tion) of Nash and Stackelberg equilibria under either subjective/inconsistent cost

models or priors.
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For the cheap talk problem under Nash equilibria, we have shown that the

last stage equilibria are quantized for any scalar source with an arbitrary dis-

tribution, and all stages must be quantized under certain assumptions on i.i.d.

sources whereas for the multi-stage Stackelberg cheap talk game, the equilibria

must be fully revealing regardless of the source model. We have also proved that

the equilibria are fully revealing in the multi-stage multi-dimensional cheap talk

under Stackelberg equilibria whereas the equilibria cannot be fully revealing un-

der a Nash concept. In the multi-stage signaling game where the transmission of

a Gaussian source over a Gaussian channel is considered, affine policies constitute

an invariant subspace under best response maps for scalar and multi-dimensional

sources under Nash equilibria. However, for multi-stage Stackelberg signaling

games involving Gauss-Markov sources and memoryless Gaussian channels, we

have proved that, for scalar setups, linear policies are optimal and the only equi-

librium is the linear one, whereas this is not the case for general multi-dimensional

setups. Further, the conditions under which the equilibrium is non-informative

under the Stackelberg assumption are derived for scalar Gauss-Markov sources,

and the dynamic programming formulation is presented for a class of Stackelberg

equilibria when the encoders are restricted to be linear for multi-dimensional

Gauss-Markov sources. When the source is perceived to admit different prob-

ability measures from the perspectives of the encoder and the decoder, under

identical cost functions and mutual absolute continuity, we show that there exist

fully informative Nash and Stackelberg equilibria for the dynamic cheap talk as

in the usual team theoretic setup. Thus, the equilibrium behavior is robust to

a class of perturbations in the prior models, which is not necessarily the case

for the perturbations in the cost models. On the other hand, for the signaling

game, Stackelberg equilibrium policies are robust to a class of perturbations in

the cost models but not to the perturbations in the prior models considered in

this chapter. Table 3.1 summarizes the results of this chapter.
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Table 3.1: Multi-stage cheap talk and signaling games

SETUP SOURCE Nash Equilibrium Stackelberg Equilibrium

MULTI-STAGE
CHEAP TALK

scalar
final stage must be quantized for Markov sources,

and all stages are quantized for i.i.d. sources
fully revealing

multi-dimensional final stage cannot be fully revealing fully revealing

MULTI-STAGE
SIGNALING

GAMES

scalar
affine policies constitute invariant subspace

under best response maps
always linear

multi-dimensional
affine policies constitute invariant subspace

under best response maps
no general structure

3.8 Proofs

3.8.1 Proof of Theorem 3.4.1

This result follows as a special case of Theorem 3.5.1, but the proof is provided

for completeness.

(i) Let the encoder policies be xk = γek(m[0,k], y[0,k−1]) =
∑k

i=0Ak,imi +∑k−1
i=0 Bk,i yi+Ck where Ak,i, Bk,i and Ck are scalars for k ≤ N−1 and i ≤ k.

Similar to the dynamic Stackelberg cheap talk analysis in Theorem 3.2.6,

the optimal decoder actions can be found as u∗k = γ∗,dk (Idk) = E[mk|Idk ] =

E[mk|y[0,k]] for k ≤ N − 1. Notice that y[0,k] is multivariate Gaussian for

k ≤ N−1 since yk = xk+wk. This proves that γ∗,dk (Idk) is an affine function

of y[0,k] due to the joint Gaussianity.

(ii) Let the decoder policies be uk = γdk(y[0,k]) =
∑k

i=0Kk,i yi+Lk whereKk,i and

Lk are scalars for k ≤ N−1 and i ≤ k. With yN−1 = xN−1+wN−1, it follows

that uN−1 =
∑N−2

i=0 KN−1,i yi + KN−1,N−1 xN−1 + KN−1,N−1wN−1 + LN−1.

Then, by a dynamic programming approach, the final stage encoder cost

can be written as

J∗,eN−1 = min
xN−1=γeN−1(m[0,N−1],y[0,N−2])

E
[

(mN−1 − uN−1 − b)2 + λx2
N−1

]
= min

xN−1

E

[(
mN−1 −

N−2∑
i=0

KN−1,i yi −KN−1,N−1 xN−1 −KN−1,N−1wN−1

− LN−1 − b

)2

+ λx2
N−1

]
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= min
xN−1

E

[(
mN−1 −

N−2∑
i=0

KN−1,i yi −KN−1,N−1 xN−1 − LN−1 − b

)2

+ λx2
N−1

]
+K2

N−1,N−1 σ
2
WN−1

= min
xN−1

E

[ (
K2
N−1,N−1 + λ

)
x2
N−1 − 2KN−1,N−1

×

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)
xN−1

+

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)2 ]
+K2

N−1,N−1 σ
2
WN−1

= min
xN−1

(
K2
N−1,N−1 + λ

)
E

[(
xN−1 −

KN−1,N−1

K2
N−1,N−1 + λ

×

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

))2]

+ E

[
λ

K2
N−1,N−1 + λ

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)2 ]
+K2

N−1,N−1 σ
2
WN−1

.

Hence, the optimal γeN−1(m[0,N−1], y[0,N−2]) can be chosen as

γeN−1(m[0,N−1], y[0,N−2]) =
KN−1,N−1

K2
N−1,N−1 + λ

×

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)
,

and the minimum final stage encoder cost is obtained as

J∗,eN−1 = E

[
λ

K2
N−1,N−1 + λ

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)2 ]
+K2

N−1,N−1 σ
2
WN−1

.

(3.7)

Notice that even though m[0,N−1] and y[0,N−2] are available to the encoder,

the encoder uses only mN−1 and y[0,N−2] at the final stage; i.e., the encoder

does not need m[0,N−2].

92



Then, by a dynamic programming approach, the cost of the encoder at

N − 1st stage becomes

J∗,eN−2 = min
xN−2=γeN−2(m[0,N−2],y[0,N−3])

E
[
(mN−2 − uN−2 − b)2 + λx2

N−2 + J∗,eN−1

]
.

(3.8)

By using the relation between the sources mN−1 = gmN−2 + vN−2 and

yN−2 = xN−2 + wN−2, (3.7) can be refined and inserted into (3.8). Fur-

ther, with yN−2 = xN−2 + wN−2, it follows that uN−2 =
∑N−3

i=0 KN−2,i yi +

KN−2,N−2 xN−2 +KN−2,N−2wN−2 +LN−2, and the completion of the squares

method can be applied to the previous step. By using the relation between

the sources mN−1 = gmN−2 +vN−2 and yN−2 = xN−2 +wN−2, the final stage

encoder cost can be simplified as

J∗,eN−1 = E

[
λ

K2
N−1,N−1 + λ

(
gmN−2 + vN−2 −

N−3∑
i=0

KN−1,i yi −KN−1,N−2 xN−2

−KN−1,N−2wN−2 − LN−1 − b

)2]
+K2

N−1,N−1 σ
2
WN−1

= E

[
λ

K2
N−1,N−1 + λ

(
gmN−2 −

N−3∑
i=0

KN−1,i yi −KN−1,N−2 xN−2

− LN−1 − b

)2]
+

λ

K2
N−1,N−1 + λ

(
σ2
VN−2

+K2
N−1,N−2 σ

2
WN−2

)
+K2

N−1,N−1 σ
2
WN−1

.

With yN−2 = xN−2 + wN−2, it follows that uN−2 =
∑N−3

i=0 KN−2,i yi +

KN−2,N−2 xN−2 + KN−2,N−2wN−2 + LN−2. Then, by a dynamic program-

ming approach, the cost of the encoder at N − 1st stage can be written

as

J∗,eN−2 = min
xN−2=γeN−2(m[0,N−2],y[0,N−3])

E
[
(mN−2 − uN−2 − b)2 + λx2

N−2 + J∗,eN−1

]
= min

xN−2

E

[(
mN−2 −

N−3∑
i=0

KN−2,i yi −KN−2,N−2 xN−2 −KN−2,N−2wN−2

− LN−2 − b

)2

+ λx2
N−2 + J∗,eN−1

]
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= min
xN−2

E

[(
mN−2 −

N−3∑
i=0

KN−2,i yi −KN−2,N−2 xN−2 − LN−2 − b

)2

+ λx2
N−2

]
+ E

[
λ

K2
N−1,N−1 + λ

(
gmN−2 −

N−3∑
i=0

KN−1,i yi

−KN−1,N−2 xN−2 − LN−1 − b

)2]
+

λ

K2
N−1,N−1 + λ

×
(
σ2
VN−2

+K2
N−1,N−2 σ

2
WN−2

)
+K2

N−1,N−1 σ
2
WN−1

+K2
N−2,N−2 σ

2
WN−2

= min
xN−2

E

[(
K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1 + λ

)
x2
N−2

− 2KN−2,N−2

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)
xN−2

− 2λKN−1,N−2

K2
N−1,N−1 + λ

(
gmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)
xN−2

+

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)2

+
λ

K2
N−1,N−1 + λ

(
gmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)2]

+
λ

K2
N−1,N−1 + λ

(
σ2
VN−2

+K2
N−1,N−2 σ

2
WN−2

)
+K2

N−1,N−1 σ
2
WN−1

+K2
N−2,N−2 σ

2
WN−2

= min
xN−2

(
K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1 + λ

)

× E

[(
xN−2 −

KN−2,N−2

K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1+λ

×

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

−
λKN−1,N−2

K2
N−1,N−1+λ

K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1+λ
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×

(
gmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

))2]

− E

[
K2
N−2,N−2

K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1+λ

×

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)2 ]

− E

[ (
λKN−1,N−2

K2
N−1,N−1+λ

)2

K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1+λ

×

(
gmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)2]

+ E

[(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)2

+
λ

K2
N−1,N−1 + λ

(
gmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)2]

+
λ

K2
N−1,N−1 + λ

(
σ2
VN−2

+K2
N−1,N−2 σ

2
WN−2

)
+K2

N−1,N−1 σ
2
WN−1

+K2
N−2,N−2 σ

2
WN−2

.

Then, the optimal γeN−2(m[0,N−2], y[0,N−3]) is obtained as

γeN−2(m[0,N−2], y[0,N−3]) =

KN−2,N−2

K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1+λ

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

+

λKN−1,N−2

K2
N−1,N−1+λ

K2
N−2,N−2 + λ+

λK2
N−1,N−2

K2
N−1,N−1+λ

(
gmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)
.

Notice that even though m[0,N−2] and y[0,N−3] are available to the encoder,

the encoder uses only mN−2 and y[0,N−3] at the N − 1st stage; i.e., the

encoder does not need m[0,N−3].

It can be seen that the optimal xk can be obtained as an affine function ofmk

and y[0,k−1] for each stage, k = 0, 1, . . . , N−1 by completing the square, since
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the cost of the current stage and the next stages consist of the quadratic

function of xk after using the proper identities; i.e., mk = gmk−1 +vk−1 and

yk = xk + wk.

3.8.2 Proof of Theorem 3.4.2

If the decoder policies are u0 = γd0(y0) = Ky0 + L and u1 = γd1(y0, y1) = M0y0 +

M1y1+N where K,L,M0,M1 and N are scalars, then the optimal encoder policies

are in (3.9).

γ∗,e0 (m0) =
KM2

1 + λK + λgM0

(λ+K2)(λ+M2
1 ) + λM2

0

m0 −
K(M2

1 + λ)(L+ b) + λM0(N + b)

(λ+K2)(λ+M2
1 ) + λM2

0

,

γ∗,e1 (m0,m1, y0) =
M1

M2
1 + λ

m1 −
M0M1

M2
1 + λ

y0 −
M1(N + b)

M2
1 + λ

. (3.9)

If the encoder policies are x0 = γe0(m0) = Am0 + C and x1 = γe1(m0,m1, y0) =

Fm0 +B0y0 +B1m1 +D where A,C, F,B0, B1 and D are scalars, then the optimal

decoder policies are in (3.10).

γ∗,d0 (y0) =
Aσ2

M0

A2σ2
M0

+ σ2
W0

y0 −
ACσ2

M0

A2σ2
M0

+ σ2
W0

,

γ∗,d1 (y0, y1) =

−(g2B0B1 + gB0F )σ2
M0
σ2
W0
− (A2B0B1 + AB1F )σ2

M0
σ2
V0

+ gAσ2
M0
σ2
W1
−B0B1σ

2
V0
σ2
W0

(gB1 + F )2σ2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

y0

+
(g2B1 + gF )σ2

M0
σ2
W0

+ A2B1σ
2
M0
σ2
V0

+B1σ
2
V0
σ2
W0

(gB1 + F )2σ2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

y1

−
gACσ2

M0
σ2
W1

+ (g2B1 + gF )Dσ2
M0
σ2
W0

+ (A2B1D − AB1CF )σ2
M0
σ2
V0

+B1Dσ
2
V0
σ2
W0

(gB1 + F )2σ2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

.

(3.10)

By using the policy equations above, the equations for the parameters can be

written as follow:

A =
KM2

1 + λK + λgM0

(λ+K2)(λ+M2
1 ) + λM2

0

,

C = −K(M2
1 + λ)(L+ b) + λM0(N + b)

(λ+K2)(λ+M2
1 ) + λM2

0

,
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F = 0

B0 = − M0M1

M2
1 + λ

= −M0B1 ,

B1 =
M1

M2
1 + λ

,

D = −M1(N + b)

M2
1 + λ

= −(N + b)B1 ,

K =
Aσ2

M0

A2σ2
M0

+ σ2
W0

,

L = −
ACσ2

M0

A2σ2
M0

+ σ2
W0

= −KC ,

M0 =
−g2B0B1σ

2
M0
σ2
W0
− A2B0B1σ

2
M0
σ2
V0

+ gAσ2
M0
σ2
W1
−B0B1σ

2
V0
σ2
W0

g2B2
1σ

2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

,

M1 =
g2B1σ

2
M0
σ2
W0

+ A2B1σ
2
M0
σ2
V0

+B1σ
2
V0
σ2
W0

g2B2
1σ

2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

,

N = −
gACσ2

M0
σ2
W1

+ g2B1Dσ
2
M0
σ2
W0

+ A2B1Dσ
2
M0
σ2
V0

+B1Dσ
2
V0
σ2
W0

g2B2
1σ

2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

.

By inserting B0 = −M0B1 into M0,

M0 =
g2B2

1M0σ
2
M0
σ2
W0

+ A2B2
1M0σ

2
M0
σ2
V0

+ gAσ2
M0
σ2
W1

+B2
1M0σ

2
V0
σ2
W0

g2B2
1σ

2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

⇒M0

(
A2σ2

M0
+ σ2

W0

)
σ2
W1

= gAσ2
M0
σ2
W1

= gK
(
A2σ2

M0
+ σ2

W0

)
σ2
W1

⇒M0 = gK

is obtained. Similarly, by inserting B1 = M1

M2
1 +λ

into M1,

M1 =

g2M1(M2
1 + λ)σ2

M0
σ2
W0

+ A2M1(M2
1 + λ)σ2

M0
σ2
V0

+M1(M2
1 + λ)σ2

V0
σ2
W0

g2M2
1σ

2
M0
σ2
W0

+ A2(M2
1 + λ)2σ2

M0
σ2
W1

+ A2M2
1σ

2
M0
σ2
V0

+ (M2
1 + λ)2σ2

W0
σ2
W1

+M2
1σ

2
V0
σ2
W0

⇒ g2M1λσ
2
M0
σ2
W0

+ A2M1λσ
2
M0
σ2
V0

+M1λσ
2
V0
σ2
W0

=

A2M1(M2
1 + λ)2σ2

M0
σ2
W1

+M1(M2
1 + λ)2σ2

W0
σ2
W1

is obtained. For nonzero M1,

(M2
1 + λ)2(A2σ2

M0
+ σ2

W0
)σ2

W1
= λ

(
g2σ2

M0
σ2
W0

+ (A2σ2
M0

+ σ2
W0

)σ2
V0

)
⇒ (M2

1 + λ)2σ2
W1

= λ

(
g2 σ2

M0
σ2
W0

A2σ2
M0

+ σ2
W0

+ σ2
V0

)
(3.11)
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is found. Further, by inserting D = −(N + b)B1 into N ,

N =

−
gACσ2

M0
σ2
W1
− g2B2

1(N + b)σ2
M0
σ2
W0
− A2B2

1(N + b)σ2
M0
σ2
V0
−B2

1(N + b)σ2
V0
σ2
W0

g2B2
1σ

2
M0
σ2
W0

+ A2σ2
M0
σ2
W1

+ A2B2
1σ

2
M0
σ2
V0

+ σ2
W0
σ2
W1

+B2
1σ

2
V0
σ2
W0

⇒ A2Nσ2
M0
σ2
W1

+Nσ2
W0
σ2
W1

=

− gACσ2
M0
σ2
W1

+ b
(
g2B2

1σ
2
M0
σ2
W0

+ A2B2
1σ

2
M0
σ2
V0

+B2
1σ

2
V0
σ2
W0

)
⇒ N = −

ACσ2
M0

A2σ2
M0

+ σ2
W0

g +
bB2

1

σ2
W1

(
g2σ2

M0
σ2
W0

A2σ2
M0

+ σ2
W0

+ σ2
V0

)
is obtained. Since

(
g2σ2

M0
σ2
W0

A2σ2
M0

+σ2
W0

+ σ2
V0

)
=

(M2
1 +λ)2σ2

W1

λ
for nonzero M1 by (3.11), we

will have N = gL+
bM2

1

λ
. Finally, by inserting L = −KC and N = −M0C +

bM2
1

λ

into C for nonzero M1,

C = −
K(M2

1 + λ)(−KC + b) + λM0(−M0C +
bM2

1

λ
+ b)

(λ+K2)(λ+M2
1 ) + λM2

0

⇒λ(λ+M2
1 )C = −b

(
K(M2

1 + λ) +M0M
2
1 + λM0

)
= −b(M2

1 + λ)(K +M0)

⇒C = − b
λ

(K +M0) = − b
λ

(g + 1)K .

After some algebraic manipulations, consider the following cases:

(i) (g2 + 1)σ2
M0
/σ2

W0
< σ2

M1
/σ2

W1
: By the relation between A and K (A =

KM2
1 +λK+λgM0

(λ+K2)(λ+M2
1 )+λM2

0
and K =

Aσ2
M0

A2σ2
M0

+σ2
W0

), and assuming nonzero A,

A =
KM2

1 + λK + λgM0

(λ+K2)(λ+M2
1 ) + λM2

0

=
KM2

1 + λK + λg2K

(λ+K2)(λ+M2
1 ) + λg2K2

=
K(λ+M2

1 + λg2)

K2(λ+M2
1 + λg2) + λ(λ+M2

1 )

⇒
A2σ2

M0

A2σ2
M0

+ σ2
W0

=
K2(λ+M2

1 + λg2)

K2(λ+M2
1 + λg2) + λ(λ+M2

1 )

⇒
σ2
W0

A2σ2
M0

+ σ2
W0

=
λ(λ+M2

1 )

K2(λ+M2
1 + λg2) + λ(λ+M2

1 )

⇒ λA2(λ+M2
1 )σ2

M0
= K2(λ+M2

1 + λg2)σ2
W0

⇒ (λ+M2
1 )(λA2σ2

M0
−K2σ2

W0
) = λg2K2σ2

W0

⇒M2
1 =

λg2K2σ2
W0

λA2σ2
M0
−K2σ2

W0

− λ ≥ 0

98



⇒ g2K2σ2
W0
≥ λA2σ2

M0
−K2σ2

W0

⇒ λ ≤ K2

A2

g2σ2
W0

+ σ2
W0

σ2
M0

(a)

≤
(
σ2
M0

σ2
W0

)2
g2σ2

W0
+ σ2

W0

σ2
M0

=
(
g2 + 1

) σ2
M0

σ2
W0

is obtained. Here, (a) follows from K
A

=
σ2
M0

A2σ2
M0

+σ2
W0

≤
σ2
M0

σ2
W0

for nonzero A.

Hence, for λ ≥ (g2 + 1)
σ2
M0

σ2
W0

, there does not exist an informative affine equi-

librium at the first stage since A = K = 0.

Now suppose that λ > (g2 + 1)
σ2
M0

σ2
W0

. Then the two-stage game setup reduces

to the one-stage game setup; i.e., A = C = B0 = K = L = M0 = 0, and

the encoder and the decoder policies are γe1(m1) = B1m1 +D and γd1(y1) =

M1y1 +N , respectively. Thus, the equilibrium is informative if and only if

max

{
σ2
M1
−2b2−

√
σ2
M1

√
σ2
M1
−4b2

2σ2
W1

, (g2 + 1)
σ2
M0

σ2
W0

}
< λ <

σ2
M1
−2b2+

√
σ2
M1

√
σ2
M1
−4b2

2σ2
W1

and σ2
M1
≥ 4b2 by Theorem 2.4.4, and M1 = ∓

√√
λσ2
M1

σ2
W1

− λ, B1 =

∓

√√
σ2
W1

λσ2
M1

−
σ2
W1

σ2
M1

, D = ±b

√
1
λ

(√
σ2
M1

λσ2
W1

− 1

)
, and N = b

(√
σ2
M1

λσ2
W1

− 1

)
at this informative equilibrium [55]. Otherwise, the equilibrium is non-

informative.

(ii) σ2
M1
/σ2

W1
< (g2 + 1)σ2

M0
/σ2

W0
: By utilizing (3.11) and assuming nonzero M1,

M2
1 =

√
λ

σ2
W1

(
g2

σ2
M0
σ2
W0

A2σ2
M0

+ σ2
W0

+ σ2
V0

)
− λ ≥ 0

⇒

√
λ

σ2
W1

(
g2σ2

M0
+ σ2

V0

)
− λ ≥

√
λ

σ2
W1

(
g2

σ2
M0
σ2
W0

A2σ2
M0

+ σ2
W0

+ σ2
V0

)
− λ ≥ 0

⇒λ ≤
g2σ2

M0
+ σ2

V0

σ2
W1

=
σ2
M1

σ2
W1

is obtained. Hence, for λ >
σ2
M1

σ2
W1

, M1 = 0 and the second stage message m1

will not be used in the game.

Now suppose that λ >
σ2
M1

σ2
W1

. Then B0 = B1 = D = M1 = 0, M0 = gK, N =

gL, C = − b
λ
(g+1)K, L = b

λ
(g+1)K2, and A = (g2+1)K

(g2+1)K2+λ
. By using the re-

lation between A and K, and assuming nonzero K, ((g2 + 1)K2 + λ)
2
σ2
W0

=

λ(g2 + 1)σ2
M0

is obtained, which implies K =

√√
λ

g2+1

σ2
M0

σ2
W0

− λ
g2+1

and
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A =

√√
g2+1
λ

σ2
W0

σ2
M0

−
σ2
W0

σ2
M0

for 0 < λ ≤ (g2 + 1)
σ2
M0

σ2
W0

. Hence, if
σ2
M1

σ2
W1

< λ ≤

(g2+1)σ2
M0

σ2
W0

, the second stage message m1 will not be used in the game. If

λ > max
{

(g2+1)σ2
M0

σ2
W0

,
σ2
M1

σ2
W1

}
, then A = K = L = C = N = M0 = 0, which

leads to a non-informative equilibrium. Then, for λ < (g2 + 1)
σ2
M0

σ2
W0

, we have

K =

√√
λ

g2+1

σ2
M0

σ2
W0

− λ
g2+1

and A =

√√
g2+1
λ

σ2
W0

σ2
M0

−
σ2
W0

σ2
M0

.

Hence, for the 2-stage dynamic game with affine encoder and decoder, the results

can be summarized as follows:

(i) If λ > max
{

(g2+1)σ2
M0

σ2
W0

,
σ2
M1

σ2
W1

}
, then there does not exist an informative affine

equilibrium.

(ii) If
σ2
M1

σ2
W1

< λ ≤
(g2+1)σ2

M0

σ2
W0

, then the second stage message m1 is not used in

the game.

(iii) If
(g2+1)σ2

M0

σ2
W0

< λ ≤
σ2
M1

σ2
W1

, the equilibrium is informative if and only

if σ2
M1
≥ 4b2 and max

{
σ2
M1
−2b2−

√
σ2
M1

√
σ2
M1
−4b2

2σ2
W1

, (g2 + 1)
σ2
M0

σ2
W0

}
< λ <

σ2
M1
−2b2+

√
σ2
M1

√
σ2
M1
−4b2

2σ2
W1

.

3.8.3 Proof of Theorem 3.4.3

Similar to the multi-stage Stackelberg cheap talk analysis in Theorem 3.2.6, The

optimal decoder actions are given as u∗k = γ∗,dk (Idk) = E[mk|Idk ] = E[mk|y[0,k]] for

k = 0, 1, . . . , N − 1.

Due to the Stackelberg assumption, the encoder knows that the decoder will

use u∗k = γ∗,dk (Idk) = E[mk|Idk ] at each stage k = 0, 1, . . . , N − 1. Based on this

assumption and the smoothing property of the expectation, the total encoder

cost can be written as Je(γe[0,N−1], γ
d
[0,N−1]) = E[

N−1∑
k=0

(mk − uk − b)2 + λx2
k] =
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E
[
N−1∑
k=0

E[(mk − E[mk|Idk ])2 + b2 + λx2
k|Idk ]

]
. This problem is an instance of prob-

lems studied in [119], and can be reduced to a team problem where both the

encoder and the decoder are minimizing the same cost. The linearity of the op-

timal encoder and decoder can be deduced from [119]. Here, we follow [119] and

adapt the proof to our setup.

For the second part of the proof, the lower bound for the encoder cost will

be obtained and analyzed. From the chain rule, I(mk; y[0,k]) = I(mk; y[0,k−1]) +

I(mk; yk|y[0,k−1]). By following similar arguments to those in [119] and [4, Theo-

rem 11.3.1],

I(mk; yk|y[0,k−1]) = h(yk|y[0,k−1])− h(yk|mk, y[0,k−1])

= h(yk|y[0,k−1])− h(yk|mk, y[0,k−1], γ
e
k(mk, y[0,k−1]))

= h(yk|y[0,k−1])− h(yk|γek(mk, y[0,k−1]))

≤ h(yk)− h(yk|γek(mk, y[0,k−1]))

= I
(
γek(mk, y[0,k−1]); yk

)
= I(xk; yk)

≤ sup I(xk; yk)

=
1

2
log2

(
1 +

Pk
σ2
Wk

)
, Ĉk where Pk = E[x2

k] .

