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ABSTRACT

GRAPH THEORY TO STUDY COMPLEX NETWORKS
IN THE BRAIN

Mite Mijalkov

Ph.D. in Materials Science and Nanotechnology

Advisor: Giovanni Volpe

April 2018

The brain is a large-scale, intricate web of neurons, known as the connectome.

By representing the brain as a network i.e. a set of nodes connected by edges,

one can study its organization by using concepts from graph theory to evaluate

various measures. We have developed BRAPH - BRain Analysis using graPH

theory, a MatLab, object-oriented freeware that facilitates the connectivity anal-

ysis of brain networks. BRAPH provides user-friendly interfaces that guide the

user through the various steps of the connectivity analysis, such as, calculat-

ing adjacency matrices, evaluating global and local measures, performing group

comparisons by non-parametric permutations and assessing the communities in a

network. To demonstrate its capabilities, we performed connectivity analyses of

structural and functional data in two separate studies. Furthermore, using graph

theory, we showed that structural magnetic resonance imaging (MRI) undirected

networks of stable mild cognitive impairment (sMCI) subjects, late MCI con-

verters (lMCIc), early MCI converters (eMCIc), and Alzheimer’s Disease (AD)

patients show abnormal organization. This is indicated, at global level, by de-

creases in clustering and transitivity accompanied by increases in path length

and modularity and, at nodal level, by changes in nodal clustering and closeness

centrality in patient groups when compared to controls. In samples that do not

exhibit differences in the undirected analysis, we propose the usage of directed

networks to assess any topological changes due to a neurodegenerative disease.

We demonstrate that such changes can be identified in Alzheimer’s and Parkin-

son’s patients by using directed networks built by delayed correlation coefficients.

Finally, we put forward a method that improves the reconstruction of the brain

connectome by utilizing the delays in the dynamic behavior of the neurons. We

show that this delayed correlation method correctly identifies 70% to 80% of the

real connections in simulated networks and performs well in the identification of

their global and nodal properties.
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ÖZET

BEYİNDEKİ KOMPLEKS AĞLARI ANALİZ ETMEK
İÇİN GRAF TEORİSİ

Mite Mijalkov

Malzeme Bilimi ve Nanoteknoloji, Doktora

Tez Danışmanı: Giovanni Volpe

Nisan 2018

Beyin, karmaşık ve geniş kapsamlı nöral ağlardan oluşmakta ve bu yapılara

da “konektom” adı verilmektedir. Bu sebeple, beyin, düğüm ve kenarlardan

oluşan bir ağ olarak düşünüldüğünde, graf teori konseptleri ile beynin organi-

zasyonuyla alakalı çeşitli analizler yapılabilir. Bu çalışmada, beynin bağlantı

analizini yapmak için MatLab temelli, nesne odaklı, ücretsiz bir yazılım olan

BRAPH (Graf teori ile beyin alanizi) geliştirilmiştir. BRAPH, kullanımı ko-

lay bir arayüze sahiptir ve bağlantı analizi yapan kullanıcıyı çeşitli şekillerde

yönlendirmektedir (komşuluk matrisi hesaplama, genel ve bölgesel ölçü anal-

izi, non-parametrik permütasyon yöntemi ile gruplar arası karşılaştırma ve ağ

içerisindeki alt grupları analiz etme gibi). BRAPH ile yapılabilecekleri göstermek

amacıyla, iki farklı çalışmada yapısal ve fonksiyonel bağlantı analizi yapılmıştır.

Graf teori kullanılarak, sMCI, lMCIc, eMCIc ve AD hastalarından elde edilen

yapısal MRI datası yönlendirilmemiş ağlarda analiz edildiğinde anormal organi-

zasyon gözlenmiştir. Kontrol gruplarıyla kıyaslandığında, bu hastalarda, genel

seviyede gruplaşma ve geçişliliğin azalması, aynı zamanda yol uzunluğunun

ve modülaritenin artması, düğüm seviyesinde ise düğüm gruplaşmasında ve

merkeze yakınlıkta değişimler gösterilmiştir. Burada, yönlendirilmemiş anal-

izlerde farklılık göstermeyen örneklerin nörodejeneratif hastalıklardan kay-

naklı topolojik değişimlerinin incelenmesi için yönlendirilmiş ağlarla analiz

edilmesi önerilmektedir. Alzheimer ve Parkinson hastaları için gecikmiş kore-

lasyon katsayıları ile yapılan yönlendirilmiş ağlar analizi sonucunda, bahsedilen

değişikliklerin tespit edilebildiği gösterilmiştir. Son olarak, nöronların dinamik

yapısındaki gecikmeleri kullanarak beyin konektomunun rekonstrüksiyonunu

geliştiren bir yöntem ileri sürülmektedir. İleri sürülen “gecikmiş korelasyon”

metodunun, simüle edilen ağlardaki gerçek bağlantıları %70-80 oranında doğru

tespit ettiği, aynı zamanda genel ve boğum özelliklerinin tespitinde de oldukça

iyi olduğu gösterilmiştir.
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Chapter 1

Introduction

We are surrounded by systems exhibiting complex behaviors that originate from

the interactions between few autonomous individuals. Such complex behaviors

exist at virtually all scales in nature [1], ranging from the molecular systems [2],

the organization of the colonies of bacteria [3, 4], the foraging behavior of ants

and bees [5], the organizational patterns of schools of fish [6] or flocks of birds

[7] to the collective motion of human crowds [8]. Moreover, many of the man-

made systems are also complex, such as the enginnered robotic swarms [9], the

internet [10, 11], the power grid [12] or the world wide web [13]. The need for

the individual agents to organize in such complex systems arises mainly due to

the realization that in many cases, the capabilities of a single individual are not

enough to perform a particular task, e.g. to escape from a pray or to find food in

the case of the schools of fish, or to support a large amount of electrical energy in

the power grid. Therefore, it is necessary for individual elements to work together

towards a common goal, which then makes the aim more achievable.

During this cooperative activity each agent would typically have a simple task

and would only be aware only of its immediate surroundings without posessing

any knowledge of the full picture [14]. For example, in a flock of starlings each

bird interacts only with six to seven neighbors [15]; this configuration has been

shown to optimize the integrity of the group while at the same time requiring
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only minimal action from the individuals [16]. This behavior is also present in

man-made systems, for example, in the case of the world wide web, one document

would typically have links to only a small number of documents which in turn

would link to few others. However, although one document have a small amount

of links, the progressive action of reaching new documents at each step ensures

that the world wide web is a connected system and every document present on

the world wide web is reachable.

The above examples show that studying only a single agent in isolation cannot

facilitate full understanding of complex systems. Instead, the interactions be-

tween agents are crucial to study the emergent behavior in the complex systems

and learn how the actions of the individuals shape their behavior as a whole.

One way to accomplish this is to model such systems as networks, a set of nodes,

representing the individual agents, and edges, quantifying the interactions be-

tween the nodes. Network science has a long history in its application to study

complex systems, initially being used in the context of social networks as early as

1940s [17]. Networks continued to be used throught the history in order to study

the friendship patterns of people [18] or their business relations [19]. Addition-

ally, network studies have been done for citation networks [20] (research papers

and citations between them), for world wide web [21] (documents and URLs),

for power-grids [12] (generators, transformers and substations, and transmission

lines connecting them), airline networks [22] (airports and flights), telephone calls

network [23] (phone numbers and telephone calls) or inter-banking networks [24]

(banks and claims between banks). In addition to the above mentioned man-

made systems, networks are also observed in nature, for example the network of

interactions between proteins [25] (proteins and physical contacts between them),

the methabolic pathways [26] (biomolecules and chemical reactions) or the food

web [27] (species in an ecosystem and their trophic relationships).

Seeing that we have such a diverse set of systems that can be modeled by a single

concept, the question arises of whether we are justified to take such approach to

the study of complex systems. The answer to this question dates back to 1735

and the Euler’s work to solve the Königsberg bridge puzzle; this is thought to
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be the beginning of graph theory, the mathematical framework facilitating the

analysis of complex networks. At that time, Königsberg was a captial of Eastern

Prussia and was split into four different pieces of land by the river Pregel that

passed through the city. Seven bridges were built around the city in order to

connect the landmasses, prompting the question of whether one could visit all

four landmasses by passing each bridge exactly once [28]. The rigorous proof

that such path does not exist was presented by Euler [29]. Crucial to his proof

was the realization that the landscape can be represented as a graph; each land

becomes a node in this graph and an edge is drawn between two lands connected

by a bridge. In this way, he showed that the details of the actual landscape do

not need to be taken into account, instead it is only the topological properties

of the underlying graph that are essential to solve the problem. This work of

Euler is considered to be the first one concerning graphs and provided the basis

to the field of graph theory that is at the core of the current methods to analyze

complex networks.

Therefore, in a network analysis the real nature of the nodes and edges does

not convey any crucial information about the network. The nodes can represent

people, molecules, proteins or documents and the edges can represent any physical

or abstract connection between them; the crucial realization is that all systems

share similar patterns of organization. Therefore, many real networks can be

represented by their underlying graph in which all relations are captured by the

directions and weights of the edges between the nodes [30]. Then, using the

tools of the graph theory this fundamental graph can be studied and various

information about its topological structure can be obtained.

Complex networks can be characterized by a vast set of measures that serve to

assess various properties of the network [31]. The measures can be nodal and

convey information about the individual elements of the network, or they can

be global, thus reflecting the properties of the complete network. Most of the

measures have been derived for binary undirected networks, i.e. networks that

have reciprocal relations and no weight assigned to an edge, for example the sci-

ence collaboration network [32]. However, some measures have their counterparts

for the case of weighted networks, e.g. network of mobile phone calls [33], and
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directed networks, e.g. citation networks [34] (more detailed description of the

network distinction based on the nature of the edges and the measures used to

characterize such networks is presented in chapter 2). Moreover, on the basis of

the type of information they provide about the functioning of the network, mea-

sures can be divided as measures of network segregation, network integration,

and influence [31, 35].

Network segregation refers to the localization of the information in a network,

indicated by the presence of separate, highly connected sub-networks or patterns

of connections [31]. Network segregation can be quantified by the clustering

coefficient, defined as the fraction of the neighbors of a given node that are

also neighbors to each other; for example, in the context of social networks,

clustering reveals how many of one’s friends are also friends with each other. In

simplest terms, clustering coefficient counts the fraction of triangles that exist

around a node, which conveys information about the network robustness [36,

37]. While clustering is a nodal measure, it can be averaged over all nodes in

the network to obtain the global clustering coefficient indicating the extent of

segregation in the network. Network segregation can be also revealed by the

occurences of motifs, a particular way of connections between a group of nodes

that can appear recurrently in a network [38]. Whether some specific sub-network

patterns occur in the network more frequently than expected can be studied by

comparing the number of motifs of given size in the network of interest to the

number of motifs in a random network [39]. In addition to motifs, one can also

identify communities in the network. Communities are described as sub-networks

that consist of nodes having many more connections with nodes of the same

community, when compared to the number of connections with nodes of other

communities [40]. Calculating the community structure of a network can reveal

an underlying organization or functioning in the network; e.g. in the case of world

wide web, different communities might correspond to a set of documents on the

same topic [41], or in the context of metabolic networks different communities

could be built up from molecules performing similar functions [42].

Measures of network integration evaluate the extent to which nodes in the network

can interact and share information between each other. This is most commonly
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determined by the concept of shortest distance between two nodes, defined as the

lowest number of edges that need to be crossed in order to reach one node from

the other. In this context, lower distances between nodes are associated with

good integration possibility between the nodes [31]. The shortest path length

of a node is calculated as the average of the shortest distances between that

node and all other nodes in the graph; lower path length of a node means that

the node is well integrated within the network and can easily share information

with other network nodes. One can also define the characteristic path length of a

network as the average of all nodes’ shortest path lengths. Then, the characteristic

path length becomes a measure of the possibility of global interaction within

that network. One major drawback of these measures is that paths cannot be

meaningfully computed on disconnected networks (the shortest path length of a

node is infinity if that node is disconnected). As a result, a new measure, the

global efficiency [43], can be calculated for disconnected networks. The global

efficiency for a node is calculated as the average of the inverses of the shortest

distances between that node and all other nodes in the network, and as such,

high global efficiency of a node implies higher degree of integration of that node.

The global efficiency of the network is defined as the average of the individual

global efficiencies and it has been argued that it could be considered as a better

measure than the characteristic path length [44]. Both, the path length and the

global efficiency, typically are dimensionless measures and they do not correspond

to physical distance.

Just how important a node or an edge is to the structure of the network can be

shown by various measures of influence. Most commonly, the importance of a

node is expressed through its degree, i.e. the number of neighbors that the node

has. The higher degree nodes are considered to be more influential in the network.

By making a histogram of the degrees of all nodes in a network, one can obtain

the degree distribution in that network; it has been shown that since different

networks have different node distributions, networks can be distinguished and

categorized based on these distributions [36]. Another measure of influence is

the betweeness centrality, which counts how many shortest paths pass through

a particular node or edge. This measure can be best interpreted in the context
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of information flow. Since a node with high betweeness centrality is likely to be

involved in many communication pathways, its removal will cause a disruption of

the network and cause a decrease in the network’s efficiency. The variations in the

network efficiency can be captured by the measure of vulnerability. Volnerability

gauges the changes of the global efficiency of a network when a particular node

is removed from the network; thus nodes with high vulnerability are considered

to be central to the network [45]. The most important nodes in a network are

collectively referred to as hubs. Hubs are integral to the integrity of working

efficiency of a network, however, since currently there is no separate measure or

a clearly defined way to designate certain nodes as hubs, a combination of the

above measures are commonly used for their identification [46].

While the networks’ properties can be very well characterized by calculating some

of the described measures, to completely understand the behavior of the real

networks it is crucial to understand the origin of such properties and how they

affect each other. To this aim, many network models have been developed, each

trying to mimic the behavior of real networks as close as possible [47, 48, 49, 50,

51, 52, 53, 54, 55, 56]. The first and simplest model studied was the random graph

model, put forward by Erdös and Rényi in 1959 [47]. According to the random

model, a network is built by connecting every pair of nodes in the network with

a fixed probability p, which can take values between zero and one. Many of

the properties of random networks have been mathematically demonstrated and

it has been shown that they vary with the value of p. The main result for a

random network is that its nodes’ degrees follow Poisson distribution which is

quite unlike the real networks which tend to have a power law distribution. The

Poisson distribution also does not allow for the existence of hubs (most of the

nodes in a random network have comparable degrees), which are very often found

in the real networks. Moreover, the random networks do not exhibit a particular

community structure, they have low path lengths and low clustering coefficient

[57, 58]. Consequently, random networks can very well account for the fact that

many nodes in the real networks are reachable by only few connections. However,

beyond that, they are very poor model for the behavior of real networks. The

main application of random networks is to provide a null model for the evaluation
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of a given network property. Namely, if a network’s property is not present in the

random model, one can conclude that it cannot be explained by chance and it is

an inherent property of that network, requiring an additional explanation [30].

Figure 1.1: Watts–Strogatz model of small-world networks. One starts with a
regular network in which all network nodes are placed on a ring lattice. Then,
each edge is rewired with fixed probability p. Depending on this probability, one
can interpolate between (a) regular network for p = 0 and (d) random network for
p = 1. For small intermediate values of p (b, c) one obtains small-world networks.

Watts and Strogatz proposed a model (figure 1.1) that was aimed to explain the

high clustering and low path lengths present in the real networks [52]. The start-

ing point of this model is to create a regular network, in which all network nodes

are placed on a ring lattice and connected to their nearest k neighbors. Then,

each edge of the network is rewired with a fixed probability p. This rewiring

operation involves going through each edge of the network and then moving only

one end of that edge to another node in the network chosen at random with prob-

ability p. Therefore, for p = 0, the network is a regular network that exhibits

high clustering coefficient, but also high path lengths. On the contrary, for p = 1

we obtain a random graph which has short path distances, but also a low clus-

tering coefficient. However, Watts and Strogatz showed that between these two

extremes, for small positive values of p, one can obtain ”small-world” networks

that have high clustering but low path lengths. The reason for this behavior is

that the path length drops to low values even for very small p. Even if only few

edges are rewired, this creates long-range edges between distant nodes that serve

as shortcuts. As a result, as more edges are rewired more shortcuts appear in the

network, thereby lowering the path length drastically. On the other hand, the

rewiring of an edge from highly clustered community does not have a big effect on
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the clustering coefficient. As a result, due to the fact that the path length lowers

quicker to its value for the random graph when compared to the clustering coef-

ficient, for small non-zero values of p, a network can have both low path length

and high clustering [52]. Consequently, the Watts and Strogatz model is very

good into predicting the coexistence of small-world behavior and high clustering

present in many real networks. However, similar to the random graph model,

networks built from this model also have Poisson degree distribution, therefore

this model cannot explain the existence of hubs in real networks.

Figure 1.2: Barabási–Albert model of growing networks. The starting point
of this model is a small network of few nodes (a). Then, a new node with fixed
number of connections is added to the network (b). That node makes connections
preferentially with the existing nodes that have high degrees (c) and thus becomes
a part of the network. By repeatedly performing the preferential attachment
mechanism in (b) and (c) the initial network grows in size and the nodes with
high degree acquire new connections at much quicker rate than the ones with low
degree.

Trying to explain the hubs and the power law degree distribution observed in

real networks, Barabási and Albert [30, 56], inspired from the structure of the

world wide web, proposed a model of growing networks (figure 1.2). Their model

is based on the growth of a network by adding nodes that attach preferentially

to the existing nodes with higher degrees. More specifically, the model starts

with a small network. Then, at each step a new node is added to the network by

making fixed number of connections with the existing nodes in the network. The

probability of making a connection with a node is proportional to that of node’s

degree in the network. Therefore, this model results in a network exhibiting the

rich gets richer phenomenon, thereby favoring the nodes with high degrees that
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have been present in the network early on. The networks resulting from this

model are scale-free networks having a degree distribution following a power law

with an exponent of three. This model is considered to be an important one when

describing the real networks which also follow power law degree distribution, e.g.

the internet or world wide web [59]. In an attempt to make this model more

realistic, e.g. to obtain a flexible exponent in the power law or to improve the

clustering behavior, many alterations to the original model were proposed in the

literature, for example nonlinear preferential attachment [60].

The brain is one of the most complex systems, built up from approximately 1011

neurons connected by 1014 synapses organized in a three dimensional space by

optimizing the wiring cost to get maximum flexibility [61]. The neurons are

connected by a convoluted net of connections acting as a scaffold supporting

the emerging complex dynamic patterns that are considered to shape cognition

[62, 63]. While each nerve cell has a particular role to play in this behavior,

cognition and other brain functions can only be observed when many neurons

are linked together in small networks, subsequently combining to form larger and

larger networks eventually building the whole nervous system, as illustrated in

figure 1.3. Therefore, to gain insight into the brain functions, we would need to

study the brain’s complex networks at many levels, from small neuronal circuits to

large-scale brain networks, in addition to studying the complex dynamic patterns

that emerge from their collective behavior [64].

Figure 1.3: From a single neuron to brain. A neuron is the fundamental building
block of the brain which can receive and process information. In order to pass
information between each other, neurons combine through electrical and chem-
ical synapses to form a network. Many neuronal networks combine into larger
ones eventually forming the brain; all brain functions arise due to the collective
behavior of this large number of neurons. Adapted from [65, 66, 67]

.
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Representing the brain as a complex network and analyzing its underlying organi-

zation could reveal some information about the brain functioning. For example,

the brain is made up of spatially distributed areas that have highly specified

functions but are still able to communicate efficiently between each other. This

illustrates the two basic organizational principles in the brain, functional segrega-

tion and functional integration, and they both can be characterized by calculat-

ing the appropriate measures on the brain networks as discussed above [68, 31].

Moreover, it has been shown that there is a lot of characteristic activity in the

human brain even when the person is at rest [69, 70]. This dynamic activity

during rest is supported by the underlying physical network of neurons; there-

fore investigating how the structural architecture shapes the resulting dynamic

behavior could provide great insight into why such networks appear even at rest

[64]. Finally, many neurodegenerative diseases or brain traumas can be related

to a corresponding damage in the structural connectivity in the brain [71, 72].

Therefore, the quantification of some abnormal topological properties of brain

networks present in patients when compared with healthy individuals, could be

used as diagnostic markers in some diseases. In addition to the above examples,

brain networks could be used to provide insight, for example, into the dynamic

patterns that result from an external stimuli to the brain, and into the change of

cognition abilities over time [64].

In the early beginings of the neuroscience, the visual inspection of the anatomy

of the brain by using techniques, like staining and sectioning the brain tissue,

were the common way to obtain information about the brain’s composition [73].

In fact, most of the early knowledge about the working principles of the neurons

came by measuring electrophysiological recordings of single intact neurons. While

such recordings do allow for direct measurements of the electrical properties of the

neuron with high spatial and temporal resolution, the need for the intact brain

tissue means that they are highly invasive techniques and could not be applied

directly to humans [64]. In order to extract information about the human brain,

there was a necessity for a non-invasive imaging technique that could produce

large sets of data that could be subsequently analyzed. Electroencephalography

(EEG) and magnetoencephalography (MEG) are the first such techniques to be
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applied. They measure the fluctuations that occur due to neuronal currents by

placing a series of sensors near the scalp. While they have high temporal resolu-

tion, they do not have good spatial resolution because they record electromagnetic

potentials resulting from the collective currents of large populations of neurons.

In addition, the reconstruction process to obtain the real sources responsible for

these signals is ambiguous and depends highly on the statistical technique used to

process the data [74]. Another frequently used noninvasive technique that helped

in the expansion of the neuroscience research is functional magnetic resonance

imaging (fMRI). Using the contrast derived from the differences in magnetic sus-

ceptibility of oxygenated and deoxygenated blood (shortly termed BOLD contrast

where BOLD stands for ”Blood Oxygenation Level Dependent”) fMRI can mea-

sure metabolic activity in the brain. Thus, fMRI does not measure the electric

currents (or neuronal activity) directly, rather it measures the changes that this

activity causes in the blood flow and oxygenation [75]. The fMRI imaging has

high spatial resolution (usually of the order of submillimeters in humans [76])

with temporal resolution of the order of seconds, which is partially due to the

delayed response of the BOLD signal from the onset of the neural activity [77].

The main aim of the imaging techniques described above (fMRI and EEG) is to

directly measure or infer the neuronal activity ongoing in the brain. In addition,

there are few noninvasive techniques that are designed to characterize the struc-

tural connections between the neural cells. One of the most widely used technique

is the Diffusion Tensor Imaging (DTI), in which the image contrast is obtained

by using the anisotropic diffusion of water molecules inside the neural tissue. In

particular, the macroscopic axons provide a strong orientational confinement for

the water molecules; the easiest direction in which they can diffuse is the direction

of the axon. One can reproduce the direction of preferential diffusion of the water

molecules in each voxel by using a tensor model [78]. Commonly, a tractography

is performed on these images in order to completely reconstruct the white matter

paths followed by the diffused molecules of water [79].

Another technique to measure the structural connections is structural MRI, which

can generate images that can differenciate between white and gray matter in the

brain due to their different compositions. Using certain morphometric techniques
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[80], the cortex can be parceled and one can calculate a measure of interest for each

region, for example the thickness of the cerebral cortex. Thus, the connectivity

between any two regions is estimated indirectly; the strength of their connection

is given by the Pearson’s correlation coefficient of the cortical thickness values

for both regions, across a group of subjects. In contrast to the DTI imaging, by

using the structural MRI method one cannot estimate the structural connections

for a single subject.

Although there exist various imaging techniques, the building of complex net-

works from empirical data obtained from these techniques proceeds among few

common steps [71]. The first step includes identification of the nodes of the

network. The nodes in brain networks represent brain regions and they can be

defined by some anatomical atlases in structural and functional MRI or by the

position of the electrodes in EEG. This step is followed by the definition of the

edges in the network. Each edge describes the degree of interaction between the

two nodes it connects. Depending on the neuroimaging technique, edges can be

derived in different ways. For example, in structural MRI edges are typically

correlations between the cortical thickness values, however in functional MRI the

edges are correlations between time series. After calculating the edge stengths for

each pair of nodes in the network, these estimates are compiled into an adjecency

matrix. Finally, some graph measures are calculated to characterize the network

and their statistical significance is reported by comparing them to the measures

derived from a set of random networks. It should be noted that each of this steps

is essential in the analysis but there is not a unique way to execute them, i.e.

some decisions are required at each step, for example one needs to choose a par-

ticular parcellation scheme for the brain. Therefore, each decision will influence

the results obtained from this analysis; two brain networks can be meaningfully

compared only if they have been derived from the same procedure [71].

The existence of many different neuroimaging techniques to capture different

aspects of brain connectivity coupled with the plethora of computational methods

to analyze the data, results in different ways to describe the networks in the

brain. The first method is to build structural networks, defined as the physical

web of connections between the different neurons. Then, we could also build
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functional networks in the brain which describe the dynamic interactions, or

functional correlations, of the neurons. Finally, effective connectivity, or the

causal interactions between different neuronal elements, could be also examined.

Structural connectivity refers to the complex web of anatomical connections that

link distinctive neuronal elements in the brain, termed as the connectome [81].

These structural connections exist in the brain on multiple scales, from networks

of few neurons connected by synapses to brain regions connected by axonal pro-

jections. These networks are most frequently derived from DTI and structural

MRI and they represent topological association patterns. However, it has been

shown that there is a relation between the topological and physical distances in

structural networks; the neurons in the proximity of each other have higher prob-

ability to be connected [71, 82]. Moreover, the structural networks are thought

to be susceptible to change only on longer time scales (e.g. days) while remaining

relatively stable on shorter time scales of the order of minutes [35].

Functional connectivity is defined as the statistical correlations between activity

patterns produced from spatially distinctive neuronal populations [83, 84]. Func-

tional connectivity data is extracted from functional MRI, EEG and MEG in

the form of time series data. The pairwise coupling strengths are estimated by

calculating a certain measure between the corresponding time series, such as cor-

relation, coherence or mutual information [85]. As correlation does not necessary

imply causation, functional networks do not convey information about the causal

relation between its elements. Moreover, differently from structural networks,

functional connectivity is very time dependent and also highly dependent on any

external sensory input [35].

Effective connectivity aims to describe networks that reflect the influences that

one neural system has on another [83, 84]. Effective connectivity is also time

dependent and often it is inferred by modulating the neuronal activity by external

stimuli or specific tasks. The effective networks are commonly derived by applying

a particular model to the time series obtained from different neural elements,

therefore the validity of the particular effective network depends highly on the

validity of the modeling procedure [83]. One of the most commonly applied model
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is the Granger causality [86, 87], which is based on the idea that in the interactions

between two events, the cause will always occur earlier in time than the effect.

For example, consider the direct causal relation between two regions, from A to

B. The Granger causality assumes that in such case, events in A must always

precede events in B. Moreover, this method quantifies how much information one

has in order to make a prediction about the future values of B, by considering

the past values of A. Therefore, Granger causality is fully based on the statistical

behavior of the observed time series and does not make any explicit assumption

about the structural connections between the neural elements. On the other hand,

models such as Dynamic Causal Modeling (DCM) [88] and Structural Equation

Modeling (SEM) [89] need a priori postulation of structural networks in order

to infer the effective connectivity. As a result, they are not able to test many

possible network arrangements; moreover DCM is designed only in the framework

of task-related experiments since it requires the timings of the external stimuli as

input.

What can these different connectivity types reveal about the organization of the

brain? Small-world organization in the structural networks of the brain was re-

ported by many studies using various imaging techniques, including correlation of

cortical thickness in structural MRI [90] and diffusion weigthted MRI [91]. The

small-world organization manifests itself in the high clustering coefficients and

low path lengths in these networks. These properties support the notion that the

brain is organized in order to balance the anatomical and functional segregation

(described by the high clustering coefficient as discussed above) with their inte-

gration on the global scale (manifested by the low path length). Furthermore, it

was realized that the structural brain networks can be very well separated into

distinct communities, thus explaining the origin of the high clustering coefficient

[35]. The communities were found to consist of elements that have similar physi-

ological responses, have more connections with elements of the same community

and, in general, the structural communities form compact functional systems

[92, 93]. The existence of separate communities with many densely connected

elements is useful for the support of the functional segregation, by providing

many connections for efficient communication of the specialized brain regions on
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one hand, while restricting the information flow during the whole network by

providing boundaries between these specialized regions on the other. Further-

more, it was shown that the communities communicate between them by making

use of hubs [46], nodes that have very high degrees and betweeness centrality.

Moreover, hubs are densely interconnected with each other [94] forming rich club

organization that is mainly used to facilitate the information flow in the network

[95, 96, 97].

Small-world properties have also been identified in functional networks with dif-

ferent measures estimating the functional connections [98, 99] and they have

reported a power law degree distribution that is exponentially bounded [99]. It

has also been shown that the functional networks exhibit significant modularity

that can be used to explain their small-worldness [100] analogously to structural

network studies. PET has been used to define the default functional network of

the human brain at rest [101] and it has been shown the dynamics of a resting

brain can be broken down into a small set of “resting-state networks” [35].

By studying complex networks in the brains of individuals with some neurodegen-

erative diseases and identifying the aberrations in their topological organizations

one can obtain many insights about the particular disease [102]. This is possible

because it has been postulated that the impairments in cognition that result from

the disease occur due to the impact that the disease has on the arrangement of

brain connectivity [103]. For example, it has been shown that the structural net-

works in patients with schizophrenia [104] have abnormal organization manifested

by the increased connection distance and the loss of the hierarchical organization.

Alterations of the small-world topology of the structural networks, measured as

increased clustering and path lengths, were also detected in Alzheimer’s disease

(AD) [105]; such findings were also reported for the corresponding functional

networks derived from EEG [106]. Similar results were obtained from fMRI and

MEG studies for AD [71], autism, epilepsy, multiple sclerosis, Parkinson’s disease

[96, 97, 102]. Nonetheless, it should also be noted that while most studies present

compelling evidence that neural disorders result in abnormal network organiza-

tion in patients, a disparity between some results still remains. Therefore, such

results need to be considered with caution as the particular findings may depend
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on the clinical heterogeneity of the patient and control group as well as on the

particular imaging and data analysis methods that were being used [71].

Although networks derived from different imaging modalities can reveal many im-

portant properties of the brain organization as outlined above, to get full under-

standing of the operation of the brain one needs to consider the relation between

the structural architecture and the dynamic patterns that it promotes. There

are many studies, derived from experimental observation or theoretical models,

that strongly support the notion that physical links in the brain can shape neu-

ronal dynamics [107]. In particular, having the information that the structural

network has a small-world organization, one could infer that the expected func-

tional connectivity would be manifested by many short-range interactions and

smaller number of long-range interactions [63]. The relation between structure

and function can be examined on many scales, for example by simulating neural

circuits on the microscale or brain regions in the large scale brain networks. The

most common method to asses this relation is to use a model that infers the func-

tional connectivity from a structural substrate, and then matches the simulated

dynamics with the empirically measured one [107]. Although this procedure will

heavily depend on the computation models used to produce simulated functional

data as well as the measures used to estimate the connection strengths in the

empirical functional data, many studies converge to the conclusion that structure

does shape function [107], however the inference of structural connectivity from

functional data is less straightforward [108].

In this thesis, I will show that directed networks constructed in the brains of

Alzheimer’s and Parkison’s patients are more sensitive to the disease when com-

pared to their undirected analogues. Moreover, I establish that the functional

networks built by the standard correlation methods do not faithfully represent

the underlying structural architecture. Instead, I will demonstrate, by using nu-

merical simulations, that the underlying structure invariably introduces delays

in the dynamic behavior of neurons and propose the delayed correlation method

that utilizes these delays to identify up to 70% of the connections in the cor-

responding structural network. In order to carry out these analyses, we have
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developed BRAPH–BRain Analysis using graPH theory, an object oriented Mat-

lab software that can be used to perform connectivity analysis of brain networks

derived by various imaging modalities. My thesis can be divided into two parts,

background and application of graph theory to brain connectivity. In the first

part, I will introduce the basic concepts of graph theory and the most commonly

used measures to characterize the graphs (chapter 2). Then, in chapter 3, I will

describe how to build the brain networks from data obtained by some common

imaging modalities, before I present BRAPH and its functionalities in chapter 4.

The second part of my thesis is concerned with the application of graph theory in

brain connectivity studies. In particular, I will discuss the changes in the topo-

logical properties of undirected and directed brain networks (chapters 5 and 6

respectively) in Alzheimer’s and Parkinson’s patients, before demonstrating how

temporal delays in the neuronal dynamics can help us to reconstruct neurons’

structural connections in chapter 7.
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Chapter 2

Graph Theory Concepts

In the 1970s Königsberg was a captial of Eastern Prussia and a very important

trading center. The city was built on the top of the river Pregel and the two banks

of the river separated the city into four different pieces of land. In time, seven

bridges were built around the city in order to connect the different landsmasses,

the resulting landscape had the look as shown in figure 2.1(a). This proved to be

the start of a puzzle, with people wondering whether it was possible to visit all

four landmasses by crossing every bridge exactly once. There were many attempts

to find a solution by drawing all possible ways to cross the seven bridges, however

a correct path could not be found [28].

The first rigorous proof that such path does not exist was provided by Euler

[29]. He was able to show this by representing the whole landscape as a graph

(figure 2.1(b)) in which each landmass is represented by a node and an edge is

drawn between two nodes only if the corresponding landmasses are connected by

a bridge. By inspecting the resulting graph, he was able to make the observation

that if a path connecting all landmasses without passing twice by the same bridge

exists, the only nodes with odd number of edges must be the ones corresponding

to the starting and ending point of the path. If a node in the middle of the path

has an odd number of connections 2n + 1, then 2n connections will be used to

arrive to and leave from the node, therefore one connection will always be left
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Figure 2.1: Königsberg’s bridges and the corresponding graph. (a) The two banks
of the river Pregel (drawn in blue) split Königsberg into four different pieces of
land that were connected by seven bridges (shown in red). (b) The corresponding
graph of the city in which each landmass is represented by a node and connections
between the landmasses are drawn if there is a bridge connecting them. Adapted
from [109].

unused [30]. Since in the graph in figure 2.1(b) all four nodes have an odd number

of connections, it leads to the conclusion that the required path cannot be found.

Euler’s work was important because he showed that in order to study a complex

system, we do not require a complete knowledge of the properties of the system,

for example the size of the landmasses or the length and curvature of the bridges.

Instead, we could represent the complex system as a graph and we could gain

all the relevant information about the system by studying only the topological

properties of that graph.

In this chapter, I will give an overview of the measures that are most commonly

used to characterize the properties of a graph. I first give a brief introduction

to graphs and how they can be represented; then I discuss the different types of

graphs that emerge from the different nature of their edges. Finally I present

the definitions of some graph measures and explain the various techniques and

algorithms that can be used to calculate them.

2.1 Graphs

A graph is composed of a collection of nodes that are linked by edges. An example

of a sample graph is shown in figure 2.2(a) where each circle represents a node
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and each line represents an edge. This illustration of a graph is very intuitive but

it can become very tangled and convoluted as we increase the number of nodes

and edges.
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Figure 2.2: A simple graph and connectivity matrix. (a) An example of simple
binary graph and (b) the adjacency matrix that corresponds to this graph.

Figure 2.2(b) shows that a graph can be instead described by compiling all nodes

and edges in a matrix, called adjacency matrix. Each element of the matrix

represents an edge between the corresponding nodes; for example, in figure 2.2(b),

the element (j, k) represents the edge that goes from node j to node k. The rows

of the adjacency matrix are regarded as edges that are going outwards from a

node; for example, row j represents the edges that are going out from node j.

On the contrary, each column depicts the edges that arrive inwards to a node;

for example, all entries in column k show the edges that are arriving to the node

k. The representation of graphs as adjacency matrices is appealing because this

allows one to utilize highly-optimized algorithms that are based on linear algebra

[110]. Moreover, it should be noted that the particular way in which nodes

are ordered in the adjacency matrix does not affect the evaluation of the graph

measures, but it only influences the graphical representation of the adjacency

matrix.
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2.2 Types of graphs

Each edge in a graph can be associated with a weight and direction, based on these

characteristics of the edges, four types of graphs can be identified (figure 2.3):

� Weighted directed (WD) graphs. A real number that quantifies the

strength of a connection is associated with each edge. The edges represent

direct connections, i.e. a given node j can have a connection to node k

without the need for the node k to be connected with node j).

� Weighted undirected (WU) graphs. A real number that quantifies the

strength of a connection is associated with each edge. The edges represent

undirect connections, i.e. if a given node j has a connection to node k, then

node k is also connected to node j. For these graphs, the adjacency matrix

is symmetric.

� Binary directed (BD) graphs. The edges represent directed connections

and can take values of 0 (in which case they represent the absence of a

connection) or 1 (they represent the existence of a connection). In this type

of graphs the strength of a connection is not quantified.

� Binary undirected (BU) graphs. The edges represent undirected con-

nections and can take values of 0 (the absence of a connection) or 1 (the

existence of a connection). In this type of graphs the strength of a connec-

tion is not quantified. Moreover, the adjacency matrix is symmetric.

Figure 2.3 shows that these four types of graphs are directly linked to each other,

and a transformation between each graph type can be done in the following ways:

� Weighted to binary. A weighted graph can be transformed into a binary

one by the process of thresholding. This process entails the specification of a

threshold value and assigning a value of 1 to the edges that have strengths

above this threshold and 0 to those edges that have strengths below the
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Figure 2.3: Graph types. Based on the nature of their edges, the graph can be
classified as weighted or binary (according to the weights of the edges) or as di-
rected or undirected (based of the directionality of the edges). By eliminating the
information about the edges’ directionality (i.e. symmetrization) one can convert
a directed graph into an undirect one. Similarly, by removing the information
about the edges’ weights (i.e. thresholding) a weighted graph can be converted
into a binary graph.

threshold. The threshold value can be identified a priori, or alternatively

it can be determined as to ensure that the resulting graph has a certain

density, i.e. the fraction of edges that are connected. The choice of the

threshold is relevant in the comparison of binarized graphs, because such

comparison is only meaningful when the two graphs are compared at fixed

threshold or at fixed density.

� Directed to undirected. A directed graph can be transformed into an
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undirected one by the process of symmetrization, which removes the infor-

mation about the directions of the edges. This is accomplished by sym-

metrizing the adjacency matrix of the graph. Symmetrization can be per-

formed along several possible directions, e.g.:

1. Sum. The adjacency matrix and its transpose are added to each other.

2. Average. Average of the adjacency matrix and its transpose.

3. Minimum. The adjacency matrix is compared to its transpose; for

each element the smaller value of the two is used.

4. Maximum. The adjacency matrix is compared to its transpose; for

each element the larger value of the two is used.

2.3 Graph measures

Two general categories can be used in order to classify the graph measures:

1. global measures refer to the properties of a graph as a whole, and therefore,

the information they convey is captured by a single number for each graph;

2. nodal measures refer to the properties of each node in a graph, and there-

fore, they consist of a vector of numbers — one for each node of the graph.

In this section I will briefly discuss the most common graph measures. Most of

the measures have been derived for binary and undirected graphs, however some

of them have extensions or analogues for weighted or directed graphs. Therefore,

for each measure, I will indicate to which kind of graph it belongs by denoting

W (= weighted graphs) or B (= binary graphs), and D (= directed graphs) or

U (= undirected graphs). If no particular letter is assigned to the measure, it

means that the measure can be used in both cases.
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2.3.1 Degree

Degree (nodal, BU) is defined as the total number of edges that are connected

to a node. The average degree (global, BU) can be calculated as the average

of the degrees of all nodes.

Figure 2.4: Degree of a node. The red is an example of a high degree node(i.e. it
has a high number of neighbors), while the blue node possesses a low degree (i.e.
it has a small number of neighbors).

In-degree (nodal, D) is defined as the total number of edges that are going

inwards to a node. Its global extension is the average in-degree which is the

average of the all nodes’ in-degrees.

Out-degree (nodal, D) is defined as the total number of outward edges that

originate from a node. Its global extension is the average out-degree defined

as the average of all nodes’ out-degrees.

Methodological notes: For BU graphs, the degree is given by the sum of the
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number of edges across the rows or columns of the adjacency matrix. Since the

adjacency matrix is symmetric for BU graphs, both calculations will yield the

same result; in other words, for BU graphs, the in-degree and out-degree are

equal. For BD graphs, a sum over the columns of the adjacency matrix gives

the in-degree, while the out-degree is calculated as sum over the rows. In these

graphs, the degree is the sum of in-degree and out-degree. For W graphs, the

weights need to be ignored when the degree is calculated. Due to this reason, one

needs to first binarize the adjacency matrix so that every edge that corresponds

to non-zero weight is set to 1, while the rest remain as 0. Then, the degrees can

be calculated on this binarized adjacency matrix analogous to the calculation for

B graphs.

A property of a graph closely related to the degree is the degree distribution,

denoted by pK , which represents the probability that a node chosen at random

has degree K. The degree distribution can be calculated as the histogram of the

degrees of all nodes in the graph, normalized to 1.

2.3.2 Strength

Strength (nodal, WU) is defined as the sum of the weights of all edges connected

to a node [111]. The average strength (global, WU) can be calculated as the

average of the strengths of all nodes.

In-strength (nodal, WD) is defined as the sum of the weights of all edges that

are going inwards to a node. Its global extension is the average in-strength

which is the average of the all nodes’ in-strengths.

Out-strength (nodal, WD) is defined as the sum of the weights of all outward

edges that originate from a node. Its global extension is the average out-

strength defined as the average of all nodes’ out-strengths.

Methodological notes: For WU graphs, the sum over either rows or columns of

the weighted adjacency matrix gives the strength of each node. For WD graphs,
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Figure 2.5: Strength of a node. Even though the red node has a low degree, it
possesses a higher strength (there is only one connection that has a very high
strength of 0.9), while the blue node has a higher degree but smaller strength
(although it has 7 connections, each has low strength of only 0.1).

out-strengths are calculated as sums over rows, in-strengths are calculated as

sums over columns; the strengths are defined as the sum of the in-strengths and

out-strengths.

2.3.3 Eccentricity

Eccentricity (nodal) is defined as the maximal distance between a given node

and any other node in the graph [112]. The global version is the average eccen-

tricity that can be calculated as the average of the eccentricities of all nodes.

In-eccentricity (nodal, D) can be calculated as the maximum of the incoming

distances from all other nodes to a given node. Its global extension is the average
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in-eccentricity which is the average of the all nodes’ in-eccentricities.

Out-eccentricity (nodal, D) can be calculated as the maximum of the outgoing

distances from a given node to all other nodes. Its global extension is the average

out-eccentricity which is the average of the all nodes’ out-eccentricities.

Two other global measures can be specified once we know all nodes’ eccentricities.

The first one is the radius of the graph which is defined as the minimum eccen-

tricity of all nodes. One can also define the diameter of a graph and calculate

it as the maximum eccentricity of all nodes.

Figure 2.6: Distance between nodes. While there exist many paths between the
two green nodes (e.g. the red and blue paths), the distance between the two is
defined as the shortest possible path between them (the red path).

Methodological notes: For every graph, one can calculate a distance matrix;

the elements of this matrix are the distances (the shortest path lengths) between

all pairs of nodes in the graph. Then, the eccentricity of a given node is taken

to be the maximum of all the distances that are calculated for this node. For D
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graphs, the in-eccentricity can be calculated along the columns of the distance

matrix, while the rows of the distance matrix specify the out-eccentricity. In this

case, the eccentricity of a node is the larger value of its in- and out-eccentricities.

The shortest path lengths are not defined for disconnected nodes, therefore in

most calculations, the eccentricity for those nodes is commonly taken to be NaN.

2.3.4 Path length

Path length (nodal) is the average of the distances between a given node and

all other nodes in the graph. Characteristic path length is its global analog

defined as the average of the shortest path lengths of all nodes.

In-path length (nodal, D) is calculated as the average of the distances between

a given node and all other nodes in the graph calculated over paths that arrive

inwards to that node. Its global extension is the characteristic in-path length

which is the average of the in-path lengths of all nodes.

Out-path length (nodal, D) can be calculated as the average of the distances

between a given node and all other nodes in the graph calculated over paths

that leave outwards from that node. Its global extension is the characteristic

out-path length which is the average of the out-path lengths of all nodes.

Methodological notes: There are many paths that can be used to reach one

node from another. The distance between any two nodes is given by the length

of the shortest path among all existing paths between those nodes (figure 2.6).

