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The results of the fit for the magnetic (non-magnetic) sample are summarized in figure 11. In the main panels of figure 
11a and 11b, we plot the following: calculated PL intensity of channel (i) using dotted green lines; calculated PL 
intensity of channel (ii) using dashed blue lines; calculated PL intensity of both channels using red lines (sum of green 
and blue lines); and the experimental PL intensities integrated over all recorded wavelengths using black points. 

The resulting fit parameters are summarized in table 2. 

Table 2: Fit parameters of the time-resolved PL intensity using the solutions of our rate equation model. 

 Sample 1 Sample 3 

βi (ns) 0.422 0.449 

 βii (ns) 0.098 0.131 

C 0.940 0.902 

 

Our approach is to fit the solutions to the spectrally integrated intensity over all recorded wavelengths as shown in figure 
11a and figure 11b. The difference in the values obtained for βi and βii is compatible with the fact that channel (ii) is 
excitonic while channel (i) is due to recombination between free electrons with localized holes. We note that the values 
of the extracted lifetimes (in particular that of the slow process, (i)), while sensitive to the underlying assumptions, 
always result in two distinct timescales. Of the lifetimes associated with these processes the lower-energy process is 
significantly slower than that of the high-energy process. We identify the parameters βi and βii listed in table 2 as the 
lifetimes associated with the respective channels. 

4. CONCLUSIONS 

We have studied the magneto photoluminescence of solution-grown nanoplatelets that consist of CdSe cores, followed 
by CdMnS shells and are terminated with CdS shells. In the presence of an externally applied magnetic field, the net PL 
emission becomes predominantly left circularly polarized (σ+) indicating the presence of exchange interaction between 
the spins of the carriers and those of the Mn2+ ions. The sign of the Zeeman splitting is compatible with the circular 
polarization of the PL emission, i.e., E+ < E-, where E+ (E-) is the energy associated with the recombination of -1/2 (+1/2) 
electrons with +3/2 (-3/2) holes. Both the circular polarization and the Zeeman splitting have a Brillouin-like dependence 
on magnetic field and temperature. The photoluminescence emission is asymmetric and can be decomposed into two 
Gaussian features. The circular polarization maximum coincides with the intensity peak of the low-energy feature. Using 
the Mn2+ ions as a marker, we identified this low-energy feature as due to recombination of delocalized electrons with 
holes localized at the CdSe/CdMnS interface. The high-energy feature is excitonic in nature and involves recombination 
of delocalized electrons with holes confined in the CdSe core. The presence of two distinct lifetimes, βi and βii, 
determined from the analysis of trPL experimental results further support this suggested model. 
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