It can be seen that mk − E[mk|mk−1] is orthogonal to the random variables

mk−1, y[0,k−1] where y[0,k−1] is included due to the Markov chain mk ↔ mk−1 ↔
(y[0,k−1]). By using this orthogonality, it follows that

E[(mk − E[mk|y[0,k−1]])
2]

= E[(mk − E[mk|mk−1])2] + E[(E[mk|mk−1]− E[mk|y[0,k−1]])
2]

(a)
= E[(mk − E[mk|mk−1])2] + E

[(
E[mk|mk−1]− E[E[mk|mk−1, y[0,k−1]]|y[0,k−1]]

)2
]

(a)
= E[(mk − E[mk|mk−1])2] + E

[(
E[mk|mk−1]− E[E[mk|mk−1]|y[0,k−1]]

)2
]

(b)
= σ2

Vk−1
+ g2E[(mk−1 − E[mk−1|y[0,k−1]])

2]

(c)

≥ σ2
Vk−1

+ g2σ2
Mk−1

2−2Ck−1 , (3.12)

where Ck , sup I(mk; y[0,k]). Here, (a) holds due to the iterated expec-

tation rule and the Markov chain property, (b) holds since E[mk|mk−1] =
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E[gmk−1 + vk−1|mk−1] = gmk−1, and (c) holds due to [4, Lemma 11.3.1]. From

[4, Lemma 11.3.2], I(mk; y[0,k−1]) is maximized with linear policies, and the

lower bound of (3.12), E[(mk − E[mk|y[0,k−1]])
2] ≥ σ2

Vk−1
+ g2σ2

Mk−1
2−2Ck−1 ,

σ2
Mk

2−2C̃k , is achievable through linear policies where sup I(mk; y[0,k−1]) , C̃k =

1
2

log2

(
σ2
Mk

σ2
Vk−1

+g2σ2
Mk−1

2−2Ck−1

)
. Thus, we have the following recursion on upper

bounds on mutual information for the N -stage signaling game:

Ck = sup I(mk; y[0,k]) = C̃k + Ĉk

= sup I(mk; y[0,k−1]) + sup I(mk; yk|y[0,k−1])

= C̃k + Ĉk

=
1

2
log2

(
σ2
Mk

σ2
Vk−1

+ g2σ2
Mk−1

2−2Ck−1

)
+

1

2
log2

(
1 +

Pk
σ2
Wk

)
for k = 1, 2, . . . , N − 1 with C0 = 1

2
log2

(
1 + P0

σ2
W0

)
. Let the lower bound on

E
[(
mk − E[mk|y[0,k]]

)2
]

be ∆k; i.e., E
[(
mk − E[mk|y[0,k]]

)2
]
≥ σ2

Mk
2−2Ck , ∆k.

Then the following recursion can be obtained for the N -stage signaling game:

∆k =
σ2
Vk−1

+ g2∆k−1

1 + Pk
σ2
Wk

for k = 1, 2, . . . , N − 1 ,

with ∆0 =
σ2
M0

1+
P0
σ2
W0

. Since ∆k = σ2
Mk

2−2Ck by definition, ∆k ≤ σ2
Mk

for

k = 0, 1, . . . , N − 1. At the equilibrium, since the decoder always chooses

uk = E[mk|y[0,k]] for k = 0, 1, . . . , N − 1, the total encoder cost for the first

stage can be lower bounded by Je,lower0 =
∑N−1

i=0 (∆i + λPi + b2). Now observe

the following:

∂∆l

∂Pk
=



0 if l < k

g2

(
1 +

Pl
σ2
Wl

)−1
∂∆l−1

∂Pk
− 1

σ2
Wl

∂Pl
∂Pk

×
(
σ2
Vl−1

+ g2∆l−1

)(
1 +

Pl
σ2
Wl

)−2 if l ≥ k
,

where ∂Pl
∂Pk

= 0 for l < k due to the information structure of the encoder. Then

we obtain the following:

∂Je,lower0

∂PN−1

= λ−
σ2
VN−2

+ g2∆N−2

σ2
WN−1

(
1 +

PN−1

σ2
WN−1

)−2
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≥ λ−
(
σ2
VN−2

+ g2σ2
MN−2

) 1

σ2
WN−1

≥ λ−
σ2
MN−1

σ2
WN−1

.

If λ >
σ2
MN−1

σ2
WN−1

, then
∂Je,lower0

∂PN−1
> 0, which implies that Je,lower0 is an increasing

function of PN−1. For this case, in order to minimize Je,lower0 , PN−1 must be

chosen as 0; i.e., P ∗N−1 = 0. Then, for λ >
σ2
MN−1

σ2
WN−1

, we have the following:

∂Je,lower0

∂PN−2

= λ

(
1 +

∂PN−1

∂PN−2

)
+

N−1∑
i=N−2

∂∆i

∂PN−2

= λ

(
1 +

∂PN−1

∂PN−2

)
+

g2

(
1 +

PN−1

σ2
WN−1

)−1

+ 1

 ∂∆N−2

∂PN−2

−
(
σ2
VN−2

+ g2∆N−2

)(
1 +

PN−1

σ2
WN−1

)−2
1

σ2
WN−1

∂PN−1

∂PN−2

(a)
= λ+

∂∆N−2

∂PN−2

(
g2 + 1

)
= λ−

(
σ2
VN−3

+ g2∆N−3

)(
1 +

PN−2

σ2
WN−2

)−2
g2 + 1

σ2
WN−2

≥ λ−
(
σ2
VN−3

+ g2σ2
MN−3

) 1

σ2
WN−2

(
g2 + 1

)
= λ−

σ2
MN−2

σ2
WN−2

(
g2 + 1

)
.

Here, (a) holds since P ∗N−1 = 0 for λ >
σ2
MN−1

σ2
WN−1

. If λ >

max
{
σ2
MN−1

σ2
WN−1

,
σ2
MN−2

σ2
WN−2

(g2 + 1)
}

, then
∂Je,lower0

∂PN−2
> 0, which implies that Je,lower0 is

an increasing function of PN−2. For this case, in order to minimize Je,lower0 , PN−2

must be chosen as 0. By following the similar approach and assumptions on λ,

since P ∗N−1 = P ∗N−2 = · · · = P ∗k+1 = 0, we have the following:

∂Je,lower0

∂Pk
= λ+

N−1∑
i=k

∂∆i

∂Pk
= λ+

∂∆k

∂Pk

N−1∑
i=k

i∏
j=k+1

g2

= λ−
(
σ2
Vk−1

+ g2∆k−1

)(
1 +

Pk
σ2
Wk

)−2
1

σ2
Wk

N−1∑
i=k

i∏
j=k+1

g2
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≥ λ−
(
σ2
Vk−1

+ g2σ2
Mk−1

) 1

σ2
Wk

N−1∑
i=k

i∏
j=k+1

g2

= λ−
σ2
Mk

σ2
Wk

N−1∑
i=k

g2(i−k)

= λ−
σ2
Mk

σ2
Wk

N−k−1∑
i=0

g2i ,

where
∏l

i=k = 1 if k > l. If λ >
σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i, then

∂Je,lower0

∂Pk
> 0, which implies

that Je,lower0 is an increasing function of Pk. For this case, in order to minimize

Je,lower0 , Pk must be chosen as 0.

By combining all the results above, it can be deduced that if λ >

maxk=0,1,...,N−1

σ2
Mk

σ2
Wk

∑N−k−1
i=0 g2i, then the lower bound Je,lower0 of the encoder costs

Je0 is minimized by choosing P ∗0 = P ∗1 = · · · = P ∗N−1 = 0; that is, the encoder

does not signal any output. Hence, the encoder engages in a non-informative

equilibrium and the minimum cost becomes Je0 = Je,lower0 =
(∑N−1

i=0 σ2
Mi

)
+ Nb2

at this non-informative equilibrium.

3.8.4 Proof of Theorem 3.5.1

(i) Let the encoder policies be xk = γek(m[0,k],y[0,k−1]) =
∑k

i=0Ak,i mi +∑k−1
i=0 Bk,i yi + Ck where Ak,i and Bk,i are n× n matrices, and Ck is n× 1

vector for k ≤ N−1 and i ≤ k. Similar to the multi-stage multi-dimensional

Stackelberg cheap talk analysis in Theorem 3.3.2, the optimal decoder ac-

tions can be found as u∗k = γ∗,dk (Idk) = E[mk|Idk ] = E[mk|y[0,k]] for k ≤ N−1.

Notice that y[0,k] is multivariate Gaussian for k ≤ N−1 since yk = xk+wk.

This proves that γ∗,dk (Idk) is an affine function of y[0,k] due to the joint Gaus-

sianity of mk and y[0,k].

(ii) Let the decoder policies be uk = γdk(y[0,k]) =
∑k

i=0Kk,i yi+Lk where Kk,i is

n×n matrix and Lk is n× 1 vector for k ≤ N − 1 and i ≤ k. With yN−1 =

xN−1 + wN−1, it follows that uN−1 =
∑N−2

i=0 KN−1,i yi + KN−1,N−1 xN−1 +

KN−1,N−1 wN−1 + LN−1. Then, the encoder aims to find an optimal policy
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that minimizes the following at the final stage:

J∗,eN−1 = min
xN−1=γeN−1(m[0,N−1],y[0,N−2])

E
[
‖mN−1 − uN−1 − b‖2 + λ‖xN−1‖2

]
= min

xN−1

E

[(
mN−1 −

N−2∑
i=0

KN−1,i yi −KN−1,N−1 xN−1 −KN−1,N−1 wN−1

− LN−1 − b

)T(
mN−1 −

N−2∑
i=0

KN−1,i yi −KN−1,N−1 xN−1

−KN−1,N−1 wN−1 − LN−1 − b

)
+ λxTN−1xN−1

]

= min
xN−1

E

[(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)T

×

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)

−

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)T

KN−1,N−1 xN−1

− xTN−1K
T
N−1,N−1

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)
+ xTN−1K

T
N−1,N−1KN−1,N−1 xN−1

+ wT
N−1K

T
N−1,N−1KN−1,N−1 wN−1 + λxTN−1xN−1

]
(a)
= min

xN−1

E

[(
(KT

N−1,N−1KN−1,N−1 + λI)xN−1

−KT
N−1,N−1

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

))T

×

(
KT
N−1,N−1KN−1,N−1 + λI

)−1

×

(
(KT

N−1,N−1KN−1,N−1 + λI)xN−1

−KT
N−1,N−1

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

))
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+

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)T

×

(
I −KN−1,N−1(KT

N−1,N−1KN−1,N−1 + λI)−1KT
N−1,N−1

)

×

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)

+ wT
N−1K

T
N−1,N−1KN−1,N−1 wN−1

]
,

and by completing the square, the optimal encoder policy can be obtained

as

γeN−1(m[0,N−1],y[0,N−2]) =

(
KT
N−1,N−1KN−1,N−1 + λI

)−1

KT
N−1,N−1

×

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)
,

with the final stage encoder cost

J∗,eN−1 = E

[(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)T

×

(
I −KN−1,N−1(KT

N−1,N−1KN−1,N−1 + λI)−1KT
N−1,N−1

)

×

(
mN−1 −

N−2∑
i=0

KN−1,i yi − LN−1 − b

)

+ wT
N−1K

T
N−1,N−1KN−1,N−1 wN−1

]
. (3.13)

Notice that even though m[0,N−1] and y[0,N−2] are available to the encoder,

the optimal encoder uses only mN−1 and y[0,N−2] at the final stage; i.e., the

encoder does not need m[0,N−2]. Then, the cost of the encoder at (N − 1)st

stage becomes

J∗,eN−2 =

min
xN−2=γeN−2(m[0,N−2],y[0,N−3])

E
[
‖mN−2 − uN−2 − b‖2 + λ‖xN−2‖2 + J∗,eN−1

]
.

(3.14)
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By using the relation between the sources mN−1 = GmN−2 +

vN−2 and yN−2 = xN−2 + wN−2, and defining ΩN−1 = (I −
KN−1,N−1(KT

N−1,N−1KN−1,N−1 + λI)−1KT
N−1,N−1), the final stage encoder

cost can be simplified as

J∗,eN−1 = E

[(
GmN−2 + vN−2 −

N−3∑
i=0

KN−1,i yi −KN−1,N−2xN−2

−KN−1,N−2wN−2 − LN−1 − b

)T

ΩN−1

×

(
GmN−2 + vN−2 −

N−3∑
i=0

KN−1,i yi −KN−1,N−2xN−2

−KN−1,N−2wN−2 − LN−1 − b

)

+ wT
N−1K

T
N−1,N−1KN−1,N−1 wN−1

]

= E

[(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)T

ΩN−1

×

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)

−

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)
ΩN−1KN−1,N−2xN−2

− xTN−2K
T
N−1,N−2ΩN−1

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)
+ xTN−2K

T
N−1,N−2ΩN−1KN−1,N−2xN−2

+ vTN−2ΩN−1vN−2 + wT
N−2K

T
N−1,N−2ΩN−1KN−1,N−2wN−2

+ wT
N−1K

T
N−1,N−1KN−1,N−1 wN−1

]
.

With yN−2 = xN−2 + wN−2, it follows that uN−2 =
∑N−3

i=0 KN−2,i yi +

KN−2,N−2 xN−2 +KN−2,N−2 wN−2 +LN−2. Then, by completing the squares

method, (3.14) becomes

J∗,eN−2 = min
xN−2

E

[(
mN−2 −

N−3∑
i=0

KN−2,i yi −KN−2,N−2 xN−2
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−KN−2,N−2 wN−2 − LN−2 − b

)T

×

(
mN−2 −

N−3∑
i=0

KN−2,i yi −KN−2,N−2 xN−2

−KN−2,N−2 wN−2 − LN−2 − b

)

+ λxTN−2xN−2 + J∗,eN−1

]

= min
xN−2

E

[(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)T

×

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

−

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)T

KN−2,N−2 xN−2

− xTN−2K
T
N−2,N−2

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)
+ xTN−2K

T
N−2,N−2KN−2,N−2 xN−2 + wT

N−2K
T
N−2,N−2KN−2,N−2 wN−2

+ λxTN−2xN−2 +

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)T

ΩN−1

×

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)

−

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)
ΩN−1KN−1,N−2xN−2

− xTN−2K
T
N−1,N−2ΩN−1

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)
+ xTN−2K

T
N−1,N−2ΩN−1KN−1,N−2xN−2

+ vTN−2ΩN−1vN−2 + wT
N−2K

T
N−1,N−2ΩN−1KN−1,N−2wN−2

+ wT
N−1K

T
N−1,N−1KN−1,N−1 wN−1

]
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= min
xN−2

E

[(
(KT

N−2,N−2KN−2,N−2 + λI +KT
N−1,N−2ΩN−1KN−1,N−2)xN−2

−KT
N−2,N−2

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

−KT
N−1,N−2ΩN−1

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

))T

× (KT
N−2,N−2KN−2,N−2 + λI +KT

N−1,N−2ΩN−1KN−1,N−2)−1

×

(
(KT

N−2,N−2KN−2,N−2 + λI +KT
N−1,N−2ΩN−1KN−1,N−2)xN−2

−KT
N−2,N−2

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

−KT
N−1,N−2ΩN−1

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

))

−

(
KT
N−2,N−2

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

+KT
N−1,N−2ΩN−1

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

))T

× (KT
N−2,N−2KN−2,N−2 + λI +KT

N−1,N−2ΩN−1KN−1,N−2)−1

×

(
KT
N−2,N−2

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

+KT
N−1,N−2ΩN−1

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

))

+

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)T

×

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

+

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)T

ΩN−1

×

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

)
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+ wT
N−2K

T
N−2,N−2KN−2,N−2 wN−2 + vTN−2ΩN−1vN−2

+ wT
N−2K

T
N−1,N−2ΩN−1KN−1,N−2wN−2

+ wT
N−1K

T
N−1,N−1KN−1,N−1 wN−1

]
.

Hence, the optimal γeN−2(m[0,N−2],y[0,N−3]) is obtained as

γeN−2(m[0,N−2],y[0,N−3]) =(
KT
N−2,N−2KN−2,N−2 + λI +KT

N−1,N−2ΩN−1KN−1,N−2

)−1

×

(
KT
N−2,N−2

(
mN−2 −

N−3∑
i=0

KN−2,i yi − LN−2 − b

)

+KT
N−1,N−2ΩN−1

(
GmN−2 −

N−3∑
i=0

KN−1,i yi − LN−1 − b

))
.

Notice that even though m[0,N−2] and y[0,N−3] are available to the en-

coder, the encoder uses only mN−2 and y[0,N−3] at the (N − 1)st stage;

i.e., the encoder does not need m[0,N−3]. We observe that the optimal

xk can be obtained as an affine function of mk and y[0,k−1] at each stage

k = 0, 1, . . . , N − 1 by completing the square, since the cost of the current

stage and the next stages consist of the quadratic function of xk after using

the proper identities; i.e., mk = Gmk−1 + vk−1 and yk = xk + wk.

3.8.5 Proof of Theorem 3.5.2

We will follow an approach similar to that in [117] which restricted the analysis

to a team problem and a scalar channel; [117] in turn builds on [118], which

considers continuous time systems. Since the (k + 1)st stage encoder policy

only transmits the linearly encoded innovation by assumption, xk = γek(Iek) =

Akm̃k where Ak is an n × n matrix for k = 0, 1, . . . , N − 1. Then the decoder

receives yk = xk + wk = Akm̃k + wk and applies the action uk = γdk(Idk) =

E[mk|y[0,k]] to minimize his stage-wise cost ‖ek‖2 , E[‖mk − uk‖2] = E[(mk −
uk)

T (mk − uk)] = tr (Σek) for k = 0, 1, . . . , N − 1 where ΣR stands for the
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covariance matrix of the random variable R; i.e., ΣR , E[(R−E[R])(R−E[R])T ].

Due to the orthogonality of m̃k and y[0,k−1], and the iterated expectations rule,

uk = E[mk|y[0,k]] = E
[
m̃k + E[mk|y[0,k−1]]|y[0,k]

]
= E[m̃k|yk] + E[mk|y[0,k−1]],

and it follows that ek = mk − uk = mk − E[m̃k|yk] − E[mk|y[0,k−1]] = m̃k −
E[m̃k|yk]. Since E[m̃k|yk] = Σm̃k

ATk (Σyk)
−1 yk, the stage-wise cost of the decoder

becomes the trace of the following:

Σek = E[eke
T
k ] = E

[
(mk − uk)(mk − uk)

T
]

= E
[ (

m̃k − Σm̃k
ATk (Σyk)

−1 yk
) (

m̃k − Σm̃k
ATk (Σyk)

−1 yk
)T ]

= Σm̃k
− Σm̃k

ATk (Σyk)
−1AkΣm̃k

= Σm̃k
− Σm̃k

ATk
(
AkΣm̃k

ATk + Σwk

)−1
AkΣm̃k

= Σm̃k
− Σm̃k

ATkΣ−1/2
wk

(
Σ−1/2

wk
AkΣm̃k

ATkΣ−1/2
wk

+ I
)−1

Σ−1/2
wk

AkΣm̃k

= Σ
1/2
m̃k

(
I − Σ

1/2
m̃k
ATkΣ−1/2

wk

(
Σ−1/2

wk
AkΣ

1/2
m̃k

Σ
1/2
m̃k
ATkΣ−1/2

wk
+ I
)−1

Σ−1/2
wk

AkΣ
1/2
m̃k

)
Σ

1/2
m̃k

(a)
= Σ

1/2
m̃k

(
I −HT

k

(
HkH

T
k + I

)−1
Hk

)
Σ

1/2
m̃k

(b)
= Σ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k
, (3.15)

where (a) follows from Hk , Σ
−1/2
wk AkΣ

1/2
m̃k

, and (b) follows by utilizing the matrix

inversion lemma, (I + UWV )−1 = I − U(W−1 + V U)−1V , where U = HT
k , W =

I, and V = Hk.

Observe the following identity:

E[mk|yk] = E[mk] + E[mky
T
k ] (Σyk)

−1 yk

= E
[
(m̃k + E[mk|y[0,k−1]])(Akm̃k + wk)

T
]

(Σyk)
−1 yk

=
(
Σm̃k

ATk + E
[
E[mk|y[0,k−1]] m̃

T
k

]
ATk
)

(Σyk)
−1 yk

(a)
= Σm̃k

ATk (Σyk)
−1 yk ,

where (a) due to the orthogonality of E[mk|y[0,k−1]] and m̃k. Then the innovation

can be expressed recursively as follows:

m̃k+1 = mk+1 − E[mk+1|y[0,k]]

= Gmk + vk − E[mk+1|y[0,k−1]]− E[mk+1|yk]
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= Gmk + vk −GE[mk|y[0,k−1]]−GE[mk|yk]

= Gm̃k + vk −GE[mk|yk]

= Gm̃k + vk −GΣm̃k
ATk (Σyk)

−1 yk .

Then the covariance matrices of the innovations can be expressed as

Σm̃k+1
= E[m̃k+1m̃

T
k+1]

= GΣm̃k
GT + Σvk −GΣm̃k

ATk (Σyk)
−1AkΣm̃k

GT

= GΣm̃k
GT + Σvk −GΣm̃k

ATk
(
AkΣm̃k

ATk + Σwk

)−1
AkΣm̃k

GT

= GΣ
1/2
m̃k

(
I − Σ

1/2
m̃k
ATkΣ−1/2

wk

(
Σ−1/2

wk
AkΣ

1/2
m̃k

Σ
1/2
m̃k
ATkΣ−1/2

wk
+ I
)−1

× Σ−1/2
wk

AkΣ
1/2
m̃k

)
Σ

1/2
m̃k
GT + Σvk

= GΣ
1/2
m̃k

(
I −HT

k

(
HkH

T
k + I

)−1
Hk

)
Σ

1/2
m̃k
GT + Σvk

= GΣ
1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k
GT + Σvk . (3.16)

The optimal encoder chooses Ak in order to minimize his stage-wise cost

E
[
‖mk − uk − b‖2 + λ‖xk‖2

]
= E

[
‖mk − E[mk|y[0,k]]− b‖2 + λ‖xk‖2

]
= E

[
‖mk − E[mk|y[0,k]]‖2 + ‖b‖2 + λ‖xk‖2

]
= E

[
‖mk − uk‖2 + ‖b‖2 + λ‖xk‖2

]
= tr (Σek) + tr (λΣxk) + ‖b‖2

(a)
= tr

(
Σ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k

)
+ tr

(
λAkΣm̃k

ATk
)

+ ‖b‖2

= tr
(

Σm̃k

(
I +HT

k Hk

)−1
)

+ tr
(
λΣ

1/2
m̃k
ATkAkΣ

1/2
m̃k

)
+ ‖b‖2

(a)
= tr

(
Σm̃k

(
I +HT

k Hk

)−1
)

+ tr
(
λHT

k ΣwkHk

)
+ ‖b‖2,

(3.17)

where (a) is obtained by using (3.15).

Let the value functions be Vk (Σm̃k
) = tr (KkΣm̃k

+ Lk) with Kk being diago-

nal. In the following we show that there exist such Vk that satisfy Bellman’s prin-

ciple of optimality [120, Theorem 3.2.1]. Here Vk (Σm̃k
) , minHk

(
Ck (Σm̃k

, Hk)+
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Vk+1

(
Σm̃k+1

))
and Ck (Σm̃k

, Hk) , tr (Σek) + tr (λΣxk) + ‖b‖2 is the stage-wise

cost of the k-th stage encoder. Then,

Vk (Σm̃k
) = min

Hk

(
Ck (Σm̃k

, Hk) + Vk+1

(
Σm̃k+1

))
(a)
= min

Hk

(
tr
(

Σm̃k

(
I +HT

k Hk

)−1
)

+ tr
(
λHT

k ΣwkHk

)
+ ‖b‖2

+ tr
(
Kk+1Σm̃k+1

+ Lk+1

))
(b)
= min

Hk

(
tr
(

Σm̃k

(
I +HT

k Hk

)−1
)

+ tr
(
λHT

k ΣwkHk

)
+ ‖b‖2

+ tr
(
Kk+1GΣ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k
GT +Kk+1Σvk + Lk+1

))
(c)
= tr (Kk+1Σvk + Lk+1) + ‖b‖2

+ min
Hk

(
tr
(

Σ
1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k

)
+ tr

(
λHT

k ΣwkHk

)
+ tr

(
GTKk+1GΣ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k

))
= tr (Kk+1Σvk + Lk+1) + ‖b‖2

+ min
Hk

(
tr
( (
GTKk+1G+ I

)
Σ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k

)
+ tr

(
λHT

k ΣwkHk

))
= tr (Kk+1Σvk + Lk+1) + ‖b‖2

+ min
Hk

(
tr
(

Σ
1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

(
I +HT

k Hk

)−1
)

+ tr
(
λHT

k ΣwkHk

))
, (3.18)

where (a) follows by substituting Ck (Σm̃k
, Hk) using (3.17), (b) follows

by employing (3.16), and (c) follows from the fact that Kk+1 and Lk+1

do not depend on Hk. The equivalent problem of the minimization of
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tr
(

Σ
1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

(
I +HT

k Hk

)−1
)

over Hk under the constraint

tr
(
λHT

k ΣwkHk

)
= µk is considered in [106], and the solution technique can be

adapted as follows:

Let νk1 ≥ νk2 ≥ . . . ≥ νkn > 0 and τkn ≥ τkn−1 ≥ . . . ≥ τk1 > 0

be the eigenvalues of Σ
1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

and λΣwk , respectively, and

µkp ,
∑p

i=1

(√
τkiνki − τki

)
. If µkp values are non-positive for p = 1, 2, . . . , n,

then the optimal Hk becomes zero; i.e., H∗k = 0. Otherwise, check if τkp/νkp < 1

for p that makes µkp positive. If the inequality is not satisfied, again the optimal

Hk becomes zero; i.e., H∗k = 0. Finally, pick p and corresponding µkp which give

the minimum of
(
∑p
i=1
√
τkiνki)

2

µkp+
∑p
i=1 τki

+
∑n

i=p+1 νki+µkp . If that minimum is greater than

tr
(

Σ
1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

)
, then the optimal Hk becomes zero; i.e., H∗k = 0.

Otherwise, the optimal Hk is found as H∗k = ΠkζkP
T
k where Πk is a unitary ma-

trix such that ΠT
k (λΣwk) Πk = diag (τk1 , τk2 , . . . , τkn) , Π̃k, Pk is a unitary ma-

trix such that P T
k

(
Σ

1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

)
Pk = diag (νk1 , νk2 , . . . , νkn), and

ζk is a diagonal matrix such that ζk = diag
(√

αk1 ,
√
αk2 , . . . ,

√
αkp∗

k
, 0, . . . , 0

)
with αki = −1 +

( √
νki/τki∑p∗

k
j=1

√
τkj νkj

)(
1 +

∑p∗k
j=1 τkj

)
. For p ≤ n, let fk(p) ,√

τkp/νkp
∑p

i=1

√
τkiνki −

∑p
i=1 τki , then p∗k is defined by

p∗k = n if fk(n) < 1 ,

fk(p
∗
k) < 1 ≤ fk(p

∗
k + 1) if fk(n) ≥ 1 .