For any B graph, the length of a path is defined as the number of edges that need

to be crossed so that one node can be reached from the other (due to the fact

that each edge has a length of 1). For a W graph, each edge has a length which

is a function of its weight; commonly it is assumed that the length of an edge is

inversely proportional to its weight. This is due to the fact that a high weight

implies a strong connection which in turn can be interpreted as a short length

[31]. Therefore, the distance between two nodes in a W graph is defined as the

total length of the edges that need to be crossed in order to reach one starting
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from the other. For D graphs, the resulting path length of a node is taken as an

average of its in- and out-path lengths. On B graphs the shortest path lengths

can be found by a breadth-first search, while on W graphs the Dijkstra’s algorithm

is used [110].

2.3.5 Triangles

Triangles (nodal) specify the number of neighbors of a node that are also con-

nected with each other [113, 114].

Figure 2.7: Triangles around a node. The red node is an example of a node with
high number of triangles around it (because the black edges do not have any
connections between themselves, only the red edges contribute to the triangles
calculation). On the other hand, the blue node has very low number of triangles
(the blue edges form only one triangle).

Methodological notes: For BU graphs, the number of triangles around each
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node is given by the diagonal entries of A3 divided by two, where A is the ad-

jacency matrix of that graph. In the case of WU graph, the contribution of a

triangle around a node is defined to be the geometric mean of the weights of

the edges that form that triangle. This contribution is calculated by taking each

element of A to the power of 1/3, thus resulting in a new matrix, A1/3. Then, the

collective contribution of all triangles around each node are given by the diagonal

entries of A3
1/3 divided by two. For D graphs, a triangle can be defined in eight

ways (each convention depends on how restrictive one is with the directions of the

edges). The most restrictive way to define a triangle is to impose the constraint

that the directed edges between the nodes that are part of the triangle form a

closed circle, i.e. each node has one incoming and one outgoing edge.

2.3.6 Clustering coefficient

Clustering coefficient (nodal) calculates the fraction of triangles that are

present around a node [52]. The global clustering coefficient is the average

of the clustering coefficients of all nodes in the graph.

Methodological notes: The clustering coefficient of a node is the ratio of the

numbers of triangles (see section 2.3.5) to the maximum number of triangles

that could be formed around that node. For the U graphs, considering d to

denote the degree of a node, the maximum number of triangles is given by the

equation 1
2
d(d− 1). For D graphs, assuming that a triangle is formed only if the

directed edges between any three nodes form a complete cycle, the total number

of triangles can be calculated as din ∗ dout − dii. In this equation, din and dout

denote the in-degree and out-degree of the node, dii is the reciprocal connections

that cannot result in a triangle (i.e. they denote two nodes that are mutually

connected with two edges in both directions).
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2.3.7 Transitivity

Transitivity (global) is considered as an alternative to the global clustering co-

efficient. It is defined as the ratio of the total number of triangles to the number

of triplets in the graph.

Methodological notes: If Ntriangles represents the total number of triangles in

the graph and Ntriplets denotes the total number of triplets, then the transitivity

is given by the ratio 3Ntriangles/Ntriplets. Ntriplets can be calculated as Ntriplets =
∑

i di(di − 1) − dii, where di is the degree of each node, dii denotes the pairs that

do not result in triangles and the sum is done over all nodes in the graph [115].

2.3.8 Closeness centrality

Closeness centrality (nodal) is evaluated as the inverse of the calculated path

length of a node.

In-closeness centrality (nodal, D) is defined as the inverse of the the in-path

length of a node. Out-closeness centrality (nodal, D) is the inverse of the

node’s out-path length.

Methodological notes: See section 2.3.4 for the calculation of the path length.

2.3.9 Betweenness centrality

Betweenness centrality (nodal) is defined as the fraction of all shortest paths

that include a given node. The nodes that have high betweenness centrality take

part in many short paths and can be considered essential to the information flow

in the graph.

Methodological notes: Betweenness centrality can be calculated by an algo-

rithm that was discussed by Kintali [116].
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Figure 2.8: Betweenness centrality of a node. Since there exist many shortest
paths that pass through the red node (e.g. paths going from left to right), this
node has a high betweenness centrality. The blue node is characterized by a low
betweenness centrality because there is no shortest path that passes through it.

2.3.10 Global efficiency

Global efficiency (nodal) is calculated as the average of the inverse of the

distances from a node to all other nodes in the graph [43]. Its global analogue is

calculated as the average of the global efficiency of all nodes in the graph.

In-global efficiency (nodal, D) it is defined as the average of the inverse of

the in-distances between a given node and all other nodes in the graph. On the

other hand, the out-global efficiency (nodal, D) is calculated as the average of

the inverse of the out-distances between a given node and all other nodes in the

graph.

Methodological notes: See section 2.3.4 for the definition of a distance and
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how the path lengths are calculated between any two nodes. After the calculation

of the path lengths between a given node and all other nodes in the graph, they

are inverted. The average of the resulting values is equal to the global efficiency

of the particular node. For D graphs, the global efficiency of a node is the average

of its in- and out-global efficiencies.

Figure 2.9: High modularity. This graph can be clearly separated into 3 commu-
nities each one having a much higher number of within-community connections
when compared to the between-community connections.

2.3.11 Local efficiency

Local efficiency (nodal) is defined as the global efficiency calculated based on

the node’s local surrounding instead of the whole graph. The local surroundings

of a node is the subgraph created by the node and its neighbors. Its global

analogue is calculated as the average of the local efficiency of all nodes in the

graph.
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Methodological notes: The calculation of global efficiency is discussed in sec-

tion 2.3.10. The calculation of the local efficiency proceeds along the same steps,

however instead of applying them on the whole graph, they are applied on the

subgraph formed by the node and its neighbors. For W graphs, the weighted

connections of the neighbors of node i are defined as dsubgraphjk = djk
√

dijdik. The

labels j and k refer to two nodes that are neighbors of i, and the weights of each

corresponding edge are given by dij , dik and djk.

2.3.12 Modularity

Figure 2.10: Low modularity. This graph corresponds to the graph plotted in
Figure 2.9 with some extra between-community connections added. The graph
can no longer be clearly separated into a collection of communities.

Modularity (global) quantifies the level to which a particular graph can be

divided into communities (in other words subgraphs or modules) that are clearly

separated. The modularity can be calculated only after the community structure
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of the graph has been determined.

Methodological notes: The modularity is calculated as

1

l

∑

ij

[

Aij −
kikj
l

]

δij

where the sum is performed over all pairs of nodes in the graph, Aij and l are the

adjacency matrix and the total number of edges respectively, ki and kj are the

degrees of node i and j and δij is a delta function specifying whether the nodes

i and j belong to the same community (1 if they are and 0 if they are not).

2.3.13 Within-module z-score

Within-module z-score (nodal) reflects the level of connection of a node with

the other nodes in the same community. It can be considered as a version of

the degree calculated within-community. The calculation of z-score requires a

previously calculated community structure.

Within-module in-z-score (nodal, D) is evaluated by considering only the

contributions from the in-degrees of the node. Within-module out-z-score

(nodal,D) is evaluated by considering only the contributions from the out-degrees

of the node.

Methodological notes: The z-score for a node i belonging to the community

Si is evaluated as

Zi =
Ki −KSi

σSi

where Ki is the degree of the node i when only within community connections are

considered; KSi
is the average degree of all nodes that belong in the community

Si and σSi
is the standard deviation of the degrees of the nodes that belong to

the community Si.
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Figure 2.11: Within-module z-score of a node. A low z-score can result from a low
degree (leftmost yellow node) or because of a high number of between-community
connections (rightmost yellow node). Nodes that have lots of connections with
nodes in the same community have high z-score (violet node).

2.3.14 Participation coefficient

Participation coefficient (nodal) shows how much connected a node is to var-

ious communities by comparing the between-communities connections of that

node to its total number of connections. The calculation of this coefficient needs

to have a previously determined community structure.

Methodological notes: The participation coefficient for a node i belonging to

the community Si can be calculated as

Pi = 1 −
∑

s

(

KSi

Ki

)2

where KSi
denotes the number of edges that connect i with other nodes in the

community Si, Ki is the total number of edges of node i and the sum is run over
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all communities. High participation coefficient means that the node is connected

to many communities. Such nodes could be facilitating global inter-modular

interaction and are known as connector hubs.

Figure 2.12: Participation coefficient of a node. A node with a low participation
coefficient will have most of its connections with nodes belonging to the same
community (violet node). The node will have a high participation coefficient if it
makes a lot of its connections with nodes in different communities (yellow node).

2.3.15 Assortativity coefficient

Assortativity coefficient (global) is defined as the correlation coefficient be-

tween the degrees or strengths of all nodes that are on the two opposite ends of

an edge [117]. In other words, this coefficient reflects the probability with which

nodes tend to connect with other nodes that have similar degrees or strengths.
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Methodological notes: The assortativity is calculated as

r =
l−1

∑

i,j∈L kikj − [l−1
∑

i,j∈L
1
2
(ki + kj)]

2

l−1
∑

i,j∈L
1
2
(k2

i + k2
j ) − [l−1

∑

i,j∈L
1
2
(ki + kj)]2

where nodes i and j have degrees ki and kj , and l is the total number of edges

in the graph. In the case of D and W graphs, the corresponding coefficient could

be calculated by using the directed or weighted extensions for the nodal degree.

A positive assortativity would mean that, on average, high degree nodes would

prefer to connect to other nodes with high degree, while the negative assortativity

means that nodes with high degree tend to connect with nodes of low degree.

2.3.16 Small-worldness

Small-worldness (global): A graph has the small-world property if it has a

characteristic path length that is similar to the one observed in random graphs

that have the same degree distribution, but has a significantly higher clustering

coefficient (similar to the one observed for regular graphs) [52, 118].

Methodological notes: The small-worldness coefficient is calculated as

Csw =
C/Crnd

L/Lrnd

where C and L denote the clustering coefficient and the characteristic path length

of the graph. Crnd and Lrnd represent the corresponding measures when calculated

on random graphs; typically they are calculated as averages over 100 random

graphs. If Csw ≫ 1, then the network has a small-world organization.
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Chapter 3

Building the Networks of the

Brain

The first step to carry out a brain connectivity analysis is to acquire some infor-

mation about the brain adjacency matrix. To this end, the brain is segregated

into multiple regions (typically the number of regions is between 50 and 1000)

and then the strength of connections between all pairs of regions is measured.

The particular method used to characterize this strength depends on the neu-

roimaging technique that is used to acquire the data. Most commonly, there are

two wide categories of data that are used:

1. Structural data can be acquired by magnetic resonance imaging (MRI) or

imaging glucose metabolism data by static positron emission tomogra-

phy (PET). Once an image of the brain has been obtained for each subject

in the group, a value (for example, cortical thickness, gray matter volume,

glucose metabolism) can be extracted for each brain region of the corre-

sponding subject. Then, the strength of the connection between two regions

is calculated as the correlation of the values of the corresponding regions

across a group of subjects. A possible justification for this process is the

assumption that regions with strong connections will tend to show similar

morphological qualities, for example they might grow or shrink together.
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Therefore, for the structural data, one obtains a single brain adjacency

matrix for a given group of subjects.

2. Functional data can be obtained by functional magnetic resonance imag-

ing (fMRI) or electroencephalography measurements (EEG). These func-

tional neuroimaging techniques provide a sequence of images for each sub-

ject, therefore each brain region is associated with a time series that mea-

sures its activation profile over time. The connection strength between two

regions is calculated as the correlation between their corresponding time

activation series. A possible justification for this process is that the regions

with strong connections will show similar functional activity, for example

they might activate or deactivate together. Therefore, for the functional

data, one obtains an individual brain adjacency matrix for each subject.

In this chapter, I will discuss in more detail how to build the connectivity network

of the brain from structural and functional data. I will first briefly describe the

working principles of the relevant neuroimaging methods. Then, I will outline the

general workflow that should be followed in order to perform a brain connectivity

analysis, and explain the definitions of the nodes and the edges of the adjacency

matrix as well as the statistical comparisons that can be performed between two

groups in order to check whether the obtained results are genuine.

3.1 Imaging methods

Structural and functional data can be derived from various imaging techniques,

ranging from diffusion MRI and DTI for structural data, to functional MRI, EEG

or MEG for functional data. However, since the results presented in the following

chapters are exclusively derived from structural and functional MRI, these two

techniques will be the only ones I focus on.
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3.1.1 MRI

The basis of the Magnetic Resonance Imaging (MRI) [119] is to make use of

the magnetic properties of the atomic nuclei that are present in the brain tissue.

One of the most abundant atoms present in the brain is 1H and as such, it is

the element most frequently used for the purposes of MRI. Due to its unpaired

proton, 1H has a net spin, hence it has a magnetic moment. However, in normal

conditions, all magnetic moments are oriented randomly in the body, so that a

net magnetization is not observed.

Taking an MRI image of a person entails placing that person in an external

homogeneous magnetic field, B0. In these conditions, all 1Hs in the body will

tend to align with the magnetic field, either parallel or anti-parallel. An excess

of nuclei will align parallel to field, thus giving rise to a net magnetization, M0,

in the same direction as the external field. This alignment is not static, instead

each nuclei precesses around the direction of B0 with a specific frequency, called

Larmor frequency. This frequency is directly proportional to B0 and the constant

of proportionality, called gyromagnetic ratio, is specific to each nucleus.

What makes MRI possible is the realization that the precessing nuclei can be

excited by a radio-frequency (RF) pulse emitted perpendicularly to B0 and having

exactly the Larmor frequency. In this case, some nuclei absorb the energy of the

RF wave and change from low to high energy state. This, coupled with the fact

that all nuclei start precessing in phase, results in the tilting of the direction of

the net magnetization to be perpendicular to B0.

Upon the removal of the external RF signal, the nuclei relax and return to their

initial positions, emitting a RF signal of their own in the process. This free-

induction decay (FID) signal can be detected by a receiver coil and the processing

of this signal results in the MRI image. This above discussed sequence of events

that results in an MRI image is illustrated in figure 3.1.

In order to be able to use this signal to create images, its origin needs to be

encoded for each dimension. In particular, in order to choose an axial slice in
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Figure 3.1: Workflow of MRI imaging procedure. MRI makes use of atomic nuclei
that posses a magnetic moment. However, in normal conditions, all moments are
oriented randomly and there is no net magnetization. After the application of
an external magnetic field, an excess amount of atoms align parallel to the field,
in their low-energy state. When perpendicular RF pulses at the right frequency
are applied, the magnetic moments absorb their energy and are able to move to
the high-energy state. After turning off the external RF pulses, the moments
can relax, emitting FID signal in the process that can be subsequently used to
produce the MRI images.

the direction of B0, one additionally adds a gradient magnetic field in the same

direction. This subjects the nuclei present in each slice along this gradient to

slightly different magnetic fields, forcing them to precess at different frequencies.

In turn, this means that by sending RF waves of different frequencies different

nuclei can be selectively excited.

Since each axial slice is two dimensional, the x and y position within that slice

need to be encoded. This is done by specifying the frequency and phase of each

voxel; the y direction is commonly determined by phase, while the x is specified

by frequency. For each frequency-phase pair then a 2D Fourier transform is used

in order to translate them into the spatial domain.

The MRI contrast in single voxel will primarily depend on the density of atomic

nuclei present in that voxel. In addition, the contrast can be also obtained based

on two relaxation processes in the nuclei: the longitudinal or spin-lattice re-

laxation characterized by a relaxation time T1 and the transverse or spin-spin

relaxation characterized by T2. As discussed before, with the RF pulses switched

on, the net magnetization is tilted perpendicularly to the constant magnetic field.
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Once these pulses are switched off, as the nuclei return to their original config-

uration, the net magnetization in the axial direction will also slowly return to

its initial value M0. The time constant of this process is given by T1; in other

words, T1 is the time at which the axial magnetization returns to 63% of M0. The

relaxing process of the nuclei can be also characterized by the loss of the trans-

verse magnetization. This most commonly happens because of the dephasing of

the spins’ precession; one reason is the differences of the magnetic field at the

position of each spin. This decay in the transverse magnetization is characterized

by the time constant T2.

One can choose between T1 and T2 weighted MRI images by adjusting the rate of

the RF pulses (i.e. the repetition time, TR) and the time that elapses between

the application of the RF pulse to the time of measurement (the echo delay time,

TE). By adjusting both TR and TE, one could generate different pulse sequences

that can be used to produce contrast between different tissue types.

In particular, the MRI can be used to contrast the structure of white and grey

matter in the brain. Gray matter consists mostly of cell bodies, while the white

matter contains mostly of long nerve fibers. Therefore, the MRI signals of the

two are very different and they can be contrasted by taking into the account the

different relaxation times of the protons that are present in both tissues.

3.1.2 Functional MRI

The functional MRI [77] is based on the same underlying principles explained in

the previous section with its contrast derived from the different magnetic proper-

ties of oxygenated and deoxygenated blood, commonly termed as blood-oxygen-

level dependent (BOLD) contrast. This contrast can occur locally, around the

brain regions that are activated when some cognitive task is performed.

Upon such task, there is an increased energy requirement in the activated region

due to the larger number of signaling and processing events, which leads to a

locally increased oxygen consumption accompanied by a dilation of the vesicles.
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This results in intensified oxygen rich blood flow to that area in order to counter-

act the need for more oxygen. However, these two processes do not cancel each

other out, and the net result is the oversupply of oxygen rich blood around the

activated region.

This phenomenon can be used to take fMRI images because the hemoglobin

present in the blood has different magnetic properties under different circum-

stances. In particular, the oxygenated hemoglobin is a very weakly diamagnetic

material with no effects on the external magnetic field while the deoxygenated

hemoglobin is paramagnetic and slightly affects the field; a decrease in the con-

centration of the deoxyhemoglobin is accompanied by an increase in the signal.

Therefore, the activation of a particular region in the brain is accompanied by

a decrease in the deoxygenated hemoglobin concentration, which can in turn

result in local gradients in the magnetic field due to its paramagnetic nature. As

discussed in section 3.1.1, such inhomogeneities in the magnetic field can alter the

dephasing of the nuclear spins, i.e. they can modify the T2 relaxation time of the

corresponding tissues. Then, this can be used to produce T2 weighted imagines

for fMRI. Since the signal in fMRI is indicative of the whole series of changes that

follow neural activity, it is considered to measure this activity only indirectly.

3.2 General workflow to analyze brain connec-

tivity

Before the calculation of the adjacency matrix of the brain network, few pre-

processing steps need to be applied to the images obtained from the neuroimaging

techniques explained above. In short, some of these steps include the correction

of any spatial distortions in the image due to the inhomogeneity of the magnetic

field, the isolation of the background noise, the segmentation of the tissue and

normalization to a template. These techniques are commonly applied by using

an already existing software (for example, Freesurfer [120]). After carrying out
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these pre-processing steps, one could proceed to calculate the adjacency matrix

along few general series of steps exemplified in figure 3.2.

Figure 3.2: Construction of the adjacency matrix. Flowchart exemplifying the
calculation of the adjacency matrices in the brain for neuroimaging data. (1)
A T1-weighted MRI image needs to be pre-processed in order to correct it for
existing artifacts. From this image, some meaningful variable (for example cor-
tical thickness or subcortical volume) is obtained for each brain region that is
defined by choosing a particular parcellation scheme. (2) For each pair of regions
in the brain, the strength of their connection is calculated as the correlation co-
efficient between the obtained values. (3) The adjacency matrix is constructed
such that each row and column represent different brain regions and each entry
is the correlation coefficient between the corresponding pair of regions.

3.2.1 Definition of nodes

In the first step, a particular parcellation scheme is applied which divides the

brain into multiple brain regions. Each brain region can be thought of as a small

subnetwork, made up of multiple neurons and synapses between them, embedded

in the large-scale brain network. Therefore, although all brain regions have a

complex structure and their function is derived from the complex behavior of the

many underlying neurons, in many applications it is suitable to represent them

as compact neuronal masses that become the nodes of the complex brain network

[121].

The nodes should be chosen to cover the whole volume of the brain and they

should not overlap with each other [31]. Currently there is not a recognized

standard for choosing the nodes, however their positions are commonly obtained

from many existing anatomical atlases used in MRI, fMRI and PET or taken as
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the position of the electrodes in EEG. This choice of nodes is very important

because it directly affects the topology of the brain graphs, the strength of their

connections and also the values of the graph measures that are calculated [122].

Consequently, two brain graphs can be meaningfully compared only if they are

based on the same brain atlas.

After defining the brain regions in the brain, using some morphometry techniques,

few characterization values (such as cortical thickness) can be extracted for each

brain region. These values are then used to calculate the degree of association

between the two regions, which I will discuss in the next section.

3.2.2 Definition of edges

The edges represent the connections between brain regions. As explained in

section 2.2, the edges can indicate only the presence or the absence of the cor-

responding connections (binary graphs) or they can also specify the strength of

the connections (weighted graphs). The edges have different interpretations that

depend on the exact nature of the neuroimaging data. For example, when the

data is obtained by structural MRI, the edges represent the statistical correlation

of some structural parameters that are extracted for a couple of regions. On the

other hand, for functional data, the edges represent the correlation between the

time activation profiles of couple of regions over time. The strength of such cor-

relations can be calculated using various measures, however the most commonly

used are the following ones:

� The Pearson correlation coefficient between two regions j and k is

calculated as

ρjk =
cov (xj , xk)

σjσj
, (3.1)

where xj and xk are the series of values corresponding to each region,

cov (xj , xk) is their covariance, and σj and σj represent the standard de-

viations of those series. This coefficient shows the degree of linear associ-

ation that exists between the two sets of data. In other words, if xj and
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xk are plotted in a scatter plot and a best fit line is fitted for the data, the

Pearson’s coefficient will measure how far the data points are from this best

fit line. This coefficient can have values in the range between −1 and 1.

A value of 1 indicates a perfectly positive linear relation between the two

sets of data, i.e. if one variable increases, the other increases linearly with

it; while −1 indicates a perfectly negative linear relation, i.e. if one value

increases, the other one decreases linearly with it. A coefficient value of 0 is

indicative of no linear correlation between the two sets of data; importantly,

a value of 0 does not mean that there is no correlation between the two sets

of data, only that any possible existing correlation is not linear. It should

be noted that, as the Pearson’s coefficient assumes a normal distribution

of the data, it can be very sensitive to the presence of outliers or a skewed

distribution and it cannot distinguish between the dependent and indepen-

dent variables, i.e. it cannot give information about any causal or directed

interactions.

� The Spearman rank correlation coefficient is a non-parametric ver-

sion of the Pearson’s coefficient and is defined as the Pearson’s coefficient

between two ranked variables. Spearman’s coefficient is generally used in

order to determine the degree of the monotonic relation between the two

variables. To calculate this coefficient, the values in each set of data are

ranked (the highest value is ranked 1 and, if there are two equal values,

their average rank is assigned to both) and then the Pearson’s coefficient

is computed between the resulting ranks. The values of Spearman’s coef-

ficient range between −1 and 1 and their interpretation is analogous with

the one for the Pearson’s coefficient; however while Pearson’s coefficient

reveals linear associations between two sets of data, Spearman’s coefficient

measures their monotonic relation and therefore can be considered as being

less restrictive.

� The Kendall rank correlation coefficient is a non-parametric test that

measures the correlation between two ranked quantities. This coefficient is

expressed as

τ =
Nc −Nd

1
2
n(n− 1)

(3.2)
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where the denominator denotes the total number of pairs and Nc and Nd

are the numbers of concordant and discordant pairs respectively. Let xi

and xj to be the corresponding ranks for the ith and jth values in the data

series x and define the analogous quantities for the data series y. Then,

consider the two pairs (xi, yj) and (xj , yi) between the two sets of data x

and y. Then, in the case when xi < xj and yi < yj, or equivalently xi > xj

and yi > yj, are true, the pair (xi, yj) is considered concordant or ordered in

identical way. Otherwise, the pair is considered discordant. When xi = xj

or yi = yj the pair is considered to be tied. The values for the Kendall

correlation coefficient are in the range between −1 to 1. Higher coefficient

values indicate good match between the pairs, i.e. it indicates that the pairs

are ranked in similar order in both data series (they increase or decrease

together).

� Partial correlation coefficients. Partial correlation coefficients can be

calculated as the correlation coefficients between two sets of data, after

regressing out the the effects of one or more other variables from both

time series. Most commonly, Pearson’s and Spearman’s partial correlation

coefficients are computed.

Although calculating the correlation coefficients is the most widely used method

to characterize the association between two sets of data, other measures can be

also utilized for the same purpose. In particular, for the analysis of functional

data, measures such as coherence, Granger causality or mutual information can

be computed as well [85].

3.2.3 Building the adjacency matrix

Each row and column of the adjacency matrix corresponds to the brain regions

that are specified as described in section 3.2.1. Each entry in the adjacency matrix

represents an edge between the corresponding brain regions whose strength can

be derived using the methods outlined in section 3.2.2, with few additional steps:
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� All self-connections are eliminated from the network. This is accomplished

by setting the diagonal entries, which are calculated by the series’ autocor-

relations, of the adjacency matrix to zero.

� The negative correlations can be (1) equated to zero and, therefore, not

included in the graph analysis, (2) substituted by their absolute values, or

(3) left unchanged (however, in the latter case, this may result in inability

to calculate some graph measures because they are not defined for negative

correlations).

The adjacency matrix is built in different ways for the different imaging modal-

ities:

1. Structural data:

The structural data resulting from images obtained with structural MRI in

general consists of a single value (which may represent cortical thickness,

subcortical volume or other measures of interest) that characterizes a brain

region for each subject. Then, the edge between two brain regions is given

by the statistical correlation of these values for the two regions across a

group of subjects. Subjects typically are grouped according to some com-

mon characteristics they share (e.g. the same clinical diagnosis). As a

result, a single connectivity matrix is obtained for each group of subjects

and consequently all the measures that are calculated on structural brain

networks reflect the properties of that group.

2. Functional data:

The functional information about the brain can be obtained for subjects

performing some designed tasks (e.g. looking at a picture) or lying still

without any cognitive tasks (resting state fMRI). In both cases, brain ac-

tivity is monitored over time by obtaining multiple images; therefore each

brain region is associated with a time series. As a result, the connection

strength between two brain regions is given by the temporal correlation be-

tween the activation time series of the corresponding regions. As such, an
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individual adjacency matrix can be obtained for each subject; consequently

the graph measures that are calculated show the properties of individual

subjects’ networks. The subjects are grouped according to some common

properties they share (e.g. same clinical diagnosis) and the properties of

the group are derived as average of the measures calculated for individual

subjects.

3.2.4 Calculation of graph measures

After constructing the adjacency matrices for each subject/group by following

the steps discussed above, the topological properties of the resulting network

can be calculated by using the various measures defined in chapter 2. Since the

edges represent correlation coefficients that have continuous values, the resulting

adjacency matrix is naturally weighted. From this point on, there are three

different ways in which one can proceed to calculate the measures:

1. Weighted analysis: The weighted analogues are calculated for each mea-

sure.

2. Binary analysis by specifying threshold: The networks are first bina-

rized by specifying a threshold value and the measures are calculated on

the binary networks. A comparison between two groups in this analysis can

be meaningful only if the groups’ corresponding networks are binarized by

specifying the same threshold value. One disadvantage of this method is ap-

parent when one group has consistently lower connection strengths than the

other; in this case, the specification of the same threshold for both groups

will lead to different number of connections. Therefore, any significant re-

sult could be due to this difference rather than some underlying effect. In

general, the results in this type of analysis are performed over some range

of thresholds.

3. Binary analysis by specifying density: The networks are first binarized

by specifying a threshold value so that a certain number of connections exist
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in the graph, and the measures are calculated on the binary networks. In

this type of analysis, a comparison between two groups can be meaningful

only if the groups’ corresponding binary networks have the same density

of connections. Sometimes, this method is preferable because the analysis

is done only on the corresponding percentage of strongest connections; as

a result, the results are considered to reflect topological differences. This

analysis is also commonly performed over some range of densities.

3.3 Between-group comparison

Typically, the connectivity analysis is performed by comparing the properties

of a control group to a target group; for example in order to find the effect of

a neurodegenerative disease one might compare a group of healthy subjects to

patients having that particular disease. However, in order to determine whether

the calculated differences are indeed genuine or they result from the randomness

associated with the sample selection, statistical significance tests are commonly

performed. One widely used procedure is the non-parametric permutation test

which tests whether the differences between the two groups are significant (this

is reported a p-values) and also determines the confidence intervals (generally

calculated as 95% confidence intervals).

3.3.1 Permutation test

The null hypothesis generally states that the observed effect is due to randomness.

The decision of rejecting the null hypothesis can be evaluated with a permutation

test by the calculation of the associated p-value (i.e. the probability to obtain

a value that is equal to or more extreme than the real observed value just by

chance). The p-value is then compared with a predetermined threshold value

(which is typically taken to be p = 0.05 or p = 0.01). If the obtained p-value

is lower than the threshold, the null hypothesis can be rejected as illustrated in

figure 3.3.
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Figure 3.3: Permutation test and p-value. The permutation test calculates a p-
value (defined as the probability to obtain a value that is equal to or greater than
the observed value only by chance) and compares it to a predetermined threshold
(for example, p = 0.05 or p = 0.01). If the calculated p-value is less than the
threshold, the null hypothesis can be rejected.

In particular, the permutation test is used to compare the network measures

calculated for two groups. It does so by following these steps:

1. Calculate the graph measures for each group and determine the difference

between them.

2. Randomly permute the subjects between the two groups; calculate the mea-

sures for each of the permuted groups and obtain the difference between

them.

3. Repeat the above step multiple times (typically, this is done 1000 times).

After that, obtain the histogram of the differences.

4. Determine where the difference obtained from the two original groups falls

within the histogram (i.e. calculate the p-value for the difference of the
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original groups). Comparison of this value with the predetermined threshold

(figure 3.2) will determine whether the null hypothesis can be rejected.

3.3.2 Comparison with random graphs

The measures calculated for a given group can also be compared with the ones

calculated for the corresponding random graphs by following the procedure ex-

plained below:

1. Calculate the value of the particular measure for the group.

2. Calculate the measure for a set of random graphs (typically 1000); these

graphs are calculated in a way that preserves the degree and strength dis-

tributions of the original graph. Based on this, obtain the histogram of the

measure.

3. Determine where the value of the measure lies within the histogram.

3.3.3 False discovery rate (FDR)

When applying the permutation test to the nodal measures, one actually tests

multiple null hypotheses simultaneously (one for each brain region). This results

in the increase of the likelihood to obtain false significance; for example, with a

0.05 p-value threshold, one would expect to reject the null hypothesis 5% of the

time just by chance, and this number increases if multiple hypothesis are tested.

Therefore, the level of significance and the corresponding p-values need to be

adjusted in order to account for the multiple comparisons. The false discovery

rate (FDR) is used for this purpose and is applied by employing the Benjamini-

Hochberg procedure (figure 3.4):

53



1 . . . N

p-values

i
NQ

Figure 3.4: False discovery rate (FDR). The p-values are computed for each
hypothesis testing and are arranged in ascending order. Each of these individual
p-values is compared to their corresponding false-rate-corrected values given as
i
N
Q (here, Q = 0.10). The first significant point is the largest p-value that is

smaller than its corresponding false-rate-corrected value. Then, every hypothesis
with smaller p-value, the blue bars in the figure, is also significant (regardless of
whether the p-value is smaller or larger than the corresponding false rate corrected
values).

1. Calculate the p-values for each individual hypothesis testing and sort them

in ascending order (i.e. if one is testing a total of N hypotheses, the smallest

p-value has rank i = 1, the largest has rank i = N).

2. Choose the false discovery rate Q (usually, Q = 0.05).

3. Each of the individual p-values are compared with their corresponding FDR

corrected values, which can be calculated as i
N
Q.

4. Identify the largest p-value that is smaller than the corresponding FDR

corrected value.
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5. The p-value identified in the previous step is the largest p-value that is

significant; all smaller p-values are significant as well (regardless of whether

they are larger than the corresponding false-rate-corrected values) as exem-

plified in figure 3.3.
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Chapter 4

BRAPH – BRain Analysis using

graPH theory

4.1 Introduction

Various toolboxes have been developed with the aim to apply graph theory to

the study of brain connectivity networks, such as, eConnectome [123], BrainNet

Viewer [124], GRETNA [125], CONN [126], GraphVar [127], the Brain Connec-

tivity Toolbox [31] and GAT [128]. Additionally, it has been argued that time-

varying brain networks offer valuable insights about the effects of mental illnesses

[129], thereby prompting the development of toolboxes that allow the calculation

of dynamic functional connectivity measures [130, 131]. Each of these toolboxes

contributed to the field of the network neuroscience by providing the user with

various options to visualize, build and characterize the brain network topology,

however they mostly require some background in programming, are coded in a

manner that does not allow for their straightforward adaptation or focus on only

a single part of the analysis. As a result, a reliable, streamlined, user-friendly,

fast, and scalable software that deals with all aspects of network organization is

still lacking.
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In this chapter, I will present BRAPH – BRain Analysis using graPH theory

[132] (http://www.braph.org/), a toolbox that can be utilized to perform net-

work analysis of the brain connectome. BRAPH is accompanied with a graphical

user interface (GUI) and it is an open-source object-oriented software coded in

MatLab. By benefiting from the object-oriented programming paradigm, this

software provides a coherent modular structure that enables the addition of new

objects even without an extensive knowledge of the underlying implementation,

therefore permitting easy maintenance and modification of the existing code.

From the clinical point of view, BRAPH offers the following advantages: (a) in

order to get the first impression of the data and any existing differences between

groups before the actual network analysis, the regional mean values of each group

can be compared between each other by using permutation testing; (b) individ-

ual and group adjacency matrices and network measures can be visualized by the

user, which is pivotal for the detection of potential outliers, a major confound in

neuroimaging studies; (c) it gives the user an insight into the topological changes

of the brain networks over time by providing the option to carry out longitu-

dinal analysis; (d) the community structure of the network can be calculated

by employing a variety of algorithms and the user can also conduct subnetwork

analyses within the pre-calculated communities, a very important tool for studies

testing hypotheses within a particular structural or functional brain network; (e)

BRAPH provides the basis for conducting a multi-modal graph theory analysis by

integrating information from independent imaging modalities, which is arguably

the next challenge in imaging connectomics; for example, both structural (MRI)

and functional (fMRI) networks can be meaningfully compared by deriving them

from the same brain atlas.

From the user’s perspective, BRAPH is a vertically integrated software in which

all steps of the analysis can be carried out sequentially, ranging from importing

the neuroimaging data to saving the final results and the analysis parameters

in a single file. Therefore, the organization of BRAPH is practical and it helps

with the reliability and reproducibility of the results, which is an increasingly

important issue within the research community.
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In the following sections I will describe in detail the different options provided

within BRAPH that can be used to perform the connectivity analysis of brain

Graph

GUI
Brain Atlas

Graph
Analysis

GUI
Graph

Analysis

GUI
CohortCohort

Brain Atlas

Data Structures GUIs

Figure 4.1: Overview of BRAPH software architecture. The structure of BRAPH

is made up of three layers: Graph, Data Structures and Graphical User Interfaces

(GUIs). Unidirectional interfaces (represented by arrows) are used to connect

these layers as shown. Graph incorporates the functions that are needed to con-

duct the graph analysis. In the Data Structures layer, Brain Atlas is used to

define the network’s nodes, Cohort allows the user to specify the subjects to be

used in the analysis and divide them into groups and Graph analysis permits one

to calculate the adjacency matrix, the network measures and the between-group

comparisons. Each of the above is implement in an object, whose capabilities

can be invoked by command line. Additionally, a GUI is made available for each

object (i.e. GUI Brain Atlas, GUI Cohort and GUI Graph Analysis). Due to this

organization, BRAPH can be customized, maintained and expanded very easily.

Taken from [132].
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networks. Such options include the building of the connectivity matrices, the

analysis of binary and weighted networks, the implementation of between-group

comparisons, and the normalization of the network measures by the ones com-

puted from random networks. Although this software has already been applied

in some previous graph theoretical studies on varios neurodegenerative diseases

[96, 97] , to additionally demonstrate its ability, in this chapter I will also discuss

the topological properties of structural networks built in patients with amnestic

mild cognitive impairment (MCI) and AD, as well as functional networks derived

from Parkinson’s disease (PD) patients with MCI.

4.2 Materials and methods

4.2.1 Overview and analysis workflow

BRAPH is a complete software package that allows the user to perform all steps

of a graph theoretical analysis (chapter 3), visualize the results by plotting high-

quality images and save the whole analysis parameters in a single file. BRAPH

can deal with data obtained from both structural (MRI, PET) and functional

(fMRI and EEG) imaging techniques and can analyze this data by calculating bi-

nary and weighted brain connectivity networks. It also allows for the assessment

of the community organization in the network by employing different algorithms;

the calculated communities can be further extracted for a sub-network analysis.

Between-group significant differences are tested by the non-parametric permuta-

tion test and the multiple hypothesis testing results are corrected by employing

the false discovery rate (FDR) [133]. Additionally, it provides options to conduct

longitudinal analysis, for which the statistical significance is also reported by per-

mutation test, and also it gives the option to the user to normalize the network

measures by random graphs.

As shown in figure 4.1, the software is made up of three independent layers:
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Graph, Data Structures and Graphical User Interfaces (GUIs), all of them con-

nected by software interfaces. The Graph package encompasses the set of fun-

damental functions that facilitate the calculation of the nodal and the global

measures. The Data Structures package consists of functions that lay out the

core functionalities of BRAPH, such as defining the brain atlas or the creation

of cohorts by grouping the subject and the types of graphs; crucially each of

them can be accessed by the command line and extended or modified by ad-

vanced users. The GUI s package provides the users without a computational

background with a well-organized framework to perform the brain connectivity

analysis. It consists of a series of GUIs, each of which allows for the execution of

different task: (a) a selection and editing of the brain atlas can be accomplished

by the GUI Brain Atlas ; (b) the cohort of subjects can be specified in the GUI

Cohort ; (c) the GUI Graph Analysis facilitates the building of the adjacency

matrix, the selection of the type of analysis (weighted of binary), the thresh-

olding method (by specified a certain threshold or density) and the calculation

and visualization of the network measures. In the case of GUI Cohort and GUI

Graph Analysis, depending on the type of the imaging technique, four options

can be chosen (MRI, fMRI, PET, EEG). By exploiting this three-layered struc-

ture, BRAPH can be further customized in order to address any emerging needs,

for example, new graph measures or new approaches for building the adjacency

matrix can be easily implemented. The workflow for performing a connectivity

analysis in BRAPH is shown in figure 4.2; each step in this analysis is discussed

in detail in the following sections.

4.2.1.1 Defining the brain atlas

As discussed in section 3.2, the connectivity analysis starts by defining the nodes

in the network, which represent the various regions in the brain (figure 4.2(A)). In

BRAPH, the brain atlas is defined by the graphical interface GUI Brain Atlas and

the corresponding set of objects (described in the sections 4.2.2.2 and 4.2.3.3). In

order to be able to visualize the brain graph all regions need to be projected on

the top of a 3D brain surface, therefore, for each brain region a name, label and
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Figure 4.2: BRAPH workflow. Each step of the brain connectivity analysis in

BRAPH can be performed by the corresponding graphical user interfaces (GUIs).

A) GUI Brain Atlas allows the user to specify the brain regions. B) The user

can import the data of the subjects, modify subject’s relevant data and define

subjects groups in GUI Cohort. C) GUI Graph Analysis allows the calculation

of the adjacency matrix by allowing the user to choose how to deal with the

negative correlation coefficients, specify the type of correlation and which type of

graph to analyze. Based on the type of graph, three specialized GUIs are used

to calculate and visualize the corresponding measures: D) GUI Graph Analysis

BUD : binary undirected graphs at a fixed density; E) GUI Graph Analysis BUT :

binary undirected graphs at a fixed threshold; GUI Graph Analysis WU : weighted

undirected graphs. Taken from [132].

(x,y,z) coordinates should be specified. When structural networks are analyzed
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(e.g. T1-weighted images obtained from structural MRI), the brain is generally

divided by using an anatomical parcellation configuration that makes use of the

sulci and gyri as anatomical markers. Some examples of anatomical atlases are

Desikan [134], Destrieux [135] or Automated Anatomical Labeling (AAL) [136]

atlas. In the case of functional data analysis (e.g. functional MRI data), in addi-

tion to defining the brain atlas from an anatomical parcellation, one could derive

it by using a meta-analysis, or a method based on the clustering of the spatially

coherent and homogeneous regions. Examples of functional atlases include the

Power [137], Dosenbach [138] or Craddock [139] atlases. Additionally, the user

could also define an atlas directly in GUI Brain Atlas or use a custom atlas from

an external file.

4.2.1.2 Defining the cohort

After creating or uploading the atlas, the corresponding cohort in the anal-

ysis needs to be defined (figure 4.2(B)). In BRAPH, the subject data can

be uploaded through the GUI Cohort interface (sections 4.2.2.3 and 4.2.3.4).

The subject data may consist, for example, of volume measures, of surface

area, or cortical thickness in the case of structural MRI; time depended re-

gional activation patterns in the case of functional MRI; electrophysiologi-

cal signals in the case of EEG; and glucose metabolism in the case of PET.

These values, in addition to the pre-processing steps of the images (section

3.2), are commonly obtained by using an external software, such as, the Sta-

tistical Parametric Mapping (SPM; http://www.fil.ion.ucl.ac.uk/spm/), FMRI

Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and FreeSurfer

(https://surfer.nmr.mgh.harvard.edu/). Moreover, the obtained values may need

to be corrected for the effects of confounding variables, for example, gender, age

or subjects’ motion in the scanner. This can be done by linear regression, in

which case the residual values should replace the raw values in the analysis [140].
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4.2.1.3 Defining the adjacency matrix

Once the brain atlas and subject data have been imported in BRAPH, the adja-

cency matrix is constructed by computing the edges that represent the relation-

ships between all pairs of nodes (figure 4.2(C)). In the software, the edges are

calculated in the interface GUI Graph Analysis (sections 4.2.2.4 and 4.2.3.5) by

employing each of the correlation coefficients described in the sections 3.2.2 and

3.2.3. Additionally, in BRAPH, the user can handle the negative correlation co-

efficients in three different ways (section 3.2.3) and analyze three different types

of graphs:

� Weighted undirected analysis: This analysis is performed on the adja-

cency matrix that is obtained by the symmetrization of the full weighted

matrix (in which the elements are the corresponding correlation coefficients

between two nodes) as described in section 2.2 (figure 4.2(F)). These net-

works are characterized by a single number in the case of the global measures

and by an array of numbers (one number per brain region) in the case of

nodal measures. This type of analysis is utilized by the Graph Analysis WU

graphical interface (sections 4.2.2.5 and 4.2.3.5).

Furthermore, in order to perform binary network analysis, BRAPH can binarize

the weighted undirected adjacency matrix in two ways, leading to the other two

types of analyses:

� Binary undirected threshold (BUT) analysis: This analysis is per-

formed by firstly selecting a correlation coefficient as a cut-off (or threshold)

value. Then, the weighted adjacency matrix is binarized such that all edges

below the cut-off value are excluded from the analysis and all edges above

this value are set to 1 (figure 4.2(E)). These networks are commonly char-

acterized over a range of thresholds which can be chosen by the user. This

analysis is employed by the Graph Analysis BUT graphical interface (sec-

tions 4.2.2.5 and 4.2.3.5).
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� Binary undirected density (BUD) analysis: This analysis is performed

by binarizing the weighted adjacency matrix by choosing a cut-off correla-

tion coefficient such that a certain fraction of edges (i.e., a specific density)

is obtained in the graph (figure 4.2(D)). The user can also choose the range

of densities that will be used to characterize the networks. This analysis is

employed by the Graph Analysis BUD graphical interface (sections 4.2.2.5

and 4.2.3.5).

It should also be noted that even though BRAPH does not allow for the calcula-

tion of the directed networks through the graphical user interfaces, the directed

analogues of the measures are already implemented in the Graph package and

can be used from the command line in MatLab.

4.2.1.4 Network construction and analysis

Each of the three interfaces described above allow for the calculation of both

global and nodal network measures, on weighted or binary networks, using differ-

ent thresholds or densities. BRAPH can calculate most of the measures defined in

chapter 2 and all measures are implemented in the software package Graph. They

are calculated by employing optimized and linear algebra based algorithms, some

of which are adapted from the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net/) [31].

After the calculation of the measures for each group, BRAPH can test for sig-

nificant differences between any two groups (cross-sectional analysis) as well as

significant differences of the same group at two different points across time (lon-

gitudinal analysis). These results are obtained by performing non-parametric

permutation tests and are reported as one-tailed and two-tailed p-values based

on 95% confidence intervals. The permutation test for the longitudinal compar-

ison is performed by permuting the data for each subject at the different time

points, therefore enforcing that a group does not have the subjects data from two

time points.
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In the case of the nodal measures, the permutation tests are run for each brain

region simultaneously. Therefore, they assess multiple null hypotheses at the

same time, which in turn increases the chance of identifying false positives. In

order to resolve this issue, BRAPH controls the multiple comparison p-values

with the false discovery rate (FDR), implemented via the Benjamini-Hochberg

procedure (section 3.3.3).

All network measures can be compared with their counterparts calculated on ran-

dom graphs, for example, with the purpose to normalize the weighted measures.

The random graphs used for this purpose are commonly derived to have the same

weight or degree distribution as the original network. In BRAPH, the random

graphs are computed by using the algorithms described in the Brain Connectivity

Toolbox [31].

BRAPH also allows for the visualization of the calculated measures and compar-

isons and high quality and publication-ready images can be exported as a result.

For global measures, BRAPH plots the difference of the measures calculated for

two groups as well as the 95% confidence intervals derived from the permutation

tests. In the case of nodal measures, the user can choose whether to view the raw

results for each brain region, or alternatively, only the regions that pass the FDR

corrections (have their corresponding null hypothesis rejected) can be visualized

on a brain surface. Finally, the user can also plot both the binary network (for

different thresholds/densities) and the weighted one (in which the strength of the

edges is coded in the color and weight of the edges).

4.2.2 Graphical user interfaces in BRAPH

A series of GUIs (illustrated in figure 4.3) guide the user through the steps of

the connectivity analysis. The analysis starts with Brain Atlas in which user can

create and manipulate a brain atlas. In the next step, Cohort interface permits

the user to create the subjects’ cohort and upload their data. Afterwards, the

type of the analysis can be specified in Graph Analysis ; depending on this choice,

a specialized GUI opens, WU/BUD/BUT Graph Analysis, in which the user
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can calculate and visualize the measure. Although this workflow is implemented

separately for each neuroimaging technique (figure 4.3), in the following sections

I will only briefly present the corresponding GUIs for structural MRI data, while

the complete description, including the one for the functional data, could be found

at http://www.braph.org/.
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Figure 4.3: Connectivity analysis using the GUIs in BRAPH. A workflow of the

connectivity analysis in BRAPH by using the GUIs for each of the four imaging

modality. Each of the boxes indicates a GUI by specifying its name the format of

the files that are outputted by that GUI. The arrows show the typical workflow

between the GUIs. Taken from [141].
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4.2.2.1 Initial GUI

Figure 4.4: Initial GUI that becomes visible after launching BRAPH. This GUI
allows the user to select the neuroimaging modality (via the checkboxes on the
bottom right) and to start at various stages of the workflow: brain atlas, cohort
or graph analysis (by pushing the appropriate button on the right). Taken from
[141].

The initial GUI of BRAPH is illustrated in figure 4.4. This interface allows the

user to:

� choose the imaging technique corresponding to the data that will be ana-

lyzed by selecting the appropriate checkbox on bottom right (the currently

implemented imaging modalities are structural and functional MRI, PET

and EEG).
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� choose the stage at which to start the connectivity analysis by pressing the

corresponding push button on the right (the analysis can be started from

Brain Atlas, Cohort or Graph Analysis).

� visualize an animation of a rotating brain or slide show of selected measures

in the animation panel on the left (the choice between the animation and

slide show can be done via the checkboxes in the bottom left).

4.2.2.2 The brain atlas GUI

GUI Brain Atlas is a GUI in which the user can visualize and manipulate a brain

atlas. The atlas can be imported (in txt, xls or xml format) or a custom atlas

can be created within the GUI. Finally, the brain atlas can be saved in a file with

extension *.atlas if intended for future BRAPH use, or it can be saved in txt or

xml format that can be used within other applications.

An example of the GUIBrainAtlas is shown in figure 4.5, where four main work

areas can be distinguished:

� Menu contains the fundamental actions that can be performed within GUI

Brain Atlas such as the loading, saving, editing and visualizing of a brain

atlas. It also allows the user to choose the type of cohort that needs to be

built for the further analysis.

� Toolbar permits straight access to some of the most commonly used ac-

tions.

� Table view is a table that contains the properties (e.g. label, name and

coordinates) of all brain regions. The buttons at the bottom allow the user

to modify the brain atlas by adding, removing of changing the positions of

the selected brain regions.

� Brain view is a panel that holds the 3D surface onto which the brain atlas

is visualized. It permits the user to alter the visualization parameters of

69



Figure 4.5: Screenshot of GUI Brain Atlas. Four main work areas can be distin-
guished: menu and toolbar at the top, a table view on the left and a brain view
on the right. Taken from [141].

the plot. The plot in this panel can be eventually exported as a MatLab

figure.

4.2.2.3 The MRI cohort GUI

GUI MRI Cohort allows the building of an MRI cohort by importing individual

or group of subjects from already prepared data files in xls, txt, or xlm format.

The anagraphic information and the data of the subjects can be modified, and

the subjects can be grouped into additional groups as needed. Furthermore, GUI

MRI Cohort provides various option for the user to visualize the data of individual

subjects, groups, and comparisons between groups. The MRI cohort can be saved

in a file with extension *.mc if intended for future BRAPH use, or it can be saved

in xml format that can be used within other applications.
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Figure 4.6: Screenshot of GUI MRI Cohort. Five main work areas can be dis-
tinguished: menu and toolbar on the top and a brain atlas panel on the top left.
On the bottom left a group panel is located while the main panel is positioned
on the right. Taken from [141].

An example of the GUIMRICohort is shown in figure 4.6 where five main work

areas can be distinguished:

� Menu contains the fundamental actions that can be performed within GUI

MRI Cohort such as the loading, saving, editing and visualizing of an MRI

cohort. It also allows the user to start a new MRI graph analysis.

� Toolbar permits straight access to some of the most commonly used ac-

tions, for example, saving and loading of an MRI cohort.

� Brain Atlas allows the user to select an atlas that is going be used in the

analysis (from a *.atlas file). If an atlas has already been defined, it can be

visualized by opening it in GUI Brain Atlas with restricted access.
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� Group panel shows a table that contains the groups of subjects and their

properties. This also allows the user to add new groups or remove existing

ones; new groups can also be derived from the existing groups by performing

some logical operations.

� Main panel is made up of four tabs: Groups & Demographics holds the

group data; Subject Data can be used to edit the data of each subject; Group

Averages allows the user to calculate the average or standard deviation

of the group data; Brain View provides the visualization of the group or

subject data on a brain surface, the final image can be further exported as

a MatLab figure.

4.2.2.4 The MRI graph analysis GUI

GUI MRI Graph Analysis allows the specification of the parameters used to

compute the adjacency matrices for the analysis of structural MRI data. The

resulting weighted adjacency matrices can be visualized directly, or they can be

viewed as a function of both density and threshold. Additionally, the user can

define a community structure and perform the connectivity analysis only within

particular communities. A list of the measures available for calculation is shown

at the bottom of the interface. The graph analysis file can be saved with extension

*.mga for further use in BRAPH or in xml format for use in other applications.

An example of the GUI MRI Graph Analysis is shown in figure 4.7 and six main

work areas can be distinguished:

� Menu contains the fundamental actions that can be performed within GUI

MRI Graph Analysis, such as the loading and saving of an MRI graph

analysis. It also allows the user to generate a MatLab figure from the

matrix shown in the main panel.

� Toolbar permits straight access to some of the most commonly used ac-

tions, for example, saving and loading of an MRI graph analysis; addition-

ally the user can manipulate the graphic representations of the connectivity
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Figure 4.7: Screenshot of GUI MRI Graph Analysis. Six main work areas can be
distinguished: menu and toolbar on the top, cohort and the graph analysis panel
in the middle left. The main panel is located on the right and the measures panel
can be found at the bottom. Taken from [141].

matrices.

� Cohort panel allows the user to select a cohort that is going be used in

the analysis (from a *.mc file). If the cohort has already been defined,

its properties can be visualized by opening it in GUI MRI Cohort with

restricted access.

� Graph analysis panel permits one to choose the parameters of the anal-

ysis. In particular, the user can choose the properties of the graph analy-

sis (weighted or binary), the correlation that characterizes the strength of

between-node connections (section 3.2.2) and how to deal with the negative

correlations (section 3.2.3). Furthermore, one can perform the calculation

of the community structure (via the interface Community structure, visual-

ized in figure 4.8) and choose whether to continue the analysis on the full

graph or any other subset of nodes.
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Figure 4.8: GUI Community structure. Snapshot of the interface that can be
used to specify the community structure. Taken from [141].

� Main panel visualizes the adjacency matrix that will be used in the anal-

ysis. It allows the user to view weighted as well as binary matrices as

function of density or threshold, moreover, the matrices’ rows and columns

can be rearranged in order to better reflect the community structure of the

network.

� Measures panel show the measures that are available for each type

(weighted or binary) of graph.

4.2.2.5 The MRI graph analysis BUD GUI

Once the type of analysis has been decided in the GUI MRI Graph Analysis,

the user is redirected to a specialized GUI that performs that particular analysis

(MRI Graph Analysis WU for weighted analysis, MRI Graph Analysis BUT for

binary analysis at a fixed threshold and MRI Graph Analysis BUD for binary

analysis at a fixed density of connections. In this section I will describe the GUI
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MRI Graph Analysis BUD, a detailed information for the other two interfaces

can be found at http://www.braph.org/.

GUI MRI Graph Analysis BUD enables the user to conduct a brain graph analysis

of MRI data by binary underected graphs at fixed density of connections (BUD

= Binary Undirected Density). Within this GUI, the group measures can be

calculated and compared with random graphs. Additionally, the measures of two

groups can be compared with each other by the permutation tests. Both single

and double-tailed p-values are calculated (FDR correction is applied for nodal

measures) and the user can visualize the 95% significance intervals. The global

and nodal measures are showed separately; in the case of nodal measures, the

results can be visualized on a brain surface. The graph analysis file can be saved

with extension *.mga for further use in BRAPH or in xml format for use in other

applications.

Figure 4.9: Snapshot of GUI MRI Graph Analysis BUD. Five main work areas
can be distinguished: menu and toolbar on the top, main panel on the right and
the cohort and graph analysis panels on the left. Taken from [141].

An example of the GUI MRI Graph Analysis BUD is shown in figure 4.9 where
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five main work areas can be distinguished:

� Menu contains the fundamental actions that can be performed within GUI

MRI Graph Analysis BUD such as the loading and saving of an MRI graph

analysis. It also allows the user to generate a MatLab figure from the matrix

shown in the main panel.

� Toolbar permits straight access to some of the most commonly used ac-

tions, for example, saving and loading of an MRI graph analysis; addition-

ally the user can manipulate the graphic representations of the connectivity

matrices.

� Cohort panel allows the user to visualize the properties of the cohort used

in the analysis by opening it in GUI MRI Cohort with restricted access.

� Graph analysis panel allows the user to visualize the community struc-

ture of the graph by opening it in the Community structure GUI (figure

4.8). Moreover, the user can choose which measures to calculate or com-

pare; the details of the comparison, such as the density range or the number

of permutations can be specified inside the new interface that opens once

the corresponding button is pushed (an example of the interface that allows

for between-group comparison is shown in figure 4.10).

� Main panel is made up of four tabs: Correlation Matrix allows the user

to visualize the matrix used in the analysis; Global Measures shows and

plots the information about the global measures; Nodal Measures allows

the visualization of individual results for each brain regions; Brain View

allows the nodal measures or comparisons to be plotted on a brain surface.

Each of the plots in the main panel can be further exported as a MatLab

figure.
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Figure 4.10: Snapshot of the interface that can be used to perform a between-
group comparison. Taken from [141].

4.2.3 The underlying BRAPH architecture

All actions that can be performed by the graphical user interfaces have their

bases in the implementation of few objects. Each object has a specific set of

methods and properties that achieve a particular purpose. However, while the

Brain Atlas marks the start of the connectivity analysis for all neuroimaging

modalities, the Cohort and Graph Analysis are implemented separately for each

of the four imaging techniques (MRI, fMRI, EEG and PET).

Although in this section I will illustrate the objects’ organization and interaction

by using the structural MRI as an example, the other imaging modalities are

implemented analogously. The main differences exist in the different structure
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of few properties and methods of the relevant objects due to the fact that they

have to handle different data types in the structural and functional analysis. In

particular, the data of an MRI subject will be an array (one value per brain

region) while the data of an fMRI subject is a matrix (multiple values per brain

region). In another example, the calculated measures in structural data reflect

group properties; however, in functional data they are indicative of the properties

of the individual subjects, and as such, the measures need to be further averaged

over all subjects.

4.2.3.1 The graph package

Graph is a stand-alone package that consists of few objects with the aim to facil-

itate the calculation of the graph measures and transformation between different

graph types (e.g. weighted to binary, directed to undirected). All of these are

achieved by the methods of the class Graph, which creates a graph and imple-

ments the set of measures that can be calculated on this graph. These measures

are defined as the constant properties of the graph; additional properties include

its adjacency matrix and Structure. The Structure property is implemented

as a separate object, which facilitates the calculation of the community structure

of the graph by various algorithms (for example, structure can be calculated by

Newman and Louvain algorithms, or the user can define a custom structure).

Graph is an abstract class, therefore, instances of this class cannot be cre-

ated. Instead, one of the sub-classes (e.g., GraphBD, GraphBU, GraphWD,

GraphWU) should be used to implement the methods for that particular graph

type. Additional properties for each of these sub-classes include a list of all

measures for the relevant graph type and the parameters needed to obtain that

graph from the most general weighted directed graph; for example, to obtain

binary undirected graph, one needs to specify threshold or density as well as

symmetrization rule (section 2.2).
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4.2.3.2 Data structure classes

All objects that are used to define the brain atlas, cohort and graph analysis are

instances of a group of abstract classes that provide the general framework of

properties and methods that are needed in the higher levels of the hierarchical

architecture of BRAPH. This group consists of:

� List Element represents an element of a List. Each List Element has a

property which is defined by its tag, format and value. The methods in this

class serve to access and set the properties of each element of the list.

� List represents a list of indexed elements. The properties of a list include

a catalogue of its elements. List’s methods involve the manipulation of the

elements of the list, such as the addition, removal or changing the position

of given element.

� Group is a group of list elements. A group has a name, notes and data,

which is represented as a series of ones and zeros that indicate the partici-

pation of each element in the corresponding group.

� Group List represents a list of groups.

� List With Groups is a list of elements that are grouped into various

groups. This class is a child of List and it has a list of the groups as

its additional property. Therefore, all list elements can be manipulated

individually, while at the same time they are assigned to different groups.

� Hash List Element represents an element of a hash list. This class is

mainly used to define the hash value of a certain element of a list.

4.2.3.3 The brain atlas object

Few hierarchically organized objects provide the foundations to execute the ac-

tions for the creation and manipulation of a Brain Atlas. These objects can be

split into two broad categories, as objects that build and plot the brain atlas.
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Building of a brain atlas is accomplished by two objects:

� Brain Region is defined as list element (see section 4.2.3.2). This object

represents a brain region with the properties: name, label, (x, y, z) coordi-

nates and hemisphere participation. Its methods are mostly inherited from

the List Element class and they include the setting and the retrieval of

the values assigned to each of its properties.

� Brain Atlas is defined as list (section 4.2.3.2), where the elements of this

list are the individual brain regions. Atlas’ properties include the name

and the brain surface (the default brain surface in BRAPH is based on

the ICBM 152 template [142]). The majority of Brain Atlas’ methods are

inherited from the List class and they involve various actions to manipulate

the list elements, such as addition, removal or changing the position of an

element, as well as saving and loading the brain atlas to an external file.

On the other hand, the plotting of a brain atlas is achieved by the following three

objects:

� Plot Brain Surf is an object that plots and manages the brain surface

based on the ICBM 152 template [142]. Its properties involve the different

options to visualize the brain surface (such as, color, transparency, orienta-

tion) while its methods achieve the manipulation of the axis of the graph,

such as, setting the axis limits, turning the grid on/off or setting the desired

view.

� Plot Brain Atlas plots and manages the brain regions that make up a

brain atlas. The brain regions can be plotted by using symbols, spheres or

labels, therefore, most of the methods of Plot Brain Atlas are used to apply

their corresponding plot properties. Additionally, since the brain regions

are plotted on a brain surface, Plot Brain Atlas is a child of the object Plot

Brain Surf and inherits all of its properties and methods.
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� Plot Brain Graph plots a brain graph by manipulating the links between

brain regions. The links can be plotted by using lines, arrows or cylinders,

therefore, most of the methods of Plot Brain Graph are used to apply their

corresponding plot properties. This object is a child of Plot Brain Atlas

and, therefore, inherits the properties of both objects described above. As

a result, Plot Brain Graph provides all essential methods needed for the

visualization of a brain graph (brain regions and connections between them)

on a brain surface.

4.2.3.4 The MRI cohort object

The MRI Cohort is implemented by the properties and methods of two objects:

� MRI Subject is defined as list element (see section 4.2.3.2). This object

represents a subject with MRI data that has the properties: code, age,

gender and data. Its methods are mostly inherited from the List Element

class and they include the setting and the retrieval of the values assigned

to each of its properties.

� MRI Cohort represents a cohort of subjects with MRI data. The prop-

erties of MRI Cohort object include the MRI subjects, various groups that

subjects can belong to, and Brain Atlas (as a result, one cannot initialize

an MRI Cohort without previously defining the Brain Atlas object). MRI

Cohort is defined as a list with groups (section 4.2.3.2; all the subjects in

the cohort are arranged into a list and each group is associated with a data

(a series of ones and zeros) corresponding to a participation decision for

each subject. Therefore, MRI Cohort inherits its methods from the class

List With Groups which include methods to manipulate the individual

subjects and groups (to add, remove or change their positions in the list) as

well as methods to change the participation status of each subject to any

group.

81



4.2.3.5 MRI graph analysis

MRI Graph Analysis is an abstract class that represents a list of measures

used for graph analysis of MRI data. Instances of this class cannot be initiated,

instead, one of its sub-classes (MRI Graph Analysis BUD, MRI Graph

Analysis BUT or MRI Graph Analysis WU) should be used. MRI Graph

Analysis inherits the properties and methods of the class List (section 4.2.3.2),

its list elements are the measures (graph measures used to characterize the brain

network; one measure can be calculated per group), the comparisons (between

group or longitudinal comparisons of given measures) or random comparisons

(comparison of the measure with the one calculated for random networks) that

can be calculated for the corresponding graphs.

The properties of this class include the cohort, the subject data, the adjacency ma-

trix (one per group), the community structure and hashtables for each measure,

comparison and random comparison. Additional properties of an MRI Graph

Analysis include the ones that define the adjacency matrix of a given group, such

as graph and correlation types and variable specifying how to deal with the nega-

tive correlations. The main method of this class is the calculation of the adjacency

matrix, additional methods achieve the retrieval of the various properties of the

class.

4.2.3.6 The MRI graph analysis BUD object

In this sections I describe the series of objects that are invoked to perform binary

undirected analysis at fixed density (BUD). The objects that are utilized to per-

form the BUT and WU analysis follow analogous pattern to the ones discussed

in this section.

� MRI Measure is an abstract class that represents a measure of MRI data.

This class inherits the properties and methods of Hash List Element

(section 4.2.3.2). As this class cannot be initiated, one of its sub-classes
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(MRI Measure BUD, MRI Measure BUT or MRI Measure WU)

should be used.

� MRI Measure BUD represents MRI measure of binary undirected graph

with fixed density. This object is an instance of MRI Measure and it

inherits its properties and methods. Each Measure BUD has few proper-

ties the include its code, group, value, density and threshold at which the

measure is calculated. Its most important method involves assigning a hash

value to the measure based on its properties so that it can be located within

the graph analysis list. In order to save computational time the measures

are not calculated repeatedly, therefore if a measure is located in the list,

it is not recalculated again.

� MRI Comparison BUD represents MRI comparison of binary undirected

graph with fixed density. It is a child of MRI Measure BUD thereby

inheriting its properties and methods. Additional methods involve the cal-

culation of the difference between the measure values of two groups and

the corresponding confidence intervals. The additional properties of MRI

Comparison BUD are introduced to reflect the features of the performed

comparison, such as number of permutations, single and double tailed p-

values.

� MRI Random Comparison BUD, represents MRI comparison of bi-

nary undirected graph at fixed density with random graphs. It is defined

analogously to the MRI Comparison BUD.

� MRI Graph Analysis BUD is a graph analysis of fixed density binary

undirected MRI. Its properties are inherited from the abstract class MRI

Graph Analysis. The methods of MRI Graph Analysis BUD include the

calculation of network measures for a given group or the implementation of

the permutation test in order to compare two groups or single group with

random graph. After the calculation of each measure or comparison, it is

added to the list. Before calculation, the list is checked to see whether a

measure exists, thus, a measure is calculated only if it is not present in the

list.
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4.2.3.7 Utility objects

� BNC defines set of constants and auxiliary methods for BRAPH.

� Check is used to validate certain inputs. In particular, it checks whether

an input is real, integer or object, and in the case of multiple inputs, it

validates whether they have the same size.

� GUI defines a set of constants and methods of general use in the graphical

user interfaces of BRAPH.

� Plot Data Element creates and manages an element which data is to be

plotted. This object inherits the properties and methods of List Element.

Its additional properties hold the information about the elements’ x and y

values and the plot properties of the markers and lines used to plot them.

� Plot Data Area creates and manages an area element which data is to be

plotted. It inherits the properties and methods of Plot Data Element.

Additional properties hold the information about the plot and data (for

example, the x and y values of the area boundaries) properties of the plotted

area.

� Plot Data manages and plots the data of elements in a list. It is a sub-

class of List and it inherits its properties and methods used to manipulate

the elements of the list. Plot Data’s methods allow the plotting of single

or multiple elements by using symbols and lines as well as setting the axis

properties.

4.2.4 Subjects

In order to demonstrate BRAPH’s capabilities, we performed structural and func-

tional connectivity analysis in two unrelated studies. In the structural study, we

examined the possible differences in network topology between healthy subjects,

amnestic MCI patients and AD patients (the details for each group are given in

table 4.1) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
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(adni.loni.usc.edu). Being led by Principal Investigator Michael W. Weiner, MD,

ADNI started in 2003 in the form of public-private partnership with the aim to

investigate whether the clinical evaluation can be combined with some biological

markers in order to assess the development of MCI and early AD. The partici-

pants were scanned by using a sagittal 3D T1-weighted MPRAGE sequence on

a 1.5 Tesla MRI imaging system. The details of the sequence are as follows:

echo time (TE) = 3.0 − 4.1 ms; repetition time (TR) = 9 − 13 ms; flip angle

(FA) = 8◦; inversion time (IT) = 1000 ms; voxel size = 1.1 × 1.1 × 1.2 mm3.

Table 4.1: Characteristics of the structural MRI sample. CTR - controls; MCI -

Mild Cognitive Impairment; AD - Alzheimer’s disease; MMSE - minimental state

examination. The gender differences were evaluated using the χ2 test while the

differences between the other variables (age, education and MMSE scores) were

estimated using an analysis of variance (ANOVA). In each cell, the means of the

sample are followed by the standard deviations in the parentheses [132].

CTR - 210

subjects

MCI - 377

subjects

AD - 181

subjects

F or χ2 tests

(p value)

Age (y) 76.1(5.0) 74.5(7.5) 75.6 (7.0) 0.017

Sex (M/F) 110/100 243/134 97/84 0.005

Education(y) 16.0(2.9) 15.7(3.0) 14.8(3.2) < 0.001

MMSE 29.1(0.9) 27.0(1.8) 23.2(2.0) < 0.001
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Table 4.2: Characteristics of the fMRI sample. CTR - controls; PD-CN - Parkin-

son’s disease cognitively normal; PD-MCI - Parkinson’s disease with mild cogni-

tive impairment; UPDRS-III - Unified Parkinson’s disease rating scale–Part III;

HY stage - Hoehn and Yahr stage; MoCA - Montreal cognitive assessment scale.

The gender differences were evaluated using the χ2 test while the differences

between the other variables (age, education and MoCA scores) were estimated

using Student’s T test. In each cell, the means of the sample are followed by the

standard deviations in the parentheses [132].

CTR - 15

subjects

PD-CN - 69

subjects

PD-MCI - 15

subjects

Age (y) 66.4(9.1) 61.0(10.4) 63.5(8.2)

Sex (M/F) 13/2 46/23 11/4

Education (y) 16.5(2.3) 15.3(2.9) 14.2(3.1)

UPDRS-III - 18.2(9.1) 21.8(8.9)

HY stage - 1.7(0.5) 1.8(0.4)

MoCA 27.9(1.6) 27.6(1.9) 24.0(3.7)

Disease time (y) - 1.2(0.9) 2.4(1.5)

CTR vs

PD-CN (p

value)

CTR vs

PD-MCI (p

value)

PD-CN vs

PD-MCI (p

value)

Age (y) 0.066 0.372 0.378

Sex (M/F) 0.125 0.361 0.616

Education (y) 0.112 0.024 0.204

UPDRS-III - - 0.161

HY stage - - 0.297

MoCA 0.615 0.001 < 0.001

Disease time (y) - - < 0.001
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In the second study, the analysis was performed on the resting-state fMRI data

obtained from healthy controls, PD patients that were cognitively normal and PD

patients with MCI (the details for each group are given in table 4.2). The patients

were from the Parkinson’s Progression Markers Initiative (PPMI) (2011) [143]

(www.ppmiinfo.org/data; accessed in November, 2015), which was started in 2010

as an international and multicenter study with the goal to establish biomarkers for

PD progression. Following already established criteria for diagnosis of PD-MCI

in the PPMI cohort [144], PD patients were categorized as PD-MCI (i.e. they

have MCI) if their scores on two cognitive tests are 1.5 standard deviation below

the scaled mean scores. Conversely, if the patients do not meet the conditions

to be classified as PD-MCI, they were considered to be cognitively normal (PD-

CN). The images of all participants were taken in Erlangen, Germany on a 3 Tesla

scanner by using an echo-planar imaging sequence with the following details: echo

time = 25 ms; repetition time = 2400 ms; voxel size = 3.25 × 3.25 × 3.25 mm3;

matrix = 68 × 68; flip angle = 80◦; total scan time was 8 minutes and 29 seconds

which included 210 volumes.

Each participating site in ADNI and PPMI received approval from an ethical

standards committee before study initiation and obtained written informed con-

sent from all participants.

4.2.5 Network construction and analysis

In order to examine the topological properties of the structural networks in con-

trols, amnestic MCI patients, and AD patients from ADNI the adjacency matrices

were built in the following way:

� MRI T1-weighted images were preprocessed using FreeSurfer (version 5.3),

following the steps detailed in Pereira et al [96].

� 82 regions were assigned as nodes in the networks and cortical thickness

and subcortical volumes were extracted for each region.
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� The connection strength between all pairs of regions were calculated by the

Pearson’s correlation coefficient, and the negative correlations were set to

zero.

� By fixing the density of connections, binary undirected graphs were ana-

lyzed in the density range 5% to 25%, in steps of 0.5%.

The functional network topologies of elderly controls from PPMI, PD-CN and

PD-MCI patients were assessed by the following steps:

� Their fMRI images were preprocessed by SPM8 (http://www.fil.ion.ucl.ac.uk/spm).

In shortly, this step involved removing of the first five volumes, realignment,

slice-timing correction, filtering to retain only low frequency signals (0.01

– 0.08 Hz), normalization to the Montreal Neurological Institute (MNI)

template (voxel size 3 × 3 × 3 mm3) and regression of white matter and

cerebrospinal fluid signals as well as the six head motion parameters.

� For each subject, 200 brain regions derived from the Craddock atlas [139]

were assigned as nodes in the network and time-series values for each brain

region were extracted.

� The connection strength between all pairs of regions were calculated by the

Pearson’s correlation coefficient, and the negative correlations were set to

zero.

� The graph theoretical analysis was performed on the weighted undirected

graphs.

In order to asses statistical differences between groups in both studies, non-

parametric permutation tests with 10000 permutations were conducted. The

differences were considered to be statistically significant for a two-tailed test of

the null hypothesis at p < 0.05. In the case of the nodal results, the number of

multiple comparisons were controlled by applying the FDR procedure at q < 0.05.
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4.3 Results

4.3.1 Structural network topology in amnestic MCI and

AD

The structural adjacency matrices and brain graphs of patients and controls can

be found in figure 4.11. All groups showed strong correlations between bilaterally

homologous regions.

Concerning the global network topology (figure 4.12), the characteristic path

length and local efficiency increased in MCI and AD patients compared to controls

over various network densities. The most pronounced changes were observed in

transitivity and modularity: transitivity decreased while modularity increased in

MCI and AD patients when compared to controls over almost all densities of the

network. Furthermore, the AD patients, when compared to the MCI patients,

exhibited increases in the characteristic path length at some network densities

while showing widespread changes in the transitivity and modularity.

In the case of the local topology (figure 4.13), significant increases in the nodal

degree are shown in the left medial orbitofrontal, right insula, bilateral rostral

anterior cingulate and posterior cingulate gyri, while decreases are shown in the

left middle temporal, right precentral and right inferior parietal gyri in AD pa-

tients compared to controls. When compared to MCI, AD patients also presented

a higher nodal degree in the left rostral anterior cingulate and isthmus cingulate

gyri.

In addition to the nodal degree, the nodal local efficiency was compared between

groups. It significantly increased in the left transverse temporal gyrus in MCI

patients compared to controls. In AD patients, the local efficiency increased

in the bilateral temporal pole and left entorhinal cortex and decreased in few

regions from the frontal (bilateral superior frontal, left pars triangularis, bilateral

pars opercularis, right postcentral gyri), temporal (bilateral inferior temporal

gyri, amygdala, hippocampus) and parietal (left inferior parietal, right precuneus)
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lobes. When AD patients were compared with MCI patients, the efficiency of the

right rostral anterior cingulate increased in AD patients.

A) CTR

B) MCI

C) AD

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 4.11: Structural brain networks in controls, MCI patients, and AD pa-

tients. The 82 region weighted adjacency matrices (left), the binary adjacency

matrices at 15% density of connections (center) and the corresponding binary

undirected graphs (right) are shown for A) controls (CTR), B) patients with

amnestic mild cognitive impairment (MCI), and C) Alzheimer’s disease (AD)

patients. Taken from [132].
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A) Characteristic path length

B) Local efficiency

C) Transitivity

D) Modularity

CTR vs MCI CTR vs AD MCI vs AD

Figure 4.12: Differences between groups in global structural topology. The dif-

ferences in A) characteristic path length, B) local efficiency, C) transitivity and

D) modularity are calculated between: controls (CTR) and Alzheimer’s disease

(AD) patients (left); controls (CTR) and patients with mild cognitive impair-

ment (MCI) in the center; patients with mild cognitive impairment (MCI) and

Alzheimer’s disease (AD) patients (right). The plot indicate the lower and up-

per bounds (blue circles) of the 95% Confidence Intervals (CI) (gray shade) as a

function of density. The differences between groups are indicated by the orange

circles; they are considered to be statistically significant at p < 0.05 when they

fall outside of the confidence interval. The blue dots plotted in the middle of the

CI (around zero) show the mean values of the difference between the randomized

groups while performing the permutation test. Taken from [132].
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CTR vs MCI
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CTR vs AD

MCI vs AD
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Figure 4.13: Differences between groups in nodal structural measures. Only the

nodes that show significant differences between the corresponding groups after

FDR corrections are plotted. Orange designates increases in the relevant nodal

measures, while blue designates decreases. Taken from [132].
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4.3.2 Functional network topology in PD-MCI

The functional adjacency matrices of controls, PD-CN and PD-MCI patients are

illustrated in figure 4.14. We compared the weighted average degree (section

2.3) between the both groups of patients and controls. The results showed that

PD-CN and PD-MCI patients have less connections (controls = 183.7; PD-CN

= 175.2; PD-MCI = 172.6) than the controls. This difference was statistically

significant in the case of PD-MCI (p-value = 0.027) and showed a tendency in

the direction of significance in the case of PD-CN (p-value = 0.081).

Furthermore, we conducted an analysis of the community structure of each group

(based on their weighted graphs shown in figure 4.14) in order to evaluate the

presence of smaller communities (or modules) of regions within their correspond-

ing networks. We could identify five modules in all three groups which were

quite similar to each other. Module I consisted of medial frontal areas, the pos-

terior cingulate and bilateral angular gyri, resembling the default-mode network.

Module II included temporal and cerebellar areas. Module III comprised several

middle, inferior frontal and parietal regions, similarly to the fronto-parietal net-

work usually found in resting-state studies [70, 145]. Module IV included most

of the visual cortex similarly to the previously reported visual network. Finally,

Module V was mainly made up of temporal and inferior frontal areas as well as

the insula.

The calculation of the average degree within each module revealed that PD-CN

patients had a lower number of connections compared to controls in Module II,

which included temporal and cerebellar areas (PD-CN = 49.02; controls = 51.89;

p-value = 0.020). The same trend was observed in Module V consisting of insular,

temporal and inferior frontal regions (PD-CN = 28.39; controls = 28.93; p-value =

0.040). None of the regions present in these modules showed significant difference

between PD-CN patients and controls after correcting for FDR.

We also observed that, when compared to controls, PD-MCI patients had less

connections in Module III that consists of fronto-parietal areas (PD-MCI = 54.87;

controls = 57.95; p-value = 0.002) and Module V including insular, temporal
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and inferior frontal areas (PDMCI = 28.37; controls = 28.93; p-value = 0.040).

After FDR corrections, few regions in Module III had significantly smaller degree

in PD-MCI patients: the bilateral superior frontal, bilateral superior parietal

gyri, precuneus, left middle frontal gyrus, inferior frontal gyrus and left anterior

cingulate (figure 4.15(a)). On the other hand, in module V, the left insula, right

frontal orbital gyrus and bilateral transverse temporal gyri (figure 4.15(b)) showed

significantly lower degree in PD-MCI patients.

In order to check whether the results of the PD-MCI group were influenced by the

existence of various MCI subtypes, we compared the nodal and average degree of

Modules III and V between each subtype and controls. In the current study, the

PD-MCI group was made up of 9 patients that had multiple-domain MCI and

6 patients with single-domain MCI (5 amnestic, 1 patient non-amnestic). Both

subtypes had lower average degree when compared with controls in Module III

(multipledomain MCI = 54.6; single-domain MCI = 55.3; controls = 58.0) and

Module V (multipledomain MCI = 28.4; single-domain MCI = 28.3; controls =

28.9). With the exception of right transverse temporal gyrus, which had a similar

degree in controls and single-domain MCI patients, all other regions in the two

modules showed smaller nodal degrees in both MCI subtypes when compared

with controls (tables 4.3 and 4.4) .
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A) CTR

C) PD-MCI

Module I Module II Module III Module IV Module V

B) PD-CN

Figure 4.14: Functional brain networks and modules in controls and PD-MCI pa-

tients. Weighted connectivity matrices (on the left) and modules (on the right)

are shown for A) controls (CTR) and Parkinson’s disease patients B) with nor-

mal cognition (PD-CN) and C) with mild cognitive impairment (PD-MCI). Five

modules were identified in each group. Taken from [132].
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CTR vs PD-MCI

Nodal degree: Module III

Nodal degree: Module V

Figure 4.15: Differences between groups in the nodal functional degree. The plot-

ted spheres indicate the regions from Modules III and V that exhibit significant

decreases in the nodal degree in Parkinson’s disease patients with mild cogni-

tive impairment (PD-MCI) compared to controls (CTR) after FDR corrections.

Taken from [132].
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Table 4.3: Nodal degree for regions in Module III in PD-MCI subtypes and

controls. CTR - controls; PD-MCI - Parkinson’s disease with mild cognitive

impairment.In each cell, the means of the sample are followed by the standard

deviations in the parentheses [132].

Module III regions
CTR - 15

subjects

Multiple-

domain PD -

MCI - 9

subjects

Single-domain

PD - MCI - 6

subjects

Lh Superior Frontal G 59.7 (0.8) 58.0 (3.0) 56.7 (4.7)

Lh Anterior Cingulate 59.8 (0.6) 58.0 (4.0) 55.7 (5.9)

Lh Superior Frontal G 58.7 (2.7) 52.0 (13.9) 53.6 (4.7)

Lh Middle Frontal G 59.4 (1.5) 55.7 (6.5) 54.4 (7.5)

Lh Superior Parietal G 59.7 (0.6) 57.5 (4.8) 56.4 (3.9)

Lh Inferior Frontal G 59.1 (1.6) 54.0 (7.0) 56.3 (3.3)

Lh Precuneus 60.0 (0.0) 58.0 (4.9) 56.6 (4.5)

Rh Superior Frontal G 58.8 (1.8) 53.2 (13.8) 50.9 (8.7)

Rh Superior Parietal G 59.0 (2.0) 54.7 (5.8) 53.4 (7.4)

Rh Precuneus 59.7 (0.6) 57.5 (4.8) 56.4 (3.9)
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Table 4.4: Nodal degree for regions in Module V in PD-MCI subtypes and con-

trols. CTR - controls; PD-MCI - Parkinson’s disease with mild cognitive impair-

ment.In each cell, the means of the sample are followed by the standard deviations

in the parentheses [132].

Module V regions
CTR - 15

subjects

Multiple-

domain PD

- MCI - 9

subjects

Single-

domain PD

- MCI - 6

subjects

Lh Insula 29.0 (0.0) 28.8 (0.4) 28.6 (1.3)

Lh Transverse Temporal G 29.0 (0.0) 28.7 (0.8) 28.6 (1.3)

Rh Frontal Orbital G 29.0 (0.0) 28.5 (1.2) 28.7 (0.7)

Rh Transverse Temporal G 29.0 (0.0) 29.0 (0.0) 28.7 (1.0)

4.4 Discussion

In this chapter, I described BRAPH, the first object-oriented software that pro-

vides the necessary tools for all researchers, irrespective of their scientific back-

ground, to perform graph theory analysis. Since the network science is a dynamic

subject that evolves at an increasing rate, it is vital to have a very-well structured

software that can be modified or expanded easily, so that the existing methods

can be extended and integrated with the new topological analyses and graph

theory measures. One of the BRAPH’s main advantages is the fact that is al-

lows the user to deal with all stages in the connectivity analysis by providing a

considerable help at each step, ranging from the definition of nodes and edges

to producing the final high resolution images of the results as well as saving all
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results and analysis parameters in a dedicated file. In order to get an idea of

BRAPH’s capabilities, in the following sections I discuss the results obtained by

analyzing structural and functional data obtained from patients with amnestic

MCI, AD and PD-MCI.

4.4.1 Large-scale structural networks in amnestic MCI

and AD

Alzheimer’s disease is one of the most widespread neurodegenerative disorders

that places a significant burden on the caregiver and has a very significant im-

pact on society [146]. Although a lot of effort has been dedicated in order to better

understand and diagnose AD, its underlying effects on the topological organiza-

tion of the brain networks remain poorly understood. An increasing number of

studies offer evidence proposing that the amyloid plaques neurofibrillary tangles,

which are pathological indicators of AD, might use the neural connections and

synapses in order to spread through the brain. Therefore, the graph theoreti-

cal study of the brain connectivity could be used to shed light on the disease

spreading mechanisms in AD.

In this study, we found that the global network topology of the brain networks

in AD patients has abnormal organization that is demonstrated by decreases

of transitivity accompanied by increases in modularity, local efficiency and path

length. These changes point out that the regions in AD patients’ network have less

efficient communication with each other and between separate brain communities.

Especially, the transitivity and modularity showed the most extensive changes

in the network organization. The decreases in the transitivity observed in AD

patients show that the neighboring areas in AD patients are poorly connected with

each other. Moreover, the modularity increases indicate that the communities in

AD patients have much higher within-community connectivity and worse inter-

community connectivity. Patients that have amnestic MCI, and are possibly

on the path to develop AD, also showed similar, albeit less extensive, network

changes suggesting that amnesic MCI might be indeed an intermediate stage
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between healthy aging and dementia. The above results agree with the findings

reported by various studies [147, 96].

By comparing the nodal degree in AD network with controls and patients with

MCI, we observe that the most extensive changes in the number of connections

are observed in regions that are part of the default-mode network, including the

medial orbitofrontal, the anterior cingulate and posterior cingulate gyri. Since

these regions correspond to areas that show amyloid deposition, gray matter atro-

phy and glucose hypometabolism in AD patients [148], the default-mode network

is commonly associated with AD. As a result, the changes in the nodal degree

obtained in this study, may partially be indicative of pathological and metabolic

abnormalities that frequently are present in AD patients.

On the contrary, both MCI and AD patients displayed changes in the nodal

local efficiency. While these alterations were only present in a sole region in the

left temporal lobe in MCI patients, the AD patients showed changes in local

efficiency across few regions in frontal, temporal and parietal areas, including the

hippocampus and amygdala, which have roles in AD pathology [149]. Since the

local efficiency quantifies the efficiency of information transfer between a given

region and its neighbors, the decreasing of this measure could possibly reflect

the loss of local connections. On the contrary, the increases in the local efficiency

might reveal a compensatory process by which the number of connections between

close brain areas increases in order to counterbalance the connection loss between

remote brain areas.

To conclude, all of our findings discussed above point to the direction that graph

theory is a convenient method that can be used to evaluate abnormalities in the

brain networks organization in the prodromal and clinical stages of AD.

4.4.2 Large-scale functional networks in PD

One of the key non-motor symptoms that can affect the quality of line in Parkin-

son’s disease patients is cognitive impairment. Throughout the progression of
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PD, the patients can receive the diagnosis of MCI if they start to experience

cognitive impairment in one or more domains, which can be associated with a

greater risk to progress to dementia [150]. Therefore, there exists a crucial need

to identify the underlying mechanisms of MCI in order to prevent the cognitive

decline in PD patients.

By analyzing PD patients’ weighted networks in BRAPH, we observed that PD-

MCI patients exhibited lower number of connections in the whole brain network

than healthy controls, which stipulates that, in general, PD-MCI have more dis-

connected brain regions. However, after determining their community structure

and performing the analogous analysis within each community, we found that

these effects were mostly driven by the lower degrees observed in the fronto-

parietal network and in a network involving temporal and inferior frontal regions

in the PD-MCI group. The regions that were most affected in these networks were

the superior frontal gyri, superior parietal gyri, precuneus, transverse temporal

gyri and insula, which have already been shown to present decreased connec-

tivity in PD [151] and recognized as important brain hubs [152]. The hubs are

considered to be the most central regions of a network that take part in a lot of

long-distance connections. As a result, they possibly have higher metabolic costs

along with an increased vulnerability to oxidative stress [152]. In a previous study

[153], it was shown that the pathological brain lesions are concentrated in hub

regions of the connectome in several neurodegenerative disorders, including PD,

in line with our findings. The analysis was repeated separately in single-domain

and multiple-domain MCI groups; we observed that the above regions exhibited

diminished connectivity in both subtypes, therefore indicating that our findings

were not driven by any specific subgroup of PD-MCI.

In addition to the above results concerning the PD-MCI group, we identified that

PD-CN patients have lower number of connections in two networks that consisted

of temporo-cerebellar areas and temporo-frontal regions, which agrees with earlier

fMRI studies that established abnormalities in these brain areas in patients with

PD [151]. Furthermore, the inferior temporal gyri and inferior frontal cortex are

among the initial cortical areas that are affected by Lewy body pathology in

autopsy cases with PD [154]. This indicates that they possibly play a relevant
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role in the progression of the disease from brainstem structures to cortical brain

areas. The fact that both PD-CN and PD-MCI patients showed abnormalities

in the same network of inferior temporal and frontal areas provides support to

this assumption and suggests that these regions are important to understand

disconnectivity in PD regardless of cognitive status.

4.4.3 BRAPH features

The application of network science to study the brain’s structure and function

is still a new field that faces few crucial challenges. One of the most important

challenge is whether the complex brain connectome with billions of neurons and

synapses between them, can be reduced and accurately represented by relatively

low number of nodes (typically few hundred to thousand) and edges. Although

currently there is a limited knowledge on how to solve this issue, BRAPH can

help in addressing few other challenges.

In particular, given that the true connectome is a sparse network, it is important

to threshold the structural or functional edges, which typically consist of contin-

uous association indices [155]. This process of thresholding can be accomplished

via various methods. On one hand, the threshold can be applied by specifying

some significance level, such that only the connections that surpass this level are

considered in the analysis. Therefore, all weak connections are regarded to be

not genuine and are eliminated from the analysis. As a result, this thresholding

scheme yields uneven number of connections for various individuals or groups.