Since the optimal Hk always has the form of H∗k = ΠkζkP
T
k for every

µk = tr
(
λHT

k ΣwkHk

)
as described above, then the recursion of the innovation’s

covariance matrix (3.16) can be expressed as

Σm̃k+1
= GΣ

1/2
m̃k

(
I +HT

k Hk

)−1
Σ

1/2
m̃k
GT + Σvk

= GΣ
1/2
m̃k

(
I + Pkζ

T
k ΠT

kΠkζkP
T
k

)−1
Σ

1/2
m̃k
GT + Σvk

= GΣ
1/2
m̃k

(
I + Pkζ

T
k ζkP

T
k

)−1
Σ

1/2
m̃k
GT + Σvk . (3.19)

Then, by utilizing H∗k = ΠkζkP
T
k in (3.18), Then (3.18) becomes

Vk (Σm̃k
) = tr (Kk+1Σvk + Lk+1) + ‖b‖2
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+ tr
(

Σ
1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

(
I + Pkζ

T
k ΠT

kΠkζkP
T
k

)−1
)

+ tr
(
λPkζ

T
k ΠT

kΣwkΠkζkP
T
k

)
(a)
= tr (Kk+1Σvk + Lk+1) + tr

(
bbT

)
+ tr

(
ζTk Π̃kζk

)
+ tr

(
Σ

1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

(
I + Pkζ

T
k ζkP

T
k

)−1
)

(b)
= tr (Kk+1Σvk + Lk+1) + tr

(
bbT

)
+ tr

(
ζTk Π̃kζk

)
+ tr

(
Σ

1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

×
(
I − PkζTk

(
I + ζkP

T
k Pkζ

T
k

)−1
ζkP

T
k

))
(c)
= tr (Kk+1Σvk + Lk+1) + tr

(
bbT

)
+ tr

(
ζTk Π̃kζk

)
+ tr

(
Σ

1/2
m̃k

(
GTKk+1G+ I

)
Σ

1/2
m̃k

×
(
I − PkζTk

(
I + ζkζ

T
k

)−1
ζkP

T
k

))
= tr (Kk+1Σvk + Lk+1) + tr

(
bbT

)
+ tr

(
ζTk Π̃kζk

)
+ tr

((
GTKk+1G+ I

)
×
(

Σm̃k
− Σ

1/2
m̃k
Pkζ

T
k

(
I + ζkζ

T
k

)−1
ζkP

T
k Σ

1/2
m̃k

))
(d)
= tr (Kk+1Σvk + Lk+1) + tr

(
bbT

)
+ tr

(
ζTk Π̃kζk

)
+ tr

((
GTKk+1G+ I

) (
Σm̃k

− ζTk
(
I + ζkζ

T
k

)−1
ζkΣm̃k

))
= tr (Kk+1Σvk + Lk+1) + tr

(
bbT

)
+ tr

(
ζTk Π̃kζk

)
+ tr

((
GTKk+1G+ I

)(
I − ζTk

(
I + ζkζ

T
k

)−1
ζk

)
Σm̃k

)
,

(3.20)

where (a) follows from ΠT
kΠk = I, P T

k Pk = I, Π̃k = ΠT
k (λΣwk) Πk, and the prop-

erties of the trace operator, (b) is due to the matrix inversion lemma by choosing

U = Pkζ
T
k , W = I, and V = ζkP

T
k in (I + UWV )−1 = I − U(W−1 + V U)−1V ,
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(c) is due to P T
k Pk = I, (d) follows from the diagonality of Σm̃k

, Pk and ζk:

Since G, Σm̃0 , Kk and Σvk are diagonal for k = 0, 1, . . . , N − 1, it is always pos-

sible to find a unitary diagonal P0 such that P T
0

(
Σ

1/2
m̃0

(
GTK1G+ I

)
Σ

1/2
m̃0

)
P0 =

diag (ν01 , ν02 , . . . , ν0n), which makes Σm̃1 diagonal by (3.19). By following the

same approach, Σm̃k
and Pk are diagonal for k = 0, 1, . . . , N − 1.

In order to satisfy (3.20), since VN (Σm̃N
) = 0, we choose KN = LN = 0, and

{Kk+1, Lk+1} according to

Kk =
(
GTKk+1G+ I

)(
I − ζTk

(
I + ζkζ

T
k

)−1
ζk

)
,

Lk = Kk+1Σvk + Lk+1 + ζTk Π̃kζk + bbT , (3.21)

for k = 0, 1, . . . , N − 1. Now we verify that the diagonal Kk matrices satisfy the

dynamic programming recursion.

Now consider the special case when the channel is scalar instead of multi-

dimensional. Then xk, wk and yk become scalar random variables rather than

vectors. Ak is now 1 × n matrix for k = 0, 1, . . . , N − 1. We will use σ2
yk

and

σ2
wk

for the variances of yk and wk, respectively. Then Π = 1, Π̃ = τ1 = λσ2
wk

,

ζ =
[√
α1, 0, 0, · · · , 0

]
is a 1 × n row vector with α1 = −1 +

(√
ν1/τ1√
τ1ν1

)(
1 +

τ1

)
= 1/τ1 since p∗ = 1. Then, the optimal linear encoder policy is found as

A∗k = Σ
1/2
wk ζkP

T
k Σ
−1/2
m̃k

since the optimal H∗k is H∗k = ΠkζkP
T
k , the Hk is defined as

Hk , Σ
−1/2
wk AkΣ

1/2
m̃k

, and Πk = 1 and ζk =

[
1√
λσ2
Wk

, 0, . . . , 0

]
for the scalar channel.

Further, (3.21) reduces to the following for the scalar channel:

Kk =
(
GTKk+1G+ I

)
× diag

(
λσ2

Wk

1 + λσ2
Wk

, 1, 1, . . . , 1

)
Lk = Kk+1Σvk + Lk+1 + diag (1, 0, 0, . . . , 0) + bbT

for k = 0, 1, . . . , N − 1.
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Chapter 4

Hypothesis Testing under

Subjective Priors and Costs as a

Signaling Game

In this chapter, the binary signaling problem is investigated under the hypothesis

testing context. Nash and Stackelberg equilibria of the binary hypothesis-testing

game are analyzed, a characterization on when informative equilibria exist, and

robustness and continuity properties to misalignment are presented under Nash

and Stackelberg criteria.

The main contributions of this chapter can be summarized as follows:

(i) A game theoretic formulation of the binary signaling problem is established

under subjective priors and/or subjective costs.

(ii) The corresponding Stackelberg and Nash equilibrium policies are obtained,

and their properties (such as uniqueness and informativeness) are investi-

gated. It is proved that an equilibrium is almost always informative for a

team setup, whereas in the case of subjective priors and/or costs, it may

cease to be informative. It is shown that Stackelberg equilibria always exist,

whereas there are setups under which Nash equilibria may not exist.
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(iii) Furthermore, robustness of equilibrium solutions to small perturbations in

the priors or costs are established. It is shown that, the game equilib-

rium behavior around the team setup is robust under the Nash assumption,

whereas it is not robust under the Stackelberg assumption.

(iv) For each of the results, applications to two motivating setups (involving

subjective priors and the presence of a bias in the objective function of the

transmitter) are presented.

4.1 Problem Formulation

Consider a binary hypothesis-testing problem:

H0 : Y = S0 +N ,

H1 : Y = S1 +N ,
(4.1)

where Y is the observation (measurement) that belongs to the observation set

Γ = R, S0 and S1 denote the deterministic signals under hypothesis H0 and

hypothesis H1, respectively, and N represents Gaussian noise; i.e., N ∼ N (0, σ2).

In the Bayesian setup, it is assumed that the prior probabilities of H0 and H1 are

available, which are denoted by π0 and π1, respectively, with π0 + π1 = 1.

In the conventional Bayesian framework, the aim of the receiver is to design

the optimal decision rule (detector) based on Y in order to minimize the Bayes

risk, which is defined as [72]

r(δ) = π0R0(δ) + π1R1(δ) , (4.2)

where δ is the decision rule, and Ri(·) is the conditional risk of the decision rule

when hypothesis Hi is true for i ∈ {0, 1}. In general, a decision rule corresponds

to a partition of the observation set Γ into two subsets Γ0 and Γ1, and the decision

becomes Hi if the observation y belongs to Γi, where i ∈ {0, 1}.

The conditional risks in (4.2) can be calculated as

Ri(δ) = C0iP0i + C1iP1i , (4.3)

118



for i ∈ {0, 1}, where Cji ≥ 0 is the cost of deciding for Hj when Hi is true, and

Pji = Pr(y ∈ Γj|Hi) represents the conditional probability of deciding for Hj

given that Hi is true, where i, j ∈ {0, 1} [72].

It is well-known that the optimal decision rule δ which minimizes the Bayes

risk is the following test, known as the likelihood ratio test (LRT):

δ :

{
π1(C01 − C11)p1(y)

H1

R
H0

π0(C10 − C00)p0(y) , (4.4)

where pi(y) represents the probability density function (PDF) of Y under Hi for

i ∈ {0, 1} [72].

If the transmitter and the receiver have the same objective function specified

by (4.2) and (4.3), then the signals can be designed to minimize the Bayes risk

corresponding to the decision rule in (4.4). This leads to a conventional formula-

tion which has been studied intensely in the literature [72, 73].

On the other hand, it may be the case that the transmitter and the receiver can

have non-aligned Bayes risks. In particular, the transmitter and the receiver may

have different objective functions or priors: Let Ct
ji and Cr

ji represent the costs

from the perspective of the transmitter and the receiver, respectively, where i, j ∈
{0, 1}. Also let πti and πri for i ∈ {0, 1} denote the priors from the perspective of

the transmitter and the receiver, respectively, with πj0 + πj1 = 1, where j ∈ {t, r}.
Here, from transmitter’s and receiver’s perspectives, the priors are assumed to

be mutually absolutely continuous with respect to each other; i.e., πtiπ
r
i = 0 ⇔

πti = πri = 0 for i ∈ {0, 1}. This condition assures that the impossibility of any

hypothesis holds for both the transmitter and the receiver simultaneously. The

aim of the transmitter is to perform the optimal design of signals S = {S0, S1}
to minimize his Bayes risk; whereas, the aim of the receiver is to determine the

optimal decision rule δ over all possible decision rules ∆ to minimize his Bayes

risk.

The Bayes risks are defined as follows for the transmitter and the receiver:

rj(S, δ) = πj0R
j
0(S, δ) + πj1R

j
1(S, δ) ,
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where

Rj
i (S, δ) = Cj

0iP0i + Cj
1iP1i ,

for i ∈ {0, 1} and j ∈ {t, r}. Here, the transmitter performs the optimal signal

design problem under the power constraint below:

S , {S = {S0, S1} : |S0|2 ≤ P0 , |S1|2 ≤ P1} ,

where P0 and P1 denote the power limits.

According to the formulation above, the extensive form of the game is depicted

in Figure 4.1.

Figure 4.1: The extensive form of the binary signaling game.

In the current formulation, and a pair of policies (S∗, δ∗) is said to be a N ash
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equilibrium [19] if

rt(S∗, δ∗) ≤ rt(S, δ∗) ∀S ∈ S ,

rr(S∗, δ∗) ≤ rr(S∗, δ) ∀ δ ∈ ∆ ,
(4.5)

whereas, a pair of policies (S∗, δ∗S∗) is said to be a S tackelberg equilibrium [19] if

rt(S∗, δ∗S∗) ≤ rt(S, δ∗S) ∀S ∈ S ,

where δ∗S satisfies

rr(S, δ∗S) ≤ rr(S, δS) ∀ δS ∈ ∆ .

(4.6)

4.1.1 Two Motivating Setups

We present two different scenarios that fit into the binary signaling context dis-

cussed here and revisit these setups throughout the chapter.

4.1.1.1 Subjective Priors

In almost all practical applications, there is some mismatch between the true

and an assumed probabilistic system/data model, which results in performance

degradation. This performance loss due to the presence of mismatch has been

studied extensively in various setups (see e.g., [121], [122], [123] and references

therein). In this chapter, we have a further salient aspect due to decentralization,

where the transmitter and the receiver have a mismatch. We note that in decen-

tralized decision making, there have been a number of studies on the presence of

a mismatch in the priors of decision makers [86–88]. In such setups, even when

the objective functions to be optimized are identical, the presence of subjective

priors alters the formulation from a team problem to a game problem (see [4, Sec-

tion 12.2.3] for a comprehensive literature review on subjective priors also from

a statistical decision making perspective).

With this motivation, we will consider a setup where the transmitter and the

receiver have different priors on the hypotheses H0 and H1, and the costs of
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the transmitter and the receiver are identical. In particular, from transmitter’s

perspective, the priors are πt0 and πt1, whereas the priors are πr0 and πr1 from

receiver’s perspective, and Cji = Ct
ji = Cr

ji for i, j ∈ {0, 1}. We will investigate

equilibrium solutions for this setup throughout the chapter.

4.1.1.2 Biased Transmitter Cost1

A further application will be for a setup where the transmitter and the receiver

have misaligned objective functions. Consider a binary signaling game in which

the transmitter encodes a random binary signal x = i as Hi by choosing the

corresponding signal level Si for i ∈ {0, 1}, and the receiver decodes the received

signal y as u = δ(y). Let the priors from the perspectives of the transmitter

and the receiver be the same; i.e., πi = πti = πri for i ∈ {0, 1}, and the Bayes

risks of the transmitter and the receiver be defined as rt(S, δ) = E[1{1=(x⊕u⊕b)}]

and rr(S, δ) = E[1{1=(x⊕u)}], respectively, where b is a random variable with a

Bernoulli distribution; i.e., α , Pr(b = 0) = 1−Pr(b = 1), and α can be translated

as the probability that the Bayes risks (objective functions) of the transmitter

and the receiver are aligned. Then, the following relations can be observed:

rt(S, δ) = E[1{1=(x⊕u⊕b)}] = α(π0P10 + π1P01) + (1− α)(π0P00 + π1P11)

⇒ Ct
01 = Ct

10 = α and Ct
00 = Ct

11 = 1− α ,

rr(S, δ) = E[1{1=(x⊕u)}] = π0P10 + π1P01

⇒ Cr
01 = Cr

10 = 1 and Cr
00 = Cr

11 = 0 .

Note that, in the formulation above, the misalignment between the Bayes risks

of the transmitter and the receiver is due to the presence of the bias term b (i.e.,

the discrepancy between the Bayes risks of the transmitter and the receiver) in the

Bayes risk of the transmitter. This can be viewed as an analogous setup to what

was studied in a seminal work due to Crawford and Sobel [16], who obtained the

striking result that such a bias term in the objective function of the transmitter

1Here, the cost refers to the objective function (Bayes risk), not the cost of a particular
decision, Cji. Note that, throughout the chapter, the cost refers to Cji except when it is used
in the phrase Biased Transmitter Cost.
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may have a drastic effect on the equilibrium characteristics; in particular, under

regularity conditions, all equilibrium policies under a Nash formulation involve

information hiding.

4.2 Team Theoretic Analysis: Classical Setup

with Identical Costs and Priors

Now consider the team setup where the costs and the priors are assumed to

be the same for both the transmitter and the receiver; i.e., Cji = Ct
ji = Cr

ji

and πi = πti = πri for i, j ∈ {0, 1}. Thus the common Bayes risk becomes

rt(S, δ) = rr(S, δ) = π0(C00P00 + C10P10) + π1(C01P01 + C11P11). The arguments

for the proof of the following result follow from the standard analysis in the

detection and estimation literature [72, 73]. However, for completeness, and for

the relevance of the analysis in the following sections, a proof is included.

Theorem 4.2.1. Let τ , π0(C10−C00)
π1(C01−C11)

. If τ ≤ 0 or τ = ∞, the team solution of

the binary signaling setup is non-informative. Otherwise; i.e., if 0 < τ <∞, the

team solution is always informative.

4.3 Stackelberg Game Analysis

Under the Stackelberg assumption, first the transmitter (the leader agent) an-

nounces and commits to a particular policy, and then the receiver (the follower

agent) acts accordingly. In this direction, first the transmitter chooses optimal

signals S = {S0, S1} to minimize his Bayes risk rt(S, δ), then the receiver chooses

an optimal decision rule δ accordingly to minimize his Bayes risk rr(S, δ). Due

to the sequential structure of the Stackelberg game, the transmitter knows the

priors and the costs of the receiver so that he can adjust his optimal policy ac-

cordingly. On the other hand, the receiver knows only the policy and the action

(signals S = {S0, S1}) of the transmitter as he announces during the game-play.
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4.3.1 Equilibrium Solutions

Under the Stackelberg assumption, the equilibrium structure of the binary sig-

naling game can be characterized as follows:

Theorem 4.3.1. If τ , πr0(Cr10−Cr00)

πr1(Cr01−Cr11)
≤ 0 or τ = ∞, the Stackelberg equilibrium

of the binary signaling game is non-informative. Otherwise; i.e., if 0 < τ < ∞,

let d , |S1−S0|
δ

, dmax ,
√
P0+
√
P1

σ
, ζ , sgn(Cr

01 − Cr
11), k0 , πt0ζ(Ct

10 − Ct
00)τ−

1
2 ,

and k1 , πt1ζ(Ct
01 − Ct

11)τ
1
2 . Then, the Stackelberg equilibrium structure can

be characterized as in Table 4.1, where d∗ = 0 stands for a non-informative

equilibrium, and a nonzero d∗ corresponds to an informative equilibrium.

Table 4.1: Stackelberg equilibrium analysis for 0 < τ <∞.

ln τ (k0 − k1) < 0 ln τ (k0 − k1) ≥ 0

k0 + k1 < 0 d∗ = min
{
dmax,

√∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣} d∗ = 0, non-informative

k0 + k1 ≥ 0 d∗ = dmax

d2
max <

∣∣∣2 ln τ(k0 − k1)

(k0 + k1)

∣∣∣⇒ d∗ = 0, non-informative

d2
max ≥

∣∣∣2 ln τ(k0 − k1)

(k0 + k1)

∣∣∣⇒ (
k1

k0τ

)sgn(ln(τ))

Q
(
| ln(τ)|
dmax

− dmax

2

)
−Q

(
| ln(τ)|
dmax

+
dmax

2

) d∗=dmax

R
d∗=0

0

Before proving Theorem 4.3.1, we make the following remark:

Remark 4.3.1. As we observed in Theorem 4.2.1, for a team setup, an equilib-

rium is almost always informative (practically, 0 < τ <∞), whereas in the case

of subjective priors and/or costs, it may cease to be informative.

Similar to the team setup analysis, for every possible case in Table 4.1, there

are more than one equilibrium points, and they are essentially unique since the

Bayes risks of the transmitter and the receiver depend on d. For example, for

d∗ = dmax, (S∗0 , S
∗
1) =

(
−
√
P0,
√
P1

)
and (S∗0 , S

∗
1) =

(√
P0,−

√
P1

)
are the only

possible choices for the transmitter, and the decision rule of the receiver is chosen

based on the rule in (4.9). Similarly, for d∗ = 0 or d∗ =

√∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣, there are

infinitely many choices for the transmitter and the receiver, and all of them are

essentially unique; i.e., they result in the same Bayes risks for the transmitter

and the receiver.
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4.3.2 Continuity and Robustness to Perturbations around

the Team Setup

We now investigate the effects of small perturbations in priors and costs on equi-

librium values. In particular, we consider the perturbations around the team

setup; i.e., at the point of identical priors and costs.

Define the perturbation around the team setup as ε = {επ0, επ1, ε00, ε01, ε10, ε11} ∈
R6 such that πti = πri + επi and Ct

ji = Cr
ji + εji for i, j ∈ {0, 1} (note that

the transmitter parameters are perturbed around the receiver parameters which

are assumed to be fixed). Then, for 0 < τ < ∞, at the point of identi-

cal priors and costs, small perturbations in both priors and costs imply k0 =

(πr0 + επ0)ζ(Cr
10−Cr

00 + ε10− ε00)τ−
1
2 and k1 = (πr1 + επ1)ζ(Cr

01−Cr
11 + ε01− ε11)τ

1
2 .

Since, for 0 < τ < ∞, k0 = k1 =
√
πr0π

r
1

√
(Cr

10 − Cr
00)(Cr

01 − Cr
11) > 0 at the

point of identical priors and costs, it is possible to obtain both positive and

negative (k0 − k1) by choosing the appropriate perturbation ε around the team

setup. Then, as it can be observed from Table 4.1, even the equilibrium may alter

from an informative one to a non-informative one; hence, under the Stackelberg

equilibrium, the policies are not continuous with respect to small perturbations

around the point of identical priors and costs, and the equilibrium behavior is

not robust to small perturbations in both priors and costs.

4.3.3 Application to the Motivating Examples

4.3.3.1 Subjective Priors

Referring to Section 4.1.1.1, for 0 < τ <∞, the related parameters can be found

as follows (note that the equilibrium is non-informative if τ ≤ 0 or τ =∞):

τ =
πr0(C10 − C00)

πr1(C01 − C11)
,

k0 = πt0

√
πr1
πr0

√
(C10 − C00)(C01 − C11) ,
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k1 = πt1

√
πr0
πr1

√
(C10 − C00)(C01 − C11) .

Since k0 +k1 > 0, depending on the values of ln τ (k0−k1), d2
max, and

∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣,
Case-1, Case-5 or Case-6 of Theorem 4.3.1 may hold as depicted in Table 4.2.

Here, the decision rule in Case-6 is the same as (4.14).

Table 4.2: Stackelberg equilibrium analysis of subjective priors case for 0 < τ <∞.

0 < τ < 1 1 ≤ τ <∞

πt
0

πt
1
<

πr
0

πr
1

d2
max <

∣∣∣2 ln τ(k0 − k1)

(k0 + k1)

∣∣∣⇒ Case-5 applies, d∗ = 0, non-informative

d2
max ≥

∣∣∣2 ln τ(k0 − k1)

(k0 + k1)

∣∣∣⇒ Case-6 applies

Case-1 applies, d∗ = dmax

πt
0

πt
1
≥ πr

0

πr
1

Case-1 applies, d∗ = dmax

d2
max <

∣∣∣2 ln τ(k0 − k1)

(k0 + k1)

∣∣∣⇒ Case-5 applies, d∗ = 0, non-informative

d2
max ≥

∣∣∣2 ln τ(k0 − k1)

(k0 + k1)

∣∣∣⇒ Case-6 applies

4.3.3.2 Biased Transmitter Cost

Based on the arguments in Section 4.1.1.2, the related parameters can be found

as follows:

τ =
π0

π1

, k0 =
√
π0π1(2α− 1) , k1 =

√
π0π1(2α− 1) .

Then, ln τ (k0 − k1) = 0 and k0 + k1 = 2
√
π0π1(2α − 1); hence, either Case-4 or

Case-6 of Theorem 4.3.1 applies. Namely, if α < 1/2 (Case-4 of Theorem 4.3.1

applies), the transmitter chooses S0 = S1 to minimize d and the equilibrium is

non-informative; i.e., he does not send any meaningful information to the trans-

mitter and the receiver considers only the priors. If α = 1/2, the transmitter has

no control on his Bayes risk, hence the equilibrium is non-informative. Other-

wise; i.e., if α > 1/2 (Case-6 of Theorem 4.3.1 applies), the equilibrium is always

informative. In other words, if α > 1/2, the players act like a team. As it can

be seen, the informativeness of the equilibrium depends on α = Pr(b = 0), the

probability that the Bayes risks of the transmitter and the receiver are aligned.
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4.4 Nash Game Analysis

Under the Nash assumption, the transmitter chooses optimal signals S = {S0, S1}
to minimize rt(S, δ), and the receiver chooses optimal decision rule δ to minimize

rr(S, δ) simultaneously. In this Nash setup, the transmitter and the receiver do

not know the priors and the costs of each other; they know only their policies

as they announce to each other. Further, there is no commitment between the

transmitter and the receiver; hence, the perturbation in the transmitter does not

lead to a functional perturbation in receiver’s policy, unlike the Stackelberg setup.

Due to this difference, the equilibrium structure and robustness properties of the

Nash equilibrium show significant differences from the ones in the Stackelberg

equilibrium, as stated in the following.

In the analysis, we restrict the receiver to use only the single-threshold rules.

Although a single-threshold rule is suboptimal for the receiver in general, it is

always optimal for Gaussian densities, and always optimal for unimodal densities

under the maximum likelihood decision rule [72,124].

4.4.1 Equilibrium Solutions

Under the Nash assumption, the equilibrium structure of the binary signaling

game can be characterized as follows:

Theorem 4.4.1. Let τ , πr0(Cr10−Cr00)

πr1(Cr01−Cr11)
and ζ , sgn(Cr

01 − Cr
11), ξ0 , Ct10−Ct00

Cr10−Cr00
,

and ξ1 , Ct01−Ct11
Cr01−Cr11

. If τ ≤ 0 or τ = ∞, then the Nash equilibrium of the binary

signaling game is non-informative. Otherwise; i.e., if 0 < τ < ∞, the Nash

equilibrium structure is as depicted in Table 4.3.

127



Table 4.3: Nash equilibrium analysis for 0 < τ <∞.

ξ0 > 0 ξ0 = 0 ξ0 < 0

ξ1 > 0 unique informative equilibrium non-informative equilibrium

P0 > P1 ⇒ no equilibrium

P0 = P1 ⇒ non-informative equilibrium

P0 < P1 ⇒ unique informative equilibrium
ξ1 = 0 non-informative equilibrium non-informative equilibrium non-informative equilibrium

ξ1 < 0

P0 > P1 ⇒ unique informative equilibrium

P0 = P1 ⇒ non-informative equilibrium

P0 < P1 ⇒ no equilibrium

non-informative equilibrium no equilibrium

As it can be deduced from Table 4.3, as the costs related to both hypotheses are

aligned2 for the transmitter and the receiver, the Nash equilibrium is informative.

If the power limit corresponding to the hypothesis that has aligned costs for the

transmitter and receiver is greater than the power limit of the other hypothesis,

again, there exists an informative equilibrium. For the other cases, there may

exist non-informative equilibrium; further, the misalignment between the costs

can even induce a scenario, in which there exists no equilibrium.