On other hand, one can enforce the equal number of connections across vari-

ous networks by applying threshold that would result in a fixed value of density.

Therefore, the analysis is done by considering only a fixed percentage of edges

which results in the measures being independent of the number of edges [155].

Both thresholding schemes are made available in BRAPH and they can be easly

compared by the user.

Additional important challenge is the choice of the threshold value. As currently

there is no accepted consensus of what is the best threshold value, BRAPH allows
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the user to test the hypothesis across different levels of significance in order to

establish the reproducibility of the results. Since some authors believe that the

choice of the threhsold range is an arbitrary process that has a heavy influence

on the results we also provide the option to carry out weighted network analysis.

In this case, the user can analyze both strong and weak connections in a network,

obtaining results that do not depend on a particular thresholding scheme.

Moreover, the realization that different node definitions can lead to different

results in the graph theory analysis poses yet another challenge. To help in this

regard, BRAPH provided six anatomical and functional brain atlases that can be

employed within the same study in order to check the dependency of the results

on the different parcellation schemes. Furthermore, a new brain atlas can be

easily created or uploaded in BRAPH that adjusts to the user needs.

The final challenge that BRAPH can deal with is the normalization of the network

measures by their counterparts calculated on networks with random organization

(that preserve the degree and/or weight distribution). Various options are pro-

vided in BRAPH that can help the user to perform this normalization.
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Chapter 5

Disrupted Network Topology in

Patients with Stable and

Progressive MCI and Alzheimer’s

Disease

5.1 Introduction

Alzheimer’s disease (AD) is a highly damaging neurodegenerative disorder that

deprives the affected individuals of most of their cognitive functions (for example,

language, visuospatial and executive abilities) as well as their memories over the

course of the disease. It has been observed that the development of these symp-

toms commonly occurs in a well ordered manner, and the stage of the symptoms

may indicate the degree of the amyloid deposits’ accumulation and the spatial

distribution of neurofibrillary tangles [156]. For example, while the early phases

of the disease are associated with a memory loss that is a consequence of the ex-

istence of tangles in medial temporal regions [157, 158, 159], aphasia and apraxia

take place at later points which can be due to the spread of tangles and plaques

into neocortical areas [160, 161]. Due to this progressive spread of pathology
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between interconnected regions of the brain, AD can be considered as a discon-

nection syndrome that can result in abnormalities in brain networks [162]. Such

abnormalities are exhibited through the loss of connections in various regions

(for example, in the default mode network) that is thought to occur due to the

accumulation of amyloid plaques in these regions [163, 164].

In order to apply graph theory to study the brain networks of AD patients in

vivo, one can utilize various neuroimaging techniques, such as DTI, structural,

and functional MRI (these methods are reviewed in [147, 165, 166]) or PET

[167, 168]. By analyzing structural MRI data, it has been demonstrated that the

global organization of the brain networks in AD patients is altered when com-

pared with healthy controls [166, 169]. However, there is a disagreement about

the characteristics of such changes; some studies found that the path length and

clustering coefficient increase in the AD patients’ networks while other studies

have shown decreases or even no changes in these measures [166, 170]. Similarly,

some studies found that the network topology in AD patients shows small-world

characteristics, while others identified random or regular network topologies [166].

One possible reason for these inconsistencies could be the inclusion of small sam-

ple sizes that consist of patients that have heterogeneous clinical characteristics.

Although there is great interest to analyze the brain connectivity in AD, to date,

there are no studies that have studied the community structure of the structural

MRI networks built in AD patients.

As a transition state between AD and normal aging, a patient with amnestic

mild cognitive impairment (MCI) has a very high risk to progress to dementia

[171]. While patients with MCI have exhibited abnormal functional connectivity

and disrupted integrity of the white matter [172, 173, 174, 175], the direct link

between the above features and the altered network topology are not completely

clear. While one study could not find differences in the clustering coefficient and

path length when MCI patients were compared to controls [176], another study

could identify significant differences that were very diverse and changed in line

with the method of network construction. There is increasing evidence showing

that MCI patients progress to AD at a rate of approximately 15% per year [177].

Therefore, it is important to study the organization of brain networks in stable
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MCI as well as networks in patients who show fast or slow advance to dementia

in order to understand the particular changes in the network that indicate the

transition to AD, thereby understanding the effects the disease continuation has

on brain networks.

In this chapter, I will discuss the usage of graph theory to characterize the or-

ganization abnormalities that occur in the structural brain networks in subjects

with stable MCI (sMCI), patients who show a slow (late MCI converters, lM-

CIc) and fast (early MCI converters, eMCIc) progression to dementia and AD

patients. The subject cohort consisted of over 1000 subjects from 2 multicen-

ter cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the

AddNeuroMed study. Few global (the small-worldness, the characteristic path

length and the mean clustering coefficient) and local (the nodal closeness cen-

trality and the nodal clustering) network measures were calculated in order to

characterize these networks. Unlike the previous studies, I will also show how the

transitivity and modularity (which are for example, indicative of the network’s

ability to perform specialized processing tasks within local, very well connected

groups of regions) vary across patient groups. The starting hypothesis is that

all patient groups would show altered behavior in the global measures; when

compared with controls, more pronounced changes in the network topology were

expected in lMCIc, eMCIc, and AD patients than sMCI patients. Moreover, since

the series of abnormalities occurring between regions of the default-mode network

are suggestive of the expanding of the tangle pathology in AD [148, 178], we hy-

pothesized that these regions will show the most noticeable changes in the local

network measures.
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5.2 Materials and methods

5.2.1 Subjects

In this cohort, a total of 1008 subjects from the ADNI database

(adni.loni.usc.edu) and the AddNeuroMed study were studied. 301 of these sub-

jects were healthy controls, 452 were diagnosed as MCI while 282 were AD pa-

tients. The MCI group consisted of: 87 patients were diagnosed as early MCI

converters (eMCIc, they converted to AD after 1 year), 71 progressed to AD af-

ter 3 years (late MCI converters, lMCIc) while 110 of them did not convert to

AD in the 3 years of monitoring (stable MCI, sMCI). Another subgroup of MCI

was sMCI-1y, which consisted of subjects that were stable after 1 year but they

did not have any follow-up data after that year. Finally, because they did not

have a precise diagnosis, eight subjects were not included in the analysis. The

characteristics of these subjects are summarized in table 5.1.

The ADNI started in 2003 with the aim to study whether various biological

markers can be combined with some clinical assessment in order to quantify the

advance of MCI and early AD. In order for a subject to be included in the

ADNI cohort as a healthy control, the subject would need to obtain a score in

the range 24 - 30 from the Mini-Mental State Examination (MMSE), a score

of 0 from Clinical Dementia Rating-Sum of Boxes (CDR - SB) and not show

signs of dementia, MCI or depression. The MCI group patients were included

based on the Peterson criteria [171] for amnestic MCI. The AD patients who

were included in this cohort fulfilled the criteria of the National Institute for

Neurological and Communicative Disorders and Stroke - Alzheimer’s Disease and

Related Disorder Association (NINDS/ADRDA) for probable AD, scored in the

range of 18 - 26 from the MMSE and had a CDR-SB score in the range 0.5 - 1.0.

The patients who had other notable disease (different from incipient AD), used

some medications that could result in memory impairment or had history of head

trauma or structural brain lesions were excluded from ADNI cohort.

AddNeuroMed is an Integrated Project (funded by the European Union Sixth
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Table 5.1: Characteristics of the sample. CTR, controls; sMCI, stable mild cognitive impairment after 1 year (sMCI-1y)
or 3 years (sMCI); lMCIc, late mild cognitive impairment converters; eMCIc, early mild cognitive impairment converters;
AD, Alzheimer’s disease; MMSE, mini-mental state examination; CDR, clinical dementia rating scale. Differences in age,
years of education, and MMSE scores were assessed using an analysis of variance (ANOVA). Differences in CDR scores
were assessed using a Kruskal–Wallis test and differences in gender were assessed using a χ2 test In each cell, the means of
the sample are followed by the standard deviations in the parentheses [96].

CTR
(n = 301)

sMCI-1y
(n = 157)

sMCI
(n = 110)

lMCIc
(n = 71)

eMCIc
(n = 87)

AD
(n = 282)

F or χ2 tests
(p value)

Age
(years)

75.1 (5.7) 75.0 (6.5) 74.7 (7.5) 74.8 (7.0) 74.1 (6.7) 75.6 (7.0) 0.9 (0.475)

Gender
(male/female)

156/145 88/69 74/36 43/28 54/33 130/152 19.2 (0.002)

Education
(years)

14.2 (4.4) 11.8 (5.2) 15.7 (3.0) 16.1 (3.0) 13.9 (4.2) 12.2 (4.9)
21.2

(< 0.001)

MMSE
scores

29.1 (1.1) 27.0 (1.6) 27.6 (1.7) 26.7 (1.7) 26.6 (1.8) 22.4 (3.5)
272.8

(< 0.001)

CDR
scores

0 0.5 0.5 0.5 0.5 0.9 (0.4)
880.2

(< 0.001)

Denoting the significant differences at level p < 0.001 as: a - CTR and sMCI; b - sMCI-1y and AD; c - sMCI and AD; d -
lMCIc and AD; e - eMCIc and AD; f - CTR and sMCI-1y; g - CTR and lMCIc; h - CTR and AD; i - sMCI-1y and
sMCI; j - sMCI-1y and lMCIc; k - sMCI-1y and eMCIc; l - sMCI and eMCIc; m - lMCIc and eMCIc; n - CTR and
eMCIc; o - sMCI and lMCIc. The groups statistical differences for each property are as follow: Gender - a,b,c,d,e;
Education - f,a,g,h,i,j,k,l,c,m,d,e; MMSE - f,a,g,n,h,i,b,o,l,c,d,e; CDR - f,a,g,n,h,b,c,d,e.
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Framework program) [179, 180] with the task to produce and validate various

novel models of AD disease and its treatment on the basis on in vivo and in

vitro models in humans and animals. In humans, AddNeuroMed makes use of

MRI magnetic resonance spectroscopy (MRS) in order to ratify imaging markers

that would help diagnose and detect the disease early as well as evaluate the

effectiveness of various therapies. The data were contributed by 6 different imag-

ing sites: University of Kuopio (Finland), University of Perugia (Italy), Aristotle

University of Thessaloniki (Greece), King’s College London (United Kingdom),

University of Lodz (Poland), and University of Toulouse (France) [179, 181, 182].

In order for a subject to be included in AddNeuroMed cohort as a healthy con-

trol, the subject would need to obtain a score in the range 24 - 30 from the

Mini-Mental State Examination (MMSE), a score of 0 from Clinical Dementia

Rating (CDR), would need to be aged 65 years or older and not show signs of

any neurological diseases, including dementia, depression, organ failure or other

unsteady systematic disease. The MCI group patients were included by following

the similar criteria as the control group, the difference being a CDR score of 0.5

and reported problems in the memory by the informant or the patient. The AD

patients who were included in this cohort fulfilled the criteria of NINDS/ADRDA

and DSM-IV for probable AD, scored in the range of 12 - 28 from the MMSE,

were 65 years or older and did not have any unsteady systematic diseases, organ

failure or other psychiatric or neurological disease in addition to AD.

5.2.2 MRI acquisition

Data acquisition for the AddNeuroMed study was designed to be compatible

with ADNI [181, 182, 183]. All participants from both cohorts were scanned

in an MRI system of 1.5 Tesla (5 scanning sites were used to acquire data for

AddNeuroMed, while 58 sites were used for the ADNI data) with a a sagittal

3D T1-weighted MPRAGE sequence with the following parameters: echo time

(TE) = 3.0 − 4.1 ms; repetition time (TR) = 9 − 13 ms; flip angle (FA) = 8◦;

inversion time (IT) = 1000 ms; voxel size = 1.1 × 1.1 × 1.2 mm3. These cohorts

were combined in few studies [184, 185], thereby demonstrating that the patients
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from both cohorts show very similar atrophy patterns and have comparable pre-

dictive power to differentiate AD and MCI patients from healthy controls.

5.2.3 Image preprocessing

The obtained T1-weighted MRI images were preprocessed by using the version 5.1

of the FreeSurfer software. The preprocessing steps included the following: ad-

justment for the spatial distortions and motion artifacts that can arise because of

the non-linearity of the magnetic gradient and inhomogeneity of the B1 magnetic

field; taking away the nonbrain tissue by employing a hybrid watershed/surface

deformation procedure [186]; automated conversion to the standard Talairach

space; normalization of the intensity [187]; tessellation of the gray/white matter

boundary; automated topology correction [188]; and deformation of the surface

according to the intensity gradients, with the aim to position the gray/white and

gray/CSF borders at the place where the transition between tissue classes is in-

dicated by the greatest shift in intensity. After the completion of the cortical

models, registration to a spherical atlas took place, that makes use of the corti-

cal folding patterns of each individual in order to match their cortical geometry

across subjects [189]. Finally, the cerebral cortex was parcellated into 68 regions

via the brain atlas Desikan et al. [134]; additionally, 7 subcortical structures were

also included: hippocampus, amygdala, thalamus, caudate, putamen, accumbens,

and pallidum (illustrated in figure 5.1). The HiveDB database system [190] was

used to preprocess all data, and 8 subjects who were designated as outliers in

the cortical thickness and subcortical volume measures were excluded from the

analysis.
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Figure 5.1: Brain regions that were used in network construction and analysis.

From each of these regions for every subject, the cortical thickness and subcortical

volumes were extracted. Taken from [96].

5.2.4 Network construction and analysis

In order to control for the effects of gender, age and education of the individual

subjects, linear regression was performed for all cortical regions [90]. By including

the intracranial volume as an another covariate, the same procedure was also

performed for subcortical regions. Furthermore, in order to to be certain that

the scanning location of the subjects (63 scanning center in total) would not have

effect on the results, we performed a regression analysis with the scanning site as

an additional covariate (the results are presented in appendix A.1.1).

The raw values were substituted by the residuals from the regression analysis

which were subsequently used to calculate the connectivity network. This net-

work was build such that each brain region was represented as a node and the

edges represented inter-regional correlations [90]. In here, we used both cortical

thicknesses and subcortical volumes in order to build the networks, similarly to

earlier studies [97].
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Each group was associated with an 82 × 82 adjacency matrix. Each entry in

this matrix was calculated as the Pearson correlation coefficient between the

corrected anatomical measures of the corresponding regions across the group of

subjects (figure 5.2). Each adjacency matrix was further binarized by fixing

the density of connections for every group (chapter 3); we analyzed the binary

matrices across a range of densities (the minimum density was 5%, the maximum

was 35%, in the steps of 1%) and compared the resulting network topologies for

different groups across this range. For densities greater than 35%, the networks

did not have small-world properties (the small-world coefficient for these networks

was near 1), thus, they were similar to random networks. On the other hand, for

densities lower than 5%, these networks had very low number of edges and became

widely disconnected. The self-connections were excluded from the analysis and

all negative correlation coefficients were equated to 0.
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A) CTR B) sMCI-1y
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Figure 5.2: Structural adjacency matrices are shown for: (A) controls (CTR),

(B) sMCI patients after 1 year (sMCI-1y), (C) sMCI patients (after 3 years), (D)

lMCIc, (E) eMCIc, and (F) AD patients. In these matrices, the last rows and

columns correspond to the relations between the subcortical areas, while the rest

correspond to relations between cortical regions. The strength of the connections

is indicated by the corresponding color; stronger (weaker) correlations are shown

by warmer (colder) colors. Taken from [96].

We calculated the mean clustering coefficient, the characteristic path length, the

transitivity, modularity and small-worldness in order to characterize the global

network topology. On the other hand, the regional network properties were evalu-

ated by the calculation of the closeness centrality and the nodal clustering, which

can be indicators of different network features and have not been extensively stud-

ied in MCI and AD. In order to assess the nodes’ roles in each community, we

calculated the participation coefficient and the within-community nodal degree

(chapter 2). All measures were calculated by using BRAPH [132] (chapter 4) and

the visualization of the networks was accomplished by using BrainNet Viewer
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[124] (http://www.nitrc.org/projects/ bnv/).

5.2.5 Comparison of network measures between groups

The statistical significance of the between-group differences was evaluated by

using the non-parametric permutation test with 1000 simulations, as described

in section 3.3. The results were reported by using the 95% confidence intervals

(CI) as a critical values for a 2-tailed test of the null hypothesis at p < 0.05. The

nodal measures were corrected for the multiple hypothesis testing by using the

false discovery rate (FDR) at q < 0.05 (section 3.3.3).

5.3 Results

The sample characteristics are summarized in table 5.1. Since we found significant

differences in the education years and gender between the groups (p < 0.001), the

data for the cortical thickness and subcortical measures were corrected for these

variables. In general, all groups of patients had significantly lower MMSE scores

(p < 0.001) and higher CDR scores (p < 0.001) than controls. The AD patients

had lower MMSE scores than sMCI, lMCIc, eMCIc patient groups (p < 0.05)),

furthermore, lMCIc and eMCIc had worse MMSE scores when compared with

the sMCI patients (p < 0.05). Finally, sMCI-1y scored lower on the MMSE than

sMCI group (p < 0.05).

5.3.1 Global network analysis

For each group, the weighted adjacency matrices are plotted in figure 5.2. From

the correlation patterns of all groups, it can be observed that all reciprocally

homologous regions have strong correlations between them. In general, we could

observe that all groups showed a small-world topology. Moreover, with increasing
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values of the density of the networks (D), the transitivity and the mean cluster-

ing coefficient increased while the modularity and the characteristic path length

decreased (as illustrated in figure 5.3).
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Figure 5.3: Changes in global network measures as a function of network density.

Characteristic path length (A), clustering coefficient (B), transitivity (C), mod-

ularity (D), and small-worldness (E) calulated for the following groups: CTR -

Controls; sMCI-1y - patients with stable mild cognitive impairment after 1 year;

sMCI - patients with sMCI after 3 years; eMCIc and lMCIc - MCI patients that

converted early (after 1 year) and late (after 3 years) to AD; and AD - Alzheimer’s

patients. Taken from [96].

When analyzing the differences between various groups, we observed that, over

several densities of the networks, the characteristic path lengths increases in the

sMCI, lMCIc, eMCIc, and AD groups when compared with the controls (P range,

0.043 – 0.001). The clustering coefficient decreases at few different densities in

lMCIc, eMCIc, and AD (P range, 0.043 – 0.001) when compared with controls;

however it shows no changes for the sMCI patients. The most widespread differ-

ences between patients and controls were observed for the transitivity and
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Figure 5.4: Differences between controls and sMCI, lMCIc, eMCIc, and AD pa-

tients in global network measures. From left to right, the plots show the differ-

ences between: controls (CTR) and sMCI patients; CTR and lMCIc; CTR and

eMCIc; CTR and AD patients for the following global network measures: char-

acteristic path length (A), clustering coefficient (B), transitivity (C), modularity

(D), and smallworldness (E). If the difference between two groups (orange circles)

fall outside of the CI (gray area), they are statistically significant at the level of

p < 0.05. Taken from [96]. 116



modularity; at most densities of the network, the transitivity significantly de-

creased (P range, 0.049 – 0.001) while modularity significantly increased (P range,

0.049 – 0.001) in the patients groups. Finally, we could also find that the small-

worldness significantly decreases, albeit for only few network thresholds, in the

patients groups when compared with controls (P range, 0.040 – 0.010). All of the

above results are summarized in figure 5.4.
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Figure 5.5: Differences between sMCI and lMCIc, eMCIc, and AD patients in

global network measures. From left to right, the plots show the differences be-

tween: sMCI and lMCIc patients; sMCI and eMCIc patients; sMCI and AD

patients; for the following global network measures: characteristic path length

(A) and clustering coefficient (B). If the difference between two groups (orange

circles) fall outside of the CI (gray area), they are statistically significant at the

level of p < 0.05. Taken from [96].

In the comparison between the various patient groups, we found that the lMCIc,
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eMCIc, and AD patients exhibited lower clustering coefficient (P range, 0.042 –

0.001) and characteristic path length (P range, 0.048 – 0.001) than sMCI patients

(figure 5.5. Between these groups, there were no significant differences in the

modularity or transitivity. Moreover, in the global network organization, we did

not observe any significant differences between lMCIc, eMCIc, and AD patients.
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Figure 5.6: Differences between sMCI-1y and sMCI, lMCIc, eMCIc and AD pa-

tients in global network measures. From left to right, the plots show the differ-

ences between: sMCI-1y and sMCI patients; sMCI-1y and lMCIc; sMCI-1y and

eMCIc; sMCI-1y and AD patients; for the following global network measures: the

characteristic path length (A), clustering coefficient (B), transitivity (C). If the

difference between two groups (orange circles) fall outside of the CI (gray area),

they are statistically significant at the level of p < 0.05. Taken from [96].

Differently with the other MCI groups, we observed no significant changes of

the modularity and transitivity in sMCI-1y patients when compared to controls.

However, at few network densities, sMCI-1y patients exhibited increased path

lengths (P range, 0.045 – 0.004) and changes in the clustering coefficient (P
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range, 0.044 – 0.018). Additionally, they had higher transitivity (P range, 0.048

– 0.019) than AD patients and also higher clustering than both, eMCIc (P range,

0.046 – 0.018) and AD patients (P range, 0.043 – 0.016). The sMCI-1y patients

did not exhibit changes in the small-worldness and modularity when compared

with the other patient groups. The results for the comparison of sMCI-1y with

the other patient groups and controls are summarized in figure 5.6.

In order to evaluate if these results are influenced by the fact that patients were

scanned in various scanning centers, the controls were also compared to the pa-

tient groups after including the scanning sites as a covariate in the analysis. These

analyses between controls and patient groups showed analogous differences in the

mean clustering, the characteristic path length, the transitivity and modularity

to the results presented above, therefore, indicating that the scanning centers did

not have an effect on our results.

5.3.2 Nodal network analysis

Nodal network measures also exhibited several changes between different groups.

In general, the nodal clustering coefficient was lower in patients groups when

compared to controls, while showing widespread changes solely in the AD group.

Moreover, all patient groups exhibited decreased nodal closeness centrality in

the bilateral hippocampi and amygdala, while increased centrality, with level

that varied across the different patient groups, was observed in medial parietal,

medial temporal, and limbic regions. In this section, I will discuss these general

changes in more detail.

After we corrected the results for multiple hypothesis testing (FDR, q < 0.05), we

observed a decrease in the clustering coefficient in the left superior frontal gyrus in

the case of sMCI patients, and in the right postcentral gyrus in the case of eMCIc

patients comparison with controls. In the comparison between AD patients and

controls, the AD patients exhibited decreased nodal clustering in the following

regions: the bilateral precuneus, superior frontal gyri, lateral orbitofrontal gyri,
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middle temporal gyri, inferior temporal gyri, fusiform, hippocampi, and amyg-

dala; the left pars triangularis gyrus, postcentral gyrus; and the right caudal

middle frontal gyrus, pars opercularis gyrus, and lateral occipital gyrus (figure

5.7 and table 5.2). Furthermore, the clustering decreased in the left postcentral

gyrus of AD patients when compared with sMCI patients (FDR, q < 0.05).

CTR vs AD

CTR vs eMCIcCTR vs sMCI

sMCI vs AD

Figure 5.7: Significant decreases in the nodal clustering coefficient in sMCI, eM-
CIc, and AD patients. CTR - controls; sMCI - stable MCI; eMCIc - early MCI
converters, AD - Alzheimer’s disease. All regions that exhibit the decrease in the
clustering coefficients are listed in table 5.2. Taken from [96].
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Table 5.2: List of the regions showing significant differences in the nodal cluster-

ing coefficient between groups (FDR - corrected). Note: CTR - controls; sMCI

- stable mild cognitive impairment; lMCIc - late mild cognitive impairment con-

verters; eMCIc - early mild cognitive impairment converters; AD - Alzheimer’s

disease; Lh - left hemisphere; Rh - right hemisphere; G - gyrus [96].

Region CTR sMCI P value

Lh Superior frontal G 0.83 0.50 0.002

Region CTR eMCIc P value

Rh Postcentral 0.94 0.56 0.001

Region CTR AD P value

Lh Superior frontal G 0.83 0.57 0.001

Lh Lateral orbitofrontal G 0.81 0.5 0.001

Lh Pars triangularis G 0.90 0.65 0.001

Lh Postcentral G 0.96 0.68 0.001

Lh Precuneus 0.78 0.58 0.001

Lh Middle temporal G 0.78 0.62 0.017

Lh Inferior temporal G 0.94 0.64 0.002

Lh Fusiform 0.79 0.56 0.004

Lh Hippocampus 1 0.33 0.001

Lh Amygdala 1 0.33 0.001

Rh Superior frontal G 0.78 0.52 0.001

Rh Caudal middle frontal G 0.92 0.77 0.009

Rh Lateral orbitofrontal G 0.71 0.45 0.003

Rh Pars opercularis G 0.96 0.62 0.001

Rh Precuneus 0.80 0.62 0.017

Rh Lateral occipital G 0.74 0.60 0.007

Rh Middle temporal G 0.81 0.61 0.016

Rh Inferior temporal G 0.90 0.66 0.003

Rh Fusiform 0.84 0.53 0.001

Rh Hippocampus 1 0.33 0.001

Rh Amygdala 1 0.33 0.001

Region sMCI AD P value

Lh Postcentral 0.95 0.68 0.001
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The closeness centrality showed decreases in the hippocampi and amygdala in

all patient groups when compared to controls. Additionally, significant decreases

were also observed in the right pericalcarine gyrus in sMCI and lMCIc patients

and in the right accumbens in eMCIc patients. Closeness centrality increased in

the left posterior cingulate in sMCI patients; the left pallidum, right insula, right

temporal pole, right entorhinal in lMCIc patients; the left posterior cingulate,

right lateral orbitofrontal gyrus, bilateral insula, bilateral entorhinal in AD pa-

tients (figure 5.8 and table 5.3). Moreover, closeness centrality showed significant

differences in the comparison between the patient groups, most notably in the

temporal, occipital, and subcortical regions (for further details, see table 5.3).

Table 5.4, shows a summary of the results about the behavior of the global and

nodal measures for different groups.

Table 5.3: List of the regions showing significant differences in the nodal closeness

centrality between groups (FDR - corrected). CTR - controls; sMCI - stable mild

cognitive impairment; lMCIc - late mild cognitive impairment converters; eMCIc

- early mild cognitive impairment converters; AD - Alzheimer’s disease; Lh - left

hemisphere; Rh - right hemisphere; G - gyrus [96].

Region CTR sMCI P value

Lh Posterior cingulate 0.30 0.48 0.001

Lh Hippocampus 1 0.29 0.001

Lh Amygdala 1 0.34 0.001

Rh Pericalcarine 0.38 0.28 0.001

Rh Hippocampus 1 0.38 0.001

Rh Amygdala 1 0.33 0.001

Region CTR lMCIc P value

Lh Pallidum 0.39 1 0.001

Lh Hippocampus 1 0.39 0.001

Lh Amygdala 1 0.34 0.001

Rh Insula 0.28 0.53 0.001

Rh Pericalcarine 0.38 0.30 0.001

Continued
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Table 5.3 – Continued

Rh Temporal pole 0.29 0.46 0.001

Rh Entorhinal 0.22 0.45 0.001

Rh Hippocampus 1 0.44 0.001

Rh Amygdala 1 0.33 0.001

Region CTR eMCIc P value

Lh Posterior cingulate 0.30 0.54 0.001

Lh Lingual G 0.43 0.56 0.001

Lh Temporal pole 0.39 0.49 0.001

Lh Hippocampus 1 0.26 0.001

Lh Amygdala 1 0.35 0.001

Lh Accumbens 0.36 1 0.001

Rh Insula 0.28 0.49 0.001

Rh Temporal pole 0.29 0.45 0.001

Rh Entorhinal 0.22 0.46 0.001

Rh Hippocampus 1 0.32 0.001

Rh Amygdala 1 0.32 0.001

Rh Accumbens 0.54 1 0.001

Region CTR AD P value

Lh Insula 0.38 0.51 0.001

Lh Posterior cingulate 0.30 0.55 0.001

Lh Entorhinal 0.29 0.44 0.001

Lh Hippocampus 1 0.31 0.001

Lh Amygdala 1 0.31 0.001

Rh Lateral orbitofrontal G 0.47 0.58 0.006

Rh Insula 0.28 0.53 0.001

Rh Entorhinal 0.22 0.44 0.001

Rh Hippocampus 1 0.31 0.001

Rh Amygdala 1 0.31 0.001

Region sMCI lMCIc P value

Lh Postcentral G 0.41 0.58 0.005

Continued
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Table 5.3 – Continued

Lh Pallidum 0.21 1 0.001

Rh Postcentral 0.41 0.61 0.001

Region sMCI eMCIc P value

Lh Pericalcarine 0.26 0.41 0.001

Lh Transverse temporal G 0.40 0.54 0.001

Lh Accumbens 0.21 1 0.001

Rh Lingual G 0.32 0.50 0.001

Rh Accumbens 0.21 1 0.001

Region sMCI AD P value

Lh Postcentral G 0.41 0.60 0.001

Lh Pallidum 0.21 1 0.001

Rh Pericalcarine 0.28 0.37 0.001

Rh Pallidum 0.21 1 0.001

Region lMCIc eMCIc P value

Lh Accumbens 0.30 1 0.001

Region eMCIc AD P value

Lh Lingual 0.55 0.43 0.001

Rh Frontal pole 0.34 0.45 0.001
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CTR vs sMCI

Decreases Increases

CTR vs lMCIc

CTR vs eMCIc CTR vs AD

sMCI vs lMCIc sMCI vs eMCIc

sMCI vs AD lMCIc vs eMCIc

eMCIc vs AD

Figure 5.8: Significant differences in the nodal closeness centrality between con-
trols and patients. CTR - controls; sMCI - stable MCI; eMCIc - early MCI
converters, AD - Alzheimer’s disease. The regions that exhibit significant de-
creases (increases) in the closeness centrality are shown in blue (orange). These
regions are listed in table 5.3. Taken from [96].
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Table 5.4: Summary of the global and nodal network results. When compared with controls, all patient groups manifested an

increased path length and modularity as well as decreases in the transitivity and small-worldness. While the global clustering

coefficient showed decreases in lMCIc, eMCIc, and AD groups, the nodal clustering coefficient showed notable changes only in

AD patients, by being decreased in 21 regions when compared with controls. When compared with sMCI patients, the remaining

patient groups exhibited an increased closeness centrality and a decreased path length and mean clustering coefficient. The

nodal clustering coefficient decreased only in 1 region in AD patients when compared with sMCI patients [96].

Measures CTR
vs

.
sM

CI

CTR
vs

.
lM

CIc

CTR
vs

.
eM

CIc

CTR
vs

.
A

D

sM
CI vs

.
lM

CIc

sM
CI vs

.
eM

CIc

sM
CI vs

.
A

D

Characteristic path length ^ ^ ^ ^ _ _ _

Clustering coefficient — _ _ _ _ _ _

Transitivity _ _ _ _ — — —

Modularity ^ ^ ^ ^ — — —

Small-worldness _ _ _ _ — — —

Nodal clustering _ — _ _ — — _

1 region 1 region 21 regions 1 region

Nodal closeness centrality _ _ _ _ — — —

5 regions 5 regions 4 regions 4 regions

^ ^ ^ ^ ^ ^ ^

1 region 4 regions 8 regions 6 regions 3 regions 5 regions 4 regions
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5.3.3 Brain communities

Four communities (or modules) were identified in the control groups; 3 commu-

nities were identified in sMCI, lMCIc, and eMCIc patients; and 5 communities

were present in AD patients (figure 5.9). The full list of communities and the

regions belonging to each community is presented in table 5.5.

In the controls, Module I consisted of the superior frontal gyri, posterior cingu-

late, and supramarginal gyri, which are part of the default-mode network. The

entorhinal gyri and subcortical regions were present in Module II. Module III was

the largest, including several lateral frontal, parietal, and occipital regions while

Module IV included the parahippocampal gyri.

The community structure of sMCI, lMCIc, and eMCIc patients was similar to

the one of the controls. The differences being that Module I did not include the

superior frontal, lateral parietal, or posterior parietal regions while Module II

comprised additional regions in the patients groups. In the case of AD patients,

several regions were detached from Module II and formed 2 new communities;

one was composed of the caudate, putamen, accumbens, and pallidum (Module

IV) while the other contained the bilateral thalami (Module V).

In order to evaluate the between-groups differences in the communities described

above, we calculated the within-module degree and participation coefficient. After

FDR corrections, we observed that the AD patients show increases in the within-

module degree and decreases in the participation coefficient when compared with

controls. The regions that showed increases in the within-module degree were

part of Modules I and III and included the left postcentral, left superior parietal,

right pars opercularis gyri, and right insula. On the other hand, decreases in the

participation coefficient were shown by the left pars orbitalis and bilateral cuneus,

which were present in Module III. Furthermore, when lMCIc and eMCIc patients

were compared to controls, some of these regions also exhibited increase in the

within-module degree and decrease in the participation coefficient, however, these

differences did not survive the correction for the multiple comparisons (table 5.6).
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CTR sMCI lMCIc

eMCIc AD

Module I Module II Module III Module IV Module V Module VI

Figure 5.9: Brain communities in controls and sMCI, lMCIc, eMCIc, and AD patients. CTR - controls; sMCI - stable mild
cognitive impairment; lMCIc - late mild cognitive impairment converters; eMCIc - early mild cognitive impairment converters;
AD - Alzheimer’s disease. Different communities are shown in different colors. For each group, the left and right lateral (top)
and medial (bottom) brain views are shown. Taken from [96].
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Table 5.5: Brain communities in controls, sMCI, lMCIc, eMCIc, and AD patients. CTR - controls; sMCI - stable mild cognitive

impairment; lMCIc - late mild cognitive impairment converters; eMCIc - early mild cognitive impairment converters; AD -

Alzheimer’s disease [96].

Hemisphere Brain region Modules

CTR

Modules

sMCI

Modules

lMCIc

Modules

eMCIc

Modules

AD

Left Superiorfrontal I III III III III

Left Frontalpole I I III I I

Left Rostralmiddlefrontal I II III III III

Left Caudalmiddlefrontal III III III III III

Left Parsorbitalis III I III I I

Left Lateralorbitofrontal I I I I I

Left Parstriangularis III I III III I

Left Parsopercularis III I III III I

Left Medialorbitofrontal I I I I I

Left Rostralanteriorcingulate I I I I I

Left Caudalanteriorcingulate I II I I I

Left Insula I II I I I

Left Precentral III I III III III

Left Postcentral III III III III III

Left Supramarginal I I III III III

Continued
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Table 5.5 – Continued

Left Superiorparietal III III III III III

Left Inferiorparietal III III III III III

Left Paracentral III III III III III

Left Posteriorcingulate I II III III I

Left Isthmuscingulate I II I III I

Left Precuneus III III III III III

Left Cuneus III III III III III

Left Pericalcarine III III III III III

Left Lingual III II III III III

Left Lateraloccipital III III III III III

Left Transversetemporal III I III III III

Left Bankssts III III III III III

Left Superiortemporal III II II III III

Left Middletemporal III II I I III

Left Inferiortemporal III II I III III

Left Temporalpole I II II II V

Left Entorhinal II II II II V

Left Parahippocampal IV II II II V

Left Fusiform I II II III III

Left Thalamus II II II II VI

Continued
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Table 5.5 – Continued

Left Caudate II II II II II

Left Putamen II II II II II

Left Pallidum II II II II II

Left Hippocampus II II II II V

Left Amygdala II II II II V

Left Accumbens II II II II II

Right Superiorfrontal I III III I I

Right Frontalpole I I III I I

Right rostralmiddlefrontal I III III I I

Right Caudalmiddlefrontal III III III III III

Right Parsorbitalis I I III I I

Right Lateralorbitofrontal I I I II I

Right Parstriangularis III I III I I

Right Parsopercularis III III III III III

Right Medialorbitofrontal I I III II I

Right Rostralanteriorcingulate I I I I I

Right Caudalanteriorcingulate I I I I I

Right Insula I II I II I

Right Precentral III I III III III

Right Postcentral III III III III III

Continued
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Table 5.5 – Continued

Right Supramarginal I III III III III

Right Superiorparietal III III III III III

Right Inferiorparietal III III III III III

Right Paracentral III III III III III

Right Posteriorcingulate I III I III I

Right Isthmuscingulate I III I II I

Right Precuneus III III III III III

Right Cuneus III III III III III

Right Pericalcarine III III III III III

Right Lingual III III III III III

Right Lateraloccipital III III III III III

Right Transversetemporal III I I III III

Right Bankssts III III I III III

Right Superiortemporal I II II II V

Right Middletemporal I I II II V

Right Inferiortemporal III II I II I

Right Temporalpole I II II II V

Right Entorhinal II II II II V

Right Parahippocampal IV II II II V

Right Fusiform I II II II V

Continued
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Table 5.5 – Continued

Right Thalamus II II II II VI

Right Caudate II II II II II

Right Putamen II II II II II

Right Pallidum II II II II II

Right Hippocampus II II II II V

Right Amygdala II II II II V

Right Accumbens II II II II II
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Table 5.6: Differences in the within-module degree and participation coefficient

between groups. CTR - controls; sMCI - stable mild cognitive impairment; lM-

CIc - late mild cognitive impairment converters; eMCIc - early mild cognitive

impairment converters; AD - Alzheimer’s disease; Lh - left hemisphere; Rh -

right hemisphere; G - gyrus. The differences between controls and AD patients

survived corrections for multiple comparisons with FDR, while the other differ-

ences between groups were significant at an uncorrected level (< 0.05) [96].

Within - module degree

Region CTR sMCI P value

Rh Pars opercularis G -3.29 0.53 0.002

Within - module degree

Region CTR eMCIc P value

Lh Postcentral G -0.35 1.22 0.004

Lh Superior Parietal G -0.35 0.99 0.017

Within - module degree

Region CTR AD P value

Lh Postcentral G -1.12 0.70 0.001

Lh Superior Parietal G -1.12 0.89 0.002

Lh Superior Temporal G 0.39 1.86 0.003

Rh Pars Opercularis G -2.81 0.42 0.001

Participation coefficient

Region CTR AD P value

Lh Lateral Occipital G 0.66 0.23 0.004

Rh Postcentral G 0.66 0.24 0.008

Rh Lateral Occipital G 0.66 0.32 0.001

5.4 Discussion

In this chapter, I presented the largest study, to date, that assesses the topological

organization of brain networks in MCI patients that remain stable, show slow or
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fast progress to AD and AD patients. We observed an abnormal network organi-

zation all patient groups, that is indicated by the increased path length, decreased

transitivity and increased modularity relative to the controls. Additionally, the

clustering coefficient is decreased in the lMCIc, eMCIc, and AD patients, but do

not show any differences between sMCI patients and controls. Taken together, all

these observations point to the direction that the prodromal and clinical stages

of AD are correlated with diminished ability of spatially distinct brain regions to

integrate information and altered communication patterns between neighboring

regions as well as communities.

In this study, all patient groups had increased path length relative to controls,

which is an indication of an abnormal global organization of their respective

networks. Short path lengths allow quick and efficient distribution of the in-

formation between remote brain regions, which is considered to be essential for

cognitive functioning [191]. Therefore, our findings indicate that, on average, the

distance between two remote brain areas was larger in the networks of the pa-

tients, which in turn results in less efficient communication between them. This

agrees with earlier graph theoretical studies in AD, which also identified increased

path lengths in the networks of AD patients built from structural and functional

data [105, 176, 192, 193, 194]. One study used DTI to build individual subjects’

networks and found that increases in path lengths correlate with worse MMSE

scores [194], thereby proposing that path length can be considered as markers of

cognitive dysfunction in AD.

Another observation from this study is the decrease in the mean clustering coef-

ficient in lMCIc, eMCIc, and AD patients when compared to controls, which is

indicative of lower number of connections between the neighboring areas in the

patients’ networks. This observation is in agreement with some [147, 165], but

not all earlier studies [105, 176], suggesting that the results can be influenced by

different methodologies, sample sizes or characteristics of the patient groups. Li

et al. [170] studied MCI patients which converted to AD and found longitudinal

decreases of the clustering coefficient, which may suggest that reducing of the

clustering in the network is related with conversion to dementia in AD.
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Additionally, this is the first study to evaluate the transitivity and modularity

in the structural networks of MCI and AD patients. These two measures were

significant across almost all densities of the network, therefore being indicative

of greater abnormalities than the path length or clustering. The transitivity

measures the level of connectivity of a given brain region within its local environ-

ment similarly to the clustering coefficient. However, nodes that have very few

connections have smaller effect on the transitivity when compared with the clus-

tering coefficient [31], making it a superior measure for poorly inter-connected

networks. As such, we recommend that this measure is used in future studies

evaluating structural networks in amnestic MCI and AD as it provides greater

sensitivity to the effects of the disease.

The modularity describes the level at which the network can be subdivided into

different sub-network (or communities, modules) [195]. Larger modularity indi-

cates that the brain regions are very well connected with other regions within the

same community, however, they are poorly connected to brain regions that belong

to other communities. The significant increase in the modularity we observed in

sMCI, lMCIc, eMCIc, and AD patients compared with controls, suggests that

patients’ networks have higher intra-community connectivity and lower number

of connections between communities. This suggests that the whole-brain net-

works in the patients are fragmented into small number of large and isolated

components. These observations of the patients’ connectivity patterns were fur-

ther supported by the increases of the within-module degree and decreases of the

participation coefficient in the frontal, parietal, and occipital regions of the pa-

tient groups, when compared with controls. Significant increase in the modularity

was also identified in the functional networks of patients with Parkinson’s disease

with mild cognitive impairment, who have a higher risk of developing dementia

[196]. Such increases were explained to be an abnormal process which leads to

the increase of the number of connections between brain regions in a certain mod-

ule that subsequently leaves the other communities relatively isolated. The same

study related the increases in modularity with worse memory and visuospatial

performance in Parkinson’s patients, indicating that these modularity changes

are pathological and related to larger clinical decline [196].
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Moreover, we also found that, even though the patients had similar commu-

nity structure with controls, the exact regions that belonged to each community

changed across the patient groups. In particular, the AD patients had 2 com-

munities that were not present in the other group. As a result, our findings

indicate the reorganization of the communities in sMCI, lMCIc, eMCIc, and AD

patients. Also, analogous to some earlier studies that studied modularity in struc-

tural MRI networks [92, 197], we did not observe an exact agreement between

the brain modules and resting-state fMRI networks [198].

In addition to the changes in the global network topologies, we also identified

alterations in the properties of some specific brain regions. In particular, few ar-

eas in AD patients had decreased nodal clustering when compared with controls,

suggesting worse communication patterns with their neighboring regions. Few of

these areas belonged to the default-mode network, for example the precuneus and

superior frontal gyri [198], which can be explained by the pathological changes

within this network that occur in AD [148, 178, 199]. We also found decreased

clustering in few other frontal and temporal regions in AD patients; this indicates

that the clustering changes in AD patients were quite extensive which is in agree-

ment with previous studies that offered evidence of extended brain atrophy at

advanced stages of AD [200]. In contrast with these extensive changes exhibited

by AD patients, the MCI patients displayed decreases in the clustering coefficient

only by few frontal and parietal regions.

The nodal closeness centrality exhibited more heterogeneous changes, showing

both increases and decreases, in all patient groups compared with controls. The

decreases of the centrality in all patient groups were mainly found in the bilateral

hippocampi and amygdala, which suggests the loss of connections between these

regions and the rest of the network. This might be explained by the loss of the

integrity of white matter or alternatively by the disruption of white matter fibers

that connect these regions in MCI and AD patients that has been observed in

various DTI studies [201]. On the other hand, the closeness centrality increased

mainly in the posterior cingulate, temporal pole, entorhinal cortex, insula, and

orbitofrontal regions. Since the closeness centrality is a measure that quantifies
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the level of interaction between regions; its increase in regions that exhibit patho-

logical changes in AD [149, 156, 158] can be explained by the shared mechanisms

in neurodegeneration [202]. In particular, within the graph theory framework,

while 2 regions could show high correlation if they have structural or functional

connection between them, they could also correlate if they become atrophied at

the same rate [203]. As a result, since medial temporal, medial parietal, and lim-

bic regions show atrophy starting with the early stages of AD, it is possible that

they will have strong interaction with other regions in the network that become

atrophied as the disease progresses.

In this study, we also compared the global and local network characteristics of the

different patient groups between each other. We found that, when compared with

the other patients groups, sMCI patients exhibited a larger path length (figure

5.5). Additionally, sMCI patients showed reduced nodal closeness centrality in

several regions, including the postcentral gyrus, pallidum and accumbens (for

a full list, see table 5.3). These results suggest that the sMCI patients show

considerable abnormalities in the interactions between two remote brain areas.

Previous studies found that the initial pathological changes in AD target distant

brain areas [204], which can be usually connected by long and poorly myelinated

axons. Therefore, our results may indicate that such pathological changes are

more notable in sMCI patients, which are potentially at earlier stages of AD. On

the contrary to the path length, the clustering coefficient was reduced in lMCIc,

eMCIc, and AD patients compared with sMCI patients. This in turn, proposes

that the connections loss in the neighboring area is indicative of the changes that

occur in patients that are on the path to develop AD or already have dementia.

There is increasing evidence of the considerable heterogeneity that exists among

the MCI patients; for example, while many MCI subjects stay stable for many

years, others show progression to AD while some others return to normal cogni-

tion [205]. Furthermore, amnestic MCI can be also produced by few pathologies

other than AD, including frontotemporal dementia [206], vascular dementia [207],

and hippocampal sclerosis [208]. The results presented in this chapter support the

notion of the heterogeneity in the abnormalities of the network topology between

the MCI groups. In particular, in contrast to the other MCI groups, sMCI-1y
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patients showed increased clustering with respect to controls while showing al-

most no changes in the modularity and transitivity (figure 5.6). Therefore, it

is possible that the sMCI-1y group was comprised of a mixture of subjects that

progressed to dementia after few years, remained stable or had a different non-

AD related disease. This variance might be able to explain the lack of changes

in the transitivity and modularity in sMCI-1y, as opposed to the other patients

groups which had more homogeneous structure. Studies assessing network topol-

ogy in MCI subjects should consider their results with respect to this important

heterogeneity.

Although the brain network are inherently sparse, building the brain networks

from neuroimaing data results in continuous adjacency matrices [155]. Therefore,

in order to identify the true connections while remove the potentially spurious

ones, many studies apply a threshold to the adjacency matrices. One particular

way to apply this threshold, is to make the analysis only by considering the con-

nections that overcome a level of significance. However, this approach will result

in different number of connections for different subject groups. In this study,

the threshold was applied so that the most significant connections were retained,

while keeping the number of connections across various groups fixed. Since cur-

rently there is no consensus to determine which threshold value is best [155], we

tested the group differences for a particular range of densities, following some pre-

vious studies [105, 176]. We choose the range in order to analyze networks that

were meaningfully organized. The top boundary of this range was chosen because

the networks above this particular density were exhibiting random organization.

On the other hand, the lower bound was chosen such that the analyzed network

had enough connections between the regions, i.e. network at lower densities were

widely disconnected. Our findings indicated that significant differences between

groups can be observed for different densities, suggesting that the results were

consistent.

It should be noted also that the present study has few limitations. Firstly, using

correlations between structural measures to obtain adjacency matrices, results

in a single network per group. As a result, since individual networks are not
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calculated and characterized, this method does not allow for the correlation anal-

ysis with clinical measures. Nevertheless, some studies [209, 210] have provided

a method that allows the calculation of single-subject structural matrices from

structural MRI; this method could be considered in studies that assess structural

networks in large cohorts of AD and MCI patients. The second limitation is the

fact that only longitudinal data of the patients’ clinical diagnosis up to 3 years

was obtained. Hence, in particular for the sMCI patients, it is possible that some

of the individuals in this group converted to AD shortly after this period.
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Chapter 6

Directed Networks in Parkinson’s

and Alzheimer’s Patients

6.1 Introduction

As discussed in the previous chapters, studying the organization of complex brain

networks in patients can reveal a substantial information about the effect that

neurodegenerative diseases might have on their connectivity patterns. In partic-

ular, as shown in chapter 5, the structural undirected networks in Alzheimer’s

patients show abnormal organization that is manifested through changes in the

global topological measures (decreases in transitivity and mean clustering coef-

ficient, accompanied by increases in modularity and characteristic path length)

as well as changes in the local network properties of several regions (decreases in

the nodal clustering coefficient and changes in the closeness centrality that varied

across different regions) [96].

However, results and observations can change betwen different studies. This can,

in part, be atributed to the size of the sample and the heterogeneous clinical char-

acteristic of patients [96]. In particular, for some samples, undirected networks

in patients do not show any changes in the topological properties when compared
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with healthy controls [96]. Therefore, there is a need to explore alternative meth-

ods of building the complex brain networks that can detect any alterations in the

brain connectivity arising due to the presence of various neurological disorders,

for example, Parkinson’s or Alzheimer’s disease (for a review, see [211] and [212]).

Studying directed networks in the brain may offer this possiblity. Directed net-

works are commonly used to understand the degree to which one region can influ-

ence the activity pattern of another one; this connectivity patterns are sometimes

termed as effective connectivity [83, 84]. Currently, Granger causality [86, 87] is

the most widely used method to derive the effective connectivity patterns in the

brain. This approach has been applied to a wide range of studies that used

functional MRI resting-state data in order to evaluate some causal relations that

occur between various regions in the resting state networks [213] as well as the de-

fault mode networks [214]. Furthermore, by using graph theoretical approaches,

it has been demonstrated that these directed networks also show small-world

characteristics [215].

I this chapter, I will present a new method of building directed networks in

the brain that uses the temporal delays in the interaction between two brain

regions in order to estimate a directed link between the corresponding regions.

I will further demonstrate that this method can successfully reveal abnormal

topological organizations in Parkinson’s and Alzheimer’s disease patients, even

in the cases in which such changes cannot be identified by undirected networks

analysis. However, it should be noted that, since our method uses Pearson’s

correlation to quantify the between-region interaction, it assigns a direction of the

edge based only on temporal precedence. As such, this method is not suggestive

of any causation or influence in the interaction between the regions.
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6.2 Materials and methods

6.2.1 Analysis overflow

Resting-state functional MRI data was obtained for each subject (representative

time series are shown in figure 6.1(a)). The connection strength between two

regions was characterized by calculating the delayed Pearson’s correlation coeffi-

cient between the corresponding time series. The delay was introduced by shifting

the two time series by a certain amount and calculating the Pearson’s coefficient

between the shifted time series. Since the time series in our analysis are discrete,

the delay between two series is defined as the number of time steps one series is

shifted relative to the other, i.e. if the fMRI repetition time is ∆t = 1s, and we

want to calculate the correlation at delay d = 3, the actual time delay between

the two series is d∆t = 3s.

The correlation coefficient between all pairs of regions (all calculated at the same

delay) were assembled in a matrix, representing the weighted delayed network

(figure 6.1(b), shown for d = 3). In order to retain only one-directional connec-

tions 1 we extract the anti-symmetric part of this matrix by substituting the

matrix’s transpose (figure 6.1(c)) from itself, (figure 6.1(b)), therefore, obtaining

the weighted adjacency matrix of the network (figure 6.1(d)).

The weighted adjacency matrices were further binarized (figure 6.1(e) and 6.1(f))

by fixing the density of connections for every group (chapter 3). The binary

matrices were analyzed over the complete range of densities available for bina-

rization (1% - 50%) and the resulting network topologies across this range were

compared between the various groups. The self-connections were excluded from

the analysis and all negative correlation coefficients were equated to 0.

The statistical significance of the between-group differences was evaluated by

1Consider two regions, A and B. In the delayed weighted network, A has a directed con-
nection to B with strength W1 and B has a directed connection to A with strength W2. We
substitute these two connections with one effective connection that has the strength | W1−W2 |
and the direction of the stronger connection
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Figure 6.1: Directed network analysis overview. Resting-state fMRI data was

obtained for each subject(a). The connection strength between any two regions

was obtained by calculating their delayed Pearson’s correlation coefficient, re-

sulting in the weighted delayed matrix shown in (b). The adjacency matrix is

taken as the anti-symmetric part of this matrix (d), given by the difference of

the delayed connectivity matrix (b) with its transpose (c). The adjacency ma-

trix (d) was further binarized; an example of the resulting binary matrix and its

corresponding graph are shown in (e) and (f).
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using the non-parametric permutation test with 10000 simulations, as described

in section 3.3. The results were reported by using the 95% confidence intervals

(CI) as a critical values for a 2-tailed test of the null hypothesis at p < 0.05.

In order to assess whether the amount of shift (delay) between the time series af-

fects our results, we repeated our analysis over wide range of delays. Furthermore,

to check for consistency over various parcellation schemes, the analysis was con-

ducted over two brain atlases; the low and high resolution analysis was performed

on Craddock atlases [139] consisting of 200 and 840 brain regions respectively.

6.2.2 Network measures

Since we analyzed binary directed networks, the global network topology was

characterized by calculating the directed analogues of the mean clustering coef-

ficient, transitivity, modularity, global and local efficiency. The clustering coef-

ficient is defined as the number of triangles that can be formed around a node

(chapter 2). Taking into account the direction of the edges, there are 8 possible

ways to form a triangle [114]. In our analysis, we chose to consider a triangle

as completed only if the edges forming the triangle are arranged in a close di-

rected cycle (i.e. each node in this triangle has one incoming and one outgoing

edge). Similarly, we employed the same procedure to calculate the transitivity,

by identifying the number of directed cycles in the network.

The global efficiency is defined as the average of the inverses of the path length for

each node, while the local efficiency is defined as the global efficiency calculated

only withing the node’s neighborhood. Their directed counterparts are calculated

as averages of their in and out variants (chapter 2). These measures were chosen

over the path length in order to be able to characterize the disconnected networks

that are obtained for small densities. The directed version of modularity was

implemented according to the definitions presented in [31, 216].
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6.2.3 Subjects

The analysis was repeated on two separate cohorts. In the first cohort, 25 healthy

controls were compared to 71 cognitively normal Parkinson’s Disease (PD) pa-

tients. Among the patients, 46 were taking various doses of medication while 25

patients were not on any medication when the fMRI scan was conducted. Fur-

thermore, longitudinal data of a group of 46 patients (not overlapping with the

patients taking the medication) was obtained around one and a half year after

the first scan. By the time of the follow-up scan, 31 of the 46 patients starting

taking the medication at different times during this period.

In order to control for the effects of gender and age of the individual subjects,

linear regression was performed for all network regions [90]. Furthermore, since

the head motion (translational and rotational) was significant in the two groups,

it was additionally included as a covariate in the analysis. In the case of the

longitudinal analysis, the time interval between the two scans was added as a

covariate in order to account for the different scan events between patients. The

characteristics of the PD patients are shown in table 6.1.

Table 6.1: Characteristics of Parkinson’s Disease sample. CTR - Controls; PD-

CN - cognitively normal Parkinson’s Disease patients. The characteristics of the

sample are shown in terms of age, gender, education, status of medication and

average time of the follow-up scan after the first one. * Longitudinal data was

obtained only from 46 patients.

CTR (n = 13) PD-CN (n = 71)

Age (years) 65.54 (8.03) 60.25 (10.38)

Gender (M/F) 11/2 46/25

Education (years) 16.92 (2.49) 15.23 (3.03)

Medicated (Y/N) 0/13 46/25

Longitudinal* (months) — 15.93 (6.37)

The second cohort comprised of 25 controls, 45 patients that were diagnosed as

Mild Cognitive Impairment (MCI) and 24 Alzheimer’s Disease (AD) patients.
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The MCI groups consisted of 19 patients who were designated as early MCI

(eMCI) and 16 patients who were late MCI converters (lMCI). 9 controls had an

amyloid pathology (henceforth, referred as CTR − A1), 16 of the controls did not

have any pathology (CTR − A0), while all subjects in the patient groups showed

signs of amyloid pathology. In this study, we compared the controls without any

pathology to the remaining 4 groups (CTR − A1, eMCI, lMCI and AD patients).

There were no significant differences in the head motion between groups. There-

fore, the regional time series were regressed only to control for the age, gender

and education differences of the individual subjects. The characteristics of the

AD cohort are shown in table 6.2.

Table 6.2: Characteristics of Alzheimer’s sample. CTR - Controls; eMCI - early

MCI converters; lMCI - late MCI converters; AD - Alzheimer’s Disease patients.

The characteristics of the sample are shown in terms of age, gender, education,

and amyloid pathology status. Based on the amyloid pathology, the control

groups is split into two groups: CTR − A0 and CTR − A1.

CTR

(n = 25)

eMCI

(n = 19)

lMCI

(n = 16)

AD

(n = 24)

Age (years) 75.24(7.56) 71.42(5.31) 75.31(5.59) 73.86(6.48)

Gender (M/F) 10/15 9/10 10/6 11/13

Education (years) 16.72(2.05) 15.89(2.82) 16.31(2.66) 15.04(2.35)

Amyloid (Y/N) 9/16 19/0 16/0 24/0

6.3 Results and discussion

In order to evaluate whether our results emerge only in the case of directed

networks, we firstly analyzed both cohorts by constructing undirected networks.

These networks were analyzed by following a procedure analogous to the one

detailed in chapters 4 and 5: the Pearson’s correlation coefficient (at delay of

zero) was used to quantify the strength of connections between any two regions;
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only the positive connections were used in the analysis; the weighted matrices were

binarized by fixing the density of connections between groups in the density range

1% - 50%; the binary matrices were compared by the non-parametric permutation

test.

Furthermore, in order to check whether both steps are essential into the construc-

tion of directed networks (calculating the delayed correlation matrix followed by

taking the asymmetric part of this matrix) we constructed the directed adjacency

matrix only by calculating delayed Pearson’s correlation coefficient between all

pairs of regions at various delays (figure 6.1(b)) and analyzed them by following

the steps described above.

Both analyses did not reveal any consistent significant differences between con-

trols and patient groups in both cohorts. This suggests that the following results

are inherent to our proposed method of calculating adjacency matrices to analyze

brain connectivity and cannot be revealed by analyzing undirected networks.

6.3.1 Parkinson’s Disease patients

The results of the comparison between controls and PD-CN group are shown in

figure 6.2. The figure shows the differences in the corresponding measures between

the two groups (the orange circles), along with the 95% confidence intervals (the

gray area). The box-plots illustrate the actual values of the measures for each

group (PD-CN, red and CTR, black) as a function of the delay, averaged over the

range of densities for which the between-group differences are significant. The

results shown in figure 6.2 are calculated for the low resolution network.

We observed that differences between controls and patients depend on the delay

used to quantify the strength of connections between regions. In particular, no

changes were observed for small delays (delay 1 to delay 5). The most widespread

changes appeared for delays 6 to 8 and only some measures showed significant

differences in delays 9 and 10 (figures 6.2 and 6.3).
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Our results indicate that delays 6-8 capture intrinsic patterns of interaction in

the brains of the PD-CN patients. Except for modularity, which increases in

patients at small densities and decreases in the higher densities when compared

to controls, all other measures showed increases in the PD-CN networks over

wide density range. Most notably, the global efficiency showed increases at small

densities; the local efficiency, clustering and transitivity showed increases in the

higher density range.

This behavior can be understood if one considers the number of connections in

the networks at various densities. High densities result in very well connected

networks. Therefore, most of the nodes are connected with every other node in

the network, making the two networks virtually indistinguishable in this regard;

this is reflected by the fact that the difference in the global efficiency values of the

two groups tends to zero as density increases. On the other hand, the remaining

measures require a certain pattern of connections in order to give a contribution.

At small densities, there are not enough connections to make any contribution to

the clustering, as a result, the networks cannot be distinguished in this regime

since both will have exceptionally low clustering coefficient. Thus, these measures

start to show differences as the number of connections grow with the density and

more clusters form in the networks.

In order to show that these results can be reproduced with alternative parcellation

schemes, the analysis was also performed with a high resolution atlas of 840

regions. The results of this analysis are shown in figures A.1 and A.2. These

results are equivalent with the ones obtained for the low resolution atlas, which

suggests that the application of our method does not depend on the particular

parcellation scheme used in the analysis.

Furthermore, to assess the clinical relevance of our results we performed corre-

lation analysis with various clinical tests. In short, we calculated the partial

Pearson’s correlation coefficient between the measures calculated for each indi-

vidual subject and subjects’ respective scores on various clinical assessment tests,

while keeping age, gender and motion as covariates. We found that over many
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delays, all global measures correlate significantly with the unified Parkison’s dis-

ease rating scale (UPDRS) at wide density ranges [217]. A sample of the p-values

obtained from this calculation, for delay of 7, are shown in tables A.2 and A.3.

After the initial scan, some of the PD-CN patients had a follow-up fMRI scan

around one and a half year later. We compared the baseline and longitudinal

networks of this subgroup in order to assess any changes in their directed brain

networks over time. The results of this analysis are summarized in figure 6.4. In

line with our previous results, delays 6 and 7 show widespread changes in this

subgroup, suggesting that the topological network properties indeed change over

time. Interestingly, these results show a decrease in all measures in the longitudi-

nal group, i.e. with time, the network topology of the Parkinson’s patients tends

to become similar to the one of the healthy controls in this cohort. Since the

majority of this subgroup have taken medication in the period leading up to the

follow-up scan (31 out of 46 patients), these results might be an indication of an

effect that medicine has on brain networks in PD-CN patients. We repeated this

analysis in the high resolution parcellation scheme and obtained similar results

(figure A.3).
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Figure 6.2: Changes in global network measures as a function of network density. PD-CN group is compared to healthy controls
for low resolution networks. Global efficiency (a), local efficiency (b), clustering coefficient(C), transitivity (D), and modularity
(E) are calculated for delays of 6 (leftmost), 7 (left-center) and 8 (right-center). Rightmost: The values of the corresponding
measures for PD-CN (red) and controls (black) over a selected range of densities.
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Figure 6.3: Changes in global network measures as a function of network density. PD-CN group is compared to healthy controls
for low resolution networks. Global efficiency (a), local efficiency (b), clustering coefficient(C), transitivity (D), and modularity
(E) are calculated for delays of 9 (left) and 10 (center). Right: The values of the corresponding measures for PD-CN (red) and
controls (black) over a selected range of densities.
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Figure 6.4: Changes in global network measures as a function of network density for longitudinal data. The baseline and
longitudinal networks are compared for the PD-CN subgroup for low resolution networks. Global efficiency (a), local efficiency
(b), clustering coefficient(C), transitivity (D), and modularity (E) are calculated for delays of 9 (left) and 10 (center). Right:
The values of the corresponding measures for baseline (red) and longitudinal (black) data over a selected range of densities.
These results were calculated based on the low resolution parcellation scheme.

153



6.3.2 Alzheimer’s Disease patients

The results of the comparison between healthy controls and various patient groups

(CTR − A1, eMCI, lMCI and AD) for the global and local efficiency, clustering,

transitivity and modularity are shown in figures 6.5 to 6.9 respectively. In each

figure, the differences between the two groups are plotted by the orange circles, on

the top of the 95% confidence intervals (the gray area). The box-plots illustrate

the actual values of the measures for each group (CTR − A0 are plotted in black,

the patient groups are plotted in red) as a function of the delay, averaged over

the range of density for which the between-group differences are significant. The

results in these figures are calculated for delays 1-3. For the corresponding results

in higher delays, 4-6, see figures A.4 to A.8.

CTR − A1, eMCI and lMCI patient groups did not show any significant differ-

ences when compared with healthy controls. On the other hand, widespread

changes were observed for AD patients relative to controls. Contrary to the

PD-CN patients, these changes appeared at smaller delays. On the other hand,

similarly to the PD-CN patients, the global efficiency differences occur at small

densities; all other measures tend to show significant results at higher densities.

We observed decreases in global efficiency, local efficiency, clustering coefficient

and transitivity for delays 1 and 2; at the same delays the modularity tended to

show increases at higher densities. Crucially, since decreases in global efficiency

can be interpreted as increases in the characteristic path length, these results

mirror the results presented in chapter 5 for undirected network analysis [96].

These findings validate our method as a possible option to analyze the abnor-

mal network organization in Alzheimer’s patients while hinting that the directed

networks in these patients are more susceptible to changes due to this disease.
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Figure 6.5: Changes in global efficiency as a function of network density for delays 1-3. CTR − A0 group is compared to
CTR − A1 (a), eMCI (b), lMCI(C) and AD (D) patients for delays of 1 (leftmost), 2 (left-center) and 3 (right-center). Rightmost:
The values of the global efficiency for the corresponding groups (controls shown in black).
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Figure 6.6: Changes in local efficiency as a function of network density for delays 1-3. CTR − A0 group is compared to CTR − A1
(a), eMCI (b), lMCI(C) and AD (D) patients for delays of 1 (leftmost), 2 (left-center) and 3 (right-center). Rightmost: The
values of the local efficiency for the corresponding groups (controls shown in black).
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Figure 6.7: Changes in clustering coefficient as a function of network density for delays 1-3. CTR − A0 group is compared to
CTR − A1 (a), eMCI (b), lMCI(C) and AD (D) patients for delays of 1 (leftmost), 2 (left-center) and 3 (right-center). Rightmost:
The values of the clustering coefficient for the corresponding groups (controls shown in black).
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Figure 6.8: Changes in transitivity as a function of network density for delays 1-3. CTR − A0 group is compared to CTR − A1
(a), eMCI (b), lMCI(C) and AD (D) patients for delays of 1 (leftmost), 2 (left-center) and 3 (right-center). Rightmost: The
values of the transitivity for the corresponding groups (controls shown in black).
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Figure 6.9: Changes in modularity as a function of network density: delays 1-3. CTR − A0 group is compared to CTR − A1 (a),
eMCI (b), lMCI(C) and AD (D) patients for delays of 1 (leftmost), 2 (left-center) and 3 (right-center). Rightmost: The values
of the modularity for the corresponding groups (controls shown in black).
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6.4 Future perspectives

The results presented in this chapter suggest that directed networks built by

delayed correlations are good indicators of any topological changes that might

result from a particular neurodegenerative disease. However, further discussions

and investigations are needed in order to understand certain features of this

model.

Firstly, the question of why PD-CN and AD patients show significant results at

different temporal delays needs further investigation. In particular, we need to

understand whether these delays are significant for the relevant disease because

possibly, the most affected regions by that disease show the strongest mutual

correlation at these delays. Additionally, a detailed study of any potential changes

in the regional topology will also be conducted.

Finally, in this chapter I presented differences of the global network measures in

the full range of density that is available for this analysis. However, it is possible

that the networks for very low densities can become highly disconnected, while

the networks at high densities show characteristics similar to random networks,

which makes them unsuitable for the analysis. Further evaluations are needed in

order to check which network densities result in meaningful networks.
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Chapter 7

Delayed Correlations Improve

Reconstruction of the Brain

Connectome

7.1 Introduction

The large-scale complex network of the brain, also known as the connectome [81],

consists of intricate patterns of anatomical pathways connecting the spatially

distributed neuron populations. This structural network is widely considered to

act as a scaffold that facilitates the vast range of dynamic behaviors exhibited

by the neurons, reflected in the observation of the functional networks of the

brain [94, 218]. In contrast to the structural networks, functional networks are

calculated as statistical asssociations between the set of all anatomically separated

regions that exhibit correlated activity [83], and as such, the functional networks

do not correspond to any physical connections. Nevertheless, it has been shown

that these networks are reliable and robust over a wide range of working conditions

of the brain [219, 220].
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One of the challenges in neuroscience is to understand the nature of the rela-

tion between the structural and functional organization of the brain and study

whether we can infer the properties of one organization by having knowledge

of the other. Previous studies have already shown that structural architecture

shapes the functional activation on many levels, ranging from small neuronal net-

works to large-scale networks in the brain [107, 221]. They also demonstrated

that strong structural connections are a good indicator of strong functional ones

[108], while also arguing that inferring structural networks from functional ones

is possible [222], but less reliable [108, 223].

One major caveat of the functional networks is their strong dependence on the

measure used to quantify the temporal correlations; such measures include cor-

relation, coherence, Shannon entropy or phase-locking values (for a review, see

[85]). While each model offers certain advantages and disadvantages for their

use, currently there is not a unique standard or validation for the usage of one

over the others [85]. In spite of that, defining the connection strength between

two regions as the Pearson’s correlation coefficient between their corresponding

activation time series remains one of the most widely used method. This measure

relies on the assumption that the two regions’ activation is reciprocal, direct and

simultaneous.

While the Pearson’s correlation is computationally fast and simple to interpret,

it has a few major disadvantages. For example, it cannot account for the indi-

rect connections in the brain, which have been shown to have an effect on the

functional connectivity [108]; nor takes into consideration the temporal delays,

which play a role in the synchronization of neural networks [224, 225, 226] and

brain organization [227]. In addition, the origin and interpretation of the nega-

tive correlation coefficients is still a debated topic. While some studies argue that

negative correlation are a corollary of the data analysis process, others ascribe

them to purely physiological origin [228, 229]. In order to avoid this issue, some-

times it is preferable to include only the positive connections in the analysis, by

setting the negative coefficients to zero or to their absolute value.

In this chapter, I will demonstrate that the functional networks derived from the
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standard correlation methods do not faithfully represent the primary structural

networks. Instead, we propose a method, the delayed correlation, to reconstruct

the structural brain connectome by utilizing the temporal delays in the dynamic

behavior of the neurons. We show that the delayed correlation method correctly

identifies 70% to 80% of the connections in simulated networks and performs

well in the identification of the global and nodal network properties, especially at

low densities which are relevant for the connectome. This method suggests that

the underlying network architecture invariably introduces temporal delays in the

dynamic behavior of the neurons and harvesting this information is necessary for

its reconstruction.

7.2 Materials and methods

7.2.1 Model of neuronal activity

In order to simulate the spontaneous activity of each neuron, we used a linear

model, suggested by Galán [230, 108]. The activity of each neuron is expressed

as

~u(t + ∆t) = A~u(t) + η(t), (7.1)

where A is a generalized connection matrix that is given by

A = (1 − α∆t)I + C∆t (7.2)

In this equation, α is a variable that specifies the amount of leakage of each

neurons, I is the identity matrix, and C is the matrix specifying the connection

strengths between the neurons; in place of C we use the simulated weighted real

matrix that specifies the coupling strength between any pair of neurons (figure

7.1(a)).

There are no external sources in this system, instead, the neurons are driven by

spatially and temporally independent Gaussian noise, denoted by η. In order

to achieve stability in the simulations, C was normalized to have a unit norm,
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‖C‖ = 1. By setting ∆t = 0.5, for a wide range of connectivity matrices, we

obtain stable simulations for 1 ≥ α ≤ 3. In what follows, we use (α,∆t) = (2, 0.5)

in order to obtain a model in which the neuron’s behavior does not depend on

its state at previous times.

7.2.2 Analysis overview

By using the linear model of neuronal dynamics described in the previous section,

we simulated the spontaneous activity of a neuronal network with a small-world

architecture. The organization of this “real network” of neurons was derived from

the Watts-Strogatz model (chapter 1), while the inter-neuron synaptic strengths

were drawn from a symmetric Gaussian distribution (figure 7.1(a)). Each node

(neuron) of this network is endowed with a dynamic behavior by using the linear

model described in the previous section with the real matrix employed in the place

of C, a sample of the neurons’ activation patterns is shown in figure 7.1(c). From

each neuron’s time series, one can build a “reconstructed network” by choosing

a certain measure of association between any pair of time series; this network is

indicative of the functional connections between each pair of neural elements.

We propose a new method of building this network, the delayed correlation

method, which utilizes the temporal delays in the correlation of the neurons’

time series. In particular, we define the connection strength between two neurons

as the inverse of the delay at which the absolute value of the cross-correlation

function between the two neurons is maximal. In this way, we obtain a weighted

reconstructed network in which the strongest functional connections occur for

pairs that are activated simultaneously of with small temporal delays.

In order to evaluate whether this method is a good predictor of the structural

architecture, we compared the real and the reconstructed networks by using few

parameters as benchmarks. Specifically, we calculated the percentage of common

connections in the two networks, and evaluated the extent to which global and

local characteristics of the real network are replicated in the reconstructed net-

work. This comparison was performed by binarizing both matrices by ensuring
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that they both have the same number of connections, and subsequently compar-

ing the resulting binary matrices (for example, the network in figure 7.1(d) is

compared to the one in figure 7.1(b)).

To check how the delayed correlation method fares against the commonly used

correlation procedures, we also calculated the reconstructed networks by using

Pearson’s correlation coefficient (which assumes synchronicity between the time

series) by treating the negative coefficients in two ways: substituting them with

their absolute values (henceforth referred to as absolute correlation method, figure

7.1(e)) or setting them equal to zero (zero correlation method, figure 7.1(f)). After

calculating these networks, they were also binarized and compared to the binary

real network in figure 7.1(b). Furthermore, in order to asses whether the obtained

results can be explained by chance alone, the three models were gauged against a

null model, in which the edges in the reconstructed matrix are built at random.
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Figure 7.1: Overview of the network reconstruction procedure. (a) An example of weighted, small-world structural network of
20 nodes derived from the Watts-Strogatz model, showing the 10% of the strongest connections. (b) The corresponding binary
network at the same density of connections as in (a), after all of its edges have been assigned a weight of 1. Each node of this
structural network is endowed with dynamic behavior by using a Simple Autoregressive model (SAR) with the network in (a)
defining the between-node coupling strengths. A sample of each node’s representative time series is shown in (c). Using the time
series, a network at the same density as (b) is reconstructed by the following methods to calculate the metric specifying the
between-node connection strength: (d) delayed correlation approach; pairwise Pearson’s correlation coefficient in which negative
coefficients are set to (e) zero and (f) their absolute values. To asses each method’s accuracy, the reconstructed binary networks
(shown in (d),(e) and (f)) are compared with the real binary network shown in (b).
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7.3 Results and discussion

7.3.1 Network reconstruction accuracy

Figure 7.2 shows the percentage of successfully reconstructed connections (edges

in the reconstructed network that are also present in the real one), for each of

the four methods described in the previous section. The reported results are

calculated for networks of 100 nodes (figure 7.2(a)), of 200 nodes (figure 7.2(b))

and of 500 nodes (figure 7.2(c)), over the range of densities for which the real

networks are sparse. Each real network is simulated by the Watts-Strogatz model

with β = 0.05 and the plotted results are the average of 100 trials. We show that

the delayed correlation method builds reconstructed networks that overlap around

60% to 80% with the real neuronal networks over the whole density range and for

different network sizes. The absolute correlation method performs in the range of

5% to 25% and shows slightly better results than the zero correlation. All three

methods perform better than the null model, indicating that these results are not

due to chance alone.

These results show that the functional networks calculated by the widely used

correlation methods do not represent the structural networks faithfully. On the

contrary, the delayed correlation method can reconstruct up to 80% of the real

network, with the best performance shown in sparse networks, i.e. lower resolu-

tion networks at small densities. This behavior can be explained by considering

the efficiency of communication within the neuronal network.

Two neurons that interact and communicate strongly are expected to show highly

correlated activation patterns (either synchronous or at small temporal delays).

In this context, strong interaction implies very short and clearly defined paths

(section 2.3) between the two neurons. In sparse networks, due to the very low

number of connections, two neurons can communicate only through few different

paths; i.e. one node can be reached from the other in only few different ways.

Therefore, the communication pathway between any two nodes in a sparse net-

work is very well defined; as a result, the temporal delays (which can be thought
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to occur due to the finite speed of information transmission) will be indicative of

the distances between the nodes. In particular, two nodes with shorter distances

between them will correlate with smaller temporal delays.

On the contrary, as the density and the number of nodes in the network increase,

the number of connections in the network and, consequently, the number of paths

that can be used for communication between two nodes increases. Each of these

possible paths involves different number of edges that need to be crossed, there-

fore, a clearly preferred pathway of interaction is not available. As a result, the

communication between the two nodes is scrambled, without a clear transmission

delay. Therefore, the calculated delay conveys less information about the distance

between nodes which, in turn, makes the reconstruction of the real network less

efficient.

Figure 7.2: Accuracy of network reconstruction. Percentage of edges in the

real network that can be correctly identified by each method (black - delayed

correlation; red - absolute correlation; blue - zero correlation; green - null model)

for networks of (a) 100 nodes, (b) 200 nodes and (c) 500 nodes. The bottom

and top edges of the boxes show the 25th and 75th percentiles while the vertical

lines extend to the furthest observations that are not designated as outliers. The

plots were obtained as an average of 100 trials.

The reason that the real network cannot be reconstructed perfectly can be traced

to the inherent drawbacks of the correlation procedure. In particular, two nodes

can show highly correlated activation patterns if they have a strong interaction
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between them (i.e. they have a direct connection). Alternatively, highly corre-

lated activation can be also exhibited if both nodes have no connection between

them, instead, they are both influenced from a third node in a similar way (i.e.

they have indirect connection, mediated by a third node). This inability of the

correlation methods to make difference between direct and indirect connections

in one of the main reasons that not all real connections can be inferred from the

functional data. Indeed, Honey et al [108] demonstrated that there can be func-

tional connectivity between two regions even if they do not have a physical link

between each other, attributing this property to the indirect connections between

the nodes.

7.3.2 Features of the delayed correlation model

We carried out a detailed analysis to investigate the robustness of the delayed

correlation method against different models of the real matrix and inter-neuronal

strength. Our reference model was a real small-world network of 200 nodes, with

the synaptic strengths drawn from a Gaussian distribution centered around zero.

Then, we proceeded to investigate how varying each of these parameters affected

the performance of the delayed correlation method.

Figure 7.3(a) shows the method’s accuracy as a function of the small-worldness

of the real network. The corresponding reconstructed networks have a 50% over-

lap with the real network for every intermediate network interpolated between

a regular network and a random one, shown in inset. Furthermore, the method

shows good performance as a function of the heterogeneity of the nature of the

synapses, figure 7.3(b). We demonstrate this by varying the percentage of excita-

tory synapses present in the real network. It can be seen that the percentage of

correctly identified connections is symmetric around the point of 50% excitatory

synapses; the model performs equally well regardless of whether the network is

mostly excitatory or inhibitory. Moreover, the accuracy of the model improves as

the homogeneity of the synapses increases. Finally, we draw the synaptic weights

from a q-Gaussian distribution that we vary from bounded to heavy tailed by
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Figure 7.3: Network reconstruction efficiency of the delayed correlation method.

Reconstruction efficiency as a function of (a) probability to randomize an edge in

the Watts-Strogatz model, (b) percentage of positive weights in the weighted real

network and (c) different distribution of weights in the real network represented

by the q parameter in a q-Gaussian distribution. Insets: (a) An example of

structural network for different randomization parameter in the Watts-Strogatz

model. From left to right the networks vary from regular to random networks.

(b) Histograms of the structural weights distribution when there are (from left to

right) 0%, 50% and 100% positive weights. (c) The weight distribution changes

ranging from bounded q-Gaussian for q = −3, Gaussian function for q = +1 to

heavy tail distribution for q = +3.
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setting different values to the parameter q, insets in figure 7.3(c). The results in

figure 7.3(c) show that the model’s performance is not dependent on the particular

shape of the synaptic strength distribution used.

All of these results taken together, indicate that the ability of the delayed cor-

relation method to reconstruct the real network, does not depend on the models

from which the real matrices and synaptic strengths are drawn. Instead, the only

limiting factor to this method’s performance is due to the number of connections

within the network.

7.3.3 Global network properties

The global topology of the real network was evaluated by the calculation of the

clustering coefficient, transitivity, characteristic path length and the global effi-

ciency (chapter 2). The real network had 200 nodes and small-world characteris-

tics (β = 0.05), as such, it is characterized by high clustering coefficients coupled

with low path lengths, or analogously by high transitivity and high global effi-

ciency as shown in figure 7.4 (orange boxes). Only the delayed correlation method

results in reconstructed networks with similar clustering and transitivity as the

real ones for small densities, however, all methods perform close in the reconstruc-

tion of the network’s clustering for higher densities (figure 7.4(a) and 7.4(b)). On

the other hand, all methods are able to reconstruct equally well the short path

lengths and high global efficiencies in the real network (figure 7.4(c) and 7.4(d)).

Due to the high reproducibility of the results, the boxes in figure 7.4 are centered

around the corresponding median with constant standard deviation. Detailed

information about the mean and standard deviation of each point can be found

in table 7.1.
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Figure 7.4: Global network measures as a function of network density. (a) Clus-

tering coefficient, (b) transitivity, (c) characteristic path length and (d) global

efficiency calculated for real network (orange), delayed correlation (black), ab-

solute correlation (red), zero correlation (blue) and null model (green). The

boxes are centered around the median and the spread of the data is fixed at the

same values for each point. Detailed information about the mean and standard

deviation is summarized in table 7.1.

The nodal clustering coefficient is a measure of the fraction of triangles that can

be formed around a node; the average of this coefficient over all nodes in the

network gives the global clustering coefficient (section 2.3). Since the formation

of a triangle around a particular node involves the arrangement of 3 edges in a

particular order, in order to observe similar clustering in the reconstructed net-

work all 3 connections need to be correctly reconstructed. However, as discussed

above, the real matrix cannot be completely reproduced and around 20% to 30%
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of the connections remain wrongly reconstructed. Therefore, for each wrongly re-

constructed connection, a number of triangles they were part of get broken down,

and the clustering coefficient invariable decreases due to the reconstruction. For

the delayed correlation method, the clustering coefficient decreases as function of

density; this is due to the fact that the number of wrongly reconstructed connec-

tions increases with density (figure 7.2(a)), as a result, more triangles are broken

down with density. Since the transitivity is very similar to the clustering coeffi-

cient (section 2.3), the same line of reasoning can be applied in order to explain

its behavior showin in figure 7.4(b).

On the contrary, the wrongly reconstructed edges do not have such profound

effect on the path length and global efficiency. In particular, in the case of clus-

tering, a wrongly reconstructed edge results in breaking down a triangle in the

real network, but does not necessarily result in building of a triangle in the re-

constructed network, therefore making no contribution to the overall clustering.

On the contrary, since path length and global efficiency are calculated as aver-

ages over all nodes in the network, every edge (rightly or wrongly reconstructed)

makes contribution to their calculation, resulting in similar values for the real

and reconstructed networks (figure 7.4(c-d)).

Furthermore, the path lengths calculations show that even though the real net-

work is a connected one, the reconstructed networks can be disconnected (es-

pecially for small densities). Therefore, instead of the path length, the global

efficiency needs to be used to characterize sparse networks, indicating that it is

indeed a superior measure with respect to the path length (chapter 2).
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Table 7.1: Global network measures as a function of network density. For each density, the mean and standard deviation (in the

parentheses) are shown for all methods. These results correspond to the ones plotted in figure 7.4.

Clustering coefficient

Density 2% 4% 6% 8% 10% 12% 14%

real matrix 0.437 (0.016) 0.557 (0.012) 0.589 (0.013) 0.605 (0.011) 0.617 (0.009) 0.624 (0.008) 0.628 (0.007)

delayed corr. 0.268 (0.043) 0.219 (0.030) 0.183 (0.017) 0.171 (0.014) 0.166 (0.010) 0.171 (0.006) 0.177 (0.005)

absolute corr. 0.027 (0.008) 0.047 (0.006) 0.065 (0.004) 0.084 (0.003) 0.103 (0.003) 0.123 (0.002) 0.142 (0.002)

zero corr. 0.028 (0.009) 0.048 (0.006) 0.069 (0.004) 0.090 (0.003) 0.110 (0.003) 0.130 (0.002) 0.150 (0.002)

null model 0.018 (0.008) 0.039 (0.005) 0.061 (0.004) 0.080 (0.003) 0.100 (0.003) 0.121 (0.002) 0.141 (0.002)

Transitivity

Density 2% 4% 6% 8% 10% 12% 14%

real matrix 0.426 (0.016) 0.550 (0.013) 0.584 (0.013) 0.602 (0.011) 0.615 (0.010) 0.621 (0.008) 0.626 (0.007)

delayed corr. 0.245 (0.043) 0.201 (0.028) 0.174 (0.016) 0.166 (0.013) 0.163 (0.009) 0.168 (0.006) 0.176 (0.005)

absolute corr. 0.030 (0.009) 0.047 (0.005) 0.065 (0.004) 0.084 (0.003) 0.103 (0.003) 0.123 (0.002) 0.142 (0.002)

zero corr. 0.029 (0.007) 0.048 (0.005) 0.069 (0.004) 0.090 (0.003) 0.110 (0.003) 0.130 (0.002) 0.150 (0.002)

null model 0.020 (0.006) 0.039 (0.004) 0.060 (0.003) 0.080 (0.003) 0.100 (0.003) 0.120 (0.002) 0.141 (0.002)

Continued
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Table 7.1 – Continued

Path Length

Density 2% 4% 6% 8% 10% 12% 14%

real matrix 8.128 (0.848) 4.294 (0.182) 3.312 (0.088) 2.851 (0.051) 2.602 (0.034) 2.440 (0.019) 2.321 (0.016)

delayed corr. — — 2.489 (0.013) 2.243 (0.011) 2.062 (0.007) 1.949 (0.003) 1.884 (0.002)

absolute corr. — — 2.402 (0.003) 2.176 (0.003) 2.022 (0.002) 1.929 (0.002) 1.876 (0.001)

zero corr. — — 2.403 (0.003) 2.178 (0.003) 2.023 (0.003) 1.930 (0.002) 1.876 (0.001)

null model — — — 2.174 (0.003) 2.020 (0.002) 1.927 (0.002) 1.876 (0.001)

Global Efficiency

Density 2% 4% 6% 8% 10% 12% 14%

real matrix 0.165 (0.010) 0.280 (0.008) 0.351 (0.007) 0.402 (0.005) 0.438 (0.004) 0.467 (0.003) 0.493 (0.003)

delayed corr. 0.240 (0.010) 0.373 (0.004) 0.440 (0.002) 0.486 (0.002) 0.523 (0.001) 0.549 (0.001) 0.566 (0.001)

absolute corr. 0.275 (0.004) 0.394 (0.001) 0.453 (0.001) 0.498 (0.001) 0.530 (0.001) 0.552 (0.001) 0.568 (0.001)

zero corr. 0.276 (0.003) 0.394 (0.001) 0.453 (0.001) 0.497 (0.001) 0.530 (0.001) 0.552 (0.001) 0.567 (0.001)

null model 0.277 (0.003) 0.395 (0.001) 0.454 (0.001) 0.498 (0.001) 0.530 (0.001) 0.552 (0.001) 0.568 (0.001)
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7.3.4 Nodal network properties

We also calculated the percentage of nodes that possess similar topological prop-

erties in the real and reconstructed networks. As quantifying properties, we

considered the degree, the global efficiency and the nodal clustering (figure 7.5).

A node is considered to have similar degree in the reconstructed and real net-

works, if its degree in the reconstructed network is ±1 of its degree in the real

one; the corresponding value for the clustering and global efficiency is ±50% of

their value in the real network. The advantage of the delayed correlation method

is clear for sparse networks; with this method up to ±75% of the nodes have sim-

ilar degrees in both reconstructed and real network, the other methods can result

in only approximately ±50% (figure 7.5(a)). Figure 7.5(b - leftmost) shows a

sample real network in which each node is represented by a circle and the circle’s

sizes are proportional to the node’s degree (the connections between nodes are

not shown for clarity). The colored nodes in the networks shown in figure 7.5(b)

represent the particular nodes correctly identified by each method; since most of

the unidentified nodes have small degrees it follows that the delayed correlation

method is able to correctly reconstruct the hubs, i.e. the nodes in the network

with unusually high degrees.

Similar results follow for the global efficiency in sparse networks. Up to 85% of the

nodes can be reconstructed by the delayed correlation compared to a maximum

of 70% reconstructed by other methods, figure 7.5(c), while all methods perform

equally well for higher densities. The most pronounced differences are observed

in the nodal clustering coefficient; while the delayed correlation can identify a

maximum of 50% of the nodes in sparse networks, other methods only can do so

only for the 5% of the nodes (figure 7.5(e)).

These differences are due to the fact that only a low number of connections are

correctly identified by the correlation methods. In particular, since the global

measures reflect an aggregate result which is averaged over all nodes, the fact

that some connections are not overlapping in both networks is offset to a certain

degree by the averaging procedure for all nodes. However, since this averaging is
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Figure 7.5: Nodal network measures as a function of density. Percentage of correctly identified nodes by the method of delayed
correlation (black), absolute correlation (red), zero correlation (blue) and null model (green) as a function of density for (a) nodal
degree, (b) nodal global efficiency and (c) nodal clustering. A node is considered to be successfully reconstructed if its value in
the reconstructed network is within the tolerance range from its value in the real network. The tolerance range is defined as ±1
for the nodal degree and ±50% of the measure’s value in the real network for clustering and global efficiency. (b-e) An example
of single trial real network illustrating which nodes are reconstructed by each method based on the degree, global efficiency and
clustering respectively. The real network is plotted in gray and the colored nodes have been successfully reconstructed by the
corresponding method. The size of the nodes in the network is proportional to the node’s value of the measure.
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not present in the local topological measures, the fact that the majority of the

connections are not reconstructed properly is translated into the incapability to

replicate the nodal properties. Moreover, for each measure, the performance of

the correlation methods over the whole range of densities is equal to the one of

the null model, leading to the conclusion that their behavior is mainly due to

chance alone. This indicates that the usual correlation methods do not relay any

crucial information about the local network topology.