The main reason for the absence of a non-informative (babbling) equilibrium

under the Nash assumption is that in the binary signaling game setup, the receiver

is forced to make a decision. Using only the prior information, the receiver always

chooses one of the hypothesis. By knowing this, the transmitter can manipulate

his signaling strategy for his own benefit. However, after this manipulation, the

receiver no longer keeps his decision rule the same; namely, the best response

of the receiver alters based on the signaling strategy of the transmitter, which

entails another change of the best response of the transmitter. Due to such an

infinite recursion, the optimal policies of the transmitter and the receiver keep

changing, and thus, there does not exist a pure Nash equilibrium.

As shown in Theorem 4.4.1, at the Nash equilibrium, the transmitter selects

S0 = −sgn(a)sgn(Ct
10 − Ct

00)
√
P0 and S1 = sgn(a)sgn(Ct

01 − Ct
11)
√
P1, and the

decision rule of the receiver is δ :

{
ay

H1

R
H0

η where a = ζ(S1 − S0) and η =

2ξi is the indicator that the transmitter and the receiver have similar preferences about
hypothesis Hi; i.e., if ξi > 0, then both the transmitter and the receiver aim to transmit and
decode the hypothesis Hi correctly (or incorrectly). If ξi < 0, then the transmitter and the
receiver have conflicting goals over hypothesis Hi; i.e., one of them tries to achieve the correct
transmission and decoding, whereas the goal of the other player is the opposite.
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ζ
(
σ2 ln(τ) +

S2
1−S2

0

2

)
. Similar to the team and Stackelberg setup analysis, the

equilibrium is essentially unique in Nash case, too; i.e., if (S∗0 , S
∗
1 , a
∗, η∗) is an

equilibrium point, then (−S∗0 ,−S∗1 ,−a∗, η∗) is another equilibrium point, and

they both result in the same Bayes risks for the transmitter and the receiver.

4.4.2 Continuity and Robustness to Perturbations around

the Team Setup

Similar to that in Section 4.3.2 for the Stackelberg setup, the effects of small

perturbations in priors and costs on equilibrium values around the team setup

are investigated for the Nash setup as follows:

Define the perturbation around the team setup as ε = {επ0, επ1, ε00, ε01, ε10, ε11} ∈
R6 such that πti = πri + επi and Ct

ji = Cr
ji + εji for i, j ∈ {0, 1} (note that the

transmitter parameters are perturbed around the receiver parameters which are

assumed to be fixed). Then, for 0 < τ < ∞, at the point of identical priors

and costs, small perturbations in priors and costs imply ξ0 =
Cr10−Cr00+ε10−ε00

Cr10−Cr00
and

ξ1 =
Cr01−Cr11+ε01−ε11

Cr01−Cr11
. As it can be seen, the Nash equilibrium is not affected by

small perturbations in priors. Further, since ξ0 = ξ1 = 1 at the point of identical

priors and costs for 0 < τ <∞, as long as the perturbation ε is chosen such that

| ε10−ε00
Cr10−Cr00

| < 1 and | ε01−ε11
Cr01−Cr11

| < 1, we always obtain positive ξ0 and ξ1 in Table 4.3.

Thus, under the Nash assumption, the equilibrium behavior is robust to small

perturbations in both priors and costs.

For the continuity analysis, consider the following: if the priors and costs are

perturbed around the team setup, S0 = −sgn(a)sgn(Cr
10 − Cr

00 + ε10 − ε00)
√
P0

and S1 = sgn(a)sgn(Cr
01 − Cr

11 + ε01 − ε11)
√
P1 are obtained. As long as the

perturbation ε is chosen such that | ε10−ε00
Cr10−Cr00

| < 1 and | ε01−ε11
Cr01−Cr11

| < 1, the changes

in η, S0 and S1 are continuous with respect to perturbations; actually, the val-

ues of the equilibrium parameters remain constant; i.e., either (S∗0 , S
∗
1 , a
∗, η∗) =(

−ζ
√
P0, ζ
√
P1, (
√
P0 +

√
P1), ζ

(
σ2 ln(τ) +

S2
1−S2

0

2

))
or the essentially equiva-

lent one (S∗0 , S
∗
1 , a
∗, η∗) =

(
ζ
√
P0,−ζ

√
P1,−(

√
P0 +

√
P1), ζ

(
σ2 ln(τ) +

S2
1−S2

0

2

))
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holds. Thus, the policies are continuous with respect to small perturbations

around the point of identical priors and costs.

4.4.3 Application to the Motivating Examples

4.4.3.1 Subjective Priors

The related parameters are τ =
πr0(C10−C00)

πr1(C01−C11)
, ξ0 = 1, and ξ1 = 1. Thus, if τ < 0

or τ = ∞, the equilibrium is non-informative; otherwise, there always exists a

unique informative equilibrium. As it is shown in Section 4.4.2, as long as the

priors are mutually absolutely continuous, the subjectivity in the priors does not

affect the equilibrium.

4.4.3.2 Biased Transmitter Cost

Based on the arguments in Section 4.1.1.2, the related parameters can be found

as follows:

Ct
01 = Ct

10 = α and Ct
00 = Ct

11 = 1− α ,

Cr
01 = Cr

10 = 1 and Cr
00 = Cr

11 = 0 ,

τ =
π0(Cr

10 − Cr
00)

π1(Cr
01 − Cr

11)
=
π0

π1

,

ξ0 =
Ct

10 − Ct
00

Cr
10 − Cr

00

= 2α− 1 ,

ξ1 =
Ct

01 − Ct
11

Cr
01 − Cr

11

= 2α− 1 .

If α > 1/2 (Case-3-d of Theorem 4.4.1 applies), the players act like a team and

the equilibrium is informative. If α = 1/2 (Case-2 of Theorem 4.4.1 applies), the

equilibrium is non-informative. Otherwise; i.e., if α < 1/2 (Case-3-a of Theo-

rem 4.4.1 applies), there exists no equilibrium. As it can be seen, the existence of

the equilibrium depends on α = Pr(b = 0), the probability that the Bayes risks

of the transmitter and the receiver are aligned.
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4.5 Extension to the Multi-Dimensional Case

When the transmitter sends a multi-dimensional signal over a multi-dimensional

channel, or the receiver takes multiple samples from the observed waveform, the

scalar analysis considered heretofore is not applicable anymore; thus, the vector

case can be investigated. In this direction, the binary hypothesis-testing problem

aforementioned can be modified as

H0 : Y = S0 + N ,

H1 : Y = S1 + N ,

where Y is the observation (measurement) vector that belongs to the observation

set Γ = Rn, S0 and S1 denote the deterministic signals under hypothesis H0

and hypothesis H1, such that S , {S : ‖S0‖2 ≤ P0 , ‖S1‖2 ≤ P1}, respectively,

and N represents a zero-mean Gaussian noise vector with the positive definite

covariance matrix Σ; i.e., N ∼ N (0,Σ). All the other parameters (πki and Ck
ji for

i, j ∈ {0, 1} and k ∈ {t, r}) and their definitions remain unchanged.

4.5.1 Team Setup Analysis

Theorem 4.5.1. Theorem 4.2.1 also holds for the vector case: if 0 < τ <∞, the

team solution is always informative; otherwise, there exist only non-informative

equilibria.

4.5.2 Stackelberg Game Analysis

Theorem 4.5.2. Let d ,
√

(S1 − S0)TΣ−1(S1 − S0) and d2
max , (

√
P0+
√
P1)2

λmin
,

where λmin is the minimum eigenvalue of Σ. Then Theorem 4.3.1 also holds for

the vector case.
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4.5.3 Nash Game Analysis

Theorem 4.5.3. Theorem 4.4.1 also holds for the vector case.

4.6 Conclusion

In this chapter, we considered binary signaling problems in which the decision

makers (the transmitter and the receiver) have subjective priors and/or mis-

aligned objective functions. Depending on the commitment nature of the trans-

mitter to his policies, we formulated the binary signaling problem as a Bayesian

game under either Nash or Stackelberg equilibrium concepts and established equi-

librium solutions and their properties.

We showed that there can be informative or non-informative equilibria in the

binary signaling game under the Stackelberg assumption, but there always exists

an equilibrium. However, apart from the informative and non-informative equi-

libria cases, there may not be a Nash equilibrium when the receiver is restricted

to use deterministic policies. We also studied the effects of small perturbations

at the point of identical priors and costs and showed that the game equilibrium

behavior around the team setup is robust under the Nash assumption, whereas

it is not robust under the Stackelberg assumption.

The binary setup considered here can be extended to the M -ary hypothesis

testing setup, and the corresponding signaling game structure can be formed

in order to model a game between players with a multiple-bit communication

channel. The extension to more general noise distributions is possible: the Nash

equilibrium analysis holds identically when the noise distribution leads to a single-

threshold test. Finally, in addition to the Bayesian approach considered here,

different cost structures and parameters can be introduced by investigating the

game under Neyman-Pearson and minimax criteria.
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4.7 Proofs

4.7.1 Proof of Theorem 4.2.1

The players adjust S0, S1, and δ so that rt(S, δ) = rr(S, δ) is minimized. The

Bayes risk of the transmitter and the receiver can be written as follows3:

rj(S, δ) = πj0
(
Cj

00P00 + Cj
10P10

)
+ πj1

(
Cj

01P01 + Cj
11P11

)
= πj0C

j
00 + πj1C

j
11 + πj0(Cj

10 − C
j
00)P10 + πj1(Cj

01 − C
j
11)P01 , (4.7)

for j ∈ {t, r}.

Here, first the receiver chooses the optimal decision rule δ∗S0,S1
for any given

signal levels S0 and S1, and then the transmitter chooses the optimal signal levels

S∗0 and S∗1 depending on the optimal receiver policy δ∗S0,S1
.

Assuming non-zero priors πt0, π
r
0, π

t
1, and πr1, the different cases for the optimal

receiver decision rule can be investigated by utilizing (4.4) as follows:

(i) If Cr
01 > Cr

11,

(a) if Cr
10 > Cr

00, the LRT in (4.4) must be applied to determine the

optimal decision.

(b) if Cr
10 ≤ Cr

00, the left-hand side (LHS) of the inequality in (4.4) is al-

ways greater than the right-hand side (RHS); thus, the receiver always

chooses H1.

(ii) If Cr
01 = Cr

11,

(a) if Cr
10 > Cr

00, the LHS of the inequality in (4.4) is always less than the

RHS; thus, the receiver always chooses H0.

(b) if Cr
10 = Cr

00, the LHS and RHS of the inequality in (4.4) are equal;

hence, the receiver is indifferent of deciding H0 or H1.

3Note that we are still keeping the parameters of the transmitter and the receiver as distinct
in order to be able to utilize the expressions for the game formulations.
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(c) if Cr
10 < Cr

00, the LHS of the inequality in (4.4) is always greater than

the RHS; thus, the receiver always chooses H1.

(iii) If Cr
01 < Cr

11,

(a) if Cr
10 ≥ Cr

00, the LHS of the inequality in (4.4) is always less than the

RHS; thus, the receiver always chooses H0.

(b) if Cr
10 < Cr

00, the LRT in (4.4) must be applied to determine the

optimal decision.

The analysis on the optimal receiver decision rule above is summarized in

Table 4.4:

Table 4.4: Optimal decision rule analysis for the receiver.

Cr
10 > Cr

00 Cr
10 = Cr

00 Cr
10 < Cr

00

Cr
01 > Cr

11 LRT always H1 always H1

Cr
01 = Cr

11 always H0 indifferent (H0 or H1) always H1

Cr
01 < Cr

11 always H0 always H0 LRT

As it can be observed from Table 4.4, the LRT is needed only when τ ,
πr0(Cr10−Cr00)

πr1(Cr01−Cr11)
takes a finite positive value; i.e., 0 < τ <∞. Otherwise; i.e., τ ≤ 0 or

τ =∞, since the receiver does not consider any message sent by the transmitter,

the equilibrium is non-informative.

For 0 < τ < ∞, let ζ , sgn(Cr
01 − Cr

11) (notice that ζ = sgn(Cr
01 − Cr

11) =

sgn(Cr
10−Cr

00) and ζ ∈ {−1, 1}). Then, the optimal decision rule for the receiver

in (4.4) becomes

δ :

{
ζ
p1(y)

p0(y)

H1

R
H0

ζ
πr0(Cr

10 − Cr
00)

πr1(Cr
01 − Cr

11)
= ζτ . (4.8)

Let the transmitter choose optimal signals S = {S0, S1}. Then the measurements

in (4.1) become

H0 : Y ∼ N (S0, σ
2) ,

H1 : Y ∼ N (S1, σ
2) ,
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as N ∼ N (0, σ2), and the optimal decision rule for the receiver is obtained by

utilizing (4.8) as

δ∗S0,S1
:

{
ζ

exp
{
− 1

2σ2 (y − S1)2
}

exp
{
− 1

2σ2 (y − S0)2
} H1

R
H0

ζτ

:

{
ζ exp

{
S2

0 − S2
1

2σ2

}
exp

{ y

σ2
(S1 − S0)

} H1

R
H0

ζτ

:

{
ζy(S1 − S0)

H1

R
H0

ζ

(
σ2 ln(τ) +

S2
1 − S2

0

2

)
. (4.9)

Since

ζY (S1 − S0) ∼

N
(
ζ(S1 − S0)S0, (S1 − S0)2σ2

)
underH0

N
(
ζ(S1 − S0)S1, (S1 − S0)2σ2

)
underH1

,

the conditional probabilities can be written based on (4.9) as follows:

P10 = Pr(y ∈ Γ1|H0) = Pr(δ(y) = 1|H0) = 1− Pr(δ(y) = 0|H0) = 1− P00

= Q

ζ
(
σ2 ln(τ) +

S2
1−S2

0

2
− (S1 − S0)S0

)
|S1 − S0|σ


= Q

(
ζ

(
σ ln(τ)

|S1 − S0|
+
|S1 − S0|

2σ

))
,

P01 = Pr(y ∈ Γ0|H1) = Pr(δ(y) = 0|H1) = 1− Pr(δ(y) = 1|H1) = 1− P11

= 1−Q

ζ
(
σ2 ln(τ) +

S2
1−S2

0

2
− (S1 − S0)S1

)
|S1 − S0|σ


= 1−Q

(
ζ

(
σ ln(τ)

|S1 − S0|
− |S1 − S0|

2σ

))
= Q

(
ζ

(
− σ ln(τ)

|S1 − S0|
+
|S1 − S0|

2σ

))
. (4.10)

By defining d , |S1−S0|
δ

, P10 = 1 − P00 = Q
(
ζ
(

ln(τ)
d

+ d
2

))
and P01 = 1 −

P11 = Q
(
ζ
(
− ln(τ)

d
+ d

2

))
can be obtained. Then, the optimum behavior of the

transmitter can be found by analyzing the derivative of the Bayes risk of the

transmitter in (4.7) with respect to d:

d rt(S, δ)
d d

= πt0(Ct
10 − Ct

00)
−1√
2π

exp

{
−1

2

(
ln τ

d
+
d

2

)2
}
ζ

(
− ln τ

d2
+

1

2

)
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+ πt1(Ct
01 − Ct

11)
−1√
2π

exp

{
−1

2

(
− ln τ

d
+
d

2

)2
}
ζ

(
ln τ

d2
+

1

2

)
= − 1√

2π
exp

{
−(ln τ)2

2d2

}
exp

{
−d

2

8

}
×

(
πt0ζ(Ct

10 − Ct
00)τ−

1
2

(
− ln τ

d2
+

1

2

)
+ πt1ζ(Ct

01 − Ct
11)τ

1
2

(
ln τ

d2
+

1

2

))
.

(4.11)

In (4.11), if we utilize Cji = Ct
ji = Cr

ji, πi = πti = πri and τ = π0(C10−C00)
π1(C01−C11)

, we

obtain the following: we obtain d rt(S,δ)
d d

< 0, as expected [72].

d rt(S, δ)
d d

= − 1√
2π

exp

{
−(ln τ)2

2d2

}
exp

{
−d

2

8

}
×

(
π0|C10 − C00|τ−

1
2

(
− ln τ

d2
+

1

2

)
+ π1|C01 − C11|τ

1
2

(
ln τ

d2
+

1

2

))

= − 1√
2π

exp

{
−(ln τ)2

2d2

}
exp

{
−d

2

8

}√
π0π1(C10 − C00)(C01 − C11) < 0 .

Thus, in order to minimize the Bayes risk, the transmitter always prefers the max-

imum d, i.e., d∗ =
√
P0+
√
P1

σ
, and the equilibrium is informative. Further, there are

two equilibrium points: (S∗0 , S
∗
1) =

(
−
√
P0,
√
P1

)
and (S∗0 , S

∗
1) =

(√
P0,−

√
P1

)
,

and the decision rule of the receiver is chosen based on the rule in (4.9) accord-

ingly. Actually, the equilibrium points are essentially unique; i.e., they result in

the same Bayes risks for the transmitter and the receiver.

4.7.2 Proof of Theorem 4.3.1

By applying the same case analysis as in the proof of Theorem 4.2.1, it can

be deduced that the equilibrium is non-informative if τ ≤ 0 or τ = ∞ (see

Table 4.4). Thus, 0 < τ < ∞ can be assumed. Then, from (4.11), rt(S, δ) is a

monotone decreasing (increasing) function of d if k0

(
− ln τ

d2
+ 1

2

)
+k1

(
ln τ
d2

+ 1
2

)
, or

equivalently d2(k0 + k1)− 2 ln τ (k0 − k1) is positive (negative) ∀d, where k0 and

k1 are as defined in the theorem statement. Therefore, one of the following cases

is applicable:
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1. if ln τ (k0 − k1) < 0 and k0 + k1 ≥ 0, then d2(k0 + k1) > 2 ln τ(k0 − k1) is

satisfied ∀d, which means that rt(S, δ) is a monotone decreasing function of

d. Therefore, the transmitter tries to maximize d; i.e., chooses the maximum

of |S1 − S0| under the constraints |S0|2 ≤ P0 and |S1|2 ≤ P1, hence d∗ =

max |S1−S0|
σ

=
√
P0+
√
P1

σ
= dmax, which entails an informative equilibrium.

2. if ln τ (k0 − k1) < 0, k0 + k1 < 0, and d2
max <

∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣, then rt(S, δ) is a

monotone decreasing function of d. Therefore, the transmitter maximizes

d as in the previous case.

3. if ln τ (k0−k1) < 0, k0 +k1 < 0, and d2
max ≥

∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣, since d2(k0 +k1)−
2 ln τ (k0 − k1) is initially positive then negative, rt(S, δ) is first decreasing

and then increasing with respect to d. Therefore, the transmitter chooses

the optimal d∗ such that (d∗)2 =
∣∣∣2 ln τ(k0−k1)

(k0+k1)

∣∣∣ which results in a minimal

Bayes risk rt(S, δ) for the transmitter. This is depicted in Figure 4.2.

4. if ln τ (k0 − k1) ≥ 0 and k0 + k1 < 0, then d2(k0 + k1) < 2 ln τ(k0 − k1) is

satisfied ∀d, which means that rt(S, δ) is a monotone increasing function of

d. Therefore, the transmitter tries to minimize d; i.e., chooses S0 = S1 so

that d∗ = 0. In this case, the transmitter does not provide any information

to the receiver and the decision rule of the receiver in (4.8) becomes δ : ζ
H1

R
H0

ζτ ; i.e., the receiver uses only the prior information, thus the equilibrium

is non-informative.

5. if ln τ (k0 − k1) ≥ 0, k0 + k1 ≥ 0, and d2
max <

∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣, then rt(S, δ)
is a monotone increasing function of d. Therefore, the transmitter chooses

S0 = S1 so that d∗ = 0. Similar to the previous case, the equilibrium is

non-informative.

6. if ln τ (k0 − k1) ≥ 0, k0 + k1 ≥ 0, and d2
max ≥

∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣, rt(S, δ) is first

an increasing then a decreasing function of d, which makes the transmitter

choose either the minimum d or the maximum d; i.e., he chooses the one that

results in a lower Bayes risk rt(S, δ) for the transmitter. If the minimum

Bayes risk is achieved when d∗ = 0, then the equilibrium is non-informative;
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otherwise (i.e., when the minimum Bayes risk is achieved when d∗ = dmax),

the equilibrium is an informative one. There are three possible cases:

(a) ζ(1− τ) > 0 :

i. If d∗ = 0, since δ : ζ
H1

R
H0

ζτ , the receiver always chooses H1, thus

P10 = P11 = 1 and P00 = P01 = 0. Then, from (4.7), rt(S, δ) =

πt0C
t
00 + πt1C

t
11 + πt0(Ct

10 − Ct
00).

ii. If d∗ = dmax, by utilizing (4.7) and (4.10), rt(S, δ) =

πt0C
t
00 + πt1C

t
11 + πt0(Ct

10 − Ct
00)Q

(
ζ
(

ln(τ)
dmax

+ dmax

2

))
+ πt1(Ct

01 −

Ct
11)Q

(
ζ
(
− ln(τ)
dmax

+ dmax

2

))
.

Then the decision of the transmitter is determined by the following:

πt0(Ct
10 − Ct

00)
d∗=dmax

R
d∗=0

πt0(Ct
10 − Ct

00)Q
(
ζ

(
ln(τ)

dmax

+
dmax

2

))
+ πt1(Ct

01 − Ct
11)Q

(
ζ

(
− ln(τ)

dmax

+
dmax

2

))
πt0(Ct

10 − Ct
00)Q

(
ζ

(
− ln(τ)

dmax

− dmax

2

)) d∗=dmax

R
d∗=0

πt1(Ct
01 − Ct

11)Q
(
ζ

(
− ln(τ)

dmax

+
dmax

2

))
ζk0τQ

(
ζ

(
− ln(τ)

dmax

− dmax

2

)) d∗=dmax

R
d∗=0

ζk1Q
(
ζ

(
− ln(τ)

dmax

+
dmax

2

))
.

(4.12)

(4.12) can be analyzed based on the values of ζ and τ as follows:

i. ζ = 1 and 0 < τ < 1 : Since ln τ(k0 − k1) ≥ 0⇒ k0 − k1 ≤ 0 and

k0 + k1 ≥ 0, k1 ≥ 0 always. Then, (4.12) becomes

k0τ

k1

Q
(
− ln(τ)

dmax

− dmax

2

)
−Q

(
− ln(τ)

dmax

+
dmax

2

) d∗=dmax

R
d∗=0

0 .

ii. ζ = −1 and τ > 1 : Since ln τ(k0 − k1) ≥ 0 ⇒ k0 − k1 ≥ 0 and

k0 + k1 ≥ 0, k0 ≥ 0 always. Then, (4.12) becomes

k1

k0τ
Q
(

ln(τ)

dmax

− dmax

2

)
−Q

(
ln(τ)

dmax

+
dmax

2

) d∗=dmax

R
d∗=0

0 .
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(b) ζ(1− τ) = 0⇔ τ = 1 : Since k0 + k1 ≥ 0 and d2(k0 + k1)− 2 ln τ (k0−
k1) ≥ 0, rt(S, δ) is a monotone decreasing function of d, which implies

d∗ = dmax and informative equilibrium.

(c) ζ(1− τ) < 0 :

i. If d∗ = 0, since δ : ζ
H1

R
H0

ζτ , the receiver always chooses H0, thus

P00 = P01 = 1 and P10 = P11 = 0. Then, from (4.7), rt(S, δ) =

πt0C
t
00 + πt1C

t
11 + πt1(Ct

01 − Ct
11).

ii. If d∗ = dmax, by utilizing (4.7) and (4.10), rt(S, δ) =

πt0C
t
00 + πt1C

t
11 + πt0(Ct

10 − Ct
00)Q

(
ζ
(

ln(τ)
dmax

+ dmax

2

))
+ πt1(Ct

01 −

Ct
11)Q

(
ζ
(
− ln(τ)
dmax

+ dmax

2

))
.

Then the decision of the transmitter is determined by the following:

πt1(Ct
01 − Ct

11)
d∗=dmax

R
d∗=0

πt0(Ct
10 − Ct

00)Q
(
ζ

(
ln(τ)

dmax

+
dmax

2

))
+ πt1(Ct

01 − Ct
11)Q

(
ζ

(
− ln(τ)

dmax

+
dmax

2

))
πt1(Ct

01 − Ct
11)Q

(
ζ

(
ln(τ)

dmax

− dmax

2

)) d∗=dmax

R
d∗=0

πt0(Ct
10 − Ct

00)Q
(
ζ

(
ln(τ)

dmax

+
dmax

2

))
ζk1Q

(
ζ

(
ln(τ)

dmax

− dmax

2

)) d∗=dmax

R
d∗=0

ζk0τQ
(
ζ

(
ln(τ)

dmax

+
dmax

2

))
.

(4.13)

(4.13) can be analyzed based on the values of ζ and τ as follows:

i. ζ = −1 and 0 < τ < 1 : Since ln τ(k0−k1) ≥ 0⇒ k0−k1 ≤ 0 and

k0 + k1 ≥ 0, k1 ≥ 0 always. Then, (4.13) becomes

k0τ

k1

Q
(
− ln(τ)

dmax

− dmax

2

)
−Q

(
− ln(τ)

dmax

+
dmax

2

) d∗=dmax

R
d∗=0

0 .

ii. ζ = 1 and τ > 1 : Since ln τ(k0 − k1) ≥ 0 ⇒ k0 − k1 ≥ 0 and

k0 + k1 ≥ 0, k0 ≥ 0 always. Then, (4.13) becomes

k1

k0τ
Q
(

ln(τ)

dmax

− dmax

2

)
−Q

(
ln(τ)

dmax

+
dmax

2

) d∗=dmax

R
d∗=0

0 .
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Thus, the comparison of the transmitter Bayes risks for d∗ = 0 and d∗ =

dmax reduces to the following rule:(
k1

k0τ

)sgn(ln(τ))

Q
(
| ln(τ)|
dmax

− dmax

2

)
−Q

(
| ln(τ)|
dmax

+
dmax

2

) d∗=dmax

R
d∗=0

0 .

(4.14)

The most interesting case is Case-3 in which ln τ (k0 − k1) < 0, k0 + k1 < 0,

and d2
max ≥

∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣, since in all other cases, the transmitter chooses either

the minimum or the maximum distance between the signal levels. Further, for

classical hypothesis-testing in the team setup, the optimal distance corresponds

to the maximum separation [72]. However, in Case-3, there is an optimal distance

d∗ =

√∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣ < dmax that makes the Bayes risk of the transmitter minimum

as it can be seen in Figure 4.2.