On the contrary, the delay correlation method performs very well in wide range

of circumstances, with the difference being most pronounced for sparse networks.

In particular, the fact that it performs much better than the null model, suggests

that time delays convey a certain information about the network that goes beyond

chance.

7.3.5 Community structure

To explore whether a given community structure of the real network can be faith-

fully reproduced by the delayed correlation method, we studied the reconstruction

of modular networks. We created a modular network of 200 nodes that consisted

of 5 isolated small-world sub-networks of 40 nodes each, therefore ensuring its

maximum modularity (figure 7.6(a - left). Then, we progressively added random

connections to this network, as a result, the modularity of the network decreases

with the number of connections that are added (the orange boxes in figure 7.6(d)).

Although the modularity of the real network decreases, the 5 original commu-

nities are largely preserved for the whole range of added random connections;

the majority of the connections remain within the same community (the colored

connections in figure 7.6(a-c)), however the modularity is decreased due to the in-

creased number of between-community connections (connections plotted in black

in figure 7.6(b and c)). When reconstructing this behavior, we observed that,

while the delayed correlation performs much better than the other methods, it

still results in slightly lower modularity values than the real network. The reason

for this behavior (similar to the case of the reconstruction of network measures)
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is the fact that that although the delayed correlation successfully reconstructs

the majority of real connections, it does not reconstruct all of them. Therefore,

some of the connections that were running within community in the original net-

work, can occur between nodes in different communities in the reconstructed one,

therefore decreasing the modularity, as illustrated in figure 7.6(a,b,c - right).

In order to quantify the goodness of fit between the real and reconstructed com-

munities, we evaluated the percentage of same-community pairs in the recon-

structed network, that were also in the same community in the real network.

The results of this parameters are shown in figure 7.6(e). We see that the delayed

correlation is very successful into identifying such pairs, reaching up to 95% suc-

cess for highly modular networks, while on the other hand, other methods can

identify at most around 25% of such pairs. This parameter suggests that, on

average, the communities formed in the reconstructed networks by the delayed

correlation are meaningful and close to the real communities. However, it does

not show whether the integrity of the communities in the original network was

preserved, i.e. it cannot distinguish the cases when a community in real network

is split into smaller communities in the reconstructed ones.

To that end, we proceed to calculate how many same-community pairs in the

real networks remained in the same community after the reconstruction, showing

the results in figure 7.6(f). For highly modular networks, the communities are

largely preserved by the delayed correlation method, with more than 90% of the

nodes remaining in their communities. As the modularity of the real networks

decreases, the real communities tend to split due to the reconstruction process.

However, the delayed correlation method still places 40% to 70% of the nodes in

the same community, while for the other methods only 30% of the nodes remain.

Moreover, from figure 7.6(d-f), we can observe that while the delayed correlation

performs much better than the null model, the other correlation methods perform

similarly to it; this shows that the communities that result from these methods

are entirely due to chance. The spread of the data in figure 7.6 is fixed in order

to provide better visualization, the exact means and standard deviations for each

point are given in table 7.2.
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The community reconstruction results by the delayed correlation are summarized

in figure 7.6(a - c) by plotting the community structure of a sample real (left) and

reconstructed (right) network for different number of random connections. The

corresponding communities are shown in the same color, the black lines represent

inter-communities connections while the colored ones show connections running

only within the same communities. From these plots, we can observe that in

the case of Nconn = 0, the communities are preserved and only few nodes are not

identified in the correct community. However, for Nconn = 1200 the community

division becomes less clear, and while most of the nodes retain their within com-

munity neighbors, each of the 5 communities in the real network is split into

smaller ones.
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Figure 7.6: Community structure in a modular graph. A modular network of 200 nodes is built by clustering together 5 distinctive
equal size communities with no connections between them (shown in (a), left) resulting in a maximum modularity of 0.8. The
number of connections between communities is further increased (an example of the resulting networks is shown in (b) and (c)
left) resulting in decreasing of the network modularity (d). (e) Percentage of same community paired nodes in the reconstructed
network that were also in a same community in the real network as a function of the number of between community connections.
(f) Percentage of pairs in a same community in the real network that are also in the same community in the reconstructed
network. The matrices on the right in (a), (b) and (c) illustrate the reconstruction of the modular graph on the left by the
delayed correlation method. The boxes are centered around the median and the spread of the data is fixed at the same values
for each point. Detailed information about the mean and standard deviation is summarized in table 7.2.
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Table 7.2: Community structure in a modular graph. For each number of inter-community connections, the mean and standard

deviation (in the parentheses) are shown for all methods. These results correspond to the ones plotted in figure 7.6.

Modularity

Density 2% 4% 6% 8% 10% 12% 14%

real matrix 0.800 (0.000) 0.727 (0.003) 0.666 (0.005) 0.614 (0.005) 0.569 (0.005) 0.532 (0.006) 0.497 (0.006)

delayed corr. 0.513 (0.027) 0.452 (0.022) 0.399 (0.019) 0.358 (0.015) 0.321 (0.015) 0.295 (0.013) 0.270 (0.013)

absolute corr. 0.286 (0.007) 0.270 (0.006) 0.254 (0.006) 0.242 (0.005) 0.231 (0.006) 0.222 (0.005) 0.213 (0.005)

zero corr. 0.285 (0.007) 0.271 (0.006) 0.257 (0.005) 0.246 (0.005) 0.234 (0.006) 0.226 (0.005) 0.217 (0.005)

null model 0.281 (0.006) 0.265 (0.005) 0.252 (0.005) 0.241 (0.006) 0.229 (0.005) 0.221 (0.006) 0.212 (0.005)

Percentage of conserved reconstructed pairs

Density 2% 4% 6% 8% 10% 12% 14%

delayed corr. 97.72 (0.24) 96.33 (0.47) 92.16 (0.52) 84.83 (3.18) 77.84 (2.08) 70.76 (1.61) 61.85 (1.46)

absolute corr. 26.38 (0.27) 25.75 (0.55) 24.75 (0.20) 24.13 (0.24) 23.81 (0.10) 23.50 (0.12) 23.50 (0.33)

zero corr. 24.40 (0.23) 24.50 (0.21) 23.78 (0.18) 23.51 (0.13) 23.34 (0.23) 23.11 (0.13) 23.00 (0.11)

null model 24.40 (0.23) 24.50 (0.21) 23.78 (0.18) 23.51 (0.13) 23.34 (0.23) 23.11 (0.13) 23.00 (0.11)

Continued
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Table 7.2 – Continued

Percentage of conserved structural pairs

Density 2% 4% 6% 8% 10% 12% 14%

delayed corr. 90.16 (1.33) 81.32 (1.63) 72.41 (2.48) 62.19 (2.30) 54.39 (1.49) 48.17 (1.76) 41.61 (2.17)

absolute corr. 16.76 (0.33) 16.55 (0.17) 16.00 (0.37) 16.33 (0.13) 16.26 (0.45) 15.45 (0.28) 15.72 (0.23)

zero corr. 15.61 (0.23) 15.71 (0.21) 15.26 (0.21) 15.07 (0.29) 15.55 (0.15) 15.49 (0.26) 15.75 (0.17)

null model 15.61 (0.23) 15.71 (0.21) 15.26 (0.21) 15.07 (0.29) 15.55 (0.15) 15.49 (0.26) 15.75 (0.17 )
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7.3.6 Diffusion tensor imaging networks

We also assessed the performance of each method in the reconstruction of struc-

tural networks derived from Diffusion Tensor Imaging (DTI). These networks

were obtained from 11 healthy individuals, by using the Automated Anatomical

Labeling brain atlas with 116 regions. The results are summarized in figure 7.7.

The results for DTI networks are in line with the results obtained for simulated

small-world topologies. The delayed correlation method performs strikingly bet-

ter than the other models when attempting to reconstruct the real network (figure

7.7(a)). With regards to the global measures, the reconstructed networks have

lower clustering and higher global efficiency at higher densities, however both

match well with the real networks at low densities. Finally, the delayed corre-

lation is able to reconstruct much higher percentage of nodes that have similar

topologies in the reconstructed and real networks, as evaluated by the degree,

global efficiency and the clustering coefficient (figures 7.7(c), 7.7(d) and 7.7(e)

respectively).

7.4 Future perspectives

In order to complete this study, some further investigations are needed. To be

specific, in this chapter, I showed that the delayed correlation method is superior

to the other commonly used correlation approaches and showed that it is very

robust with the topology of the real network as well as with the distribution

and sign of weights used to specify synaptic strengths. However, the question

of whether this model is robust against the method of simulating the neuronal

dynamics still remains. Additional methods need to be tested in order to check for

the reproducibility of the results, some possible choices for the simulation of the

neuronal dynamics are presented in Abdelnour et al. [231], Pernice et al. [232],

Belykh et al. [233]. In addition, the DTI networks reconstruction I presented

in this chapter is based on the networks constructed only on 11 subjects, which

makes the above results possibly biased due to the small sample size. In order
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to obtain more sound observations, the analysis needs to be repeated with larger

and more heterogeneous sample of subjects.
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Figure 7.7: Reconstruction of structural networks derived from DTI data. (a) Percentage of edges in a real network that can
be correctly identified by each method (black - delayed correlation; red - absolute correlation; blue - zero correlation; green -
null model). The networks are derived from DTI data from 11 healthy subjects using the AAL116 atlas. (b) Global clustering
coefficient (left) and global efficiency (right) as a function of network density. (c) Percentage of correctly identified nodes as
function of network density (left) and a single network illustration on a brain surface (right, the reconstructed nodes are shown
in red) based on the nodal degree, (d) global efficiency and (e) clustering coefficient. The bottom and top edges of the boxes
show the 25th and 75th percentiles while the vertical lines extend to the furthest observations that are not designated as outliers.
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Chapter 8

Conclusion

The tools of graph theory can be employed in order to study and understand the

brain as a complex system that is built up from mutually interacting elements.

This framework has been able to identify some fundamental aspects of network

organization that the human brain relies on, including a small-world topological

architecture, community structure and the presence of hubs. These properties

enable our brain to continuously evolve and adapt within an environment that

presents ever increasing cognitive demands. On the other hand, the disruption

in some of these properties can account for few key aspects that form the basis

of pathology in neurological diseases.

In order to address the growing demands in the field of brain connectivity anal-

ysis, we developed BRAPH - BRain Analysis using graPH theory. Being an

object-oriented freeware, BRAPH can be easily altered and expanded, for exam-

ple by adding new objects or modifying the current ones, and therefore, can be

customized to suit any future needs. Additionally, BRAPH encompasses a series

of user-friendly graphical user interfaces, that allow the users without program-

ming background an effortless way to conduct their analyses. Both structural and

functional data can be analyzed by BRAPH in few steps, ranging from defining

the brain parcellation scheme, building the adjacency matrices, calculating and

visualizing various global and nodal measures, performing non-parametric tests
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to quantify the significance of the results, to the saving of all analysis in a single

file that then can be used by BRAPH or any external software as needed.

To demonstrate the various strengths of BRAPH, we performed two independent

studies. In the first one, we analyzed the topological properties of networks

in patients with amnestic MCI and AD that were built from structural MRI

data. We found that the networks of these patients exhibited abnormal global

topology, which led to less effective communication between any two regions, when

compared to healthy subjects’ networks. On a regional level, we identified changes

in the local topology of various regions. Importantly, these regions coincided

with the areas in the brain that showed most pronounced amyloid deposition,

gray matter atrophy and glucose hypometabolism, suggesting that these local

topology changes can be indicative of pathological and metabolic abnormalities

that commonly occur in AD patients.

In the second study, we analyzed functional networks in PD patients with, and

without MCI. Our results showed that, across many thresholds, PD-MCI patients

have more disconnected networks when compared to controls. A more detailed

analysis of the community structure in these networks revealed that the absence

of connections was most pronounced in the temporal and inferior frontal regions.

Previous studies have already shown that these regions play the role of important

brain hubs and are among the regions most affected by PD. The fact that we

obtained similar results for both, PD-CN and PD-MCI patients, indicates that

the temporal and inferior frontal regions are key to understand the effects of PD

to the brain connectivity, regardless of the patients’ cognitive status.

Furthermore, we involved 1008 individuals from 2 multicenter cohorts in order

to investigate the topological properties of the structural networks in stable and

progressive MCI, and AD patients. We demonstrated that modularity and tran-

sitivity show much greater sensitivity to MCI and AD when compared with the

path length and clustering coefficient. Contrary to earlier studies, we also assessed

the changes in the nodal network properties in stable MCI, late MCI converters,

early MCI converters, and AD patients. In particular, changes in nodal clustering
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were detected only in AD patients, while the closeness centrality exhibited alter-

ations in all groups for various regions. All results taken together offer insight

into the development of AD, that starts by affecting distinct brain regions and

eventually alters the global network organization.

However, it is possible that different samples of patients with various clinical

characteristics could lead to slightly different observations. While some studies

found significant organizational abnormalities in the undirected networks in AD

patients, others did not identify any differences in AD patients when compared

to controls. To address this issue, we proposed the use of directed networks as a

more sensitive indicator of any disease related changes in the brain connectivity.

The method to build these directed networks is based on temporal precedence,

by calculating delayed correlation coefficients between all pairs or regions. We

demonstrated that directed networks show abnormal global network organization

in cognitively normal PD patients (indicated by increases in the global and local

efficiency, transitivity and clustering) when compared to controls. In addition,

AD patients had altered global topology that showed decreases in these measures.

Importantly, undirected networks calculated in these patients did not exhibit any

differences when compared to controls, which suggests that directed networks

might be more sensitive to PD and AD related pathological effects.

Finally, we put forward a method, the delayed correlation method, that harvests

the information contained in the temporal delays between the brain regions’ ac-

tivation patterns in order to reconstruct the structural brain connectome. We

showed that the commonly used correlation methods build functional networks

that are not faithful representations of the underlying structural organization,

with only 5% to 25% overlap between the two networks. Instead, the delayed cor-

relation method correctly identifies 70% to 80% of the connections in simulated

structural brain networks; this result is robust against changes in the network

parameters (small-worldness, excitatory vs. inhibitory connection ratio, weight

distribution). Moreover, although all methods perform equally well in predict-

ing the global network properties (characteristic path length, global efficiency,

clustering coefficient, transitivity), the delayed correlation method predicts more

accurately the nodal network properties (nodal degree, nodal clustering, nodal
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global efficiency), particularly at lower network densities.
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Appendix A

Data

A.1 Chapter 5

A.1.1 Differences in global measures after controlling for

scanning centers
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Table A.1: Differences in global network measures between controls and patients after controlling for scanning site. D - density

of the network; CTR - controls; sMCI - stable mild cognitive impairment (sMCI); lMCIc - late mild cognitive impairment

converters; eMCIc - early mild cognitive impairment converters; AD - Alzheimer’s disease [96].

Characteristic path length

D CTR sMCI-3y lMCIc eMCIc AD
CTR-sMCI

p value

CTR-lMCIc

p value

CTR-eMCIc

p value

CTR-AD

p value

5 1.5845 2.7304 2.3518 3.0140 2.0183 0.003 0.017 0.006 0.444

6 1.6790 2.5520 2.7738 2.8021 2.6171 0.015 0.012 0.059 0.082

7 1.5567 2.3543 2.6419 2.6831 2.6296 0.051 0.026 0.013 0.004

8 1.5438 2.3631 2.5191 2.6536 2.3915 0.118 0.090 0.010 0.009

9 1.6820 2.2803 2.4485 2.5449 2.2578 0.428 0.336 0.010 0.027

10 1.7357 2.3155 2.4950 2.4729 2.3602 0.477 0.347 0.017 0.005

11 1.6816 2.2758 2.3931 2.3818 2.3218 0.384 0.342 0.044 0.002

12 1.7398 2.4715 2.3119 2.2830 2.1696 0.198 0.319 0.108 0.025

13 1.6727 3.1611 2.2269 2.2865 2.0461 0.006 0.128 0.066 0.059

14 1.6606 3.1556 2.5465 2.2456 2.3345 0.004 0.008 0.094 < 0.001

15 1.6719 2.9224 2.3967 2.3178 2.1887 0.014 0.026 0.071 < 0.001

16 1.7764 2.8681 2.2983 2.2192 2.1258 0.022 0.070 0.292 0.030

17 1.7778 2.6959 2.3519 2.1333 2.0345 0.024 0.041 0.525 0.060

18 1.8619 2.6469 2.2953 2.1254 2.0177 0.035 0.161 0.790 0.247

Continued
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Table A.1 – Continued

19 2.0555 2.6289 2.1832 2.0775 1.9832 0.139 0.753 0.649 0.538

20 1.9738 2.5825 2.1387 2.0000 1.9476 0.131 0.826 0.613 0.835

21 1.8879 2.4036 2.1052 1.9815 1.9232 0.315 0.772 0.787 0.765

22 1.8437 2.3276 2.1670 1.9094 1.9303 0.475 0.619 0.740 0.461

23 1.7804 2.2865 2.1161 1.9426 2.0179 0.555 0.676 0.929 0.125

24 1.7240 2.2365 2.1846 2.1347 1.9808 0.554 0.386 0.544 0.167

25 1.6722 2.3920 2.1563 2.1321 1.9495 0.202 0.301 0.473 0.266

26 2.0252 2.3522 2.1201 2.0886 1.9313 0.901 0.601 0.974 0.548

27 2.2212 2.2515 2.0930 2.0599 1.9031 0.476 0.316 0.887 0.345

28 2.2291 2.2333 2.0533 2.3755 1.8440 0.613 0.364 0.657 0.293

29 2.1885 2.2096 2.0262 2.3502 1.8142 0.848 0.609 0.550 0.325

30 2.1620 2.1802 1.9958 2.3228 1.7719 0.941 0.762 0.306 0.337

31 2.0063 2.1457 1.9678 2.1879 1.7516 0.815 0.932 0.190 0.611

32 1.9335 2.1445 1.9371 2.1587 2.0158 0.480 0.591 0.092 0.859

33 1.9125 2.1232 1.9015 2.1331 1.9914 0.311 0.508 0.059 0.818

34 1.8520 1.9810 1.8802 2.0509 1.9680 0.36 0.297 0.051 0.694

35 1.8121 1.9581 1.8621 2.0051 2.0831 0.217 0.211 0.042 0.216

Continued
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Table A.1 – Continued

Clustering coefficient

D CTR sMCI-3y lMCIc eMCIc AD
CTR-sMCI

p value

CTR-lMCIc

p value

CTR-eMCIc

p value

CTR-AD

p value

5 0.2559 0.2447 0.3067 0.2461 0.2325 0.325 0.289 0.571 0.476

6 0.2683 0.3027 0.3396 0.2703 0.2548 0.693 0.132 0.882 0.801

7 0.2846 0.3741 0.3917 0.2946 0.2699 0.089 0.019 0.877 0.642

8 0.3048 0.3730 0.3799 0.3304 0.2970 0.212 0.166 0.537 0.673

9 0.3243 0.4030 0.3926 0.3593 0.3411 0.070 0.171 0.541 0.478

10 0.3894 0.4453 0.4143 0.3667 0.3608 0.131 0.606 0.197 0.267

11 0.4151 0.4573 0.4454 0.4023 0.3696 0.274 0.567 0.385 0.104

12 0.4379 0.4863 0.4728 0.4054 0.3808 0.230 0.454 0.326 0.067

13 0.4467 0.4836 0.5050 0.4473 0.4379 0.485 0.168 0.832 0.764

14 0.4817 0.5201 0.5266 0.4574 0.4625 0.498 0.224 0.623 0.538

15 0.5120 0.5520 0.5206 0.4667 0.4921 0.533 0.877 0.393 0.615

16 0.5296 0.5689 0.5112 0.4884 0.5126 0.458 0.590 0.449 0.661

17 0.5417 0.5866 0.5215 0.4951 0.5353 0.382 0.560 0.368 0.883

18 0.5796 0.5995 0.5378 0.5105 0.5445 0.666 0.291 0.178 0.462

19 0.5975 0.5912 0.5455 0.5295 0.5529 0.982 0.255 0.241 0.385

20 0.5981 0.6149 0.5541 0.5412 0.5655 0.453 0.500 0.352 0.529

21 0.6455 0.6248 0.5578 0.5408 0.5684 0.958 0.086 0.036 0.071

Continued
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Table A.1 – Continued

22 0.6616 0.6458 0.5714 0.5414 0.5690 0.657 0.106 0.010 0.024

23 0.6748 0.6574 0.5766 0.5858 0.5782 0.565 0.083 0.095 0.012

24 0.7041 0.6564 0.5775 0.5893 0.5896 0.708 0.007 0.016 0.001

25 0.7062 0.6527 0.5901 0.5906 0.6007 0.618 0.018 0.008 0.003

26 0.7063 0.6549 0.5934 0.5988 0.6079 0.599 0.029 0.020 0.005

27 0.6914 0.6579 0.6114 0.6277 0.6167 0.880 0.244 0.251 0.024

28 0.6985 0.6619 0.6127 0.6251 0.6253 0.914 0.166 0.149 0.013

29 0.7056 0.6737 0.6181 0.6344 0.6314 0.964 0.158 0.182 0.006

30 0.7153 0.6789 0.6453 0.6423 0.6502 0.870 0.414 0.192 0.014

31 0.7181 0.6763 0.6527 0.6538 0.6582 0.634 0.424 0.312 0.012

32 0.7218 0.6873 0.6684 0.6699 0.6777 0.785 0.620 0.521 0.030

33 0.7233 0.7045 0.6767 0.6794 0.6894 0.788 0.804 0.772 0.078

34 0.7533 0.6979 0.6861 0.6809 0.7016 0.333 0.315 0.146 0.018

35 0.7558 0.7046 0.6891 0.7015 0.7022 0.330 0.311 0.414 0.009

Transitivity

D CTR sMCI-3y lMCIc eMCIc AD
CTR-sMCI

p value

CTR-lMCIc

p value

CTR-eMCIc

p value

CTR-AD

p value

5 0.6256 0.5682 0.5097 0.4805 0.4957 0.681 0.211 0.020 0.002

6 0.6599 0.5870 0.5243 0.4699 0.5242 0.577 0.161 0.001 0.001

Continued
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Table A.1 – Continued

7 0.6848 0.5963 0.5333 0.4964 0.5531 0.458 0.136 0.003 0.001

8 0.7128 0.6073 0.5648 0.5140 0.5780 0.260 0.157 0.003 0.001

9 0.7154 0.6102 0.5587 0.5317 0.5905 0.201 0.116 0.005 0.001

10 0.7216 0.6258 0.5703 0.5388 0.5957 0.246 0.117 0.007 0.001

11 0.7206 0.6215 0.5862 0.5501 0.6095 0.186 0.204 0.008 0.001

12 0.7308 0.6145 0.5929 0.5654 0.6082 0.082 0.180 0.010 0.001

13 0.7373 0.6118 0.5942 0.5773 0.6113 0.059 0.142 0.009 0.001

14 0.7414 0.6162 0.6059 0.5894 0.6125 0.060 0.223 0.026 0.001

15 0.7492 0.6202 0.6021 0.5999 0.6127 0.062 0.153 0.018 0.001

16 0.7527 0.6268 0.6035 0.5998 0.6122 0.064 0.155 0.018 0.001

17 0.7738 0.6244 0.6041 0.6005 0.6141 0.016 0.089 0.003 0.001

18 0.7890 0.6346 0.6110 0.6094 0.6178 0.015 0.066 0.001 0.001

19 0.7935 0.6375 0.6088 0.6184 0.6286 0.008 0.038 0.002 0.001

20 0.7945 0.6348 0.6145 0.6280 0.6353 0.008 0.036 0.006 0.001

21 0.7866 0.6405 0.6177 0.6325 0.6432 0.013 0.044 0.012 0.001

22 0.7890 0.6491 0.6177 0.6372 0.6499 0.023 0.017 0.010 0.001

23 0.7836 0.6529 0.6158 0.6427 0.6582 0.029 0.032 0.022 0.001

24 0.7894 0.6563 0.6185 0.6485 0.6726 0.026 0.017 0.021 0.001

25 0.7908 0.6583 0.6269 0.6573 0.6787 0.018 0.019 0.034 0.001

26 0.7991 0.6566 0.6339 0.6679 0.6932 0.006 0.014 0.018 0.001

Continued
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Table A.1 – Continued

27 0.7982 0.6598 0.6414 0.6771 0.7019 0.011 0.010 0.033 0.001

28 0.8085 0.6679 0.6455 0.6823 0.7095 0.007 0.008 0.017 0.001

29 0.8109 0.6776 0.6527 0.6938 0.7189 0.008 0.007 0.039 0.001

30 0.8124 0.6808 0.6597 0.7009 0.7296 0.012 0.014 0.046 0.001

31 0.8163 0.6837 0.6645 0.7016 0.7404 0.003 0.007 0.039 0.003

32 0.8181 0.6921 0.6681 0.7146 0.7442 0.010 0.006 0.070 0.003

33 0.8196 0.7015 0.6786 0.7227 0.7498 0.020 0.019 0.077 0.009

34 0.8214 0.7052 0.6860 0.7209 0.7605 0.030 0.026 0.047 0.028

35 0.8240 0.7110 0.6891 0.7282 0.7663 0.021 0.019 0.090 0.023

Modularity

D CTR sMCI-3y lMCIc eMCIc AD
CTR-sMCI

p value

CTR-lMCIc

p value

CTR-eMCIc

p value

CTR-AD

p value

5 0.2813 0.3979 0.4849 0.4241 0.3972 0.047 0.011 0.092 0.016

6 0.2524 0.3876 0.4632 0.4236 0.3872 0.040 0.002 0.013 0.002

7 0.2619 0.3836 0.4309 0.3936 0.3571 0.035 0.003 0.028 0.009

8 0.2587 0.3617 0.4131 0.3551 0.3404 0.076 0.006 0.096 0.017

9 0.2661 0.3436 0.3775 0.3300 0.3410 0.051 0.031 0.194 0.024

10 0.2470 0.3285 0.3655 0.3130 0.3308 0.047 0.019 0.208 0.011

11 0.2290 0.3192 0.3525 0.3027 0.3539 0.021 0.012 0.174 0.001

Continued
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Table A.1 – Continued

12 0.2089 0.3118 0.3295 0.2966 0.3350 0.030 0.012 0.118 0.001

13 0.2026 0.3020 0.3291 0.2947 0.3015 0.029 0.009 0.105 0.004

14 0.1941 0.2939 0.2988 0.2703 0.3015 0.020 0.028 0.138 0.001

15 0.1812 0.2933 0.2806 0.2777 0.2791 0.037 0.036 0.087 0.007

16 0.1815 0.2774 0.2813 0.2778 0.2681 0.020 0.044 0.082 0.023

17 0.1701 0.2770 0.2639 0.2549 0.2674 0.017 0.064 0.120 0.008

18 0.1565 0.2594 0.2630 0.2543 0.2610 0.018 0.030 0.055 0.002

19 0.1489 0.2607 0.2415 0.2438 0.2478 0.008 0.083 0.050 0.001

20 0.1402 0.2579 0.2306 0.2490 0.2438 0.022 0.077 0.049 0.003

21 0.1415 0.2379 0.2302 0.2490 0.2339 0.020 0.086 0.036 0.001

22 0.1397 0.2358 0.2250 0.2471 0.2326 0.017 0.082 0.015 0.001

23 0.1371 0.2322 0.2133 0.2387 0.2278 0.079 0.093 0.034 0.001

24 0.1312 0.2082 0.2113 0.2261 0.2167 0.060 0.053 0.027 0.004

25 0.1364 0.2081 0.2120 0.2185 0.2109 0.054 0.071 0.046 0.008

26 0.1351 0.2083 0.1964 0.2183 0.2006 0.083 0.116 0.040 0.014

27 0.1331 0.1959 0.1928 0.2083 0.1997 0.107 0.073 0.044 0.006

28 0.1277 0.1894 0.1778 0.2075 0.1935 0.220 0.148 0.038 0.013

29 0.1269 0.1761 0.1722 0.1988 0.1863 0.215 0.153 0.056 0.014

30 0.1294 0.1770 0.1748 0.1948 0.1774 0.197 0.145 0.059 0.081

31 0.1298 0.1765 0.1725 0.2054 0.1725 0.331 0.143 0.031 0.092

Continued
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Table A.1 – Continued

32 0.1294 0.1690 0.1671 0.1972 0.1719 0.212 0.155 0.049 0.085

33 0.1272 0.1666 0.1627 0.1904 0.1655 0.248 0.174 0.057 0.139

34 0.1263 0.1660 0.1545 0.1949 0.1642 0.216 0.267 0.027 0.129

35 0.1249 0.1608 0.1426 0.1882 0.1627 0.047 0.471 0.033 0.105
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A.2 Chapter 6

A.2.1 Directed network analysis in Parkinson’s Disease

patients: High resolution networks
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Figure A.1: Changes in global network measures as a function of network density. PD-CN group is compared to healthy controls
for high resolution networks. Global efficiency (a), local efficiency (b), clustering coefficient(C), transitivity (D), and modularity
(E) are calculated for delays of 6 (leftmost), 7 (left-center) and 8 (right-center). Rightmost: The values of the corresponding
measures for PD-CN (red) and controls (black) over a selected range of densities.
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Figure A.2: Changes in global network measures as a function of network density. PD-CN group is compared to healthy controls
for high resolution networks. Global efficiency (a), local efficiency (b), clustering coefficient(C), transitivity (D), and modularity
(E) are calculated for delays of 9 (left) and 10 (center). Right: The values of the corresponding measures for PD-CN (red) and
controls (black) over a selected range of densities.
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A.2.2 Correlation of global measures with UPDRS: Delay

7

Table A.2: Correlation between global measures and UPDRS for low resolution

networks. P-values for the correlation analysis between each global measures

calculated in this analysis and UPDRS scores of the corresponding patients.

The global measures were calculated based on the low resolution parcellation

scheme. The p-values were considered significant at the level p < 0.05.

Low resolution analysis - Delay 7 - UPDRS

Density (%) Global eff. Local eff. Clustering Transitivity Modularity

1 0.015 0.332 0.135 0.009 0.390

2 0.000 0.032 0.000 0.000 0.371

3 0.000 0.026 0.000 0.001 0.725

4 0.002 0.016 0.000 0.001 0.352

5 0.004 0.002 0.001 0.001 0.763

6 0.007 0.001 0.000 0.002 0.647

7 0.010 0.000 0.001 0.002 0.492

8 0.009 0.000 0.001 0.002 0.852

9 0.018 0.000 0.002 0.003 0.806

10 0.026 0.000 0.001 0.002 0.853

11 0.035 0.001 0.002 0.003 0.682

12 0.037 0.001 0.002 0.002 0.666

13 0.048 0.002 0.002 0.003 0.654

14 0.051 0.003 0.003 0.003 0.372

15 0.056 0.004 0.003 0.002 0.308

16 0.071 0.008 0.004 0.003 0.237

17 0.086 0.013 0.004 0.003 0.544

18 0.098 0.019 0.005 0.003 0.517

19 0.102 0.029 0.005 0.003 0.204

20 0.107 0.043 0.004 0.003 0.017

21 0.120 0.060 0.005 0.004 0.008

Continued
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Table A.2 – Continued

22 0.132 0.081 0.005 0.004 0.002

23 0.149 0.112 0.006 0.004 0.003

24 0.139 0.117 0.006 0.004 0.001

25 0.121 0.141 0.008 0.005 0.002

26 0.113 0.140 0.007 0.005 0.001

27 0.101 0.149 0.007 0.005 0.002

28 0.102 0.154 0.007 0.005 0.000

29 0.094 0.160 0.008 0.005 0.000

30 0.092 0.152 0.008 0.005 0.001

31 0.097 0.160 0.008 0.005 0.002

32 0.096 0.162 0.009 0.006 0.002

33 0.098 0.155 0.009 0.006 0.002

34 0.089 0.147 0.010 0.006 0.004

35 0.108 0.156 0.011 0.007 0.002

36 0.111 0.149 0.011 0.007 0.007

37 0.116 0.152 0.012 0.007 0.004

38 0.118 0.146 0.012 0.007 0.005

39 0.117 0.136 0.011 0.007 0.006

40 0.125 0.134 0.012 0.008 0.007

41 0.143 0.143 0.012 0.008 0.007

42 0.162 0.162 0.012 0.008 0.009

43 0.161 0.153 0.012 0.007 0.009

44 0.198 0.182 0.012 0.008 0.009

45 0.228 0.210 0.012 0.008 0.011

46 0.231 0.214 0.011 0.007 0.009

47 0.247 0.234 0.012 0.007 0.010

48 0.356 0.343 0.013 0.008 0.010

49 0.343 0.334 0.013 0.008 0.011

50 0.400 0.399 0.013 0.008 0.010
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Table A.3: Correlation between global measures and UPDRS for high resolution

networks. P-values for the correlation analysis between each global measures

calculated in this analysis and UPDRS scores of the corresponding patients.

The global measures were calculated based on the high resolution parcellation

scheme. The p-values were considered significant at the level p < 0.05.

High resolution analysis - Delay 7 - UPDRS

Density (%) Global eff. Local eff. Clustering Transitivity Modularity

1 < 0.001 0.092 < 0.001 < 0.001 0.851

2 < 0.001 0.007 < 0.001 < 0.001 0.970

3 0.003 < 0.001 < 0.001 < 0.001 0.794

4 0.006 < 0.001 < 0.001 < 0.001 0.682

5 0.011 < 0.001 < 0.001 < 0.001 0.749

6 0.016 < 0.001 0.002 < 0.001 0.325

7 0.022 < 0.001 0.003 < 0.001 0.417

8 0.028 < 0.001 0.003 < 0.001 0.363

9 0.029 0.003 0.003 < 0.001 0.161

10 0.033 0.005 0.003 < 0.001 0.130

11 0.039 0.009 0.004 < 0.001 0.280

12 0.036 0.013 0.003 < 0.001 0.129

13 0.042 0.018 0.004 0.002 0.105

14 0.046 0.023 0.004 0.002 0.074

15 0.045 0.030 0.004 0.002 0.071

16 0.052 0.037 0.004 0.002 0.024

17 0.048 0.042 0.004 0.002 0.006

18 0.041 0.047 0.004 0.002 0.007

19 0.038 0.051 0.004 0.002 0.006

20 0.040 0.058 0.004 0.002 0.003

21 0.043 0.063 0.004 0.002 < 0.001

22 0.049 0.066 0.004 0.002 < 0.001

23 0.038 0.031 0.004 0.002 < 0.001

Continued
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Table A.3 – Continued

24 0.046 0.035 0.005 0.002 < 0.001

25 0.058 0.041 0.005 0.002 < 0.001

26 0.083 0.054 0.005 0.002 < 0.001

27 0.087 0.055 0.005 0.002 < 0.001

28 0.127 0.082 0.005 0.002 < 0.001

29 0.153 0.101 0.005 0.003 < 0.001

30 0.163 0.113 0.005 0.002 < 0.001

31 0.218 0.218 0.005 0.003 < 0.001

32 0.252 0.252 0.005 0.003 < 0.001

33 0.313 0.313 0.005 0.003 < 0.001

34 0.341 0.341 0.006 0.003 0.002

35 0.394 0.394 0.006 0.003 0.002

36 0.458 0.458 0.006 0.003 0.003

37 0.500 0.500 0.006 0.003 0.003

38 0.492 0.492 0.006 0.003 0.004

39 0.660 0.660 0.007 0.004 0.004

40 0.635 0.635 0.006 0.003 0.004

41 0.679 0.679 0.007 0.004 0.004

42 0.713 0.713 0.007 0.004 0.004

43 0.704 0.704 0.007 0.004 0.005

44 0.651 0.651 0.007 0.004 0.005

45 0.840 0.840 0.008 0.004 0.005

46 0.557 0.557 0.007 0.004 0.005

47 0.955 0.955 0.008 0.005 0.005

48 0.708 0.708 0.008 0.005 0.006

49 0.319 0.319 0.008 0.005 0.006

50 0.875 0.875 0.008 0.005 0.006

A.2.3 Longitudinal analysis of Parkinson’s Disease pa-

tients
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Figure A.3: Changes in global network measures as a function of network density for longitudinal data. The baseline and
longitudinal networks are compared for the PD-CN subgroup for high resolution networks. Global efficiency (a), local efficiency
(b), clustering coefficient(C), transitivity (D), and modularity (E) are calculated for delays of 9 (left) and 10 (center). Right:
The values of the corresponding measures for baseline (red) and longitudinal (black) data over a selected range of densities.
These results were calculated based on the high resolution parcellation scheme.
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A.2.4 Directed network analysis in Alzheimer’s Disease

patients: Delays 4-6
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Figure A.4: Changes in global efficiency as a function of network density for delays 4-6. CTR − A0 group is compared to
CTR − A1 (a), eMCI (b), lMCI(C) and AD (D) patients for delays of 4 (leftmost), 5 (left-center) and 6 (right-center). Rightmost:
The values of the global efficiency for the corresponding groups (controls shown in black).
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Figure A.5: Changes in local efficiency as a function of network density for delays 4-6. CTR − A0 group is compared to CTR − A1
(a), eMCI (b), lMCI(C) and AD (D) patients for delays of 4 (leftmost), 5 (left-center) and 6 (right-center). Rightmost: The
values of the local efficiency for the corresponding groups (controls shown in black).
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Figure A.6: Changes in clustering coefficient as a function of network density for delays 4-6. CTR − A0 group is compared to
CTR − A1 (a), eMCI (b), lMCI(C) and AD (D) patients for delays of 4 (leftmost), 5 (left-center) and 6 (right-center). Rightmost:
The values of the clustering coefficient for the corresponding groups (controls shown in black).

237



Figure A.7: Changes in transitivity as a function of network density for delays 4-6. CTR − A0 group is compared to CTR − A1
(a), eMCI (b), lMCI(C) and AD (D) patients for delays of 4 (leftmost), 5 (left-center) and 6 (right-center). Rightmost: The
values of the transitivity for the corresponding groups (controls shown in black).
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Figure A.8: Changes in modularity as a function of network density for delays 4-6. CTR − A0 group is compared to CTR − A1
(a), eMCI (b), lMCI(C) and AD (D) patients for delays of 4 (leftmost), 5 (left-center) and 6 (right-center). Rightmost: The
values of the modularity for the corresponding groups (controls shown in black).
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Abstract

The brain is a large-scale complex network whose workings rely on the interaction between

its various regions. In the past few years, the organization of the human brain network has

been studied extensively using concepts from graph theory, where the brain is represented

as a set of nodes connected by edges. This representation of the brain as a connectome

can be used to assess important measures that reflect its topological architecture. We have

developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH the-

ory) for connectivity analysis of brain networks derived from structural magnetic resonance

imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroen-

cephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global

and local network measures, performing non-parametric permutations for group compari-

sons, assessing the modules in the network, and comparing the results to random networks.

By contrast to other toolboxes, it allows performing longitudinal comparisons of the same

patients across different points in time. Furthermore, even though a user-friendly interface is

provided, the architecture of the program is modular (object-oriented) so that it can be easily

expanded and customized. To demonstrate the abilities of BRAPH, we performed structural

and functional graph theory analyses in two separate studies. In the first study, using MRI

data, we assessed the differences in global and nodal network topology in healthy controls,

patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In

the second study, using resting-state fMRI data, we compared healthy controls and Parkin-

son’s patients with mild cognitive impairment.

Introduction

Graph theory studies the properties and behavior of networks, which are systems consisting of

a set of elements (nodes) linked by connections or interactions (edges). Many systems found

in Nature, ranging from social interactions to metabolic networks and transportation systems,

can be modeled within this framework, pointing to a set of underlying similarities among

these very diverse systems. The human brain can also be modeled as a network (the human
connectome) [1], where brain regions are the nodes and the connections between them are the
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edges. The human brain is thus an ideal candidate for graph theoretical analysis. The nodes can

be defined as the brain regions underlying electrodes or using an anatomical, functional or his-

tological parcellation scheme. The edges are obtained as measures of association between the

brain regions, such as connection probabilities (diffusion tensor imaging, DTI), inter-regional

correlations in cortical thickness (magnetic resonance imaging, MRI) and electrophysiological

signals (electroencephalography, EEG; magnetoencephalography, MEG) or statistical depen-

dencies in time series (functional MRI, fMRI) and blood flow (arterial spin labeling, ASL).

After compiling all pairwise associations between the nodes into a connectivity matrix (or

brain graph), several network properties can be calculated in order to characterize the global

and local organization of the connectome. For instance, the small-worldness can be used to

assess the balance between short-distance and long-distance connectivity [2], while themodu-
larity defines how well the network can be divided into subnetworks (ormodules) [3,4], which

generally correspond to well-known brain systems such as the default-mode or fronto-parietal

networks [5,6]. These network properties and many others can be used to reveal fundamental

aspects of normal brain organization and highlight important aspects of underlying brain

pathology in diseases such as Alzheimer’s disease (AD) [7], Parkinson’s disease [8], epilepsy

[9,10,11], schizophrenia [12,13], multiple sclerosis [14] and autism [15].

Several toolboxes have been developed to study brain connectivity, including the Brain

Connectivity Toolbox [16], eConnectome [17], GAT [18], CONN [19], BrainNet Viewer [20],

GraphVar [21] and GRETNA [22]. In addition, with the emergence of time-varying brain net-

works as a powerful method to characterize mental illnesses [23,24], several toolboxes that

allow the calculation of dynamic functional connectivity measures have also been developed

[25,26]. While all of them made important contributions by proving new options to build,

characterize and visualize brain network topology, they require some programming experi-

ence, or deal only with some aspects of the analysis, or are coded in such a way that their adap-

tation is hard to achieve. Hence, a reliable, streamlined, user-friendly, fast, and scalable

software that deals with all aspects of network organization is still lacking.

In this article, we present BRAPH–BRain Analysis using graPH theory (http://www.braph.

org/), a software package to perform graph theory analysis of the brain connectome. BRAPH is

the first object-oriented open-source software written in MatLab for graph theoretical analysis

with a graphical user interface (GUI). In contrast to previous toolboxes, BRAPH takes advan-

tage of the object-oriented programming paradigm to provide a clear modular structure that

makes it easy to maintain and modify existing code, since new objects can be added without

the need for an extensive knowledge of the underlying implementation. From the clinical

point of view, BRAPH presents the following strengths: (a) it allows comparing the regional

mean values between groups using permutation testing to get a first impression of the data and

group differences before the actual network analysis; (b) it visualizes individual connectivity

matrices and individual network measures, which is crucial to detect potential outliers, a

major confound in neuroimaging studies; (c) it carries out longitudinal graph theory analyses

that provide an important insight into topological network changes over time; (d) it assesses

modular structure using different algorithms and allows performing subnetwork analyses

within the defined modules, which is important for studies testing hypotheses within a particu-

lar structural or functional brain network; (e) it provides utilities for multi-modal graph theory

analysis by integrating information from different neuroimaging modalities, which is arguably

the next challenge in imaging connectomics; for example, the user can compare structural

(MRI) and functional (fMRI) data in BRAPH by defining the networks derived from both

modalities with the same atlas. From the user point of view, BRAPH is the only fully vertically

integrated software that allows carrying out all the steps of a graph theory analysis, from

importing the neuroimaging data to saving the final results and the analysis parameters in a

BRAPH: A graph theory software for the analysis of brain connectivity
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single file. Importantly, this is not only practical but also increases the reliability and reproduc-

ibility of the results, which is an increasingly important issue within the research community.

In addition, BRAPH offers a comprehensive manual, continuous release of new utilities, and a

support forum, all of which can be accessed at http://www.braph.org/. Finally, BRAPH offers

online videos that provide a step-by-step guide on how to perform graph theory analyses,

allowing the users a simple and quick start for their brain connectivity studies.

Below we describe in detail the different options that BRAPH offers for graph theory analy-

ses when it comes to building connectivity matrices, applying threshold strategies, performing

weighted or binary network analyses and computing random networks. Our software has

already been successfully applied in previous graph theory studies [27,28] but to further dem-

onstrate its abilities, in this article we assess network topology on structural MRI data from

patients with amnestic mild cognitive impairment (MCI) and AD, and on fMRI data from PD

patients with MCI.

Materials and methods

Overview of BRAPH

BRAPH is a complete software package that allows carrying out all the steps of a graph theoret-

ical analysis, visualize the results and generate high-quality publication-ready images. It can

obtain undirected binary and weighted brain connectivity graphs starting from data acquired

using various neuroimaging modalities, including MRI, fMRI, EEG, and positron emission

tomography (PET). BRAPH can also assess the modular structure of the brain graph, employ-

ing various algorithms and extracting modules for further analysis. To test for significant dif-

ferences between groups, BRAPH carries out non-parametric permutation tests and allows

correcting the results for multiple comparisons using false discovery rate (FDR) [29]. It also

provides options to normalize the network measures by random graphs as well as to carry out

longitudinal graph theory analyses, the statistical significance of which is reported by non-

parametric permutation tests.

As shown in Fig 1, the software consists of three independent layers connected by software

interfaces: Graph, Data Structures and Graphical User Interfaces (GUIs). The Graph package

includes the fundamental functions to perform a graph theory analysis and calculating the

global and nodal measures. The Data Structures package provides the core functionalities of

the software and allows defining the brain atlas, the cohort of subjects, and the type of graph

analysis; importantly, all these functionalities can be accessed by command-line and can there-

fore be scripted by advanced users. Finally, the GUIs package provides a streamlined way to

carry out graph theory analyses based on a series of GUIs for users without a computational

background: (a) the GUI Brain Atlas allows selecting and editing the brain atlas; (b) the GUI
Cohort allows defining the cohort of subjects by uploading the relevant data; (c) the GUI
Graph Analysis allows building the connectivity matrices by selecting the type of graph

(weighted, binary, see also Fig 2) and thresholding method (threshold, density) as well as calcu-

lating topological measures and visualizing the results. For the GUI Cohort and GUI Graph
Analysis, four options can be selected (MRI, fMRI, PET, EEG) depending on the nature of the

analysis. Fig 3 shows an overview of these different steps. Thanks to this three-layered struc-

ture, BRAPH can be easily expanded and customized to address any needs, e.g., by implement-

ing new graph measures or new approaches for building brain graphs.

Defining the nodes

The first step of a graph theory analysis consists of defining the nodes, which generally corre-

spond to the regions included in a brain atlas. This atlas should contain the names and labels

BRAPH: A graph theory software for the analysis of brain connectivity
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of the brain regions as well as their spatial coordinates (x, y, z) in order to project them onto a

3D surface and create a visual representation of the brain graph. In the case of the analysis of

structural networks (e.g. obtained from structural MRI data or T1-weighted images), the nodes

are usually defined using an anatomical parcellation scheme that divides the brain into regions

using the brain sulci and gyri as anatomical landmarks. Examples of anatomical atlases are the

automated anatomical labeling (AAL) [30], Desikan [31] or Destrieux [32] atlases. BRAPH

already provides these atlases ready for upload on the GUI Brain Atlas interface. In the case of

the analysis of functional networks (e.g. obtained from fMRI data), the atlas may be defined

using an anatomical parcellation scheme, a meta-analysis, or a clustering-based method of spa-

tially coherent and homogenous regions. Examples of functional atlases are the Dosenbach

Fig 1. Overview of BRAPH software architecture. BRAPH consists of three layers, from left to right: Graph, Data Structures and Graphical User

Interfaces (GUIs). These layers are connected by unidirectional software interfaces (arrows). Graph contains the functions to perform graph analyses. In

Data Structures, Brain Atlas allows defining the nodes of the network, Cohort allows defining the subjects to be studied and dividing them into groups, and

Graph Analysis permits building the connectivity matrices and calculating network measures; each of these is implemented in an object, whose

functionalities can be called by command line. For each of these objects, a GUI is provided (i.e. GUI Brain Atlas, GUI Cohort and GUI Graph Analysis).

Thanks to this architecture BRAPH can be very easily maintained, expanded and customized.

https://doi.org/10.1371/journal.pone.0178798.g001
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[33], the Power [34] and the Craddock [35] atlases, all of which are also provided by BRAPH.

The user may also upload a different atlas from an external file (in.xml,.txt or.xls format) or

create an entirely new one in the GUI. The resulting atlas can be saved as a.atlas file (see man-

ual and website for an example of a.atlas file).

After the atlas has been created or uploaded into the software, the user should then upload

the subject data into the GUI Cohort interface. This data may consist, for example, of cortical

thickness, surface area or volume measures in structural MRI; regional time-series in resting-

state fMRI; glucose metabolism or blood flow in PET and ASL; and electrophysiological signals

in EEG or MEG. These regional values can be obtained using the Statistical Parametric Map-

ping (SPM; http://www.fil.ion.ucl.ac.uk/spm/), FMRI Software Library (FSL; https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki), FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) or any other image pre-

processing software. In addition, they may be corrected for the effects of nuisance variables

such as age, gender or scanner site by means, for example, of linear regression (in this case the

residual values should substitute the raw values in the network analysis) [36].

Defining the edges

Once the nodes of the network have been defined, the edges representing the relationship

between them need to be computed. In BRAPH, the edges are calculated in GUI Graph

Fig 2. Types of graphs. Graphs can be classified based on their edge weights (weighted or binary) and directionality (directed or undirected). It is possible

to transform a directed graph into an undirected one by symmetrization (i.e. by removing the information about the edge directions), and a weighted graph

into a binary one by thresholding (i.e. by assigning a value of 1 to the edges above a given threshold and 0 to those below threshold).

https://doi.org/10.1371/journal.pone.0178798.g002
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Analysis as the statistical correlation between the values of all pairs of brain regions for an indi-

vidual or for a group of subjects, depending on the neuroimaging technique. Different types of

parametric and non-parametric correlations may be selected for this purpose: Pearson, Spear-

man, Kendall rank correlation coefficients, or (Pearson or Spearman) partial correlation coef-

ficients. Note that all self-connections are eliminated from the analysis by setting the diagonal

entries in the connectivity matrix to zero. In addition, the user can also choose whether to

retain the negative correlation coefficients, substitute them with their absolute value, replace

them by zero, or transform the values using an s-transform.

Fig 3. BRAPH workflow. Workflow for a graph theory analysis in BRAPH and relative graphical user interfaces (GUIs). A) The brain regions are defined in

the GUI Brain Atlas. B) The data of the subjects are imported in the GUI Cohort and the user can define groups and edit their age, gender and other relevant

data. C) The connectivity matrix is calculated in the GUI Graph Analysis after selecting the parameters defining the type of correlation, how to deal with

negative correlation coefficients, and which type of graph to analyze: D) binary undirected graphs at a fixed density (GUI Graph Analysis BUD); E) binary

undirected graphs at a fixed threshold (GUI Graph Analysis BUT); F) weighted undirected graphs (GUI Graph Analysis WU).

https://doi.org/10.1371/journal.pone.0178798.g003
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Network construction

To minimize the computation time, the graph measures can be calculated using optimized

algorithms based on linear algebra. Therefore, a graph is more conveniently represented as a

connectivity matrix, where the rows/columns denote the nodes and the matrix elements repre-

sent the edges between the nodes. Each row of the connectivity matrix represents the edges

that are going out from a node; for example, row j represents the edges that are going out from

node j. Each column of the matrix represents the nodes that arrive to a node; for example, col-

umn k represents the edges that are arriving to node k. Thus, the element (j, k) represents the

edge that goes from node j to node k. The specific order of the nodes in the matrix does not

affect the calculation of the graph theory measures, but only the graphical representation of the

connectivity matrix. As illustrated in Fig 2, based on the nature of the edges’ weight and direc-

tionality, four types of graphs can be defined.Weighted directed (WD) graphs have edges asso-

ciated with a real number, indicating the strength of the connection, and are directed (i.e.,

node j can be connected to node k without node k being connected to node j). The edges in the

weighted undirected (WU) graphs are associated with a real number indicating the strength of

the connection and are undirected (i.e., if node j is connected to node k, then node k is also

connected to node j), resulting in a symmetric connectivity matrix. Binary directed (BD)

graphs have directed edges, which can either be 0 or 1, indicating the absence or presence of a

connection. The edges in a binary undirected (BU) network can also be either 0 or 1 and they

have no directionality. In order to transform a directed graph into an undirected graph, the

connectivity matrix needs to be symmetrized. In BRAPH, the connectivity matrix can be sym-

metrized via command line by: (a) taking the sum between the matrix itself and its transpose;

(b) taking the difference between the previous two; (c) comparing the matrix to its transpose

and selecting either the smaller or the larger value for each entry. We remark that, even though

the directed measures are not currently used in the analyses performed by BRAPH, they are

already available in the Graph package and ready to be used in future versions of the software.

To transform a weighted graph into a binary one, BRAPH assigns a value of 1 to the edges

above a given threshold and 0 to those below it. There are two ways of applying a threshold: (a)

by selecting a correlation coefficient as the cut-off value below which all connections are

excluded from the analysis (binary undirected threshold (BUT) interfaces); or (b) by fixing the

fraction of edges (i.e., a specific density) that will be connected (binary undirected density
(BUD) interfaces). The choice between these two options becomes significant when comparing

different groups of subjects, as it may lead to different results; currently the density approach is

more often employed in the literature, because it permits analyzing differences in network

architecture while controlling for the different number of edges across individuals or groups.

Additionally, BRAPH can be straightforwardly extended to include any alternative approach

to determine the threshold, such as using a threshold-dependent cost function [37], maintain-

ing the degree for each graph [38], keeping the ratio of strongest edges fixed [39], or using a

heuristic approach based on the Dijkstra’s algorithm [40]; all these approaches can be imple-

mented by creating new objects analogous to MRIGraphAnalysisBUT or MRIGraphAnalysis-

BUD, and adapting the already existing methods in BRAPH.

For MRI or static PET data, a single connectivity matrix is calculated for each group of sub-

jects; therefore, the graph theory measures reflect the group’s properties. For fMRI data and

other neuroimaging sequences that provide a measure of brain function over time, an individ-

ual connectivity matrix is calculated for each subject; therefore, the graph theory measures

reflect the characteristics of each subject, which can then be averaged within a particular

group.
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Network analysis

BRAPH allows calculating both global and nodal network measures, on weighted or binary

networks, using different thresholds or densities. To test for significant differences between

groups (cross-sectional analysis) or two different points across time (longitudinal analysis),

BRAPH performs non-parametric permutation tests, reporting one-tailed and two-tailed p-

values based on 95% confidence intervals. The tests are performed by first randomly permut-

ing the subjects from both groups and then calculating the differences in the graph measures

between the new randomized groups. By repeating this procedure multiple (typically 1000 or

10000) times, a distribution of between-group differences is obtained. The p-values are then

calculated as the fraction of the difference distribution values that exceeded the difference

value between the actual groups. The same procedure is employed for the analysis of the longi-

tudinal data with the difference that only the data corresponding to the same subject at differ-

ent time points are permuted in order to prevent a group from containing the subject’s data

from two data points.

The network measures can also be compared with the corresponding measures calculated

on random graphs with the same degree or weight distribution. These can be used, for exam-

ple, to normalize weighted network measures. The needed random graphs are generated using

the algorithms provided in the Brain Connectivity Toolbox [16].

Regarding nodal network measures, the permutation tests are carried out for each brain

region, assessing simultaneously multiple null hypotheses, which consequently increases the

risk of finding false positives. BRAPH deals with this issue by providing the adjusted p-values

that should be considered to correct the results for multiple comparisons with false discovery

rate (FDR) using the Benjamini-Hochberg procedure [29].

Graph theory measures

BRAPH can calculate several graph theory measures that assess the topology of the whole

brain network as well as of its regions. Here, we explain briefly some of the most relevant ones;

for a complete list with formulas and details, please refer to the BRAPH manual and website.

The code we used to calculate the graph measures was adapted from the Brain Connectivity

Toolbox (http://www.brain-connectivity-toolbox.net/) [16], which is regarded as the most

important reference in the field since it provided the seminal groundwork for the use of graph

theory by neuroimaging researchers.

The simplest, yet most fundamental, measure that can be assessed in a graph is the degree,
which is the number of connections a node has with the rest of the network. The degree distri-

bution in the brain follows an exponentially bound power law [41] meaning that similarly con-

nected areas tend to communicate with each other [42]. In weighted graphs, BRAPH allows

the user to calculate the nodal strength as well as nodal degree: the nodal strength is given by

the sum of the weights of all connections linked to the node; and the nodal degree is the total

number of the node’s connections (thus assuming each edge has weight 1, making it analogous

to the case of binary graphs).

Another important measure is the shortest path length, which is the shortest distance

between two nodes. In a binary graph, distance is measured as the minimum number of edges

that need to be crossed to go from one node to the other. In a weighted graph, the length of an

edge is a function of its weight; typically, the edge length is inversely proportional to the edge

weight because a high weight implies a stronger connection. The average of the shortest path

lengths between one node and all other nodes is the characteristic path length [2]. One can also

define two related measures of centrality: the closeness centrality, which is the inverse of the

shortest path length, and the betweenness centrality, which is the fraction of all shortest paths
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in the network that pass through a given node [16]. These and other measures can be used to

assess whether a node is a brain hub [43], regulating most of the information flow within the

network.

The closer the nodes are to each other, the shorter is the path length and the more efficient

is the transfer of information between them. Therefore, one can define the global efficiency of a

node as the inverse of the shortest path from that node to any other node in the network [44].

To assess the communication efficiency between a node and its immediate neighbors, the local
efficiency can be calculated. Both global and local efficiency measures can be averaged over all

nodes to describe global properties of the brain network [44].

The clustering coefficient is a measure that assesses the presence of cliques or clusters in a

graph [2]. For each node, this can be calculated as the fraction of the node’s neighbors that are

also neighbors of each other. For the whole network, the nodal clustering coefficients of all

nodes can be averaged into the mean clustering coefficient. A closely related measure to the

clustering is the transitivity, which is defined as the ratio of paths that transverse two edges to

the number of triangles. If a node is connected to another node, which in turn is connected to

a third one, the transitivity reflects the probability that the first node is connected to the third.

The small-worldness is given by the ratio between the characteristic path length and mean

clustering coefficient (normalized by the corresponding values calculated on random graphs)

[2]; this is an important organizational property that describes an optimal network architec-

ture. Compared to a random graph, a small-world network is characterized by similarly short

paths but a significantly higher clustering coefficient.

A network can also be divided into separate communities corresponding to anatomical

proximity or to a specific function shared by a group of nodes. The extent to which a network

can be divided into these communities or modules can be calculated using themodularity,
which maximizes the number of edges within communities and minimizes the number of

edges between different communities [45]. The within-module z-score quantifies how well a

node is connected with other nodes from the same module, while the participation coefficient
assesses if a node has many connections with nodes from different modules. If a node has a

high within-module degree, it is considered a provincial hub; if it has a high participation coef-

ficient, it is considered a connector hub.

Subjects

To demonstrate the abilities of BRAPH, we performed structural and functional graph theory

analyses in two separate studies. In the first study, we assessed the differences in global and

nodal network topology in healthy controls, patients with amnestic MCI, and patients with

AD (see Table 1) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial MRI, PET, other biological markers, and clinical and neuropsychological assess-

ment can be combined to measure the progression of MCI and early AD. All participants were

scanned on a 1.5 Tesla MRI system using a sagittal 3D T1-weighted MPRAGE sequence: repe-

tition time (TR) = 9–13 ms; echo time (TE) = 3.0–4.1 ms; inversion time (IT) = 1000 ms; flip

angle (FA) = 8˚; voxel size = 1.1×1.1×1.2 mm3.

In the second study, we carried out a graph theory analysis on the resting-state fMRI data of

healthy controls, PD patients that were cognitively normal and PD patients with MCI (see

Table 2) from the Parkinson’s Progression Markers Initiative (PPMI) (2011) [46] (www.ppmi-

info.org/data; accessed in November, 2015), an international, multicenter study launched in

2010 to identify PD progression biomarkers. PD patients were classified as having MCI
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(PD-MCI) if they scored 1.5 standard deviations below the scaled mean scores on any two cogni-

tive tests, following previously published procedures for PD-MCI diagnosis in the PPMI cohort

[47]. Patients that did not fulfill criteria for MCI were classified as cognitively normal (PD-CN).

All PD patients and controls were scanned on a 3 Tesla Siemens scanner (Erlangen, Germany).

Resting-state functional images were acquired using an echo-planar imaging sequence (repetition

time = 2400 ms; echo time = 25 ms; flip angle = 80˚; matrix = 68×68; voxel size = 3.25×3.25×3.25

mm3). The scan lasted 8 minutes and 29 seconds and included 210 volumes.

Each participating site in ADNI and PPMI received approval from an ethical stan-

dards committee before study initiation and obtained written informed consent from all

participants.

Network construction and analysis

To assess structural network topology in controls, amnestic MCI patients, and AD patients

from ADNI, the T1-weighted images of these subjects were preprocessed using FreeSurfer

(version 5.3), as published elsewhere [28]. The cortical thickness and subcortical volumes of 82

regions were extracted and included as nodes in the network analysis. The edges between these

regions were computed as Pearson correlations, setting the negative correlations to zero, and

the network analyses were carried out on the binary undirected graphs, while controlling for

the number of connections, across a range of densities from 5% to 25%, in steps of 0.5%.

To assess functional network topology in PD-CN patients, PD-MCI patients and a group of

elderly controls from PPMI, fMRI images were preprocessed using SPM8 (http://www.fil.ion.

Table 1. Characteristics of the structural MRI sample.

CTR (n = 210) MCI (n = 377) AD (n = 181) F or χ2 (p value)

Age (y) 76.1(5.0) 74.5(7.5) 75.6 (7.0) 0.017

Sex (M/F) 110/100 243/134 97/84 0.005

Education (y) 16.0(2.9) 15.7(3.0) 14.8(3.2) <0.001

MMSE 29.1(0.9) 27.0(1.8) 23.2(2.0) <0.001

Means are followed by standard deviations. Differences in age, years of education, and MMSE scores were assessed using an analysis of variance

(ANOVA). Differences in gender were assessed using a χ2 test. CTR, controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, mini-

mental state examination.

https://doi.org/10.1371/journal.pone.0178798.t001

Table 2. Characteristics of the fMRI sample.

CTR (n = 15) PD-CN (n = 69) PD-MCI (n = 15) CTR vs PD-CN (p value) CTR vs PD-MCI (p value) PD-CN vs PD-MCI (p

value)

Age (y) 66.4(9.1) 61.0(10.4) 63.5(8.2) 0.066 0.372 0.378

Sex (M/F) 13/2 46/23 11/4 0.125 0.361 0.616

Education (y) 16.5(2.3) 15.3(2.9) 14.2(3.1) 0.112 0.024 0.204

UPDRS-III - 18.2(9.1) 21.8(8.9) - - 0.161

HY stage - 1.7(0.5) 1.8(0.4) - - 0.297

MoCA 27.9(1.6) 27.6(1.9) 24.0(3.7) 0.615 0.001 <0.001

Disease duration

(y)

- 1.2(0.9) 2.4(1.5) - - <0.001

Means are followed by standard deviations. Differences in age, years of education, and MoCA scores were assessed using Student’s T test. Differences in

gender were assessed using a χ2 test. CTR, controls; PD-CN, Parkinson’s disease cognitively normal; PD-MCI, Parkinson’s disease with mild cognitive

impairment; UPDRS-III, Unified Parkinson’s disease rating scale–Part III; HY stage, Hoehn and Yahr stage; MoCA, Montreal cognitive assessment scale.

https://doi.org/10.1371/journal.pone.0178798.t002
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ucl.ac.uk/spm) using the following steps: removal of first five volumes, slice-timing correction,

realignment, normalization to the Montreal Neurological Institute (MNI) template (voxel size

3×3×3 mm3), temporal filtering (0.01–0.08 Hz), regression of white matter, cerebrospinal fluid

signals and six head motion parameters. The regional time-series of the 200 brain regions

included in the Craddock atlas [35] were extracted from each subject. To compute the relation-

ship between these regions, we used Pearson correlations and performed the network analyses

on the weighted undirected graphs.

In both studies, non-parametric permutation tests with 10000 permutations were carried

out to assess differences between groups, which were considered significant for a two-tailed

test of the null hypothesis at p<0.05. In addition, to adjust the nodal network results for multi-

ple comparisons, an FDR procedure was applied to control for the number of regions that

were tested at q<0.05.

Results

Structural network topology in amnestic MCI and AD

The structural correlation matrices and brain graphs of patients and controls can be found in

Fig 4. All groups showed strong correlations between bilaterally homologous regions.

Regarding global network topology (Fig 5), we found increases in the characteristic path

length and local efficiency in MCI and AD patients compared to controls at several network

densities. The transitivity and modularity showed the most widespread topological changes:

the transitivity was decreased and the modularity was increased in MCI and AD patients

across almost all network densities compared to controls. Compared to MCI, AD patients

showed increases in the characteristic path length at a few network densities and widespread

changes in the transitivity and modularity.

Regarding regional network topology (Fig 6), the nodal degree showed significant increases

in the left medial orbitofrontal, right insula, bilateral rostral anterior cingulate and posterior

cingulate gyri in addition to decreases in the left middle temporal, right precentral and right

inferior parietal gyri in AD patients compared to controls. When compared to MCI, AD

patients also presented a higher nodal degree in the left rostral anterior cingulate and isthmus

cingulate gyri.

We also compared the nodal local efficiency between groups. This measure showed signifi-

cant increases in the left transverse temporal gyrus in MCI patients compared to controls. AD

patients showed increases in the local efficiency in the bilateral temporal pole and left entorhi-

nal cortex as well as decreases in several regions from the frontal (bilateral superior frontal, left

pars triangularis, bilateral pars opercularis, right postcentral gyri), temporal (bilateral inferior

temporal gyri, amygdala, hippocampus) and parietal (left inferior parietal, right precuneus)

lobes. When the two patient groups were compared to each other, AD patients showed effi-

ciency increases in the right rostral anterior cingulate compared to the MCI group.

Functional network topology in PD-MCI

The functional connectivity matrices of controls, PD-CN and PD-MCI patients can be found

in Fig 7. The comparison of the weighted average degree showed that both PD-CN and PD-

MCI patients presented a lower number of connections compared to controls (PD-MCI =

172.6; PD-CN = 175.2; controls = 183.7), which showed a trend towards significance in the

comparison with PD-CN (p-value = 0.081) and was statistically significant in the comparison

with PD-MCI (p-value = 0.027). Then, we performed a modularity analysis on the weighted

graphs of each group to assess the presence of smaller communities of regions (modules). This

analysis showed there were five modules in controls, PD-CN and PD-MCI patients, which
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Fig 4. Structural brain networks in controls, MCI patients, and AD patients. From left to right: weighted correlation matrices of 82 regions, binary

correlation matrices after fixing density at 15%, and corresponding brain graphs from A) controls (CTR), B) patients with amnestic mild cognitive

impairment (MCI), and C) Alzheimer’s disease (AD) patients.

https://doi.org/10.1371/journal.pone.0178798.g004
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were quite similar in the three groups. Module I included medial frontal areas, the posterior

cingulate and bilateral angular gyri, resembling the default-mode network. Module II com-

prised temporal and cerebellar areas. Module III included several middle, inferior frontal and

parietal regions, similarly to the fronto-parietal network usually found in resting-state studies

[5,6]. Module IV consisted of most of the visual cortex similarly to the previously reported

visual network. Finally, Module V included mainly temporal and inferior frontal areas as well

as the insula.

When we assessed the average degree of each module, we observed that PD-CN patients

had a lower number of connections compared to controls in Module II, which included tem-

poral and cerebellar areas (PD-CN = 49.02; controls = 51.89; p-value = 0.020), and Module V

consisting of insular, temporal and inferior frontal regions (PD-CN = 28.39; controls = 28.93;

p-value = 0.040). The regions within each of these modules did not show significant differences

between controls and PD-CN patients after applying FDR corrections.

Fig 5. Differences between groups in global structural topology. Left: differences between controls (CTR) and Alzheimer’s disease (AD) patients;

middle: differences between controls (CTR) and patients with mild cognitive impairment (MCI); right: differences between patients with mild cognitive

impairment (MCI) and Alzheimer’s disease (AD) patients for A) characteristic path length, B) local efficiency, C) transitivity and D) modularity. The plots

show the lower and upper bounds (blue circles) of the 95% Confidence Intervals (CI) (gray shade) as a function of density. The orange circles show the

differences between groups and, when falling outside the CI, indicate that the difference was statistically significant at p<0.05. The blue dots in the

middle with values around zero indicate the mean values of the difference in global network measures between the randomized groups after permutation

tests.

https://doi.org/10.1371/journal.pone.0178798.g005
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Fig 6. Differences between groups in nodal structural measures. Nodes showing significant differences

between groups in the nodal degree and nodal local efficiency after FDR corrections. Orange indicates

increases in nodal measures, while blue indicates decreases.

https://doi.org/10.1371/journal.pone.0178798.g006
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Fig 7. Functional brain networks and modules in controls and PD-MCI patients. Weighted connectivity matrices

and modules in A) controls (CTR) and Parkinson’s disease patients B) with normal cognition (PD-CN) and C) with mild

cognitive impairment (PD-MCI). Five modules were identified in each group.

https://doi.org/10.1371/journal.pone.0178798.g007
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We also found that, with respect to controls, PD-MCI patients had a lower number of con-

nections in Module III comprising fronto-parietal areas (PD-MCI = 54.87; controls = 57.95;

p-value = 0.002) and Module V involving insular, temporal and inferior frontal areas (PD-

MCI = 28.37; controls = 28.93; p-value = 0.040). Within Module III, the regions showing a sig-

nificantly lower degree in PD-MCI patients after FDR corrections were the bilateral superior

frontal, bilateral superior parietal gyri, precuneus, left middle frontal gyrus, inferior frontal

gyrus and left anterior cingulate (Fig 8A). Within Module V, the regions showing a signifi-

cantly lower degree in PD-MCI patients after FDR corrections were the left insula, right frontal

orbital gyrus and bilateral transverse temporal gyri (Fig 8B).

To assess whether the presence of different MCI subtypes influenced the results in the

PD-MCI group, we compared the average degree and the nodal degree of Modules III and V

between each subtype and controls. In this study, the PD-MCI group consisted of 9 patients

with multiple-domain MCI and 6 patients with single-domain MCI (5 amnestic, 1 patient

non-amnestic). These two subtypes showed lower average degree in Module III (multiple-

domain MCI = 54.6; single-domain MCI = 55.3; controls = 58.0) and Module V (multiple-

domain MCI = 28.4; single-domain MCI = 28.3; controls = 28.9) compared to the control

group. All the regions within these modules showed a lower nodal degree in the two MCI sub-

types compared to controls, except the right transverse temporal gyrus, which had a similar

degree in controls and single-domain MCI patients (S1 Table).

Discussion

Graph theory has introduced new opportunities for understanding the brain as a complex sys-

tem of interacting elements. Thanks to this framework, we have come to appreciate that the

human brain relies on fundamental aspects of network organization such as a small-world

architecture, modular structure and vulnerable hubs. These properties allow our brains to

evolve, grow and adapt within an environment presenting increasing cognitive demands, and

their disruption accounts for some of the key aspects underlying pathology in neurological dis-

eases. In this report, we present BRAPH, the first object-oriented software for graph theory

analysis intended for all researchers, regardless of their scientific background. As modern net-

work science continues to develop at an increasing pace, it is important to have a software that

allows modifying existent code in a structured manner so that past knowledge can be easily

integrated with new topological analyses and graph theory measures. We are currently work-

ing on some of these developments with a particular focus on multimodal analyses and effec-

tive connectivity measures. Amongst BRAPH’s strengths is the fact that it deals with all the

aspects of graph theory analysis, by providing the user with extensive assistance, from the first

basic steps such as defining the nodes and edges to producing the final publication-ready fig-

ures of the results as well as to archiving the results and relative analysis procedure in a dedi-

cated file. To get an impression on BRAPH’s abilities, below we discuss some of the results we

obtained in two different studies in patients with amnestic MCI, AD and PD-MCI.

Large-scale structural networks in amnestic MCI and AD

AD is currently one of the most prevalent neurodegenerative disorders, with a significant

impact on society and caregiver burden [48]. Although the devastating impact of this condition

has pushed forward a large research effort towards a more accurate diagnosis, the underlying

effects of AD on network topology remain poorly understood. There is increasing evidence sug-

gesting that the pathological hallmarks of AD, consisting of amyloid plaques neurofibrillary tan-

gles, could spread in the brain through synapses and neural connections. Hence, the application
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of graph theory to the study of brain connectivity could shed light on the mechanisms of disease

propagation in AD.

In the current study, we found that AD patients presented an abnormal global network

topology as reflected by increases in the path length, local efficiency and modularity, and by

decreases of transitivity. These changes indicate that the regions of their networks communi-

cated less efficiently with other brain regions and between different brain modules. In particu-

lar, the most widespread changes in network organization were observed for the transitivity

and modularity. The decreases in transitivity found in AD suggest that the regions of their net-

work were poorly connected to neighboring areas, whereas the increases in modularity

Fig 8. Differences between groups in the nodal functional degree. Significant decreases in the nodal degree of regions from Module III or fronto-

parietal network in Parkinson’s disease patients with mild cognitive impairment (PD-MCI) compared to controls (CTR) after FDR corrections.

https://doi.org/10.1371/journal.pone.0178798.g008
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indicate that their modules had higher within-module connectivity and worse inter-module

connectivity. Patients with amnestic MCI, who are potentially on the path to develop AD, also

showed similar, albeit less extensive, network changes suggesting that amnesic MCI might be

indeed an intermediate stage between healthy aging and dementia. These findings agree with

the results obtained in previous studies [7, 28].

The assessment of the nodal degree in AD showed widespread changes in the number of

connections of regions that belong to the default-mode network, including the medial orbito-

frontal, the anterior cingulate and posterior cingulate gyri, compared to controls or patients

with MCI. This network has been strongly associated with AD as its regions coincide with the

areas showing amyloid deposition, gray matter atrophy and glucose hypometabolism in these

patients [49]. Hence, the changes we found in this study may partially reflect pathological and

metabolic abnormalities that usually occur in AD patients.

In contrast to the nodal degree, the nodal local efficiency showed alterations both in MCI

and AD patients. Whereas in MCI patients, these changes were confined to a single region in

the left temporal lobe, in AD patients the local efficiency was altered across several frontal,

temporal and parietal areas, including the hippocampus and amygdala, which are involved in

AD pathology [50]. The local efficiency reflects how efficient is the communication between a

region and its neighboring areas. Decreases in this measure might indicate a loss of local con-

nections, whereas increases could reflect a compensatory mechanism by which the number of

connections between close brain areas increases to compensate for the loss of connections

between distant brain areas.

Hence, altogether our findings indicate that graph theory is a useful method to assess

abnormalities in brain connectivity and topology in the prodromal and clinical stages of AD.

Large-scale functional networks in PD

Cognitive impairment is one of the most important non-motor symptoms in PD that greatly

affect quality of life. During the course of the disease, most PD patients develop impairment in

one or more cognitive domains, for which they receive a diagnosis of MCI. The presence of

MCI in PD is associated with an increased risk to progress to dementia [51]. Hence, there is a

pressing need to identify the underlying mechanisms of MCI to prevent cognitive decline in

PD patients. Using a weighted network approach in BRAPH, we found that PD-MCI patients

presented a lower number of connections in the whole brain network compared to controls.

This indicates that in general their regions were more disconnected. However, after identifying

the modular structure and performing the same analysis within each module, we observed that

these effects were mostly driven by a lower degree in the fronto-parietal network and in a net-

work involving temporal and inferior frontal regions in the PD-MCI group. The regions that

were most affected in these networks were the superior frontal gyri, superior parietal gyri, pre-

cuneus, transverse temporal gyri and insula. All of these regions have been previously shown

to display reduced connectivity in PD [8]. In addition, they have also been identified as impor-

tant brain hubs in previous graph theory studies [43]. Within the graph theory framework, the

brain hubs are the most important and central regions of a network as they mediate numerous

long-distance connections. This characteristic also suggests they might have higher metabolic

costs and a greater vulnerability to oxidative stress [43]. In a previous study [52], it was shown

that the pathological brain lesions are concentrated in hub regions of the connectome in sev-

eral neurodegenerative disorders, including PD, in line with our findings. The analyses that

were carried out in the separate single-domain and multiple-domain MCI groups showed that

the previous regions had reduced connectivity in both subtypes, suggesting that our results in

PD-MCI patients were not driven by a particular subgroup.
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In addition to the results found in the PD-MCI group, we also found a reduced number of

connections in PD-CN patients in two networks that consisted of temporo-cerebellar areas

and temporo-frontal regions. Previous studies using fMRI have found abnormalities in these

brain areas in patients with PD [8]. Moreover, the inferior temporal gyri and inferior frontal

cortex are amongst the first cortical areas becoming affected by Lewy body pathology in

autopsy cases with PD [53] suggesting that they might play a relevant role in the progression of

the disease from brainstem structures to cortical brain areas. The fact that both PD-CN and

PD-MCI patients showed abnormalities in the same network of inferior temporal and frontal

areas provides support to this assumption and suggests that these regions are important to

understand disconnectivity in PD regardless of cognitive status.

BRAPH features

The application of graph theory to the field of imaging connectomics is still in its early begin-

nings. There are several important challenges that need to be addressed such as whether the

nodes and edges are an accurate description of the true underlying brain connectome in all its

complexity of billions of neurons and synapses. Although we have limited knowledge on how

to address this particular issue, there are several other challenges that can be addressed through

the use of BRAPH. For instance, given that the true connectome is a sparse network, it is

important to threshold the structural or functional edges, which typically consist of continuous

association indices [54]. This thresholding can be carried out using different methods. On the

one hand, a threshold can be applied so that only the connections that are below some signifi-

cance level are included in the analysis. In this way, the weaker connections of the graph are

eliminated and considered spurious. This approach will yield different numbers of connec-

tions across different individuals or groups. On the other hand, a threshold can be applied

such that all networks have the same number of connections through a fixed value of density.

In this way, only a percentage of edges are included in the analyses and the graph theory mea-

sures are independent of the number of edges [54]. In BRAPH, both thresholding options are

available so that the user can easily compare them.

Another important challenge is the choice of a given value of threshold since there is cur-

rently no way to establish which is the best value. To solve this issue, BRAPH allows testing a

hypothesis across different levels of significance or densities to determine the robustness of the

results. Some authors consider choosing a range of thresholds an arbitrary process that pro-

duces values that are strongly dependent on this choice. For this reason, we also provide an

option for weighted network analysis, which allows assessing both strong and weak connec-

tions present in a graph and is not dependent on a particular thresholding scheme.

Another challenge that is beginning to emerge in the scientific community is the realization

that different node definitions can lead to different network findings. Currently BRAPH pro-

vides six anatomical and functional brain atlases that the user can apply within the same study

to assess the consistency of the results against different parcellation schemes. In addition, a

new brain atlas can be easily created or uploaded in BRAPH that adjusts to the user needs.

Finally, the last challenge that can be addressed through BRAPH is the normalization of

graph theory measures by reference to random networks that have a random organization

(with the same degree and/or weight distribution). BRAPH provides various options to per-

form this normalization.

Several aspects of BRAPH will be expanded in future releases. In particular, while currently

BRAPH allows analyzing the complete fMRI time-series (static functional connectivity) by cal-

culating statistical correlations or partial correlations between them since this is the most used

method to analyze fMRI data, we are planning to include dynamic functional connectivity
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analyses [23–26,55] in future versions of the software. Furthermore, we are also planning to

allow the user to define the nodes using various data-driven methods, such as independent

component analysis [55,56].

In conclusion, the study of the brain connectome is a growing field that will provide impor-

tant insights into brain organization in health and disease. Amongst its numerous applications,

there is the possibility it might help predicting the pathological spread of disease proteins in

neurodegenerative disorders, which are becoming increasingly prevalent in the world’s aging

population. To address the increasing demands in this growing field we provide BRAPH, the

first object-oriented software that will integrate new topological analyses and measures in a

structured manner, allowing the users to be updated with the latest developments in graph the-

ory. BRAPH can be found at https://www.braph.org with online videos, a comprehensive man-

ual, a support forum and relevant links. It is free for all researchers and can be used in all

operating systems.
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Abstract
Recent findings suggest that Alzheimer’s disease (AD) is a disconnection syndrome characterized by abnormalities in large-
scale networks. However, the alterations that occur in network topology during the prodromal stages of AD, particularly in
patients with stable mild cognitive impairment (MCI) and those that show a slow or faster progression to dementia, are still
poorly understood. In this study, we used graph theory to assess the organization of structural MRI networks in stable MCI
(sMCI) subjects, late MCI converters (lMCIc), early MCI converters (eMCIc), and AD patients from 2 large multicenter cohorts:
ADNI andAddNeuroMed. Our findings showed an abnormal global network organization in all patient groups, as reflected by an
increased path length, reduced transitivity, and increased modularity compared with controls. In addition, lMCIc, eMCIc, and
AD patients showed a decreased path length andmean clustering compared with the sMCI group. At the local level, there were

© The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

Cerebral Cortex, August 2016;26: 3476–3493

doi:10.1093/cercor/bhw128

Original Article
Advance Access Publication Date: 13 May 2016

Downloaded from https://academic.oup.com/cercor/article-abstract/26/8/3476/2428359
by BILKENT user
on 04 May 2018

http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.oxfordjournals.org


nodal clustering decreasesmostly in AD patients, while the nodal closeness centrality detected abnormalities across all patient
groups, showing overlapping changes in the hippocampi and amygdala and nonoverlapping changes in parietal, entorhinal,
and orbitofrontal regions. These findings suggest that the prodromal and clinical stages of AD are associated with an abnormal
network topology.

Key words: closeness centrality, clustering, modularity, structural covariance networks, transitivity

Introduction
Alzheimer’s disease (AD) is a devastating neurodegenerative dis-
order that slowly deprives individuals of their memories and
other essential cognitive functions, including executive, visuo-
spatial abilities and language. There is increasing evidence show-
ing that the progression of these cognitive symptoms occurs in
an orderly fashion, which reflects the accumulation of amyloid
deposits and the spatial distribution of neurofibrillary tangles
(Frisoni et al. 2010). For instance, while memory loss takes place
at early disease stages, reflecting the presence of tangles in med-
ial temporal regions (Scahill et al. 2002; Thal et al. 2002; Thomp-
son et al. 2004); aphasia and apraxia typically occur at later
stages, reflecting the spread of tangles and plaques into neocor-
tical areas (Braak et al. 2006; McDonald et al. 2009). This incre-
mental spread of pathology between interconnected brain
regions suggests that AD might be a disconnection syndrome
characterized by abnormalities in brain networks (Pievani et al.
2011).

Graph theory has become a very useful tool in neuroimaging
to assess the relationship between different brain regions and
their organization into large-scale networks (Filippi et al. 2013).
Using this method, previous studies have shown that healthy in-
dividuals have an efficient network topology, combining a high
level of integration between distant brain regions (short path
length) and a good local communication between neighboring
areas (high clustering). This small-world configuration (Humph-
ries et al. 2006) is thought to be specially suited for cognitive pro-
cessing (Bassett and Bullmore 2006) and has been shown in
previous functional MRI, structural MRI, electroencephalogram,
and diffusion tensor imaging (DTI) studies (Achard and Bullmore
2007; Ferri et al. 2007; Bassett et al. 2008; Iturria-Medina et al.
2008; Gong et al. 2009). The combination of high efficiency and
clustering in a small-world architecture is an attractive principle
of brain network organization as it could deliver both segregated
and integrated information processing (Bullmore and Sporns
2012). For instance, visual processing is a segregated process
that would benefit from the clusters of connections between re-
gions that are topologically close, whereas executive processing
is an integrated process that would benefit from the long paths
that allow transferring information across the whole network
(Bullmore and Sporns 2012). In addition, it has been shown that
regions showing high clustering tend to be very well connected
to areaswith the same functional specialization (Sporns and Bet-
zel 2016). In line with this, several studies have shown that the
brain is organized into communities or modules of intercon-
nected regions (Hagmann et al. 2008; Meunier et al. 2009),
which may correspond to large-scale brain systems such as the
executive control, the dorsal attention, and the default-mode
network. This network property is commonly referred to as
modularity and has been shown in healthy individuals by previ-
ous studies (Chen et al. 2008; He et al. 2009).

Graph theory can be applied to different neuroimaging mo-
dalities to assess brain networks in vivo in AD, including DTI,
structural, and functional MRI (for reviews, see Tijms, Moller,

et al. 2013; Tijms, Wink, et al. 2013; Dai and He 2014) as well
as positron emission tomography (PET) (Sanabria-Diaz et al.
2013; Sepulcre et al. 2013; Yao et al. 2015). Using structural MRI,
a few studies have shown that AD patients present changes in
global network organization compared with healthy controls
(Dai and He 2014; Phillips et al. 2015); however, there is surpris-
ingly little agreement about the nature of these changes: while
some studies showed an increased path length and clustering
in the networks of AD patients, others found decreases or no
changes at all (Li et al. 2012; Dai and He 2014). Regarding network
configuration, some studies using structural MRI have found a
preserved small-world organization in AD patients, while others
found random or regular network topologies (Dai and He 2014).
This inconsistency between studies could be due to the inclusion
of small samples of patients with heterogeneous clinical charac-
teristics. Despite this interest in assessing brain connectivity in
AD, to date no studies have assessedmodularity in the structural
MRI networks of AD patients.

Amnestic mild cognitive impairment (MCI) is a transition
state between normal aging and AD with a high risk of progres-
sion to dementia (Petersen et al. 1999). AlthoughMCI has been as-
sociated with reduced white matter integrity and abnormal
functional connectivity (Medina et al. 2006; Zhang et al. 2007; Pet-
rella et al. 2011; Binnewijzend et al. 2012), it is not clear whether
these patients also present altered brain network topology: Yao
et al. (2010) found no differences in the path length or clustering
between MCI patients and controls, while Phillips et al. (2015)
found differences that varied according to the network construc-
tion method. There is increasing evidence showing that MCI pa-
tients progress to AD at a rate of approximately 15% per year
(Grundman et al. 2004). The assessment of network organization
in stable MCI patients and those who show a slow or faster pro-
gression to dementia is important as it could provide important
clues into which network changes mark the transition to AD
and improve our understanding on the effects of disease progres-
sion on brain networks.

The aim of the current study was to establish the nature of
structural abnormalities in the organization of brain networks
in stable MCI (sMCI) subjects, patients who show a slow progres-
sion to dementia (late MCI converters, lMCIc), patients who show
a fast progression to dementia (early MCI converters, eMCIc), and
AD patients using graph theory. To achieve this goal, we assessed
over 1000 patients and controls from 2 large multicenter cohorts:
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the
AddNeuroMed study. We calculated various global and local net-
work measures, including the characteristic path length, the
mean clustering coefficient, the small-worldness, the nodal clus-
tering, and the nodal closeness centrality. In addition, in contrast
to previous studies, we calculated for the first time the transitiv-
ity andmodularity in the structural MRI networks of MCI and AD
patients. These graph theory measures reflect how well a region
is connected to its neighbouring areas andwithin brainmodules,
providing important information on the network’s ability
for specialized processing to occur within densely intercon-
nected groups of brain regions (Rubinov and Sporns 2010). We
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hypothesized that global network measures would show abnor-
malities across all patient groups, with lMCIc, eMCIc, and AD pa-
tients showing more severe network changes compared with
controls than sMCI patients. In addition, based on previous evi-
dence showing that the sequence of brain abnormalities between
regions of the default-mode network is reminiscent of the spread
of tangle pathology in AD (Buckner et al. 2005, 2009), we hypothe-
sized that patients would show changes in local network mea-
sures in the regions of this network.

Methods
Subjects

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.usc.edu) and the AddNeuroMed
study. In total, 1008 subjectswere included, consisting of 301 con-
trols, 425 MCI, and 282 AD patients. Regarding MCI patients, 87
converted to AD after 1 year (eMCIc), 71 converted to AD after 3
years (lMCIc), and 110 remained stable after 3 years (sMCI). In
addition, 157 MCI patients remained stable after 1 year but had
no additional follow-ups after that period. We classified these
subjects as sMCI-1y and compared them with the other groups
in a supplementary analysis. Eight subjects were excluded from
the previous groups due to uncertain diagnosis.