Figure 4.2: The Bayes risk of the transmitter versus d when Cr01 = 0.4, Cr10 = 0.9, Cr00 =
0, Cr11 = 0, Ct01 = 0.4, Ct10 = 0.4, Ct00 = 0.6, Ct11 = 0.6, P0 = 1, P1 = 1, σ = 0.1, πt0 = 0.25, and

πr0 = 0.25. The optimal d∗ =

√∣∣∣ 2 ln τ(k0−k1)
k0+k1

∣∣∣ = 0.4704 < dmax and its corresponding Bayes

risk are indicated by the star.
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4.7.3 Proof of Theorem 4.4.1

Let the transmitter choose any signals S = {S0, S1}. Assuming nonzero priors

πt0, π
r
0, π

t
1 and πr1, the optimal decision for the receiver is given by (4.9). By

applying the same extreme case analysis as in the proof of Theorem 4.2.1, the

equilibrium is non-informative if τ ≤ 0 or τ =∞ (see Table 4.4); thus, 0 < τ <∞
can be assumed.

Now assume that the receiver applies a single-threshold rule; i.e., δ :

{
ay
H1

R
H0

η

where a ∈ R− {0}, and η ∈ R. Since

aY ∼

N
(
aS0, a

2σ2
)

under H0

N
(
aS1, a

2σ2
)

under H1

,

the conditional probabilities are

P10 = Pr(y ∈ Γ1|H0) = Pr(δ(y) = 1|H0) = 1− Pr(δ(y) = 0|H0)

= 1− P00 = Q
(
η − aS0

|a|σ

)
, (4.15)

P01 = Pr(δ(y) = 0|H1) = 1− Pr(δ(y) = 1|H1)

= 1− P11 = 1−Q
(
η − aS1

|a|σ

)
= Q

(
−η − aS1

|a|σ

)
. (4.16)

Then, by inserting (4.15) and (4.16) in (4.7), the Bayes risk of the transmitter

becomes

rt(S, δ) = πt0C
t
00 + πt1C

t
11 + πt0(Ct

10 − Ct
00)Q

(
η − aS0

|a|σ

)
+ πt1(Ct

01 − Ct
11)Q

(
−η − aS1

|a|σ

)
.

Since the power constraints are |S0|2 ≤ P0 and |S1|2 ≤ P1, the signals S0 and

S1 can be regarded as independent, and the optimum signals S = {S0, S1} can

be found by analyzing the derivative of the Bayes risk of the transmitter with

respect to the signals:

∂ rt(S, δ)
∂ S0

= πt0(Ct
10 − Ct

00)
−1√
2π

exp

{
−1

2

(
η − aS0

|a|σ

)2
}
−a
|a|σ
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=
sgn(a)√

2πσ
πt0(Ct

10 − Ct
00) exp

{
−1

2

(
η − aS0

|a|σ

)2
}
,

∂ rt(S, δ)
∂ S1

= πt1(Ct
01 − Ct

11)
−1√
2π

exp

{
−1

2

(
−η − aS1

|a|σ

)2
}

a

|a|σ

=
sgn(a)√

2πσ
πt1(Ct

11 − Ct
01) exp

{
−1

2

(
η − aS1

|a|σ

)2
}
.

Then, for i ∈ {0, 1}, the following cases hold:

(i) Ct
1i = Ct

0i ⇒ Si has no effect on the Bayes risk of the transmitter.

(ii) Ct
1i < Ct

0i or Ct
1i > Ct

0i ⇒ rt(S, δ) is a decreasing (increasing) function of Si

if a(Ct
1i−Ct

0i) is negative (positive); thus the transmitter chooses the optimal

signal levels as S0 = −sgn(a)sgn(Ct
10 −Ct

00)
√
P0 and S1 = sgn(a)sgn(Ct

01 −
Ct

11)
√
P1.

By using the expressions above, the cases can be listed as follows:

1. τ ≤ 0 or τ =∞ ⇒ The equilibrium is non-informative.

2. Ct
10 = Ct

00 (and/or Ct
01 = Ct

11)⇒ S0 (and/or S1) has no effect on the Bayes

risk of the transmitter; thus it can arbitrarily be chosen by the transmitter.

In this case, if the transmitter chooses S0 = S1; i.e., he does not send

anything useful to the receiver, and the receiver applies the decision rule

δ : ζ
H1

R
H0

ζτ ; i.e., he only considers the prior information (totally discards

the information sent by the transmitter). Therefore, there exists a non-

informative equilibrium.

3. Notice that, since 0 < τ <∞ is assumed, ζ = sgn(Cr
01 − Cr

11) = sgn(Cr
10 −

Cr
00) is obtained. Now, assume that the decision rule of the receiver is

δ :

{
ay
H1

R
H0

η. Then, the transmitter selects S0 = −sgn(a)sgn(Ct
10−Ct

00)
√
P0

and S1 = sgn(a)sgn(Ct
01−Ct

11)
√
P1 as optimal signals, and the decision rule
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becomes (4.9). By combining the best responses of the transmitter and the

receiver,

a = ζ(S1 − S0) = ζsgn(a)
(

sgn(Ct
01 − Ct

11)
√
P1 + sgn(Ct

10 − Ct
00)
√
P0

)
⇒sgn(a) = ζsgn(a)

(
sgn(Ct

01 − Ct
11)
√
P1 + sgn(Ct

10 − Ct
00)
√
P0

)
⇒ sgn(Ct

01 − Ct
11)

sgn(Cr
01 − Cr

11)︸ ︷︷ ︸
=sgn(ξ1)

√
P1 +

sgn(Ct
10 − Ct

00)

sgn(Cr
10 − Cr

00)︸ ︷︷ ︸
=sgn(ξ0)

√
P0 > 0 (4.17)

is obtained. Here, unless (4.17) is satisfied, the best responses of the trans-

mitter and the receiver cannot match each other. Then, there are four

possible cases:

(a) ξ0 < 0 and ξ1 < 0 ⇒ (4.17) cannot be satisfied; thus, the best re-

sponses of the transmitter and the receiver do not match each other,

which results in the absence of a Nash equilibrium.

(b) ξ0 < 0 and ξ1 > 0 ⇒ (4.17) is satisfied only when
√
P1 >

√
P0. If

√
P1 <

√
P0, (4.17) cannot be satisfied and the best responses of the

transmitter and the receiver do not match each other, which results in

the absence of a Nash equilibrium. If
√
P1 =

√
P0 (which implies S0 =

S1), then the receiver applies δ :

{
ζ
H1

R
H0

ζτ as in Case-2, and the receiver

chooses either always H0 or always H1. Hence, there exists a non-

informative equilibrium; i.e., the transmitter sends dummy signals,

and the receiver makes a decision without considering the transmitted

signals.

(c) ξ0 > 0 and ξ1 < 0 ⇒ (4.17) is satisfied only when
√
P0 >

√
P1. If

√
P0 <

√
P1, (4.17) cannot be satisfied and the best responses of the

transmitter and the receiver do not match each other, which results

in the absence of a Nash equilibrium. If
√
P1 =

√
P0 (which implies

S0 = S1), then the receiver applies δ :

{
ζ
H1

R
H0

ζτ as in Case-2, and the

equilibrium is non-informative.

(d) ξ0 > 0 and ξ1 > 0⇒ (4.17) is always satisfied; thus, the consistency is

established, and there exists an informative equilibrium.
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4.7.4 Proofs for Section 4.5

4.7.4.1 Proof of Theorem 4.5.1

Let the transmitter choose optimal signals S = {S0,S1}. Then the measurements

become Hi : Y ∼ N (Si,Σ) for i ∈ {0, 1}. As in the scalar case in Theorem 4.2.1,

the equilibrium is non-informative for τ ≤ 0 or τ =∞; hence, 0 < τ <∞ can be

assumed. Similar to (4.9), the optimal decision rule for the receiver is obtained

by utilizing (4.8) as

δ∗S0,S1
:

{
ζ
p1(Y)

p0(Y)

H1

R
H0

ζ
πr0(Cr

10 − Cr
00)

πr1(Cr
01 − Cr

11)
, ζτ

:

{
ζ

1√
(2π)n|Σ|

exp
{
−1

2
(Y − S1)TΣ−1(Y − S1)

}
1√

(2π)n|Σ|
exp

{
−1

2
(Y − S0)TΣ−1(Y − S0)

} H1

R
H0

ζτ

:

{
ζexp

{
(S1 − S0)TΣ−1

(
Y − S1 + S0

2

)} H1

R
H0

ζτ

:

{
ζ(S1 − S0)TΣ−1Y

H1

R
H0

ζ

(
ln(τ) +

1

2
(S1 − S0)TΣ−1(S1 + S0)

)
. (4.18)

Since ζ(S1−S0)TΣ−1Y ∼ N
(
ζ(S1 − S0)TΣ−1Si, (S1 − S0)TΣ−1(S1 − S0)

)
under

hypothesis Hi for i ∈ {0, 1}, by defining d2 , (S1 − S0)TΣ−1(S1 − S0), the

conditional probabilities can be written as follows:

P10 = Q

(
ζ

ln(τ) + 1
2
(S1 − S0)TΣ−1(S1 + S0 − 2S0)√
(S1 − S0)TΣ−1(S1 − S0)

)
= Q

(
ζ

(
ln(τ)

d
+
d

2

))

P01 = 1−Q

(
ζ

ln(τ) + 1
2
(S1 − S0)TΣ−1(S1 + S0 − 2S1)√
(S1 − S0)TΣ−1(S1 − S0)

)

= 1−Q
(
ζ

(
ln(τ)

d
− d

2

))
= Q

(
ζ

(
− ln(τ)

d
+
d

2

))
. (4.19)

Notice that the conditional probabilities are the same in (4.10) and (4.19); there-

fore, in the vector case, the equilibrium is always informative, and the transmitter

always prefers the maximum distance similar to the scalar case. However, select-

ing optimal vector signals is not as trivial as in the scalar case; see Section 4.7.4.4

for details (which is based on [72, pp. 61–63]).
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4.7.4.2 Proof of Theorem 4.5.2

The proof of Theorem 4.3.1 can be applied by modifying the definitions of d and

dmax as in the statement. For d∗ = dmax, the method described in the proof of

Theorem 4.5.1 can be applied for the optimal signal selection, whereas, for d∗ = 0,

by choosing S0 = S1, the non-informative equilibrium can be achieved. Further,

for Case-3 of Theorem 4.3.1, a similar approach, which utilizes Section 4.7.4.4,

can be taken, as explained in Section 4.7.4.5.

4.7.4.3 Proof of Theorem 4.5.3

Let the transmitter choose any signals S = {S0,S1}. Assuming nonzero priors

πt0, π
r
0, π

t
1 and πr1, the optimal decision rule for the receiver is given by (4.18). Sim-

ilar to the team case analysis in Section 4.5.1, the equilibrium is non-informative

if τ ≤ 0 or τ =∞; thus, 0 < τ <∞ can be assumed.

Now assume that the receiver applies a single-threshold rule; i.e., δ :

{
aTY

H1

R
H0

η where a ∈ Rn − {0}, and η ∈ R. Since

aTY ∼

N
(
aTS0, a

TΣa
)

under H0

N
(
aTS1, a

TΣa
)

under H1

,

the conditional probabilities are

P10 = 1− P00 = Q
(
η − aTS0√

aTΣa

)
, (4.20)

P01 = 1− P11 = Q
(
−η − aTS1√

aTΣa

)
. (4.21)

Then, by utilizing (4.20) and (4.21) in (4.7), the Bayes risk of the transmitter

becomes

rt(S, δ) = πt0C
t
00 + πt1C

t
11 + πt0(Ct

10 − Ct
00)Q

(
η − aTS0√

aTΣa

)
+ πt1(Ct

01 − Ct
11)Q

(
−η − aTS1√

aTΣa

)
.
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Since the power constraints are ‖S0‖2 ≤ P0 and ‖S1‖2 ≤ P1, the signals S0 and

S1 can be regarded as independent. Since Q function is a monotone decreasing,

the following cases hold for i ∈ {0, 1}:

(i) Ct
1i < Ct

0i ⇒ Then, rt(S, δ) is a decreasing function of aTSi, thus the

transmitter always chooses aTSi as maximum subject to ‖Si‖2 ≤ Pi; i.e.,

Si =
√
Pi

a
‖a‖ .

(ii) Ct
1i = Ct

0i ⇒ Then Si has no effect on the Bayes risk of the transmitter.

(iii) Ct
1i > Ct

0i ⇒ Then, rt(S, δ) is an increasing function of aTSi, thus the

transmitter always chooses aTSi as minimum subject to ‖Si‖2 ≤ Pi; i.e.,

Si = −
√
Pi

a
‖a‖ .

Thus, the the optimal signals can be characterized as S0 = −sgn(Ct
10−Ct

00)
√
P0

a
‖a‖

and S1 = sgn(Ct
01 − Ct

11)
√
P1

a
‖a‖ .

By using the expressions above, the cases can be listed as follows:

1. τ ≤ 0 or τ =∞ ⇒ The equilibrium is non-informative.

2. Ct
10 = Ct

00 (and/or Ct
01 = Ct

11)⇒ S0 (and/or S1) has no effect on the Bayes

risk of the transmitter, thus it can arbitrarily be chosen by the transmitter.

In this case, if the transmitter chooses S0 = S1; i.e., he does not send

anything useful to the receiver, and the receiver applies the decision rule

δ : ζ
H1

R
H0

ζτ ; i.e., he only considers the prior information (totally discards the

information sent by the transmitter). Then there exists a non-informative

equilibrium.

3. Notice that, since 0 < τ <∞ is assumed, ζ = sgn(Cr
01 − Cr

11) = sgn(Cr
10 −

Cr
00) is obtained. Now, assume that the decision rule of the receiver is

δ :

{
aTY

H1

R
H0

η. Then, the transmitter selects S0 = −sgn(Ct
10−Ct

00)
√
P0

a
‖a‖

and S1 = sgn(Ct
01 − Ct

11)
√
P1

a
‖a‖ as optimal signals, and the decision rule
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becomes (4.18). By combining the best responses of the transmitter and

the receiver,

aT = ζ(S1 − S0)TΣ−1 = ζ
aT

‖a‖

(
sgn(Ct

01 − Ct
11)
√
P1 + sgn(Ct

10 − Ct
00)
√
P0

)
Σ−1

⇒aTa =
aTΣ−1a

‖a‖
ζ
(

sgn(Ct
01 − Ct

11)
√
P1 + sgn(Ct

10 − Ct
00)
√
P0

)
⇒ sgn(Ct

01 − Ct
11)

sgn(Cr
01 − Cr

11)︸ ︷︷ ︸
=sgn(ξ1)

√
P1 +

sgn(Ct
10 − Ct

00)

sgn(Cr
10 − Cr

00)︸ ︷︷ ︸
=sgn(ξ0)

√
P0 > 0 (4.22)

is obtained. Notice that the expressions in (4.22) and (4.17) of Theo-

rem 4.4.1 are the same; hence, the Nash equilibrium solution of Theo-

rem 4.4.1 also holds for the vector case.

4.7.4.4 Optimal Signal Selection to Maximize d2 = (S1−S0)TΣ−1(S1−S0)

The optimal signal selection method here is based on [72, pp. 61–63]. The positive

definite covariance matrix of the noise can be decomposed as Σ =
∑n

k=1 λkνkν
T
k ,

where λ1, . . . , λn and ν1, . . . ,νn are the eigenvalues and the corresponding or-

thonormal eigenvectors of Σ. Let λmin , min{λ1, . . . , λn}; then

(S1 − S0)TΣ−1(S1 − S0) = (S1 − S0)T
n∑
k=1

λ−1
k νkν

T
k (S1 − S0)

≤ λ−1
min(S1 − S0)T

n∑
k=1

νkν
T
k (S1 − S0)

= λ−1
min(S1 − S0)T (S1 − S0)

= λ−1
min‖S1 − S0‖2

Here, the equality is satisfied if and only if (S1−S0) is chosen along an eigenvector

corresponding to λmin. Since the eigenvector with the largest (smallest) eigenvalue

of Σ corresponds to the direction, along which the noise is most (least) powerful,

signaling in the least noisy direction results in the highest signal-to-noise power

ratio for the system. Thus we have d2 = (S1 − S0)TΣ−1(S1 − S0) = ‖S1−S0‖2
λmin

. In

order to maximize d2, S0 and S1 must be chosen in the opposite directions; i.e.,
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S1 = −αS0 with α > 0. Further, (S1 − S0) must be chosen along νmin (that is,

the unit-norm eigenvector corresponding to λmin), thus (S1−S0) = −(α+1)S0 =

cνmin for c ∈ R, which implies S0 = − c
α+1
νmin and S1 = cα

α+1
νmin. Since d2 =

‖S1−S0‖2
λmin

= ‖cνmin‖2
λmin

= c2

λmin
, c2 must be chosen as maximum as possible to maximize

d2. Accordingly, ‖S0‖2 ≤ P0 ⇒ c2 ≤ (α+ 1)2P0 and ‖S1‖2 ≤ P1 ⇒ c2 ≤ (α+1)2

α2 P1

are obtained. Then,

(α + 1)2P0 ≤
(α + 1)2

α2
P1 ⇒ α2 ≤ P1

P0

and c2 = (α + 1)2P0

⇒ α =

√
P1

P0

to maximize c2, and c2 = (
√
P0 +

√
P1)2 ,

(α + 1)2

α2
P1 ≤ (α + 1)2P0 ⇒ α2 ≥ P1

P0

and c2 =

(
1 +

1

α

)2

P1

⇒ α =

√
P1

P0

to maximize c2, and c2 = (
√
P0 +

√
P1)2 .

Thus, α =
√

P1

P0
and c = ∓(

√
P0 +

√
P1), optimum signals are S0 = ±

√
P0νmin

and S1 = ∓
√
P1νmin, and the corresponding d2

max = (
√
P0+
√
P1)2

λmin
.

4.7.4.5 Optimal Signal Selection to Achieve (d∗)2 = (S1 − S0)TΣ−1(S1 −
S0) =

∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣
Since dmax is achieved when the signals are chosen in the direction of the eigenvec-

tor with the smallest eigenvalue of Σ, that is νmin, it possible to find a signal pair

{S0,S1} with distance d∗ =

√∣∣∣2 ln τ(k0−k1)
(k0+k1)

∣∣∣ < dmax in that direction. Accordingly,

S0 = (−
√
P0 + t)νmin and S1 = (−

√
P0 + d∗ + t)νmin for t ∈ [0,

√
P1 +

√
P0 − d∗]

are possible optimal signal pairs. Similarly, S0 = (
√
P0 − t)νmin and S1 =

(
√
P0 − d∗ − t)νmin for t ∈ [0,

√
P1 +

√
P0 − d∗] consist of another set of pos-

sible optimal signal pairs. Note that it may be possible to find optimal signal

pairs {S0,S1} ∈ S that satisfy (S1 − S0)TΣ−1(S1 − S0) =
∣∣∣2 ln τ(k0−k1)

(k0+k1)

∣∣∣ in any

other direction rather than the direction of the eigenvector with the smallest

eigenvalue of Σ, that is νmin; however, finding a single pair that corresponds to

an equilibrium would be sufficient.
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Chapter 5

On the Number of Equilibria in

Static Cheap Talk

In this chapter, Crawford and Sobel’s cheap talk formulation [16] is investigated

for the exponential and Gaussian sources, after verifying the special case with

uniform source considered therein. The upper bounds on the number of the

quantization bins (if any) are derived depending on the bias b.

The main contributions of this chapter can be summarized as follows:

(i) Under the uniform source assumption, we verify the upper bound on the

number of the quantization bins as a function of the bias b, obtain the total

cost at the equilibrium, and show that the equilibrium with more bins is

preferable for both the encoder and the decoder.

(ii) Under the exponential source assumption, we obtain an upper bound on

the number of bins at the equilibrium for a negative bias; i.e., b < 0; on

the other hand, when the bias is positive; i.e., b > 0, we prove that there

is no upper bound on the number of bins, actually, it is possible to have

equilibria with infinitely many bins.

(iii) Under the Gaussian source assumption, we show that there always exists
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an equilibrium with two bins.

(iv) The equilibrium with two bins is investigated for the double-exponential

and half-normal sources.

5.1 Preliminary Results

Consider an equilibrium with N bins, and let the k-th bin be the interval

[mk−1,mk) with m0 < m1 < . . . < mN for k = 1, 2, . . . , N . By Theorem 2.2.3, at

the equilibrium, decoder’s best response is characterized by

uk = E[m|mk−1 ≤ m < mk] (5.1)

for the k-th bin. As it can be seen, the optimal decoder action is the centroid

for the corresponding bin. From the encoder’s point of view, the best response of

the encoder is determined by the nearest neighbor condition similar to (2.8) as

follows:

mk =
uk + uk+1

2
+ b . (5.2)

These best responses in (5.1) and (5.2) characterize the equilibrium; i.e., for a

given number of bins, the positions of the bin edges and the centroids can be

determined.

Note that, by Theorem 2.2.3 and Theorem 2.2.4, we know that the distance

between the optimal decoder actions can be at least 2|b|, this is the reason why

the equilibrium must be quantized. Hence, for bounded sources, it can be easily

deduced that the number of bins at the equilibrium must be bounded. At this

point, for unbounded sources, the questions to be asked are the following:

• For unbounded sources, either one-sided or two-sided, is there any upper

bound on the number of bins at the equilibrium as a function of bias b? As

a special case, is it possible to have only a non-informative equilibrium?

• Is it possible to have an equilibrium with infinitely many bins?
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At this point, one can ask why the number of bins is important: This is useful

since if one can show that there only exists a finite number of bins, and if for

every bin there is a finite, or a unique, number of distinct equilibria, then the

total number of equlibria will be finite; this will allow for a feasible setting where

the decision makers can coordinate their policies. Furthermore, it is a desirable

question to see whether in general more number of bins implies more desirable

equilibria. If such a monotone behavior holds for a class of sources, then both

the encoder and the decoder would prefer to have the equilibrium with the most

number of bins.

In this chapter, we try to answer these questions for exponential and Gaussian

sources, and then based on the answers, we analyze double-exponential and half-

normal sources. But first, in order to be familiar to the concepts, we focus on the

uniform source between [0, 1].

5.2 Uniform Source

The theorems below are valid for M ∼ U [0, 1].

Theorem 5.2.1. [16] In order to achieve an equilibrium in the case of two levels

of quantization, |b| must be limited by 1
4
. Otherwise there cannot be more than

one quantization levels, which is completely uninformative equilibrium.

Theorem 5.2.2. (Equation (22) of [16]) The relation between the number of

bins N and bias b in the scalar case at the equilibrium can be characterized by

|b| < 1
2N(N−1)

.

Theorem 5.2.3. (Equation (25) of [16]) The total game cost at the equilibrium

with any number of bins N is given by the following:

Je(γ∗,e, γ∗,d)+Jd(γ∗,e, γ∗,d) =

(
1

12N2
+
b2(N2 − 1)

3
+ b2

)
+

(
1

12N2
+
b2(N2 − 1)

3

)

Theorem 5.2.4. (Theorem 3 of [16]) The most informative equilibrium is reached

with the maximum possible number of bins; i.e., if there are two different equilibria
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with K and N bins for a constant b where N > K, the equilibrium with N bins

is more informative.

5.3 Exponential Source

In this section, the source is assumed to be exponential and the number of bins

at the equilibria is investigated. Before delving into the technical results on the

equilibria, observe the following fact:

Fact 5.3.1. Let M be an exponentially distributed r.v. with a positive parameter

λ: i.e., the probability distribution function of M is f(m) = λe−λm for m ≥ 0. The

expectation and the variance of the truncated exponential r.v. are E[m|a < m <

b] = 1
λ

+a− b−a
eλ(b−a)−1

and Var (m|a < m < b) = 1
λ2
− (b−a)2

eλ(b−a)+e−λ(b−a)−2
, respectively.

The following result is taken from [37], and it shows the existence of an equi-

librium with finitely many bins:

Proposition 5.3.1. [37] Suppose M is exponentially distributed with parameter

λ. Then, for b < 0, any Nash equilibrium is deterministic and can have at most

b− 1
2bλ

+ 1c bins with monotonically increasing bin-lengths.

The result above does not characterize the equilibrium completely. The fol-

lowing theorem characterizes the equilibrium with two bins, and forms a basis for

equilibria with more bins:

Theorem 5.3.1. When the source has an exponential distribution with a positive

parameter λ, there exist only non-informative equilibria if and only if b ≤ − 1
2λ

.

The equilibrium with at least two bins is achievable if and only if b > − 1
2λ

.

Contrarily to the negative bias case, the number of bins at the equilibrium

is not bounded when the bias is positive. The following investigates the case in

which b > 0 and is extended from [37]:
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Theorem 5.3.2. When the source has an exponential distribution with parameter

λ, for b > 0 and any number of bins N ,

(i) There exists a unique equilibrium,

(ii) Bin-lengths are monotonically increasing.

Further, since the two statements above hold for any N ∈ N, there exists no upper

bound on the number of bins at an equilibrium.

By following a similar approach to that in Theorem 5.3.2, the bounds in Propo-

sition 5.3.1 can be refined as follows:

Corollary 5.3.1. (i) There exists an equilibrium with at least two bins if and

only if b > − 1
2λ

.

(ii) There exists an equilibrium with at least three bins if and only if b > − 1
2λ

e−2
e−1

.

Proof. (i) In order to have an equilibrium with at least 2 bins, lN−1 > 0 must be

satisfied. From (5.23), if −(2+2λb) < −1 is satisfied, then the solution lN−1

will be positive. Thus, if b > − 1
2λ

, it is possible to obtain an equilibrium

with 2 bins; otherwise; i.e., b ≤ − 1
2λ

, there exists only one bin at the

equilibrium.

(ii) In order to have an equilibrium with at least 3 bins, lN−2 > 0 must be

satisfied. From (5.25), if −λcN−2 < −1 is satisfied, then the solution lN−2

will be positive. Then,

−λcN−2 =− λ
(

2

λ
+ 2b− h(lN−1)

)
= −λ (g(lN−1)− h(lN−1)) = −λlN−1 < −1

⇒lN−1 =
1

λ
W0

(
−(2 + 2λb)e−(2+2λb)

)
+ 2

(
1

λ
+ b

)
>

1

λ

⇒W0

(
−(2 + 2λb)e−(2+2λb)

)
> −1− 2λb . (5.3)

Let t , W0

(
−(2 + 2λb)e−(2+2λb)

)
, then tet = −(2 + 2λb)e−(2+2λb) and −1 <

t < 0. Then, from (5.3), since tet is increasing function of t for t > −1,

t >− 1− 2λb⇒ tet = −(2 + 2λb)e−(2+2λb) > −(1 + 2λb)e−(1+2λb)
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⇒2 + 2λb < (1 + 2λb)e⇒ b > − 1

2λ

e− 2

e− 1
. (5.4)

Thus, if b > − 1
2λ

e−2
e−1

, it is possible to obtain an equilibrium with three

bins; otherwise; i.e., b ≤ − 1
2λ

e−2
e−1

, there can exist at most two bins at the

equilibrium.

Theorem 5.3.2 shows that, when b > 0, it possible to have an equilibrium with

N bins for any finite N . The following elucidates the existence of equilibria with

infinitely many bins:

Theorem 5.3.3. For the exponential source, assuming a positive bias; i.e. b > 0,

there exist equilibria with infinitely many bins.

Heretofore, we show that, at the equilibrium, there is an upper bound on the

number of bins when b < 0; i.e., there can exist finitely many equilibria with

finitely many bins. On the other hand, when b > 0, there is no upper bound on

the number of bins at the equilibrium, and even it is possible to have equilibria

with infinitely many bins. Therefore, at this point, which equilibrium is preferred

by the decision makers must be investigated; i.e., which equilibrium is more

informative.

Theorem 5.3.4. The most informative equilibrium is reached with the maximum

possible number of bins:

(i) for b < 0, if there are two different equilibria with K and N bins where

N > K, the equilibrium with N bins is more informative.

(i) for b > 0, the equilibrium with infinitely many bins is the most informative

one.
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5.4 Gaussian Source

Let M be a Gaussian random variable with the mean µ and variance σ2; i.e., M ∼
N (µ, σ2). Let the probability distribution function of a standard Gaussian r.v. be

φ(m) = 1√
2π

e−
m2

2 for m ≥ 0, and let the cumulative distribution function (CDF)

of a standard Gaussian r.v. be Φ(b) =
∫ b
−∞ φ(m)dm. Then, the expectation of a

truncated Gaussian r.v. is the following:

Fact 5.4.1. The mean of the truncated Gaussian random variable M ∼ N (µ, σ2)

is E[m|a < m < b] = µ− σ φ( b−µ
σ

)−φ(a−µ
σ

)

Φ( b−µ
σ

)−Φ(a−µ
σ

)
.

Proof.

E[m|a < m < b] =

∫ b

a

m

1√
2πσ

e−
(m−µ)2

2σ2∫ b
a

1√
2πσ

e−
(m−µ)2

2σ2

dm =

∫ b
a
m 1√

2πσ
e−

(m−µ)2

2σ2 dm∫ b
a

1√
2πσ

e−
(m−µ)2

2σ2 dm

s=(m−µ)/σ
ds=dm/σ

=

∫ (b−µ)/σ

(a−µ)/σ
(σs+ µ) 1√

2π
e−

s2

2 ds∫ (b−µ)/σ

(a−µ)/σ
1√
2π

e−
s2

2 ds
= µ+ σ

∫ (b−µ)/σ

(a−µ)/σ
s 1√

2π
e−

s2

2 ds∫ (b−µ)/σ

(a−µ)/σ
1√
2π

e−
s2

2 ds

u=s2/2
du=sds= µ+ σ

∫ (b−µ)2/(2σ2)

(a−µ)2/(2σ2)
1√
2π

e−udu

Φ( b−µ
σ

)− Φ(a−µ
σ

)
= µ+ σ

− 1√
2π

e−u|u=(b−µ)2/(2σ2)

u=(a−µ)2/(2σ2)

Φ( b−µ
σ

)− Φ(a−µ
σ

)

= µ+ σ
−φ( b−µ

σ
) + φ(a−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)

α,(a−µ)/σ

β,(b−µ)/σ
= µ− σ φ(β)− φ(α)

Φ(β)− Φ(α)
. (5.5)

Now, as a preliminary result, consider an equilibrium with two bins as follows:

Theorem 5.4.1. When the source has a Gaussian distribution as M ∼ N (µ, σ2),

there always exists an equilibrium with two bins regardless of the value of b.

Since the pdf of a Gaussian r.v. is symmetrical around its mean, and it satisfies

the monotonicity properties, the following can be observed due to the similar

reasoning in Proposition 5.3.1:
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Proposition 5.4.1. Let there be an equilibrium with N bins for a Gaussian

source M ∼ N (µ, σ2). Then,

(i) if b < 0, bin-lengths are monotonically increasing for m > µ,

(ii) if b > 0, bin-lengths are monotonically decreasing for m < µ.

5.5 Other Distributions

Since we have equilibria results for the exponential and Gaussian sources, we will

derive the similar results for the double-exponential and half-normal sources.

5.5.1 The Standard Double-Exponential Distribution

Let X be an exponential random variable with a positive parameter λ; i.e., f(x) =

λe−λx. Now consider another random variable M , with pdf which consists of

the pdf of X and the pdf of −X. Then, M is a Laplacian random variable

with location parameter 0 and the scale parameter 1
λ
. In other words, M is a

standard double-exponential r.v. with pdf f(m) = λ
2
e−λ|m| for m ∈ (−∞,∞).

Before investigating the equilibrium for the double-exponential source, observe

the following fact:

Fact 5.5.1. The mean of the truncated standard double-exponential distribution

with parameter λ is the following:

E[m|a < m < b] =


1
λ

+ a− b−a
eλ(b−a)−1

0 < a < b
1
λ(eλa−e−λb)−(aeλa+be−λb)

2−(eλa+e−λb)
a < 0 < b

− 1
λ

+ b+ b−a
eλ(b−a)−1

a < b < 0

(5.6)

Now, as a preliminary result, consider an equilibrium with two bins as follows:
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Theorem 5.5.1. When the source has a standard double-exponential distribution,

there always exists an equilibrium with two bins for any b, and

(i) the boundary between the bins lies on the positive side of the real line if

b > 0,

(ii) the boundary between the bins lies on the negative side of the real line if

b < 0.

Similar to the Gaussian source case, which also has two-sided infinite support,

it is always possible to have an equilibrium with two bins.

5.5.2 Half-Normal Distribution

Let X be a Gaussian random variable with zero mean and variance σ2; i.e.,

X ∼ N (0, σ2). Now consider another random variable M , which is a fold of X

at zero; i.e., M = |X|. Then,

Pr(M ≤ m) = Pr(|X| ≤ m) =

∫ m

−m

1√
2πσ

e−
m2

2σ2 dm = 2

∫ m

0

1√
2πσ

e−
m2

2σ2 dm

⇒ Pr(M ≤ m) =

∫ m

0

√
2√
πσ

e−
m2

2σ2 dm, (5.7)

which implies that the pdf of the half-normal distribution is f(m) =
√

2√
πσ

e−
m2

2σ2

for m ≥ 0. Now, consider the mean of a truncated half-normal distribution:

Fact 5.5.2. The mean of the truncated half-normal distribution with parameter

σ2 is E[m|a < m < b] = −σ φ( b
σ

)−φ( a
σ

)

Φ( b
σ

)−Φ( a
σ

)
.

Proof.

E[m|a < m < b] =

∫ b

a

m

√
2√
πσ

e−
m2

2σ2∫ b
a

√
2√
πσ

e−
m2

2σ2

dm =

∫ b
a
m
√

2√
πσ

e−
m2

2σ2 dm∫ b
a

√
2√
πσ

e−
m2

2σ2 dm
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s=m/σ
ds=dm/σ

=

∫ b/σ
a/σ

σs
√

2√
π
e−

s2

2 ds∫ b/σ
a/σ

√
2√
π
e−

s2

2 ds
= σ

∫ b/σ
a/σ

s 1√
2π

e−
s2

2 ds∫ b/σ
a/σ

1√
2π

e−
s2

2 ds

u=s2/2
du=sds= +σ

∫ b2/(2σ2)

a2/(2σ2)
1√
2π

e−udu

Φ( b
σ
)− Φ( a

σ
)

= σ
− 1√

2π
e−u|u=b2/(2σ2)

u=a2/(2σ2)

Φ( b
σ
)− Φ( a

σ
)

= σ
−φ( b

σ
) + φ( a

σ
)

Φ( b
σ
)− Φ( a

σ
)

α,a/σ
β,b/σ

= −σ φ(β)− φ(α)

Φ(β)− Φ(α)
. (5.8)

Note that, for a = 0 and b = ∞, the mean of the half-normal distribution is

obtained as E[M ] = −σ φ(∞)−φ(0)
Φ(∞)−Φ(0)

= −σ
0− 1√

2π

1− 1
2

= σ
√

2
π
.

Now, as a preliminary result, consider an equilibrium with two bins as follows:

Theorem 5.5.2. When the source has a half-normal distribution, there always

exist an equilibrium with two bins if b ≥ −σ
√

1
2π

; otherwise, i.e., b < −σ
√

1
2π

,

the equilibrium is non-informative; i.e., the equilibrium with one bin.

Similar to the exponential source case, which also has one-sided infinite sup-

port, the existence of an equilibrium with two bins is dependent on b.

5.6 Conclusion

In this chapter, we investigated the upper bounds on the number of bins at the

equilibria under different source assumptions. Since cheap talk has always quan-

tized equilibria with at least 2|b| separation between the centroids, the bounded

sources have always finite number of bins. However, this may not be the case for

the sources with one-sided or two-sided infinite support. In this direction, the

exponential and Gaussian sources are analyzed, and it is shown that, for an ex-

ponential source, there can exist equilibria with infinitely many bins when b < 0

whereas the number of bins is bounded when b < 0. For a Gaussian source, it is

always possible to have an equilibrium with two quantization bins.
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5.7 Proofs

5.7.1 Proofs for Section 5.2

5.7.1.1 Proof of Theorem 5.2.1

Suppose that there are only two bins Bα and Bβ. Recall that, at the equilibrium,

from the view of the encoder,

mα ∈ Bα ⇒ (mα − uα − b)2 < (mα − uβ − b)2 ,

mβ ∈ Bβ ⇒ (mβ − uβ − b)2 < (mβ − uα − b)2 ,

where uα = E[m|m ∈ Bα] and uβ = E[m|m ∈ Bβ] (since the also aims to minimize

his cost function E[(m − u)2|X = x]). Due to the continuity of (m − u − b)2 in

m, ∃ m such that

uα + b−m = m− uβ − b⇒ m =
uα + uβ

2
+ b . (5.9)

Thus, two bins can be characterized as Bα = [0,m] and Bβ = [m, 1]. Then,

uα = E[m|m ∈ Bα] = E[m|m ∈ [0,m]] =
m

2
,

uβ = E[m|m ∈ Bβ] = E[m|m ∈ [m, 1]] =
m+ 1

2
.

(5.10)

By utilizing (5.10) in (5.9), we can obtain

m =
m
2

+ m+1
2

2
+ b⇒ m =

1

2
+ 2b ∈ [0, 1]⇒ |b| ≤ 1

4
(5.11)

Thus, it can be observed that b has limiting boundary in binary equilibrium case.

5.7.1.2 Proof of Theorem 5.2.2

Suppose that there are N bins at the equilibrium and kth bin is [mk−1,mk],

where m0 = 0 and mN = 1 for k = 1, 2, . . . , N . At the equilibrium, we have

mk = uk+uk+1

2
+ b (the nearest neighbor condition, follows from the best response
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of the encoder) and uk = mk−1+mk
2

(the centroid condition, follows from the

best response of the decoder). Let the length of the kth bin be defined as lk ,

mk − mk−1. Then, by combining the nearest neighbor condition and the best

response condition, the difference equation for bin-lengths can be found as 2mk =

mk−1 +mk+1 +4b⇒ lk+1 = lk−4b = l1−4kb. Since the sum of the lengths of the

bins is equal to 1,
N∑
i=1

li = Nm1− 2N(N − 1)b = 1⇒ m1 = 1+2N(N−1)b
N

. Since the

equilibrium is informative with N bins, all bins must have positive lengths; i.e.,

l1 = m1−m0 = 1+2N(N−1)b
N

> 0 and lN = (m1−m0)−4(N−1)b = 1−2N(N−1)b
N

> 0.

By combining these inequalities, we obtain |b| < 1
2N(N−1)

, which is consistent with

the results in [16].

5.7.1.3 Proof of Theorem 5.2.3

Suppose again that there are N bins at the equilibrium and kth bin is Bk =

[mk−1,mk] where m0 = 0 and mN = 1 for k = 1, 2, . . . , N . Then total costs for

encoder and decoder are:

Je(γ∗,e, γ∗,d) =
N∑
i=1

E[(m− ui − b)2|m ∈ Bi] Pr(m ∈ Bi) ,

Jd(γ∗,e, γ∗,d) =
N∑
i=1

E[(m− ui)2|m ∈ Bi] Pr(m ∈ Bi)] .

Since the centroids of the bins (optimal decoder actions) are uk = E[m|m ∈ Bk] =
mk−1+mk

2
, the costs of the encoder and the decoder can be obtained as follows:

Je(γ∗,e, γ∗,d) =
N∑
i=1

E[(m− ui − b)2|m ∈ Bi] Pr(m ∈ Bi)

=
N∑
i=1

(
E[(m− ui)2|m ∈ Bi]− 2bE[(m− ui)|m ∈ Bi] + b2

)
Pr(m ∈ Bi)

=
N∑
i=1

(
E[(m− ui)2|m ∈ Bi]− 2bE[(m− E[m|m ∈ Bi])|m ∈ Bi] + b2

)
× Pr(m ∈ Bi)

=
N∑
i=1

(
E[(m− ui)2|m ∈ Bi] + b2

)
Pr(m ∈ Bi)

(
= Jd(γ∗,e, γ∗,d) + b2

)
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=
N∑
i=1

(∫ mi

mi−1

(m− ui)2 p(dm)︸ ︷︷ ︸
dm/(mi−mi−1)

+b2

)
Pr(m ∈ Bi)︸ ︷︷ ︸
mi−mi−1

=
N∑
i=1

∫ mi

mi−1

(m− ui)2 dm+ b2

=
N∑
i=1

[
m3

3
− uim2 + (ui)

2m

] ∣∣∣∣∣
m=mi

m=mi−1

+ b2

=
N∑
i=1

(
(mi)

3 − (mi−1)3

3
− ui((mi)

2 − (mi−1)2) + (ui)
2(mi −mi−1)

)
+ b2

=
N∑
i=1

((mi)
3 − (mi−1)3

3
− mi +mi−1

2
((mi)

2 − (mi−1)2)

+
(mi +mi−1)2

4
(mi −mi−1)

)
+ b2

=
N∑
i=1

(
(mi)

3 − (mi−1)3

3
− (mi +mi−1)2(mi −mi−1)

4

)
+ b2

=
N∑
i=1

(mi −mi−1)3

12
+ b2

=
N∑
i=1

(li)
3

12
+ b2

=
N∑
i=1

(l1 − 4(i− 1)b)3

12
+ b2 (5.12)

=
N∑
i=1

(1+2N(N−1)b
N

− 4(i− 1)b)3

12
+ b2

=
1

12N2
+

(N2 − 1)b2

3
+ b2 . (5.13)

5.7.1.4 Proof of Theorem 5.2.4

Suppose there exist two equilibria with K bins and N bins with N > K. Then,

|b| < 1
2N(N−1)

< 1
2K(K−1)

holds by Theorem 5.2.2. Let the decoder cost be Jd,K
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when there are K bins. Then,

Jd,K − Jd,N =

(
1

12K2
+
b2(K2 − 1)

3

)
−
(

1

12N2
+
b2(N2 − 1)

3

)
= (N2 −K2)

(
1

12K2N2
− b2

3

)
> (N2 −K2)

(
1

12K2N2
− 1

12N2(N − 1)2

)
= (N2 −K2)

(
(N − 1)2 −K2

12K2N2(N − 1)2

)
≥ 0 .

Thus, as the number of bins increases for a constant b, both the encoder and the

decoder cost decrease.

5.7.2 Proofs for Section 5.3

5.7.2.1 Proof of Fact 5.3.1

Consider the following integral:

∫
λme−λmdm

s=λm
ds=λdm=

∫
1

λ
se−sds

u=s, dv=e−sds/λ
du=ds, v=−e−s/λ

=
−se−s

λ
−
∫
−e−s

λ
ds

=
−se−s

λ
− e−s

λ
s=λm

= −me−λm − e−λm

λ
. (5.14)

Then, the expectation of a truncated exponential r.v. will be

E[m|a < m < b] =

∫ b

a

m
λe−λm∫ b
a
λe−λm

dm =

∫ b
a
mλe−λmdm∫ b
a
λe−λmdm

=

(
−me−λm − e−λm

λ

) ∣∣∣∣b
a

−e−λm
∣∣∣∣b
a

=
−be−λb − e−λb

λ
+ ae−λa + e−λa

λ

−e−λb + e−λa
=

1

λ
+
aeλb − beλa

eλb − eλa

=
1

λ
+ a− eλa(b− a)

eλb − eλa
=

1

λ
+ a− b− a

eλ(b−a) − 1
. (5.15)
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Now consider the following integral:

∫
λm2e−λmdm

u=λm2, dv=e−λmdm
du=2λmdm, v=−e−λm/λ

= λm2−e−λm

λ
−
∫
−e−λm

λ
2λmdm

= −m2e−λm +
2

λ

∫
λme−λmdm

(a)
= −m2e−λm − 2me−λm

λ
− 2e−λm

λ2
, (5.16)

where the integral in (5.14) is utilized in (a). Then,

Var (m|a < m < b) = E[m2|a < m < b]− (E[m|a < m < b])2

=

∫ b

a

m2 λe−λm∫ b
a
λe−λm

dm−

(
−be−λb − e−λb

λ
+ ae−λa + e−λa

λ

−e−λb + e−λa

)2

=
− e−λb

λ2
(λ2b2 + 2λb+ 2) + e−λa

λ2
(λ2a2 + 2λa+ 2)

−e−λb + e−λa

−

(
− e−λb

λ
(λb+ 1) + e−λa

λ
(λa+ 1)

)2

(−e−λb + e−λa)2

=
e−2λb

λ2
(λ2b2 + 2λb+ 2) + e−2λa

λ2
(λ2a2 + 2λa+ 2)

(−e−λb + e−λa)2

−
e−λ(a+b)

λ2
(λ2a2 + λ2b2 + 2λa+ 2λb+ 4)

(−e−λb + e−λa)2

−
e−2λb

λ2
(λ2b2 + 2λb+ 1) + e−2λa

λ2
(λ2a2 + 2λa+ 1)

(−e−λb + e−λa)2

+
e−λ(a+b)

λ2
(2λ2ab+ 2λa+ 2λb+ 2)

(−e−λb + e−λa)2

=
e−2λb

λ2
+ e−2λa

λ2
− e−λ(a+b)

λ2
(λ2a2 + λ2b2 + 2− 2λ2ab)

(−e−λb + e−λa)2

=
e−2λb

λ2
+ e−2λa

λ2
− 2e−λ(a+b)

λ2
− e−λ(a+b)

λ2
(λ2(b− a)2)

e−2λb + e−2λa − 2e−λ(a+b)

=
1

λ2
− (b− a)2

e−λb+λa + e−λa+λb − 2

=
1

λ2
− (b− a)2

eλ(b−a) + e−λ(b−a) − 2
. (5.17)
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5.7.2.2 Proof of Proposition 5.3.1

Consider an equilibrium with N bins. The k-th bin is defined as the interval

[mk−1,mk), where m0 = 0 and mN = +∞, and lk denotes the length of the k-th

bin; i.e., lk = mk −mk−1. Due to the equilibrium definitions, the best responses

of the encoder and the decoder must satisfy (5.1) and (5.2). Hence,

uk+1 −mk = (mk − uk)− 2b for k = 1, 2, . . . , N − 1 , (5.18)

and

uN = E[m|mN−1 ≤ m ≤ mN =∞] = mN−1 +
1

λ
.

This leads us to

1

λ
= uN −mN−1 = (mN−1 − uN−1)− 2b

> (uN−1 −mN−2)− 2b

= (mN−2 − uN−2)− 2(2b)

...

> u1 −m0 − (N − 1)(2b)

> −(N − 1)(2b) .

Here, the inequalities follow from the fact that the exponential pdf is monotoni-

cally decreasing. Hence, for b < 0,

N <
−1

2bλ
+ 1⇒ N ≤

⌊
−1

2bλ
+ 1

⌋
.

Now, consider bin-lengths as follows:

lk = mk −mk−1 = (mk − uk) + (uk −mk−1) ≥ (uk −mk−1) + (uk −mk−1)

= (mk−1 − uk−1 − 2b) + (mk−1 − uk−1 − 2b)

> (mk−1 − uk−1 − 2b) + (uk−1 −mk−2 − 2b)

= (mk−1 − uk−1) + (uk−1 −mk−2)− 4b = mk−1 −mk−2 − 4b = lk−1 − 4b

⇒ lk > lk−1 . (5.19)

Thus, bin-lengths are monotonically increasing; i.e., l1 < l2 < . . . < lN−1 < lN =

∞.
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5.7.2.3 Proof of Theorem 5.3.1

Let there be an equilibrium with two bins such that the first bin is [0 = m0,m1)

and the second bin is [m1,m2 =∞). The centroids of the bins (the action of the

decoder) can be derived from (5.15) as u1 = E[m|0 < m < m1] = 1
λ
− m1

eλm1−1
and

u2 = E[m|m1 < m <∞] = 1
λ

+m1. Then, by utilizing (5.2),

m1 =
u1 + u2

2
+ b =

1
λ
− m1

eλm1−1
+ 1

λ
+m1

2
+ b⇒ m1

2

eλm1

eλm1 − 1
=

1

λ
+ b

⇒ eλm1

(
1

λ
+ b− m1

2

)
=

1

λ
+ b . (5.20)

Note that, in (5.20), m1 = 0 is always a solution; however, in order to have an

equilibrium with two bins, we need a non-zero solution to (5.20); i.e., m1 > 0. For

this purpose, the Lambert W -function will be utilized. Although the Lambert

W -function is defined for complex variables, we restrict our attention to the real-

valued W -function. Then, the W -function is defined as

W (xex) = x for x ≥ 0 ,

W0(xex) = x for − 1 ≤ x < 0 ,

W−1(xex) = x for x ≤ −1 .

As it can be seen, for x ≥ 0, W (xex) is a well-defined single-valued function.

However, for x < 0, W (xex) is doubly valued, such as W (xex) ∈ (−1
e
, 0) and there

exists x1 and x2 that satisfy x1ex1 = x2ex2 where x1 ∈ (−1, 0) and x2 ∈ (−∞,−1).

In order to distinguish these values, the principal branch of the Lambert W -

function is defined to represent values greater than −1; e.g., x1 = W0(x1ex1) =

W0(x2ex2). Similarly, the lower branch of the Lambert W -function represent

values smaller than −1; e.g, x2 = W−1(x1ex1) = W−1(x2ex2). Further, for x =

−1, two branches of the W -function coincide; i.e., −1 = W0(−1
e
) = W−1(−1

e
).

Regarding the definition above, by letting t , 2λ
(
m1

2
− 1

λ
− b
)
, the solution of

(5.20) can be found as follows:

et+2+2λb

(
−t
2λ

)
=

1

λ
+ b⇒ tet = −(2 + 2λb)e−(2+2λb) ⇒ t = W0

(
−(2 + 2λb)e−(2+2λb)

)
.

(5.21)
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Note that, in (5.21), depending on the values of −(2 + 2λb), the following cases

can be considered:

(i) −(2 + 2λb) ≥ 0 : tet = −(2 + 2λb)e−(2+2λb) ⇒ t = −(2 + 2λb) ⇒ m1 = 0,

which implies a non-informative equilibrium; i.e., the equilibrium with one

bin.

(ii) −1 < −(2 + 2λb) < 0 : Since tet = −(2 + 2λb)e−(2+2λb), there are two pos-

sible solutions:

(a) If t = W0

(
−(2 + 2λb)e−(2+2λb)

)
= −(2 + 2λb), we have m1 = 0 as in

the previous case.

(b) If t = W−1

(
−(2 + 2λb)e−(2+2λb)

)
⇒ t < −1 ⇒ −1 > t =

2λ
(
m1

2
− 1

λ
− b
)

= λm1 − 2 − 2λb > λm1 − 1 ⇒ λm1 < 0, which

is not possible.

(iii) −(2 + 2λb) = −1 : Since tet = −(2 + 2λb)e−(2+2λb), there is only one solu-

tion, t = −(2 + 2λb) = −1 ⇒ m1 = 0, which implies the non-informative

equilibrium.

(iv) −(2 + 2λb) < −1 : Since tet = −(2 + 2λb)e−(2+2λb), there are two possible

solutions:

(a) If t = W−1

(
−(2 + 2λb)e−(2+2λb)

)
= −(2 + 2λb), we have m1 = 0 as in

the first case.

(b) If t = W0

(
−(2 + 2λb)e−(2+2λb)

)
, we have −1 < t < 0 ⇒ −1 < λm1 −

2− 2λb < 0⇒ 1
λ

+ 2b < m1 <
2
λ

+ 2b. Thus, if we have 1
λ

+ 2b > 0⇒
b > − 1

2λ
, then we have positive m1, which implies the existence of an

equilibrium with two bins.

Thus, as long as b ≤ − 1
2λ

, there exists only one bin at the equilibrium; i.e., there

can be only non-informative equilibria; and the equilibrium with two bins can

be achieved only if b > − 1
2λ

. In this case, m1 = 1
λ
W0

(
−(2 + 2λb)e−(2+2λb)

)
+

2
(

1
λ

+ b
)
. Note that, since −1 < W0(·) < 0, the boundary between two bins lies

within the interval 1
λ

+ 2b < m1 <
2
λ

+ 2b.
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5.7.2.4 Proof of Theorem 5.3.2

The proof consists of three main parts. After characterizing the equilibrium,

the monotonicity of bin-lengths and the upper bound on the number of bins are

investigated.

Part-I: Equilibrium Solution : Consider an equilibrium with N bins, and let

the k-th bin be the interval [mk−1,mk) where m0 = 0 and mN = +∞, lk denotes

the length of the k-th bin; i.e., lk = mk −mk−1, and the centroid of the k-th bin

(i.e., the corresponding action of the decoder) is uk = E[m|mk−1 < m < mk].