The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), PET, other biological markers, and clin-
ical and neuropsychological assessment can be combined to
measure the progression ofMCI and early AD. In the ADNI cohort,
the inclusion criteria for the control group were Mini-Mental
State Examination (MMSE) scores between 24 and 30, a Clinical
Dementia Rating-Sum of Boxes (CDR-SB) score of 0, and lack of
depression, MCI, or dementia. Inclusion criteria for the MCI
group followed the Peterson criteria (Petersen et al. 1999) for am-
nestic MCI. AD participants met the National Institute for Neuro-
logical and Communicative Disorders and Stroke-Alzheimer’s
Disease and Related Disorder Association (NINDS/ADRDA) cri-
teria for probable AD, had a MMSE score between 18 and 26,
and a CDR-SB of 0.5–1.0. Exclusion criteria comprised history of
structural brain lesions or head trauma, significant neurological
disease other than incipient AD, and the use of psychotropic
medications that could affect memory. For up-to-date informa-
tion about the ADNI study, see www.adni-info.org.

AddNeuroMed is an Integrated Project funded by the Euro-
pean Union Sixth Framework program (Lovestone et al. 2007,
2009). AddNeuroMed aims to develop and validate novel surro-
gate markers of disease and treatment, based upon in vitro and
in vivomodels in animals and humans in AD. The neuroimaging
part of AddNeuroMed uses MRI and magnetic resonance spec-
troscopy (MRS) to establish imaging markers for early diagnosis
and detection of disease and efficacy of disease modifying ther-
apy in man, as well as translational imaging biomarkers in ani-
mal models of AD. Human data were collected from 6 different
sites across Europe: University of Kuopio (Finland), University
of Perugia (Italy), Aristotle University of Thessaloniki (Greece),
King’s College London (United Kingdom), University of Lodz (Pol-
and), and University of Toulouse (France) (Lovestone et al. 2009;
Simmons et al. 2009, 2011). The inclusion criteria for the control
group were Mini-Mental State Examination (MMSE) scores be-
tween 24 and 30, a CDR score of 0, 65 years, or above, and lack
of depression, dementia, other neurological diseases, unstable
systematic illnesses, or organ failure. The inclusion criteria for

MCI patients were similar to the control group except for the
CDR score of 0.5 and report of memory problems by the patient
or informant. AD patients met the NINDS/ADRDA and DSM-IV
criteria for probable AD, had a MMSE score between 12 and 28,
had 65 years or above, and did not have significant neurological
or psychiatric illnesses other than AD, unstable systematic ill-
nesses, or organ failure.

MRI Acquisition

Data acquisition for the AddNeuroMed study was designed to be
compatiblewithADNI (Jack et al. 2008; Simmons et al. 2009, 2011).
In particular, all participants, both from ADNI and AddNeur-
oMed, were scanned on a 1.5 Tesla MRI system using a sagittal
3D T1-weighted MPRAGE sequence: repetition time (TR) = 9–
13 ms; echo time (TE) = 3.0–4.1 ms; inversion time (IT) = 1000 ms;
flip angle (FA) = 8°; voxel size = 1.1 × 1.1 × 1.2 mm3. Images from
ADNIwere acquired in 58 sites, while images fromAddNeuroMed
were acquired in 5 sites or centers.We have combined these 2 co-
horts in several previous studies (Spulber et al. 2013; Falahati
et al. 2016), showing that they present similar patterns of atrophy
and predictive power in discriminating patients with AD or MCI
from controls (Westman et al. 2011).

Image Preprocessing

All T1-weighted images were preprocessed using the FreeSurfer
software, version 5.1. Briefly, preprocessing included: correc-
tion of motion artifacts and spatial distortions due to gradient
nonlinearity and B1 field inhomogeneity; removal of nonbrain
tissue using a hybrid watershed/surface deformation procedure
(Segonne et al. 2004); automated transformation into the Talair-
ach standard space; intensity normalization (Sled et al. 1998); tes-
sellation of the gray/whitematter boundary; automated topology
correction (Segonne et al. 2007); and surface deformation follow-
ing intensity gradients to optimally place the gray/white and
gray/CSF borders at the locationwhere the greatest shift in inten-
sity defines the transition to the other tissue class (Fischl and
Dale 2000). Once the cortical models were complete, registration
to a spherical atlas took place, which utilizes individual cortical
folding patterns to match cortical geometry across subjects
(Fischl et al. 1999). This was followed by parcellation of the cere-
bral cortex into 68 cortical regions using the atlas byDesikan et al.
(2006) (Fig. 1). In addition to these 68 regions, 7 subcortical struc-
tures were also included: hippocampus, amygdala, thalamus,
caudate, putamen, accumbens, and pallidum (Fig. 1). All data
was preprocessed through the HiveDB database system (Muehl-
boeck et al. 2014). We excluded 8 subjects that were outliers in
cortical thickness and subcortical volume measures.

Network Construction and Analysis

For every cortical region, a linear regression was performed to
control for the effects of age, gender, and education (He et al.
2007). The same procedurewas carried out for subcortical regions
including intracranial volume as an additional covariate. To en-
sure that our results were not influenced by the fact that subjects
were scanned at different centers, we included scanning site as
an additional covariate in a supplementary analysis.

The residuals of these regressions were used to substitute the
raw values and build the structural covariance networks. In these
networks, every node corresponded to a brain region and the
edges represented the correlations between them (He et al.
2007). In this study, both cortical thicknesses and subcortical
volumes were used to build the structural networks due to
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previous evidence showing the involvement of cortical and sub-
cortical regions in MCI and AD and similarly to previous graph
theory studies (Hosseini et al. 2013; Pereira et al. 2015).

For every group, we built an 82 × 82 association matrix, where
each entry was defined as the Pearson correlation coefficient be-
tween corrected anatomical measures of every pair of regions
across participants (Fig. 2). For each association matrix, a binary
matrix was computed, where the correlation coefficient was con-
sidered 1 if it was above a threshold and 0 if it was below (He et al.
2007). Since thresholding associationmatrices of different groups
may yield networks with a different number of nodes and edges,
we thresholded the association matrices at a range of network
densities D (D min = 5% to D max = 35%, in steps of 1%) and com-
pared the network topologies across that range. For densities
below 5%, the number of edges was inferior to the number of
nodes, corresponding to a widely disconnected network. For D
above 35%, the networks became similar to random graphs and
showed a small-world index close to 1. All self-connections and
negative correlations were excluded from the analyses.

To detect differences between groups in global network top-
ology, we calculated the characteristic path length, the mean
clustering coefficient, the transitivity, the modularity, and the
small-worldness. The characteristic path length is the average
shortest path length between all pairs of nodes in the network
and indicates how easy it is (on average) to reach a node from
any other node in the network (Watts and Strogatz 1998); this
measure was calculated only within connected components of
the network as implemented in the formulas by Rubinov and
Sporns (2010). The clustering coefficient is the average over the
whole network of the fraction of a node’s neighbors that are
also neighbors of each other; it reflects how well the nodes are
connected to nearby regions forming clusters (Watts and Strogatz
1998). The transitivity is similar to the clustering coefficient but,
instead of being normalized individually by every node, it is nor-
malized by the whole network and is not influenced by nodes
with a low degree (Newman 2003). The modularity describes the
extent to which a network can be divided into modules or

communities of regions with a large number of within-modules
connections and a minimal number of between-module connec-
tions (Newman 2006). The small-worldness is a measure of how
much a network is locally interconnected compared with a ran-
dom network but still retaining global connectivity between dis-
tant brain regions (Watts and Strogatz 1998; Humphries et al. 2006).

To assess differences between groups in regional network top-
ology, we calculated the nodal clustering and the closeness cen-
trality. We selected these 2 nodal network measures, because
they are sensitive to different aspects of network topology and
remain largely unexplored in MCI and AD. Specifically, the nodal
clustering is a measure of segregation, which reflects the ability
for specialized information processing to occur within groups of
brain regions, while the closeness centrality is a measure of inter-
action that reflects the ability to combine information fromdistrib-
uted brain areas (Rubinov and Sporns 2010). Thenodal clustering is
calculated as the mean clustering coefficient but only for a given
node. Thecloseness centrality is the inverseof theaverage shortest
path length from1 node to all other nodes in the network. To com-
pare the roles of the nodes in each module and their differences
between groups, we also calculated the within-module degree
and participation coefficient. Thewithin-module degreemeasures
the connectivity of the nodewithin themodule comparedwith the
other nodes in the same module. The participation coefficient ex-
presses how strongly a node is connected to other modules and
tends to 1 if a node has a homogeneous connection distribution
with all themodules and 0 if it does not have any intermodule con-
nections (Guimera and Amaral 2005; Guimera et al. 2005).

The formulas thatwere used to calculate the global and nodal
graph theory measures are provided by Rubinov and Sporns
(2010). We used BrainNet Viewer (http://www.nitrc.org/projects/
bnv/) for network visualization (Xia et al. 2013).

Comparison of Network Measures Between Groups

We tested the statistical significance of the differences between
groups using nonparametric permutation tests with 1000

Figure 1. Brain regions used in network construction and analysis. The cortical thickness and subcortical volumes were extracted from these regions for every subject.
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permutations (Bassett et al. 2008; He et al. 2008). In each permu-
tation, the corrected anatomical values of every subject were ran-
domly reassigned to one of a pair of groups with the same
number of subjects as in the original groups. Then, an association
matrix was built for each pair of randomized groups, and the bin-
ary matrices were calculated at a range of network densities. The
network measures were calculated at each density, and the dif-
ferences between the new randomized groups were computed.
This randomization procedure was repeated 1000 times for
every density value, and the 95% confidence intervals (CI) of
each distribution were used as critical values for a 2-tailed test
of the null hypothesis at P < 0.05. To correct the nodal network re-
sults for multiple comparisons, we used a false discovery rate
(FDR) procedure (Genovese et al. 2002) at a q value of 0.05.

Results
The characteristics of the sample can be found in Table 1. There
were significant differences in gender and years of education
between the groups (P < 0.001). For this reason, the cortical thick-
ness and subcortical measures were corrected by these variables
in the current study. As expected, all patient groups showed
lower MMSE scores (P < 0.001) and higher CDR scores (P < 0.001)
compared with controls. In addition, lMCIc, eMCIc, and AD pa-
tients showed lower MMSE scores compared with sMCI patients
(P < 0.05). AD patients showed worse MMSE scores compared
with sMCI, lMCIc, eMCIc patients (P < 0.05), and sMCI-1y patients
had lower MMSE scores compared with sMCI patients (P < 0.05).

Global Network Analysis

The weighted correlation matrices for each group are presented
in Figure 2. We observed that the correlation patterns of all
groups showed strong correlations between bilaterally homolo-
gous regions.

In general, with progressively higher values of network dens-
ity (D), the characteristic path length and modularity decreased,
the mean clustering coefficient and transitivity increased, and a
small-world topology was observed across all groups (Fig. 3).

Our statistical analyses showed significant increases in
the characteristic path length in the sMCI, lMCIc, eMCIc, and
AD groups compared with controls at several network densities
(P range, 0.043–0.001) (Fig. 4). The clustering coefficient also
showed significant changes, being decreased across different
densities in lMCIc, eMCIc, and AD (P range, 0.043–0.001) but not
in sMCI patients, compared with controls. The transitivity and
modularity showed the greatest differences between patients
and controls: the transitivity was significantly decreased (P range,
0.049–0.001) and the modularity was significantly increased
(P range, 0.049–0.001) in patients at most network densities
(Fig. 4). We also found significant decreases in the small-world-
ness in the patient groups compared with controls (P range,
0.040–0.010); however, these differences were only observed at a
few network thresholds (Fig. 4).

Whenwe compared the different patient groups, we observed
that lMCIc, eMCIc, andADpatients had a decreased characteristic
path length (P range, 0.048–0.001) and clustering coefficient

Figure 2. Structural correlation matrices for (A) controls (CTR), (B) patients with stable mild cognitive impairment after 1 year (sMCI-1y), (C) patients with sMCI (after 3

years), (D) lMCIc, (E) eMCIc, and (F) AD patients. In these matrices, the first rows and columns correspond to the correlations between cortical regions, while the last

ones correspond to the correlations between subcortical areas. The color bar indicates the strength of the correlation coefficients: warmer colors represent stronger

correlations, while colder colors represent weaker correlations.
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(P range, 0.042–0.001) compared with sMCI patients (Fig. 5). There
were no significant differences in transitivity or modularity be-
tween these groups. In addition, therewere no differences in glo-
bal network topology between lMCIc, eMCIc, and AD patients.

The global network comparisons carried out in the sMCI-1y
group can be found in Supplementary Figure 1. These patients
showed evidence of larger paths (P range, 0.045–0.004) and

changes in the clustering (P range, 0.044–0.018) at a few network
thresholds, but no changes in the transitivity ormodularity com-
pared with controls, in contrast to the other MCI groups. They
also showed higher clustering compared with eMCIc (P range,
0.046–0.018) and AD patients (P range, 0.043–0.016) and higher
transitivity (P range, 0.048–0.019) compared with AD patients at
several densities. The modularity and small-worldness did not

Table 1 Characteristics of the sample

CTR (n = 301) sMCI-1y (n = 157) sMCI (n = 110) lMCIc (n = 71) eMCIc (n = 87) AD (n = 282) F or χ2 (P value)

Age 75.1 (5.7) 75.0 (6.5) 74.7 (7.5) 74.8 (7.0) 74.1 (6.7) 75.6 (7.0) 0.9 (0.475)
Gender (m/f)a,b,c,d,e 156/145 88/69 74/36 43/28 54/33 130/152 19.2 (0.002)
Education (y)f,a,g,h,i,j,k,l,c,m,d,e 14.2 (4.4) 11.8 (5.2) 15.7 (3.0) 16.1 (3.0) 13.9 (4.2) 12.2 (4.9) 21.2 (<0.001)
MMSEf,a,g,n,h,i,b,o,l,c,d,e 29.1 (1.1) 27.0 (1.6) 27.6 (1.7) 26.7 (1.7) 26.6 (1.8) 22.4 (3.5) 272.8 (<0.001)
CDRf,a,g,n,h,b,c,d,e 0 0.5 0.5 0.5 0.5 0.9 (0.4) 880.2 (<0.001)

Note: Means are followed by standard deviations. Differences in age, years of education, and MMSE scores were assessed using an analysis of variance (ANOVA).

Differences in CDR scores were assessed using a Kruskal–Wallis test and differences in gender were assessed using a χ2 test. CTR, controls; sMCI, stable mild cognitive

impairment after 1 year (sMCI-1y) or 3 years (sMCI); lMCIc, latemild cognitive impairment converters; eMCIc, earlymild cognitive impairment converters; AD, Alzheimer’s

disease; MMSE, mini-mental state examination; CDR, clinical dementia rating scale.
aSignificant differences between CTR and sMCI patients (P < 0.05).
bSignificant differences between sMCI-1y and AD patients (P < 0.05).
cSignificant differences between sMCI and AD patients (P < 0.05).
dSignificant differences between lMCIc and AD patients (P < 0.05).
eSignificant differences between eMCIc and AD patients (P < 0.05).
fSignificant differences between CTR and sMCI-1y patients (P < 0.05).
gSignificant differences between CTR and lMCIc patients (P < 0.05).
hSignificant differences between CTR and AD patients (P < 0.05).
iSignificant differences between sMCI-1y and sMCI patients (P < 0.05).
jSignificant differences between sMCI-1y and lMCIc patients (P < 0.05).
kSignificant differences between sMCI-1y and eMCIc patients (P < 0.05).
lSignificant differences between sMCI and eMCIc patients (P < 0.05).
mSignificant differences between lMCIc and eMCIc patients (P < 0.05).
nSignificant differences between CTR and eMCIc patients (P < 0.05).
oSignificant differences between sMCI and lMCIc patients (P < 0.05).

Figure 3.Changes in global networkmeasures as a function of network density. Characteristic path length (A), clustering coefficient (B), transitivity (C),modularity (D), and

small-worldness (E) for controls (CTR), patients with stable mild cognitive impairment after 1 year (sMCI-1y), patients with sMCI (after 3 years), lMCIc, eMCIc, and AD

patients.
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Figure 4. Differences between controls, sMCI, lMCIc, eMCIc, and AD patients in global networkmeasures. Plots showing the differences between controls (CTR) and sMCI

patients; CTR and lMCIc; CTR and eMCIc; CTR and AD patients in the characteristic path length (A), clustering coefficient (B), transitivity (C), modularity (D), and small-

worldness (E). The plots show the upper and lower bounds of the 95% confidence intervals (CI) (in gray) and the differences in the network measures between groups (in

orange circles) as a function of network density. If these differences fall outside the CIs, there is a statistical significant difference at P < 0.05.

| Cerebral Cortex3482 , 2016, Vol. 26, No. 8

Downloaded from https://academic.oup.com/cercor/article-abstract/26/8/3476/2428359
by BILKENT user
on 04 May 2018



show significant changes in sMCI-1y compared with the other
patient groups.

To assess whether our results were influenced by different
scanning centers, we repeated the analyses comparing controls
to the patient groups after including the centers as an additional
covariate. These analyses showed similar differences in the char-
acteristic path length, mean clustering, transitivity, and modu-
larity between patients and controls, suggesting that the
differences in scanning sites did not influence our results (see
Supplementary Table 1).

Nodal Network Analysis

We identified several changes in nodal network measures be-
tween groups. In summary, the nodal clustering was decreased
in patients compared with controls and showed widespread
changes only in the AD group. The nodal closeness centrality
was decreased in the bilateral hippocampi and amygdala across
all patient groups and showed increases in medial parietal,
medial temporal, and limbic regions that varied according to
the patient group. Below, we describe these changes in greater
detail.

After correcting for multiple comparisons (FDR, q < 0.05), we
observed that sMCI patients showed clustering decreases in the
left superior frontal gyrus, while eMCIc patients showed

decreases in the right postcentral gyrus compared with controls.
In AD patients, the nodal clustering decreases involved several
regions: the bilateral precuneus, superior frontal gyri, lateral orbi-
tofrontal gyri, middle temporal gyri, inferior temporal gyri, fusi-
form, hippocampi, and amygdala; the left pars triangularis
gyrus, postcentral gyrus; and the right caudal middle frontal
gyrus, pars opercularis gyrus, and lateral occipital gyrus (Fig. 6
and Table 2). AD patients also showed significant clustering de-
creases in the left postcentral gyrus comparedwith sMCI patients
(FDR, q < 0.05).

Regarding the closeness centrality, in addition to the signifi-
cant decreases found in the hippocampi and amygdala in sMCI,
lMCIc, eMCI, and AD patients compared with controls, there
were additional decreases in the right pericalcarine gyrus in
sMCI and lMCIc patients; the right accumbens in eMCIc patients.
The increases in closeness centrality were observed in the left
posterior cingulate in sMCI patients; the left pallidum, right in-
sula, right temporal pole, right entorhinal in lMCIc patients; the
left posterior cingulate, right lateral orbitofrontal gyrus, bilateral
insula, bilateral entorhinal in AD patients (Fig. 7 and Table 3).

There were also significant differences in closeness centrality
between the patient groups, mostly in temporal, occipital, and
subcortical regions (for further details, see Table 3).

In Table 4, we present a summary of the most relevant global
and nodal network results found in the current study.

Figure 5.Differences between sMCI, lMCIc, eMCIc, and AD patients in global networkmeasures. Plots showing the differences between sMCI and lMCIc patients; sMCI and

eMCIc patients; sMCI and AD patients in the characteristic path length (A) and clustering coefficient (B). The plots show the upper and lower bounds of the 95% confidence

intervals (CI) (in gray) and the differences in the networkmeasures between groups (in orange circles) as a function of network density. If these differences fall outside the

CIs, there is a statistical significant difference at P < 0.05.
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Brain Modules

We identified 4 modules in controls; 3 modules in sMCI, lMCIc,
and eMCIc patients; and 5 modules in AD patients (Fig. 8). For a
full list of the regions belonging to each module, see Table 5.

Briefly, in controls,Module I included the superior frontal gyri,
posterior cingulate, and supramarginal gyri, which are part of the
default-mode network. Module II included the entorhinal gyri
and subcortical regions. Module III was the largest, including sev-
eral lateral frontal, parietal, and occipital regions. Module IV in-
cluded the parahippocampal gyri.

In sMCI, lMCIc, and eMCIc patients, the modules were similar
to those in controls. However, Module I did not include the super-
ior frontal, lateral parietal, or posterior parietal regions and Mod-
ule II included additional areas in the patient groups. In AD
patients, Module II lost several regions that formed 2 new mod-
ules, which were not present in the other groups: one composed
of the caudate, putamen, accumbens, and pallidum (Module IV)
and the other composed of the bilateral thalami (Module V).

To assess differences between groups in the previous mod-
ules, we measured the within-module degree and participation
coefficient. We found significant increases in the within-module
degree and decreases in the participation coefficient in AD pa-
tients compared with controls, after FDR corrections (Table 6).

The within-module degree increases were observed in the left
postcentral, left superior parietal, right pars opercularis gyri,
and right insula, which were part of Module I and Module III.
The participation coefficient decreases were observed in the left
pars orbitalis and bilateral cuneus, which were part of Module III.
Although they did not survive correction for multiple compari-
sons, lMCIc and eMCIc patients also showed within-module de-
gree increases and participation coefficient decreases in some
of these regions, compared with controls (Table 6).

Discussion
This study is the largest to date to assess network topology inMCI
patients that remain stable, showa slow or fast progression to de-
mentia aswell as AD patients. Our findings revealed an abnormal
organization in the networks of all patient groups as reflected by
an increased path length, reduced transitivity, and increased
modularity, compared with controls. The clustering coefficient
showed a different pattern, being decreased in lMCIc, eMCIc,
and AD but not in sMCI patients. Altogether, these findings sug-
gest that the prodromal and clinical stages of AD are associated
with a reduced ability to integrate information across distributed
brain regions and an altered communication between neighbor-
ing areas and modules.

Figure 6. Significant decreases in the nodal clustering coefficient in sMCI, eMCIc, and AD patients. CTR, controls; sMCI, stable MCI; eMCIc, early MCI converters, AD,

Alzheimer’s disease. The regions showing clustering decreases in patients are listed in Table 2.
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In the current study, we found a larger path length across all
patient groups compared with controls, indicating an abnormal
global network organization. Previous evidence suggests that a
short path length ensures rapid information transmission across
remote brain regions that are thought to be the basis of cognitive
functioning (Sporns and Zwi 2004). The path length increases
found in our study show that the distance between any 2 regions
was greater in the patient’s networks, making the communica-
tion between them less efficient. This finding is in line with
those of previous graph theory studies in AD, which found an in-
creased path length in the structural and functional networks of
these patients (He et al. 2008; Lo et al. 2010; Sanz-Arigita et al.
2010; Yao et al. 2010; Shu et al. 2012). In one of these studies
using DTI to build individual white matter networks, the path
length increases were associated with worse MMSE performance
(Shu et al. 2012), suggesting that this measure might indeed be a
marker of cognitive dysfunction in AD.

Our analyses also showed decreases in the mean clustering
coefficient in lMCIc, eMCIc, and AD patients relative to controls,
indicating that there were fewer connections between neighbor-
ing areas in their networks. This result is in line with some
(Tijms, Moller, et al. 2013; Tijms, Wink, et al. 2013) but not all
previous studies (He et al. 2008; Yao et al. 2010), suggesting that
differences inmethodology, sample sizes, and patient character-
istics might lead to different network findings. In a previous
study, Li et al. (2012) found that MCI converters presented

longitudinal decreases of the clustering coefficient suggesting
that reductions in this networkmeasure are associatedwith con-
version to dementia in AD.

Furthermore, our study is the first to assess transitivity and
modularity in the structural networks of MCI and AD patients.
We found that these measures identified greater abnormalities
in the networks of all patient groups compared with the path
length or clustering, reaching significance across most network
densities. Similarly to the clustering coefficient, the transitivity
is a measure that reflects how well a region is integrated within
its local cluster. However, in contrast to the clustering, the transi-
tivity is less influenced by nodes with fewer connections (Rubi-
nov and Sporns 2010), being a superior measure in networks
with poorly connected nodes. Hence, we recommend the use of
this measure in future studies assessing structural networks in
amnestic MCI and AD as it offers greater sensitivity to the effects
of the disease. The modularity is a more sophisticated measure
that describes the existence of communities of regions within
the network (Newman 2004). This network measure increases
when brain regions are well connected within their module but
are poorly connected with regions belonging to other modules.
In the current study, we found significant modularity increases
in sMCI, lMCIc, eMCIc, and AD patients compared with controls,
indicating higher intramodule connectivity and lower connectiv-
ity between modules. This finding indicates that there is a worse
communication between modules in patients, suggesting that
their whole-brain networks were fragmented into a few large,
isolated components. The within-module degree increases and
participation coefficient decreases we found in frontal, parietal,
and occipital regions in the patient groups compared with con-
trols further confirm that themodules werewell connected with-
in themselves but not between each other in patients. In a
previous fMRI study, significant modularity increases were also
found in patients with Parkinson’s disease with mild cognitive
impairment,whohave ahigher riskof developing dementia (Bag-
gio et al. 2014). These increases in modularity can be interpreted
as an abnormal process by which the connections between brain
areas belonging to a certain module increase, leaving the other
modules relatively isolated. In that study, the abnormalmodular-
ity increases were associated with worse memory and visuo-
spatial performance in Parkinson’s patients, confirming they
were pathological and related to greater clinical decline (Baggio
et al. 2014). In our study, we also observed that, despite having
similar modules to controls, the regions belonging to each mod-
ule changed across the patient groups, with AD patients showing
2 modules that were not present in the other groups. Hence, our
findings suggest that there is a reorganization of the modules in
sMCI, lMCIc, eMCIc, and AD patients. Similarly to previous stud-
ies assessing modularity in structural MRI networks (Chen et al.
2008, 2011; Wu et al. 2012), we did not find an exact correspond-
ence between the brainmodules and previously reported resting-
state fMRI networks (Greicius et al. 2004).

In addition to global network changes, we also observed
alterations in the topology of specific brain regions. We found
there were decreases in the nodal clustering of several areas in
AD patients compared with controls, indicating worse local com-
munication between neighboring areas. Some of these areas be-
longed to the default-mode network and included the precuneus
and superior frontal gyri (Greicius et al. 2004), in linewith our ini-
tial hypothesis and with previous studies showing pathological
changes within this network in AD (Buckner et al. 2005, 2009; Li
et al. 2013). In addition, we also observed clustering decreases
in other frontal and temporal regions in AD patients, suggesting
that the regional clustering changes were quite widespread, in

Table 2 Significant differences in the nodal clustering coefficient
between groups (FDR-corrected)

Region CTR sMCI P value

Lh Superior frontal G 0.83 0.50 0.002

CTR eMCIc
Rh Postcentral 0.94 0.56 0.001

CTR AD
Lh Superior frontal G 0.83 0.57 0.001
Lh Lateral orbitofrontal G 0.81 0.51 0.001
Lh Pars triangularis G 0.90 0.65 0.001
Lh Postcentral G 0.96 0.68 0.001
Lh Precuneus 0.78 0.58 0.001
Lh Middle temporal G 0.78 0.62 0.017
Lh Inferior temporal G 0.94 0.64 0.002
Lh Fusiform 0.79 0.56 0.004
Lh Hippocampus 1 0.33 0.001
Lh Amygdala 1 0.33 0.001
Rh Superior frontal G 0.78 0.52 0.001
Rh Caudal middle frontal G 0.92 0.77 0.009
Rh Lateral orbitofrontal G 0.71 0.45 0.003
Rh Pars opercularis G 0.96 0.62 0.001
Rh Precuneus 0.80 0.62 0.017
Rh Lateral occipital G 0.74 0.60 0.007
Rh Middle temporal G 0.81 0.61 0.016
Rh Inferior temporal G 0.90 0.66 0.003
Rh Fusiform 0.84 0.53 0.001
Rh Hippocampus 1 0.33 0.001
Rh Amygdala 1 0.33 0.001

sMCI AD
Lh Postcentral 0.95 0.68 0.001

Note: CTR, controls; sMCI, stable mild cognitive impairment; lMCIc, late mild

cognitive impairment converters; eMCIc, early mild cognitive impairment

converters; AD, Alzheimer’s disease; Lh, left hemisphere; Rh, right hemisphere;

G, gyrus.
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Figure 7. Significant differences in the closeness centrality between controls and sMCI, lMCIc, eMCIc, and AD patients. CTR, controls; sMCI, stable mild cognitive

impairment; lMCIc, late MCI converters; eMCIc, early MCI converters; AD, Alzheimer’s disease. The regions showing significant closeness centrality decreases are

colored in blue, while the regions showing closeness centrality increases in patients are colored in orange. These regions are listed in Table 3.
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line with evidence showing extended brain atrophy at advanced
stages of AD (Lehmann et al. 2011). The MCI patient groups only
showed clustering decreases in a few frontal and parietal regions,
in contrastwith thewidespread changes observed inADpatients.

The nodal closeness centrality showed both increases and de-
creases in sMCI, lMCIc, eMCIc, and AD patients compared with
controls. The decreases were mainly observed in the bilateral
hippocampi and amygdala across all patient groups, indicating
a loss of number of connections between these structures and
other regions of the network. This could be related to white mat-
ter integrity loss or disruption of white matter fibers connecting
these brain areas, which has been previously observed in MCI
and AD patients in DTI studies (for a review, see Chua et al.
2008). The increases of closeness centralityweremainlyobserved
in the posterior cingulate, temporal pole, entorhinal cortex, in-
sula, and orbitofrontal regions. The closeness centrality is a
measure of interaction between regions; the fact that it is in-
creased in regions showing pathological changes in AD (Braak
and Braak 1991; Thal et al. 2002; Frisoni et al. 2010) could be re-
lated to shared mechanisms in neurodegeneration (Zhu et al.
2012). Within the graph theory framework, 2 regions might cor-
relatewith each other not only if theyare structurally or function-
ally connected but also if they become atrophied at the same rate
(Alexander-Bloch et al. 2013). Thus, since medial temporal, med-
ial parietal, and limbic regions show atrophy since early stages of
AD, it seems natural that they might strongly interact with other
regions in the network that become atrophied with disease
progression.

In the current study, we also compared global and local net-
work topology between the patient groups. We observed that
sMCI patients had a larger path length and reduced nodal close-
ness centrality in several regions compared with the other
patients, indicating that they presented greater abnormalities
in the communication or interaction between distant brain
areas. Previous evidence suggests that the initial pathological
changes occurring in AD do not target regions that are close to
each other but rather distant brain areas (Zhou et al. 2012),
which are often connected by long and poorly myelinated
axons. Hence, it is possible that these changes are more promin-
ent in sMCI patients, which are potentially at earlier stages of AD.
In contrast to the path length, the clustering coefficient was
reduced in lMCIc, eMCIc, and AD patients compared with sMCI
patients, suggesting that the loss of connections between neigh-
boring areas reflects better the changes occurring in patients that
are on the path to develop AD or already have dementia.

In the past few years, there has been increasing evidence
showing that there is substantial heterogeneity among MCI pa-
tients. For instance, many MCI subjects remain stable for several
years, while others show a fast progression to dementia and
some can even fully reverse to normal cognition (Koepsell and
Monsell 2012). Moreover, there are several non-AD pathologies
that may produce amnestic MCI such as frontotemporal demen-
tia (Yaffe et al. 2006), vascular dementia (Zanetti et al. 2006), and
hippocampal sclerosis (Dickson et al. 1994). In the current study,
we observed heterogeneity in the network topology abnormal-
ities between the MCI groups. Specifically, sMCI-1y patients
showed evidence of increased clustering and almost no changes
in the transitivity and modularity compared with controls (see
Supplementary Fig. 1), in contrast to the other MCI patients. It
is possible that the sMCI-1y group included amixture of subjects
who remained stable, converted to dementia after a few years,
had a non-AD related disorder or simply did not have any neuro-
degenerative disease (the cognitive deficits they presented were
due to a transient medical condition). This heterogeneity might

Table 3 Significant differences in the nodal closeness centrality
between groups (FDR-corrected)

Region CTR sMCI P value

Lh Posterior cingulate 0.30 0.48 0.001

Lh Hippocampus 1 0.29 0.001

Lh Amygdala 1 0.34 0.001

Rh Pericalcarine 0.38 0.28 0.001

Rh Hippocampus 1 0.38 0.001

Rh Amygdala 1 0.33 0.001

CTR lMCIc

Lh Pallidum 0.39 1 0.001

Lh Hippocampus 1 0.39 0.001

Lh Amygdala 1 0.34 0.001

Rh Insula 0.28 0.53 0.001

Rh Pericalcarine 0.38 0.30 0.001

Rh Temporal pole 0.29 0.46 0.001

Rh Entorhinal 0.22 0.45 0.001

Rh Hippocampus 1 0.44 0.001

Rh Amygdala 1 0.33 0.001

CTR eMCIc

Lh Posterior cingulate 0.30 0.54 0.001

Lh Lingual G 0.43 0.56 0.001

Lh Temporal pole 0.39 0.49 0.001

Lh Hippocampus 1 0.26 0.001

Lh Amygdala 1 0.35 0.001

Lh Accumbens 0.36 1 0.001

Rh Insula 0.28 0.49 0.001

Rh Temporal pole 0.29 0.45 0.001

Rh Entorhinal 0.22 0.46 0.001

Rh Hippocampus 1 0.32 0.001

Rh Amygdala 1 0.32 0.001

Rh Accumbens 0.54 1 0.001

CTR AD

Lh Insula 0.38 0.51 0.001

Lh Posterior cingulate 0.30 0.55 0.001

Lh Entorhinal 0.29 0.44 0.001

Lh Hippocampus 1 0.31 0.001

Lh Amygdala 1 0.31 0.001

Rh Lateral orbitofrontal G 0.47 0.58 0.006

Rh Insula 0.28 0.53 0.001

Rh Entorhinal 0.22 0.44 0.001

Rh Hippocampus 1 0.31 0.001

Rh Amygdala 1 0.31 0.001

sMCI lMCIc

Lh Postcentral G 0.41 0.58 0.005

Lh Pallidum 0.21 1 0.001

Rh Postcentral 0.41 0.61 0.001

sMCI eMCIc

Lh Pericalcarine 0.26 0.41 0.001

Lh Transverse temporal G 0.40 0.54 0.001

Lh Accumbens 0.21 1 0.001

Rh Lingual G 0.32 0.50 0.001

Rh Accumbens 0.21 1 0.001

sMCI AD

Lh Postcentral G 0.41 0.60 0.001

Lh Pallidum 0.21 1 0.001

Rh Pericalcarine 0.28 0.37 0.001

Rh Pallidum 0.21 1 0.001

lMCIc eMCIc

Lh Accumbens 0.30 1 0.001

eMCIc AD

Lh Lingual 0.55 0.43 0.001

Rh Frontal pole 0.34 0.45 0.001

Note:CTR, controls; sMCI, stablemild cognitive impairment; lMCIc, latemild cognitive

impairment converters; eMCIc, early mild cognitive impairment converters; AD,

Alzheimer’s disease; Lh, left hemisphere; Rh, right hemisphere; G, gyrus.
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account for the lack of changes in the transitivity andmodularity
in sMCI-1y, in contrast to the other groups that weremore homo-
geneous. Studies assessing network topology in MCI subjects
should consider their results with respect to this important
heterogeneity.

Although brain networks are sparse, current neuroimaging
analyses build network representations that are continuous as-
sociation matrices (Fornito et al. 2013). For this reason, many
studies apply a threshold to these matrices in an attempt to re-
tain the true brain connections and remove the potentially spuri-
ous ones. One way of applying a threshold is to retain the
connections that overcome a level of significance. However, this
approach will result in different groups of subjects having

different numbers of edges or connections. In the current
study, we applied a threshold to the connectivity matrices of
each group by retaining the most significant connections, while
ensuring an equal number of connections across groups. Al-
though this step would ideally consist of applying a single
threshold to the connectivity matrices of different groups, there
is currently no absolute way of determining which threshold is
best (Fornito et al. 2013). For this reason, we decided to test for
group differences across a range of densities, similarly to previ-
ous studies (He et al. 2008; Yao et al. 2010). Since it does not
make sense to compute topological measures in networks that
have a random configuration, in the current study we defined
the higher bound of this range using the small-world index,

Table 4 Summary of the most relevant global and nodal network results

Measures CTR vs. sMCI CTR vs. lMCIc CTR vs. eMCIc CTR vs. AD sMCI vs. lMCIc sMCI vs. eMCIc sMCI vs. AD

Characteristic path length ↑ ↑ ↑ ↑ ↓ ↓ ↓

Clustering coefficient — ↓ ↓ ↓ ↓ ↓ ↓

Transitivity ↓ ↓ ↓ ↓ — — —

Modularity ↑ ↑ ↑ ↑ — — —

Small-worldness ↓ ↓ ↓ ↓ — — —

Nodal clustering ↓

1 region
— ↓

1 region
↓

21 regions
— — ↓

1 region
Nodal closeness centrality ↓

5 regions
↓

5 regions
↓

4 regions
↓

4 regions
— — —

↑

1 region
↑

4 regions
↑

8 regions
↑

6 regions
↑

3 regions
↑

5 regions
↑

4 regions

Note: Compared with controls, all patient groups showed an increased path length and modularity as well as changes in the nodal closeness centrality. The mean

clustering coefficient was decreased only in lMCIc, eMCIc, and AD groups, while the nodal clustering showed the most prominent changes in AD patients by being

decreased in a total of 21 regions compared with controls. Compared with sMCI patients, the other patient groups showed a decreased path length, mean clustering

coefficient, and increased closeness centrality. There were also nodal clustering decreases in 1 region in AD patients compared with sMCI patients.

Figure 8. Brain modules in controls and sMCI, lMCIc, eMCIc, and AD patients. CTR, controls; sMCI, stable mild cognitive impairment; lMCIc, late MCI converters; eMCIc,

early MCI converters; AD, Alzheimer’s disease. Four modules were identified in the networks of CTR; 3 modules were identified in sMCI, lMCIc, and eMCIc patients; 5

modules were identified in the networks of AD patients. For each group, the left and right lateral (top) and medial (bottom) brain views are shown.
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Table 5 Brain modules in controls, sMCI, lMCIc, eMCIc, and AD patients

Hemisphere Brain region Modules CTR Modules sMCI Modules lMCIc Modules eMCIc Modules AD

Left Superiorfrontal I III III III III
Left Frontalpole I I III I I
Left Rostralmiddlefrontal I II III III III
Left Caudalmiddlefrontal III III III III III
Left Parsorbitalis III I III I I
Left Lateralorbitofrontal I I I I I
Left Parstriangularis III I III III I
Left Parsopercularis III I III III I
Left Medialorbitofrontal I I I I I
Left Rostralanteriorcingulate I I I I I
Left Caudalanteriorcingulate I II I I I
Left Insula I II I I I
Left Precentral III I III III III
Left Postcentral III III III III III
Left Supramarginal I I III III III
Left Superiorparietal III III III III III
Left Inferiorparietal III III III III III
Left Paracentral III III III III III
Left Posteriorcingulate I II III III I
Left Isthmuscingulate I II I III I
Left Precuneus III III III III III
Left Cuneus III III III III III
Left Pericalcarine III III III III III
Left Lingual III II III III III
Left Lateraloccipital III III III III III
Left Transversetemporal III I III III III
Left Bankssts III III III III III
Left Superiortemporal III II II III III
Left Middletemporal III II I I III
Left Inferiortemporal III II I III III
Left Temporalpole I II II II V
Left Entorhinal II II II II V
Left Parahippocampal IV II II II V
Left Fusiform I II II III III
Left Thalamus II II II II VI
Left Caudate II II II II II
Left Putamen II II II II II
Left Pallidum II II II II II
Left Hippocampus II II II II V
Left Amygdala II II II II V
Left Accumbens II II II II II
Right Superiorfrontal I III III I I
Right Frontalpole I I III I I
Right rostralmiddlefrontal I III III I I
Right Caudalmiddlefrontal III III III III III
Right Parsorbitalis I I III I I
Right Lateralorbitofrontal I I I II I
Right Parstriangularis III I III I I
Right Parsopercularis III III III III III
Right Medialorbitofrontal I I III II I
Right Rostralanteriorcingulate I I I I I
Right Caudalanteriorcingulate I I I I I
Right Insula I II I II I
Right Precentral III I III III III
Right Postcentral III III III III III
Right Supramarginal I III III III III
Right Superiorparietal III III III III III
Right Inferiorparietal III III III III III
Right Paracentral III III III III III
Right Posteriorcingulate I III I III I
Right Isthmuscingulate I III I II I
Right Precuneus III III III III III

Continued
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which indicates whether the networks are meaningfully orga-
nized. Our results showed that there were significant differences
between groups at different densities, suggesting they were
consistent.

We would like to highlight that the present study has some
limitations. First, despite providing useful information, the

analysis of structural covariance networks does not allow correl-
ation analyses to be performedwith clinicalmeasures since there
are no individual networks but only a network per group. Never-
theless, Tijms et al. (2012, 2016), Tijms, Moller, et al. (2013), and
Tijms,Wink, et al. (2013) have overcome this limitation by provid-
ing a method that can create single-subject structural networks
using structural MRI; this method could be considered in future
graph theory studies assessing structural networks in large co-
horts of AD and MCI patients. Secondly, we had limited longitu-
dinal data regarding the clinical diagnosis of patients of only up
to 3 years. Hence, it is possible that many of the individuals in-
cluded in the sMCI group converted to dementia shortly after
this period.

In conclusion, our study is the largest to date to assess struc-
tural network topology in stable MCI, progressive MCI, and AD by
including 1008 patients and controls from 2 largemulticenter co-
horts. Our findings show, for the first time, that the transitivity
and modularity are important graph theory measures that offer
greater sensitivity to MCI and AD compared with the path length
and clustering coefficient, which have beenusedmore frequently
in graph theory studies in AD. In addition, in contrast to previous
studies, we provide a detailed description of nodal network
changes in sMCI, lMCIc, eMCIc, and AD patients. Specifically,
we show that while the nodal clustering showed widespread
changes in AD patients, the closeness centrality detected altera-
tions in several regions in all groups, showing overlapping
changes in the hippocampi and amygdala and nonoverlapping
changes in medial parietal and limbic areas in sMCI, lMCIc,
eMCIc, andAD patients. These results offer an important glimpse
into how AD progresses across different brain regions and ultim-
ately leads to changes in global network organization.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.

Table 5 Continued

Hemisphere Brain region Modules CTR Modules sMCI Modules lMCIc Modules eMCIc Modules AD

Right Cuneus III III III III III
Right Pericalcarine III III III III III
Right Lingual III III III III III
Right Lateraloccipital III III III III III
Right Transversetemporal III I I III III
Right Bankssts III III I III III
Right Superiortemporal I II II II V
Right Middletemporal I I II II V
Right Inferiortemporal III II I II I
Right Temporalpole I II II II V
Right Entorhinal II II II II V
Right Parahippocampal IV II II II V
Right Fusiform I II II II V
Right Thalamus II II II II VI
Right Caudate II II II II II
Right Putamen II II II II II
Right Pallidum II II II II II
Right Hippocampus II II II II V
Right Amygdala II II II II V
Right Accumbens II II II II II

Note: CTR, controls; sMCI, stable mild cognitive impairment; lMCIc, late mild cognitive impairment converters; eMCIc, early mild cognitive impairment converters; AD,

Alzheimer’s disease.

Table 6 Differences in the within-module degree and participation
coefficient between groups

Within-module degree CTR lMCIc P value

Region
Rh Pars opercularis G −3.29 0.53 0.002

Within-module degree CTR eMCIc P value
Region

Lh Postcentral G −0.35 1.22 0.004
Lh Superior Parietal G −0.35 0.99 0.017

Within-module degree CTR AD P value
Region

Lh Postcentral G −1.12 0.70 0.001
Lh Superior Parietal G −1.12 0.89 0.002
Lh Superior Temporal G 0.39 1.86 0.003
Rh Pars Opercularis G −2.81 0.42 0.001

Participation coefficient CTR AD P value
Region

Lh Lateral Occipital G 0.66 0.23 0.004
Rh Postcentral G 0.66 0.24 0.008
Rh Lateral Occipital G 0.66 0.32 0.001

Note: CTR, controls; sMCI, stable mild cognitive impairment; lMCIc, late mild

cognitive impairment converters; eMCIc, early mild cognitive impairment

converters; AD, Alzheimer’s disease; Lh, left hemisphere; Rh, right hemisphere;

G, gyrus. Differences between controls and AD patients survived corrections for

multiple comparisons with FDR, while the other differences between groups

were significant at an uncorrected level (P < 0.05).
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