Then, by utilizing (5.2) and (5.15),

mN−1 =
uN−1 + uN

2
+ b =

(
mN−2 + 1

λ
− lN−1

eλlN−1−1

)
+
(
mN−1 + 1

λ

)
2

+ b

⇒ lN−1
eλlN−1

eλlN−1 − 1
=

2

λ
+ 2b (5.22)

⇒ lN−1 =
1

λ
W0

(
−(2 + 2λb)e−(2+2λb)

)
+ 2

(
1

λ
+ b

)
. (5.23)

By utilizing (5.15) and (5.18), the length of the k-th bin for k = 1, 2, . . . , N − 2

can be found as follows:

uk+1 −mk = mk − uk − 2b = (mk −mk−1)− (uk −mk−1)− 2b

⇒1

λ
− lk+1

eλlk+1 − 1
= lk −

1

λ
+

lk
eλlk − 1

− 2b

⇒lk
eλlk

eλlk − 1
=

2

λ
+ 2b− lk+1

eλlk+1 − 1
. (5.24)

If we let ck , 2
λ

+ 2b− lk+1

eλlk+1−1
, the solution to (5.24) is

lk =
1

λ
W0

(
−λcke−λck

)
+ ck . (5.25)

It can be observed from (5.23) and (5.25) that bin-lengths l1, l2, . . . , lN−1 have a

unique solution, which implies that the bin edges have unique values as m0 = 0,

mk =
∑k

i=1 lk for k = 1, 2, . . . , N − 1, and mN =∞.

In order to represent the solutions in a more compact form recursively, define

g(lk) , lk
eλlk

eλlk−1
and h(lk) ,

lk
eλlk−1

. Then, the recursions in (5.22) and (5.24) can
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be written as:

g(lN−1) =
2

λ
+ 2b , (5.26a)

g(lk) =
2

λ
+ 2b− h(lk+1) , for k = 1, 2, . . . , N − 2 . (5.26b)

Part-II: Monotonically Increasing Bin-Lengths : The proof is based on induc-

tion. Before the induction step, in order to utilize (5.26b), we examine the struc-

ture of g and h. First note that both functions are continuous and differentiable

on [0,∞). Now, g has the following properties:

• g(0) = lims→0
seλs

eλs−1

H
= lims→0

1+λs
λ

= 1
λ
> 0 (

H
= represents l’Hôspital’s

rule),

• lims→∞ g(s) = lims→∞
seλs

eλs−1

H
= lims→∞

1+λs
λ

=∞,

• d
ds

(g(s))|s=0 = lims→0
eλs(eλs−λs−1)

(eλs−1)2
H
= lims→0

λeλs(2eλs−λs−2)
2λeλs(eλs−1)

H
= lims→0

2λeλs−λ
2λeλs

=
1
2
> 0,

• d
ds

(g(s)) = eλs(eλs−λs−1)
(eλs−1)2

=
eλs

∑∞
k=2

(λs)k

k!

(eλs−1)2
> 0, for any s > 0.

All of the above imply that g is a positive, strictly increasing and unbounded

function on R≥0.

Similarly, the properties of h can be listed as follows:

• h(0) = lims→0
s

eλs−1

H
= lims→0

1
λeλs

= 1
λ
> 0,

• lims→∞ h(s) = lims→∞
s

eλs−1

H
= lims→∞

1
λeλs

= 0,

• d
ds

(h(s))|s=0 = lims→0− eλs(λs−1)+1
(eλs−1)2

H
= lims→0

−λ2ses
2(eλs−1)λeλs

H
= lims→0− λ

2λeλs
=

−1
2
< 0,

• d
ds

(h(s)) = − eλs(λs−1)+1
(eλs−1)2

(a)
< 0, for any s > 0,

where (a) follows from the fact that d
ds

(−eλs(λs − 1) − 1) = −λ2seλs < 0

for any s > 0, and −e0(λ(0)− 1)− 1 = 0.
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All of the above imply that h is a positive and strictly decreasing function on

R≥0.

Further, notice the following properties:

g(lk) = h(lk) + lk ,

g(lk) = lk
eλlk

eλlk − 1
> lk ,

h(lk) =
lk

eλlk − 1
=

lk∑∞
k=0

(λlk)k

k!
− 1

=
lk

λlk +
∑∞

k=2
(λlk)k

k!

<
lk
λlk

=
1

λ
.

(5.27)

Now consider the length of the (N − 2)-nd bin. By utilizing the properties in

(5.27) on the recursion in (5.26b),

g(lN−2) =
2

λ
+ 2b− h(lN−1) = g(lN−1)− h(lN−1) = lN−1

⇒ lN−1 = g(lN−2) = lN−2 + h(lN−2)

⇒ lN−2 < lN−1 < lN−2 +
1

λ
(5.28)

is obtained. Similarly, for the (N − 3)-rd bin, the following relations hold:

g(lN−3) =
2

λ
+ 2b− h(lN−2) = g(lN−2) + h(lN−1)− h(lN−2) = lN−2 + h(lN−1)

g(lN−3) = lN−2 + h(lN−1) < lN−2 + h(lN−2) = g(lN−2)⇒ lN−3 < lN−2

lN−2 < lN−2 + h(lN−1) = g(lN−3) = lN−3 + h(lN−3) < lN−3 +
1

λ

⇒ lN−3 < lN−2 < lN−3 +
1

λ
. (5.29)

Now, by following the similar approach, suppose that lN−1 > lN−2 > . . . > lk is

obtained. Then, consider the (k − 1)-st bin:

g(lk−1) =
2

λ
+ 2b− h(lk) = g(lk) + h(lk+1)− h(lk) = lk + h(lk+1)

g(lk−1) = lk + h(lk+1) < lk + h(lk) = g(lk)⇒ lk−1 < lk

lk < lk + h(lk+1) = g(lk−1) = lk−1 + h(lk−1) < lk−1 +
1

λ

⇒ lk−1 < lk < lk−1 +
1

λ
. (5.30)

Thus, bin-lengths form a monotonically increasing sequence.
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Part-III: Number of Bins : Consider the length of the (N − 1)-st bin: Notice

that, in (5.23), since b > 0, −(2 + 2λb) < −2 < −1, the Lambert W -function

returns t = W0

(
−(2 + 2λb)e−(2+2λb)

)
such that tet = −(2 + 2λb)e−(2+2λb) and

−1 < t < 0, which results in 2
λ

+ 2b > lN−1 >
1
λ

+ 2b > 1
λ
; i.e., the (N − 1)-st bin

has a positive length.

For the other bins, since ck = 2
λ

+ 2b − lk+1

eλlk+1−1
= 2

λ
+ 2b − h(lk+1) > 2

λ
+

2b − 1
λ

= 1
λ

+ 2b for b > 0, we have −λck = −1 − 2λb < −1, which implies that

W0

(
−λcke−λck

)
has a solution t such that tet = −λcke−λck and −1 < t < 0.

Hence, from (5.25), lk = 1
λ
W0

(
−λcke−λck

)
+ ck >

1
λ
(−1) + 1

λ
+ 2b = 2b > 0 is

obtained. This means that, for any given number of bins N , when b > 0, it is

possible to obtain an equilibrium with positive bin-lengths l1, l2, . . . , lN−2.

To summarize the results, for every N , with lN = ∞, there exists a solution

l1, l2, . . . , lN so that

(i) these construct a unique equilibrium,

(ii) each of these are non-zero,

(iii) these form a monotonically increasing sequence.

5.7.2.5 Proof of Theorem 5.3.3

For any equilibrium, consider a bin with a finite length, let’s say the k-th bin,

and by utilizing (5.26b) and (5.27), we have the following:

2

λ
+ 2b =g(lk) + h(lk+1) = g(lk) + g(lk+1)− lk+1 > lk + lk+1 − lk+1 = lk

⇒lk <
2

λ
+ 2b ,

2

λ
+ 2b =g(lk) + h(lk+1) = h(lk) + lk + h(lk+1) <

1

λ
+ lk +

1

λ
=

2

λ
+ lk

⇒lk > 2b .

Thus, all bin-lengths are bounded from above and below: 2b < lk <
2
λ

+ 2b.

Now consider the fixed-point solution of the recursion in (5.26b); i.e., g(l∗) =
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2
λ

+ 2b− h(l∗). Then, by letting c , 2
λ

+ 2b,

l∗
eλl
∗

eλl∗ − 1
= c− l∗

eλl∗ − 1
⇒ l∗

eλl
∗

+ 1

eλl∗ − 1
= c⇒ (c− l∗)eλl∗ − (c+ l∗) = 0 . (5.31)

In order to investigate if (5.31) has a unique solution l∗ such that 2b < l∗ < 2
λ

+2b,

let Ψ(s) , (c − s)eλs − (c + s) for s ∈
(
2b, 2

λ
+ 2b

)
and notice the following

properties:

• Ψ(2b)= 2
λ
e2λb −

(
2
λ

+ 4b
)

= 2
λ

(
e2λb − 1− 2λb

)
= 2

λ

(
1 + 2λb+

∞∑
k=2

(2λb)k

k!
− 1− 2λb

)
= 2

λ

(
∞∑
k=2

(2λb)k

k!

)
> 0,

• Ψ( 2
λ

+ 2b) = 0× e2+2λb −
(

4
λ

+ 4b
)

= −
(

4
λ

+ 4b
)
< 0,

• Ψ′(s) = d
ds

(Ψ(s)) = eλs (λ(c− s)− 1)− 1,

• Ψ′(2b) = e2λb
(
λ( 2

λ
)− 1

)
− 1 = e2λb − 1 > 0,

• Ψ′( 2
λ

+ 2b) = e2+2λb (λ× 0− 1)− 1 = −e2+2λb − 1 < 0,

• Ψ′′(s) = d
ds

(Ψ′) = λeλs (λ(c− s)− 2), since s ∈
(
2b, 2

λ
+ 2b

)
and c = 2

λ
+ 2b,

we have 0 < c− s < 2
λ
⇒ −2 < λ(c− s)− 2 < 0⇒ Ψ′′(s) > 0.

All of the above implies that Ψ(s) is a concave function of s for s ∈
(
2b, 2

λ
+ 2b

)
,

Ψ(2b) > 0, Ψ(s) reaches its maximum value on the interval
(
2b, 2

λ
+ 2b

)
; i.e.,

when Ψ′(s∗) = 0, and Ψ( 2
λ

+ 2b) < 0; thus, Ψ(s) crosses the s-axis only once,

which implies that Ψ(s) = 0 has a unique solution on the interval
(
2b, 2

λ
+ 2b

)
.

In other words, the fixed-point solution of the recursion in (5.26b) is unique; i.e.,

Ψ(l∗) = 0.

Hence, if the length of the first bin is l∗; i.e., l1 = l∗, then, all bins must have

a length of l∗; i.e., l1 = l2 = l3 = . . . = l∗. Thus, there exist equilibria with

infinitely many equi-length bins.

Now, suppose that l1 < l∗. Then, by (5.26b), h(l2) = 2
λ

+ 2b− g(l1). Since g in

an increasing function, l1 < l∗ ⇒ g(l1) < g(l∗). Let g(l∗)− g(l1) , ∆ > 0, then,

g(l∗) + h(l∗) = g(l1) + h(l2) =
2

λ
+ 2b⇒ ∆ = g(l∗)− g(l1) = h(l2)− h(l∗) .

(5.32)
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From Theorem 5.3.2, we know that h(s) = s
eλs−1

is a decreasing function with

h′(s) = − eλs(λs−1)+1
(eλs−1)2

< 0 for s > 0 and h′(0) = −1
2
. Slightly changing the

notation, let h̃′(s) = h′( s
λ
); i.e., h̃′(s) = es−1−ses

(es−1)2
. Then, h̃′′(s) = d

ds
(h̃′(s)) =

− es(es−1)(2es−ses−s−2)
(es−1)4

. Now, let %(s) , 2es−ses−s−2, and observe the following:

%(s) = 2es − ses − s− 2⇒ %(0) = 0 ,

%′(s) =
d

ds
(%(s)) = es − ses − 1⇒ %′(0) = 0 ,

%′′(s) =
d

ds
(%′(s)) = −ses ≤ 0⇒ %′′(0) = 0

⇒ %′(s) < 0 for s > 0⇒ %(s) < 0 for s > 0⇒ h̃′′(s) > 0 for s > 0 . (5.33)

Thus, h̃′(s) is an increasing function, which implies that h′(s) is also an increasing

function. Since h′(0) = −1
2
, h′(s) > −1

2
for s > 0, it follows that h(l∗)−h(l2)

l∗−l2 >

−1
2
⇒ −∆

l∗−l2 > −
1
2
⇒ l∗ − l2 > 2∆. From (5.32),

∆ + ∆ = (g(l∗)− g(l1)) + (h(l2)− h(l∗)) = g(l∗)− g(l1) + (g(l2)− l2)− (g(l∗)− l∗)

= g(l2)− g(l1) + l∗ − l2︸ ︷︷ ︸
>2∆

⇒ g(l2)− g(l1) < 0⇒ l2 < l1 . (5.34)

Proceeding similarly, l∗ > l1 > l2 > . . . can be obtained. Now, notice that, since

h(lk) is a monotone function and 2b < lk <
2
λ

+ 2b, the recursion in (5.26b) can

be satisfied if

g(lk) =
2

λ
+ 2b− h(lk+1)⇒ 2

λ
+ 2b− h(2b) < g(lk) <

2

λ
+ 2b− h

(
2

λ
+ 2b

)
.

(5.35)

Let l and l and defined as g(l) = 2
λ

+ 2b− h(2b) and g(l) = 2
λ

+ 2b− h
(

2
λ

+ 2b
)
,

respectively. Thus, if lk /∈ (l, l), then there is no solution to lk+1 for the recursion

in (5.26b). Since the sequence of bin-lengths is monotonically decreasing, there

is a natural number K such that lK > l and lK+1 ≤ l, which implies that there is

no solution to lK+2. Thus, there cannot be any equilibrium (with finite or infinite

bins) if l1 < l∗.

A similar approach can be taken for l1 > l∗: Since g is an increasing function,

l1 > l∗ ⇒ g(l1) > g(l∗). Let g(l1)−g(l∗) , ∆̃ > 0⇒ g(l1)−g(l∗) = h(l∗)−h(l2) =
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∆̃. Then, since h′(s) > −1
2

for s > 0, h(l2)−h(l∗)
l2−l∗ > −1

2
⇒ −∆

l2−l∗ > −
1
2
⇒ l2 − l∗ >

2∆. From (5.32),

∆̃ + ∆̃ = (g(l1)− g(l∗)) + (h(l∗)− h(l2)) = g(l1)− g(l∗) + (g(l∗)− l∗)− (g(l2)− l2)

= g(l1)− g(l2) + l2 − l∗︸ ︷︷ ︸
>2∆

⇒ g(l1)− g(l2) < 0⇒ l1 < l2 . (5.36)

Proceeding similarly, l∗ < l1 < l2 < . . . can be obtained. Since the sequence of

bin-lengths is monotonically increasing, there is a natural number K̃ such that

lK̃ < l and lK̃+1 ≥ l, which implies that there is no solution to lK̃+2. Thus, there

cannot be any equilibrium with infinite number of bins if l1 > l∗. Notice that, it

is possible to have an equilibrium with finite number of bins: for the last bin with

a finite length, (5.26a) is utilized. Further, it is shown that, at the equilibria, any

finite bin-length must be greater than or equal to l∗; i.e., 2b < l∗ ≤ lk <
2
λ

+ 2b

must be satisfied.

5.7.2.6 Proof of Theorem 5.3.4

Suppose there exists an equilibrium with N bins, and the corresponding bin-

lengths are l1 < l2 < . . . < lN =∞ with bin-edges 0 = m0 < m1 < . . . < mN−1 <

mN =∞. Then, the decoder cost is

Jd,N = E[(m− u)2] = E[(m− E[m|x])2]

=
N∑
i=1

E
[
(m− E[m|mi−1 < m < mi])

2 |mi−1 < m < mi

]
Pr(mi−1 < m < mi)

=
N∑
i=1

Var (m|mi−1 < m < mi) Pr(mi−1 < m < mi)

=
N∑
i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)(
e−λmi−1

(
1− e−λli

))
. (5.37)

Now, consider an equilibrium with N + 1 bins with bin-lengths l̃1 < l̃2 < . . . <

l̃N+1 = ∞ and bin-edges 0 = m̃0 < m̃1 < . . . < m̃N < m̃N+1 = ∞. The

relation between bin-lengths and bin-edges can be expressed as lk = l̃k+1 and

mk = m̃k+1 − l̃1, respectively, for k = 1, 2, . . . , N by Theorem 5.3.2. Then, the
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decoder cost at the equilibrium with N + 1 bins can be written as

Jd,N+1 =
N+1∑
i=1

(
1

λ2
− l̃2i

eλl̃i + e−λl̃i − 2

)(
e−λm̃i−1

(
1− e−λl̃i

))
=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
e−λm̃0

(
1− e−λl̃1

))
+

N+1∑
i=2

(
1

λ2
− l̃2i

eλl̃i + e−λl̃i − 2

)(
e−λm̃i−1

(
1− e−λl̃i

))
=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
1− e−λl̃1

)
+

N+1∑
i=2

(
1

λ2
−

l2i−1

eλli−1 + e−λli−1 − 2

)(
e−λ(mi−2+l̃1)

(
1− e−λli−1

))
=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)(
1− e−λl̃1

)
+ e−λl̃1

(
N∑
i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)(
e−λmi−1

(
1− e−λli

)))
︸ ︷︷ ︸

Jd,N

(a)
< Jd,N

(
1− e−λl̃1

)
+ Jd,Ne−λl̃1 = Jd,N . (5.38)

Thus, Jd,N+1 < Jd,N is obtained, which implies that the equilibrium with more

bins is more informative. Here, (a) follows from the fact below:

Jd,N =
N∑
i=1

(
1

λ2
− l2i

eλli + e−λli − 2

)(
e−λmi−1

(
1− e−λli

))
<

N∑
i=1

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
Pr(mi−1 < m < mi)

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
N∑
i=1

Pr(mi−1 < m < mi)

=

(
1

λ2
− l̃21

eλl̃1 + e−λl̃1 − 2

)
, (5.39)

where the inequality holds since l̃1 < l1 < l2 < . . . < lN and ϕ(s) , s2

eλs+e−λs−2
is

a decreasing function of s, as shown below:

ϕ(s) =
s2

eλs + e−λs − 2
=

s2eλs

(eλs − 1)2
,
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ϕ′(s) =
seλs(eλs − 1)(2eλs − λseλs − λs− 2)

(eλs − 1)4
=
seλs(eλs − 1)%(λs)

(eλs − 1)4

(a)
< 0 , (5.40)

where (a) follows from (5.33).

Now consider the equilibria with infinitely many bins: by Theorem 5.3.3, bin-

lengths are l1 = l2 = . . . = l∗, where l∗ is the fixed-point solution of the recursion

in (5.26b); i.e., g(l∗) = 2
λ

+ 2b − h(l∗), and bin-edges are mk = kl∗. Then, the

decoder cost is

Jd,∞ =
∞∑
i=1

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−1)l∗

(
1− e−λl

∗))
=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl

∗)
+
∞∑
i=2

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−1)l∗

(
1− e−λl

∗))
=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl

∗)
+ e−λl

∗
∞∑
i=2

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−2)l∗

(
1− e−λl

∗))
=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl

∗)
+ e−λl

∗
∞∑
i=1

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
e−λ(i−1)l∗

(
1− e−λl

∗))
︸ ︷︷ ︸

Jd,∞

⇒Jd,∞
(
1− e−λl

∗)
=

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)(
1− e−λl

∗)
⇒Jd,∞ =

(
1

λ2
− (l∗)2

eλl∗ + e−λl∗ − 2

)
. (5.41)

Since bin-lengths at the equilibria with finitely many bins are greater than l∗

by Theorem 5.3.3, and due to similar reasoning in (5.38) (indeed, by replacing

l̃1 with l∗), Jd,∞ < Jd,N can be obtained for any finite N . Actually, Jd,N is a

monotonically decreasing sequence with limit limN→∞ J
d,N = Jd,∞. Thus, the

lowest equilibrium cost is achieved with infinitely many quantization bins.

175



5.7.3 Proofs for Section 5.4

5.7.3.1 Proof of Theorem 5.4.1

Consider an equilibrium with two bins such that the first bin is (−∞ = m0,m1)

and the second bin is [m1,m2 =∞). The centroids of the bins (the action of the

decoder) can be derived from (5.5) as u1 = E[m|−∞ < m < m1] = µ−σ φ(
m1−µ
σ

)

Φ(
m1−µ
σ

)

and u2 = E[m|m1 ≤ m <∞] = µ+ σ
φ(
m1−µ
σ

)

1−Φ(
m1−µ
σ

)
. Then, by utilizing (5.2),

m1 =
u1 + u2

2
+ b =

µ− σ φ(
m1−µ
σ

)

Φ(
m1−µ
σ

)
+ µ+ σ

φ(
m1−µ
σ

)

1−Φ(
m1−µ
σ

)

2
+ b

= µ+
σ

2

(
φ(m1−µ

σ
)

1− Φ(m1−µ
σ

)
−
φ(m1−µ

σ
)

Φ(m1−µ
σ

)

)
+ b

c,m1−µ
σ⇒ σc+ µ = µ+

σ

2

(
φ(c)

1− Φ(c)
− φ(c)

Φ(c)

)
+ b

⇒ 2c− φ(c)

1− Φ(c)
+
φ(c)

Φ(c)
=

2b

σ
. (5.42)

Let f(c) , 2c− φ(c)
1−Φ(c)

+ φ(c)
Φ(c)

, then, observe the following:

lim
c→−∞

f(c) = lim
c→−∞

(
2c− φ(c)

1− Φ(c)
+
φ(c)

Φ(c)

)
= lim

c→−∞

(
2c+

φ(c)

Φ(c)

)
−
���

���
���

�:0
lim
c→−∞

(
φ(c)

1− Φ(c)

)
= lim

c→−∞

(
2cΦ(c) + φ(c)

Φ(c)

)
H
= lim

c→−∞

(
2Φ(c) + cφ(c)

φ(c)

)
(
H
= represents l’Hôspital’s rule)

H
= lim

c→−∞

(
3φ(c)− c2φ(c)

−cφ(c)

)
= lim

c→−∞

(
3− c2

−c

)
H
= lim

c→−∞
2c→ −∞ ,

lim
c→∞

f(c) = lim
c→∞

(
2c− φ(c)

1− Φ(c)
+
φ(c)

Φ(c)

)

= lim
c→∞

(
2c− φ(c)

1− Φ(c)

)
+
�
��

�
��

��*0

lim
c→∞

(
φ(c)

Φ(c)

)
= lim

c→∞

(
2c− 2cΦ(c)− φ(c)

1− Φ(c)

)
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H
= lim

c→∞

(
2− 2Φ(c)− cφ(c)

−φ(c)

)
H
= lim

c→∞

(
−3φ(c) + c2φ(c)

cφ(c)

)
= lim

c→∞

(
−3 + c2

c

)
H
= lim

c→∞
2c→∞ ,

f ′(c) = 2− φ(c)(−c)(1− Φ(c))− φ(c)(−φ(c))

(1− Φ(c))2 +
φ(c)(−c)Φ(c)− φ(c)φ(c)

Φ(c)2

= 2− φ(c)2

(
1

(1− Φ(c))2 +
1

Φ(c)2

)
+ cφ(c)

(
1

1− Φ(c)
− 1

Φ(c)

)
= 2− φ(c)

1− Φ(c)

(
φ(c)

1− Φ(c)
− c
)
− φ(c)2

Φ(c)2
− cφ(c)

Φ(c)
. (5.43)

It can be seen that, by using the identities φ(c) = φ(−c) and Φ(c) = 1− Φ(−c),
f ′(c) is an even function of c; i.e., f(c) = f(−c). Thus, it can be assumed that

c ≥ 0. Then, the analysis of (5.43) can be done as follows:

• In [125], the inequality on the upper bound of the Mill’s ratio is proved as
φ(c)

1−Φ(c)
<
√
c2+4+c

2
. Then,

φ(c)

1− Φ(c)

(
φ(c)

1− Φ(c)
− c
)
<

√
c2 + 4 + c

2

(√
c2 + 4 + c

2
− c

)

=

√
c2 + 4 + c

2

√
c2 + 4− c

2
= 1 .

• Since E[x| − ∞ < x < c] = − φ(c)
Φ(c)

for standard normal distribution, φ(c)
Φ(c)

is

a decreasing function of c, and for c > 0, φ(c)
Φ(c)

< φ(0)
Φ(0)

=
√

2
π
.

• Let g(c) , cφ(c)
Φ(c)

, then g′(c) = φ(c)
(

(1−c2)Φ(c)−cφ(c)
(Φ(c))2

)
. If we let h(c) , (1 −

c2)Φ(c)− cφ(c), then h′(c) = −2cΦ(c) + (1− c2)φ(c)− φ(c)− cφ(c)(−c) =

−2cΦ(c) < 0 for c > 0. Thus, g′′(c) < 0, which implies that g(c) is a

concave function of c, and takes its maximum value at g(c∗) which satisfies

g′(c∗) = h(c∗) = 0. By solving numerically, we obtain c∗ ' 0.9557 and

g(c∗) ' 0.2908.

By utilizing the results above, (5.43) becomes

f ′(c) > 2− 1− 2

π
− 0.2908 ' 0.0726 > 0 . (5.44)
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Thus, f(c) is a monotone increasing function and it takes values between

(−∞,∞); thus, (5.42) has always a unique solution to f(c) = 2b
σ

. This assures

that, there always exists an equilibrium with two bins regardless of the value of

b. Further, since f(0) = 2 × 0 − φ(0)
1−Φ(0)

+ φ(0)
Φ(0)

= 0, the signs of b and c must be

the same; i.e., if b < 0, the boundary between two bins is smaller than the mean

(m1 < µ); if b > 0, the boundary between two bins is greater than the mean

(m1 > µ).

5.7.3.2 Proof of Proposition 5.4.1

Consider an equilibrium with N bins for a Gaussian source M ∼ N (µ, σ2): the

k-th bin is [mk−1,mk), and the centroid of the k-th bin (i..e, the corresponding

action of the decoder) is uk = E[m|mk−1 ≤ m < mk] so that −∞ = m0 <

u1 < m1 < u2 < m2 < . . . < mN−2 < uN−1 < mN−1 < uN < mN = ∞. Further,

assume that µ is in the t-th bin; i.e., mt−1 ≤ µ < mt. Due to the nearest neighbor

condition (the best response of the encoder) we have uk+1−mk = (mk−uk)−2b;

and due to the centroid condition (the best response of the decoder), we have

uk = E[m|mk−1 ≤ m < mk] = µ − σ φ(
mk−µ
σ

)−φ(
mk−1−µ

σ
)

Φ(
mk−µ
σ

)−Φ(
mk−1−µ

σ
)
. Now consider the right-

half of the Gaussian source; i.e., m > µ, and thus mN−1 > µ, and for the N -th

bin, the following holds:

uN −mN−1 = E[m|mN−1 ≤ m <∞]−mN−1 = µ+ σ
φ(mN−1−µ

σ
)

1− Φ(mN−1−µ
σ

)
−mN−1

(a)
< µ+ σ

√(
mN−1−µ

σ

)2

+ 4 + mN−1−µ
σ

2
−mN−1

=
σ

2

√(mN−1 − µ
σ

)2

+ 4− mN−1 − µ
σ


<
σ

2

√(mN−1 − µ
σ

)2

+ 4

(
mN−1 − µ

σ

)
+ 4− mN−1 − µ

σ


=
σ

2

(
mN−1 − µ

σ
+ 2− mN−1 − µ

σ

)
= σ . (5.45)
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Here, (a) follows from the inequality on the upper bound of the Mill’s ratio [125].

Now, observe the following:

σ > uN −mN−1 = (mN−1 − uN−1)− 2b

> (uN−1 −mN−2)− 2b

= (mN−2 − uN−2)− 2(2b)

...

> ut+1 −mt − (N − t− 1)(2b)

= mt − ut − (N − t)(2b)

> −(N − t)(2b) ,

where the inequalities follow from the fact that the Gaussian pdf of M is mono-

tonically decreasing for m > µ. Hence, for b < 0, N − t < − σ
2b

, which implies

that the number of bins on the right-half is bounded by
⌊
− σ

2b

⌋
. Further, when

b < 0, the following relation holds for bin-lengths:

lk = mk −mk−1 = (mk − uk) + (uk −mk−1) > (uk −mk−1) + (uk −mk−1)

= (mk−1 − uk−1 − 2b) + (mk−1 − uk−1 − 2b)

> (mk−1 − uk−1 − 2b) + (uk−1 −mk−2 − 2b)

= (mk−1 − uk−1) + (uk−1 −mk−2)− 4b = mk−1 −mk−2 − 4b = lk−1 − 4b

⇒ lk > lk−1 . (5.46)

Thus, bin-lengths are monotonically increasing on the right-half when b < 0.

Similarly, consider the left-half of the Gaussian source; i.e., m < µ, and thus

µ > m1, and for the first bin, the following holds:

m1 − u1 = m1 − E[m| −∞ < m < m1] = m1 − µ+ σ
φ(m1−µ

σ
)

Φ(m1−µ
σ

)

(a)
= σ

φ(µ−m1

σ
)

1− Φ(µ−m1

σ
)
− σµ−m1

σ

(b)
< σ


√(

µ−m1

σ

)2
+ 4 + µ−m1

σ

2
− µ−m1

σ
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=
σ

2

√(µ−m1

σ

)2

+ 4− µ−m1

σ


<
σ

2

√(µ−m1

σ

)2

+ 4

(
µ−m1

σ

)
+ 4− µ−m1

σ


=
σ

2

(
µ−m1

σ
+ 2− µ−m1

σ

)
= σ . (5.47)

Here, (a) holds since φ(x) = φ(−x) and Φ(x) = 1 − Φ(−x), (b) follows from

the inequality on the upper bound of the Mill’s ratio [125]. Now, observe the

following:

σ > m1 − u1 = u2 −m1 + 2b

> m2 − u2 + 2b

= u3 −m2 + 2(2b)

...

> mt−1 − ut−1 + (t− 2)(2b)

= ut −mt−1 + (t− 1)(2b)

> (t− 1)(2b) ,

where the inequalities follow from the fact that the Gaussian pdf of M is mono-

tonically increasing for m < µ. Hence, for b > 0, t − 1 < σ
2b

, which implies that

the number of bins on the left-half is bounded by
⌊
σ
2b

⌋
. Further, when b > 0, the

following relation holds for bin-lengths:

lk = mk −mk−1 = (mk − uk) + (uk −mk−1) > (mk − uk) + (mk − uk)

= (uk+1 −mk + 2b) + (uk+1 −mk + 2b)

> (mk+1 − uk+1 + 2b) + (uk+1 −mk + 2b)

= (mk+1 − uk+1) + (uk+1 −mk) + 4b = mk+1 −mk + 4b = lk+1 + 4b

⇒ lk < lk+1 . (5.48)

Thus, bin-lengths are monotonically decreasing on the left-half when b > 0.
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5.7.4 Proofs for Section 5.5

5.7.4.1 Proof of Fact 5.5.1

Due to the absolute value in the pdf of M , there may be three different cases as

will be investigated below:

(i) 0 < a < b : This case is equivalent to the standard exponential case, thus

we have E[m|a < m < b] = 1
λ

+ a− b−a
eλ(b−a)−1

, as shown below:

E[m|a < m < b] =

∫ b

a

m
λ
2
e−λ|m|∫ b

a
λ
2
e−λ|m|

dm =

∫ b
a
mλe−λmdm∫ b
a
λe−λmdm

=

(
−me−λm − e−λm

λ

) ∣∣∣∣b
a

−e−λm
∣∣∣∣b
a

=
−be−λb − e−λb

λ
+ ae−λa + e−λa

λ

−e−λb + e−λa

=
1

λ
+
aeλb − beλa

eλb − eλa
=

1

λ
+ a− eλa(b− a)

eλb − eλa

=
1

λ
+ a− b− a

eλ(b−a) − 1
.

(ii) a < 0 < b : In this case, the mean of a truncated standard double-

exponential distribution can be obtained as follows:

E[m|a < m < b] =

∫ b

a

m
λ
2
e−λm∫ b

a
λ
2
e−λ|m|

dm =

∫ 0

a
mλeλmdm+

∫ b
0
mλe−λmdm∫ 0

a
λeλmdm+

∫ b
0
λe−λmdm

=

(
meλm − eλm

λ

) ∣∣∣∣0
a

+
(
−me−λm − e−λm

λ

) ∣∣∣∣b
0

(eλm)

∣∣∣∣0
a

+ (−e−λm)

∣∣∣∣b
0

=

(
− 1
λ
− aeλa + eλa

λ

)
+
(
−be−λb − e−λb

λ
+ 1

λ

)
(1− eλa) + (−e−λb + 1)

=
1
λ

(
eλa − e−λb

)
−
(
aeλa + be−λb

)
2− (eλa + e−λb)

.
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(iii) a < b < 0 : In this case, the mean of a truncated standard double-

exponential distribution can be obtained as follows:

E[m|a < m < b] =

∫ b

a

m
λ
2
e−λ|m|∫ b

a
λ
2
e−λ|m|

dm =

∫ b
a
mλeλmdm∫ b
a
λeλmdm

=

(
meλm − eλm

λ

) ∣∣∣∣b
a

eλm
∣∣∣∣b
a

=
beλb − eλb

λ
− aeλa + eλa

λ

eλb − eλa
= −1

λ
+
beλb − aeλa

eλb − eλa

= −1

λ
+ b+

eλa(b− a)

eλb − eλa
= −1

λ
+ b+

b− a
eλ(b−a) − 1

.

5.7.4.2 Proof of Theorem 5.5.1

Consider an equilibrium with two bins such that the first bin is [0 = m0,m1)

and the second bin is [m1,m2 = ∞). Then, based on the value of the boundary

between two bins m1, there are two possible cases:

(i) m1 > 0 : The centroids of the bins (the action of the decoder) can be derived

from (5.6) as u1 = E[m| − ∞ < m < m1] =
1
λ(0−e−λm1)−(0+m1e−λm1)

2−(0+e−λm1)
=

− m1+ 1
λ

2eλm1−1
and u2 = E[m|m1 ≤ m <∞] = m1 + 1

λ
. Then, by utilizing (5.2),

m1 =
u1 + u2

2
+ b =

− m1+ 1
λ

2eλm1−1
+m1 + 1

λ

2
+ b⇒ m1 +

m1 + 1
λ

2eλm1 − 1
=

1

λ
+ 2b

⇒
2m1eλm1 + 1

λ

2eλm1 − 1
=

1

λ
+ 2b⇒ eλm1

(
2

λ
+ 4b− 2m1

)
=

2

λ
+ 2b

t=λm1−1−2λb⇒ et+1+2λb−2t

λ
=

2

λ
+ 2b⇒ tet = − (1 + λb) e−(1+2λb) . (5.49)

In order to have a real solution for t, since tet ≥ −1
e
∀t ∈ R,

− (1 + λb) e−(1+2λb) ≥ −1
e
⇒ (1 + λb)e−2λb ≤ 1 ⇒ e2λb − λb − 1 ≥ 0

must be satisfied. Let f(x) , e2x − x− 1, then we are looking for x values

which satisfy f(x) ≥ 0. Since f ′(x) = 2e2x − 1 and f ′′(x) = 4e2x > 0,

f(x) is a convex function of x, and it takes its minimum value when

f ′(x) = 2e2x − 1 = 0 ⇒ x = − ln 2
2

, and f(− ln 2
2

) < 0. Therefore,
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f(x) takes negative values between two solutions of f(x) = 0, and since

−1 < W0(·) < 0, the solutions can be found as follows:

f(x) = 0⇒e2x − x− 1 = 0⇒ (x+ 1)e−2x = 1
u=2x+2⇒ u

2
e−u+2 = 1

⇒− ue−u = −2e−2 ⇒ u = −W (−2e−2)⇒ x = −W (−2e−2)

2
− 1

⇒x1 = 0 and − 1 < x2 = −W0(−2e−2)

2
− 1 < −1

2
.

Hence, for −W0(−2e−2)
2

− 1 < x < 0, f(x) takes negative values; in other

words, λb cannot take values between −W0(−2e−2)
2

−1 and 0 (in other words,

it is not possible to have −W0(−2e−2)
2

− 1 < λb < 0) in order to have an

equilibrium with two bins in which the boundary between the bins lies in

the positive side of the real line; i.e., m1 > 0.

Now, assume that λb < −W0(−2e−2)
2

− 1 ⇒ λb < −W0(−2e−2)
2

− 1 < −1
2
⇒

1 + 2λb < 0. Further, since we must have m1 > 0⇒ t
λ

+ 1
λ

+ 2b > 0⇒ t >

−(1 + 2λb). Then, by combining the inequalities, we have t > −(1 + 2λb) >

0 ⇒ − (1 + λb) e−(1+2λb) = tet > −(1 + 2λb)e−(1+2λb) ⇒ λb > 0, which is a

contradiction. Thus, it is not possible to have λb < −W0(−2e−2)
2

− 1.

As it can be observed above, in order to have m1 > 0, we must have λb > 0.

Further, the converse also holds: as long as λb > 0 ⇒ b > 0, it is always

possible to have an equilibrium with two bins where m1 > 0.

(ii) m1 < 0 : The similar analysis holds, but the details are provided below for

completeness:

The centroids of the bins (the action of the decoder) can be derived from

(5.6) as u1 = E[m| − ∞ < m < m1] = m1 − 1
λ

and u2 = E[m|m1 ≤ m <

∞] =
1
λ(eλm1−0)−(m1eλm1+0)

2−(eλm1+0)
= − m1− 1

λ

2e−λm1−1
. Then, by utilizing (5.2),

m1 =
u1 + u2

2
+ b =

m1 − 1
λ
− m1− 1

λ

2e−λm1−1

2
+ b⇒ m1 +

m1 − 1
λ

2e−λm1 − 1
= −1

λ
+ 2b

⇒
2m1e−λm1 − 1

λ

2e−λm1 − 1
= −1

λ
+ 2b⇒ e−λm1

(
−2

λ
+ 4b− 2m1

)
= −2

λ
+ 2b

t=λm1+1−2λb⇒ e−t+1−2λb−2t

λ
= −2

λ
+ 2b⇒ −te−t = (−1 + λb) e−1+2λb .

(5.50)
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In order to have a real solution for t, since tet ≥ −1
e
∀t ∈ R,

(−1 + λb) e−1+2λb ≥ −1
e
⇒ (−1 + λb)e2λb ≥ −1 ⇒ e−2λb + λb − 1 ≥ 0

must be satisfied. Let g(x) , e−2x + x− 1, then we are looking for x values

which satisfy g(x) ≥ 0. Since g′(x) = −2e−2x + 1 and g′′(x) = 4e−2x > 0,

g(x) is a convex function of x, and it takes its minimum value when

g′(x) = −2e−2x + 1 = 0 ⇒ x = ln 2
2

, and g( ln 2
2

) < 0. Therefore,

g(x) takes negative values between two solutions of g(x) = 0, and since

−1 < W0(·) < 0, the solutions can be found as follows:

g(x) = 0⇒e−2x + x− 1 = 0⇒ (1− x)e2x = 1
u=2x−2⇒ −u

2
eu+2 = 1

⇒ueu = −2e−2 ⇒ u = W (−2e−2)⇒ x =
W (−2e−2)

2
+ 1

⇒x1 = 0 and
1

2
< x2 =

W0(−2e−2)

2
+ 1 < 1 .

Hence, for 0 < x < W0(−2e−2)
2

+1, g(x) takes negative values; in other words,

λb cannot take values between 0 and W0(−2e−2)
2

+ 1 (in other words, it is not

possible to have 0 < λb < W0(−2e−2)
2

+ −1) in order to have an equilibrium

with two bins in which the boundary between the bins lies in the negative

side of the real line; i.e., m1 < 0.

Now, assume that λb > W0(−2e−2)
2

+ 1 ⇒ λb > W0(−2e−2)
2

+ 1 > 1
2
⇒ −1 +

2λb > 0. Further, since we must have m1 < 0 ⇒ t
λ
− 1

λ
+ 2b < 0 ⇒ t <

1 − 2λb. Then, by combining the inequalities, we have −t > −1 + 2λb >

0 ⇒ (−1 + λb) e−1+2λb = −te−t > (−1 + 2λb)e−1+2λb ⇒ λb < 0, which is a

contradiction. Thus, it is not possible to have λb > W0(−2e−2)
2

+ 1.

As it can be observed above, in order to have m1 < 0, we must have λb < 0.

Further, the converse also holds: as long as λb < 0 ⇒ b < 0, it is always

possible to have an equilibrium with two bins where m1 < 0.

5.7.4.3 Proof of Theorem 5.5.2

Consider an equilibrium with two bins such that the first bin is [0 = m0,m1) and

the second bin is [m1,m2 = ∞). The centroids of the bins (the action of the
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decoder) can be derived from (5.8) as u1 = E[m|0 < m < m1] = −σ
φ(
m1
σ

)− 1√
2π

Φ(
m1
σ

)− 1
2

and u2 = E[m|m1 ≤ m <∞] = σ
φ(
m1
σ

)

1−Φ(
m1
σ

)
. Then, by utilizing (5.2),

m1 =
u1 + u2

2
+ b =

−σ
φ(
m1
σ

)− 1√
2π

Φ(
m1
σ

)− 1
2

+ σ
φ(
m1
σ

)

1−Φ(
m1
σ

)

2
+ b

=
σ

2

(
−
φ(m1

σ
)− 1√

2π

Φ(m1

σ
)− 1

2

+
φ(m1

σ
)

1− Φ(m1

σ
)

)
+ b

c,m1
σ⇒ σc =

σ

2

(
−
φ(c)− 1√

2π

Φ(c)− 1
2

+
φ(c)

1− Φ(c)

)
+ b

⇒ 2c+
φ(c)− 1√

2π

Φ(c)− 1
2

− φ(c)

1− Φ(c)
=

2b

σ
. (5.51)

Let f(c) , 2c+
φ(c)− 1√

2π

Φ(c)− 1
2

− φ(c)
1−Φ(c)

, then, observe the following:

lim
c→0

f(c) = lim
c→0

(
2c+

φ(c)− 1√
2π

Φ(c)− 1
2

− φ(c)

1− Φ(c)

)

= lim
c→0

(
φ(c)− 1√

2π

Φ(c)− 1
2

)
+ lim

c→0

(
2c− φ(c)

1− Φ(c)

)

= lim
c→0

(
φ(c)− 1√

2π

Φ(c)− 1
2

)
−
√

2

π

H
= lim

c→0

(
φ(c)(−c)
φ(c)

)
−
√

2

π

= lim
c→0

(−c)−
√

2

π
= −

√
2

π
,

lim
c→∞

f(c) = lim
c→∞

(
2c+

φ(c)− 1√
2π

Φ(c)− 1
2

− φ(c)

1− Φ(c)

)

= lim
c→∞

(
2c− φ(c)

1− Φ(c)

)
+ lim

c→∞

(
φ(c)− 1√

2π

Φ(c)− 1
2

)

= lim
c→∞

(
2c− 2cΦ(c)− φ(c)

1− Φ(c)

)
−
√

2

π

H
= lim

c→∞

(
2− 2Φ(c)− cφ(c)

−φ(c)

)
−
√

2

π

H
= lim

c→∞

(
−3φ(c) + c2φ(c)

cφ(c)

)
−
√

2

π
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= lim
c→∞

(
−3 + c2

c

)
−
√

2

π
H
= lim

c→∞
2c−

√
2

π
→∞ ,

f ′(c) = 2 +
φ(c)(−c)(Φ(c)− 1

2
)−

(
φ(c)− 1√

2π

)
φ(c)(

Φ(c)− 1
2

)2

− φ(c)(−c)(1− Φ(c))− φ(c)(−φ(c))

(1− Φ(c))2

= 2− cφ(c)

Φ(c)− 1
2

+

(
1√
2π
− φ(c)

)
φ(c)(

Φ(c)− 1
2

)2 − φ(c)

1− Φ(c)

(
φ(c)

1− Φ(c)
− c
)

= 2− cφ(c)

Φ(c)− 1
2

+

(
1√
2π
− φ(c)

)
φ(c)(

Φ(c)− 1
2

)2 − φ(c)

1− Φ(c)

(
φ(c)

1− Φ(c)
− c
)
.

(5.52)

Then, observe the following:

• In [125], the inequality on the upper bound of the Mill’s ratio is proved as
φ(c)

1−Φ(c)
<
√
c2+4+c

2
. Then,

φ(c)

1− Φ(c)

(
φ(c)

1− Φ(c)
− c
)
<

√
c2 + 4 + c

2

(√
c2 + 4 + c

2
− c

)

=

√
c2 + 4 + c

2

√
c2 + 4− c

2
= 1 .

• Since 0 ≤ φ(c) ≤ 1√
2π

, we have

(
1√
2π
−φ(c)

)
φ(c)

(Φ(c)− 1
2)

2 ≥ 0.

• Let g(c) , cφ(c)

Φ(c)− 1
2

, then g′(c) = φ(c)
(

(1−c2)(Φ(c)− 1
2

)−cφ(c)

(Φ(c)− 1
2

)2

)
. If we let h(c) ,

(1−c2)(Φ(c)− 1
2
)−cφ(c), then h′(c) = −2c(Φ(c)− 1

2
)+(1−c2)φ(c)−φ(c)−

cφ(c)(−c) = −2c(Φ(c) − 1
2
) < 0 for c > 0. Thus, g′′(c) < 0, which implies

that g(c) is a concave function of c, and takes its maximum value at g(c∗)

which satisfies g′(c∗) = h(c∗) = 0. By solving numerically, we obtain c∗ ' 0

and g(c∗) ' 1.

By utilizing the results above, (5.52) becomes

f ′(c) > 2− 1 + 0− 1 > 0 . (5.53)
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Thus, f(c) is a monotone increasing function and it takes values between(
−
√

2
π
,∞
)

; however, if 2b
σ
< −

√
2
π
, (5.42) cannot have a solution to f(c) = 2b

σ
.

Therefore,

(i) if 2b
σ
≥ −

√
2
π
, then (5.42) has always a unique solution to f(c) = 2b

σ
, which

assures that, there always exists an equilibrium with two bins.

(ii) if 2b
σ
< −

√
2
π
, there cannot be an equilibrium with two bins; i.e., the only

equilibrium is the non-informative one (the equilibrium with one bin).
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Chapter 6

Summary and Conclusion

6.1 Summary

In this dissertation, we considered the cheap talk setup of Crawford and Sobel [16],

and introduced a signaling game formulation in the hypothesis testing context.

In Chapter 2, we studied the decentralized quadratic cheap talk and signaling

game problems, which refers to a class of two-player games of incomplete infor-

mation in which an informed decision maker (encoder) transmits information to

another decision maker (decoder). For a strategic information transmission prob-

lem under quadratic criteria with a non-zero bias term leading to a mismatch

in the encoder and the decoder objective functions, Nash and Stackelberg equi-

libria have been investigated in a number of setups. It has been proven that

for any arbitrary scalar source, in the presence of misalignment, the quantized

nature of Nash equilibrium policies hold whereas all Stackelberg equilibrium poli-

cies are fully informative. Further, it has been shown that the Nash equilibrium

policies may be non-discrete and even linear for a multi-dimensional cheap talk

problem, unlike the scalar case. The additive noisy channel setup with Gaussian

statistics has also been studied, such a case leads to a signaling game due to the

communication constraints in the transmission. Conditions for the existence of
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informative affine Nash equilibrium policies were presented for both the scalar

and multi-dimensional setups. Lastly, we proved that the only equilibrium in

the Stackelberg noisy setup is the linear equilibrium. Table 2.1 summarizes the

results of this chapter.

In Chapter 3, dynamic (multi-stage) signaling games involving an encoder

and a decoder who have subjective models on the cost functions or the proba-

bilistic model were considered. Nash (simultaneous-move game) and Stackelberg

(leader-follower game) equilibria of multi-stage quadratic cheap talk and signal-

ing game problems were investigated under a perfect Bayesian formulation. We

established qualitative (e.g. on full revelation, quantization nature, linearity, in-

formativeness and non-informativeness) and quantitative properties (on linearity

or explicit computation) of Nash and Stackelberg equilibria under either subjec-

tive/inconsistent cost models or priors. For the multi-stage scalar cheap talk, a

zero-delay communication setup was considered for i.i.d. and Markov sources; it

was shown that the final stage equilibrium is always quantized and under further

conditions the equilibria for all time stages must be quantized under the Nash

assumption. In contrast, the Stackelberg equilibria are always fully revealing. In

the multi-stage signaling game where the transmission of a Gauss-Markov source

over a memoryless Gaussian channel was considered, affine policies constitute an

invariant subspace under best response maps for scalar and multi-dimensional

sources under Nash equilibria. However, for multi-stage Stackelberg signaling

games involving Gauss-Markov sources and memoryless Gaussian channels, we

have proved that, for scalar setups, linear policies are optimal and the only equi-

librium is the linear one, whereas this is not the case for general multi-dimensional

setups. We have obtained an explicit dynamic recursion for optimal linear en-

coding policies for multi-dimensional sources, and derive conditions under which

Stackelberg equilibria are non-informative. For the case where the encoder and

the decoder have subjective priors on the source distribution, under identical costs

and mutual absolute continuity, we have shown that there exist fully informative

Nash and Stackelberg equilibria for the dynamic cheap talk as in the team theo-

retic setup. In particular, for the cheap talk problem, the equilibrium behavior is

robust to a class of perturbations in the priors, but not to the perturbations in the
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cost models in general. For the signaling game, however, Stackelberg equilibrium

policies are robust to perturbations in the cost but not to the priors considered

in this chapter. Table 3.1 summarizes the results of this chapter.

In Chapter 4, we considered binary signaling problems in the hypothesis test-

ing context, in which the decision makers (the transmitter and the receiver) have

subjective priors and/or misaligned objective functions. Depending on the com-

mitment nature of the transmitter to his policies, we formulated the binary sig-

naling problem as a Bayesian game under either Nash or Stackelberg equilibrium

concepts and established equilibrium solutions and their properties. We showed

that there can be informative or non-informative equilibria in the binary signaling

game under the Stackelberg assumption, but there always exists an equilibrium.

However, apart from the informative and non-informative equilibria cases, there

may not be a Nash equilibrium when the receiver is restricted to use determin-

istic policies. We also studied the effects of small perturbations at the point of

identical priors and costs and showed that the game equilibrium behavior around

the team setup is robust under the Nash assumption, whereas it is not robust

under the Stackelberg assumption.

In Chapter 5, we investigated the number of bins at the equilibrium under the

cheap talk setup with exponential and Gaussian sources as to whether there are

finitely many bins or countably infinite number of bins in any equilibrium. It is

shown that, for exponential sources, when the bias is negative, the number of bins

at the equilibrium is bounded, whereas there is no bound on the number of bins

for the positive bias, indeed, it is possible to have an equilibrium with infinitely

many bins. For the Gaussian case, there can always exist an equilibrium with

two bins.

6.2 Future Directions

A possible future research direction related to Chapter 2 and Chapter 3 is to in-

vestigate the convergence properties for Nash and Stackelberg equilibria; i.e., an
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iterative convergence rate of the best responses can be analyzed. Another direc-

tion is to consider more general cost functions and source distributions in cheap

talk and signaling game formulations. Obtaining the structural results depending

on the cost functions and different type of sources will give significant perspec-

tives to model and comment on the equilibrium states of many decentralized and

networked control systems possibly will be in use in the near future.

Regarding Chapter 4, the binary setup considered here can be extended to

the M -ary hypothesis testing setup, and the corresponding signaling game struc-

ture can be formed in order to model a game between players with a multiple-bit

communication channel. The extension to more general noise distributions is pos-

sible: the Nash equilibrium analysis holds identically when the noise distribution

leads to a single-threshold test. Finally, in addition to the Bayesian approach

considered here, different cost structures and parameters can be introduced by

investigating the game under Neyman-Pearson and minimax criteria.

Generalization of Lloyd-Max quantizers can be studied related to Chapter 5

in order to analyze the number of bins (whether finite or infinite) at the equilib-

rium. The possible approaches can be the best-response analysis and fixed point

analysis. Further, for more general sources, besides the number of bins, it is a

desirable question to see whether in general more number of bins implies more

desirable equilibria.
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Birkhäuser, 2013.

[5] J. Hirshleifer, “The private and social value of information and the reward

to inventive activity,” The American Economic Review, pp. 561–574, 1971.
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[14] T. Başar, “Stochastic differential games and intricacy of information struc-

tures,” in Dynamic Games in Economics (J. Haunschmied, V. M. Veliov,

and S. Wrzaczek, eds.), vol. 16 of Dynamic Modeling and Econometrics in

Economics and Finance, pp. 23–49, Springer Berlin Heidelberg, 2014.

[15] O. Gossner, “Comparison of information structures,” Games and Economic

Behavior, vol. 30, no. 1, pp. 44 – 63, 2000.

[16] V. P. Crawford and J. Sobel, “Strategic information transmission,” Econo-

metrica, vol. 50, pp. 1431–1451, 1982.

[17] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. New York, NY, USA: Cambridge Uni-

versity Press, 2009.

[18] I. Shames, A. Teixeira, H. Sandberg, and K. Johansson, “Agents misbehav-

ing in a network: a vice or a virtue?,” IEEE Network, vol. 26, pp. 35–40,

May 2012.
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