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This manuscript studies the positioning problem based on two-way time-of-arrival (TW-TOA) measure-
ments in semi-asynchronous wireless sensor networks in which the clock of a target node is unsynchro-
nized with the reference time. Since the optimal estimator for this problem involves difficult nonconvex 
optimization, two suboptimal estimators are proposed based on the squared-range least squares and 
the least absolute mean of residual errors. We formulate the former approach as an extended general 
trust region subproblem (EGTR) and propose a simple technique to solve it approximately. The latter 
approach is formulated as a difference of convex functions programming (DCP), which can be solved using a 
concave–convex procedure. Simulation results illustrate the high performance of the proposed techniques, 
especially for the DCP approach.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Location aware services are becoming vital requirements for 
many wireless systems. Due to some drawbacks of using GPS re-
ceivers at wireless nodes for some scenarios, self-position recovery 
has been proposed as an alternative approach and extensively in-
vestigated in the literature [1–6]. Positioning based on range esti-
mates between nodes is a popular technique in the literature. For 
synchronous networks, the time-of-arrival (TOA) technique pro-
vides a good estimate of the distance between two nodes for 
reasonable signal-to-noise ratios. A huge number of algorithms 
have been proposed in the literature to address the positioning 
problem based on range measurements, e.g., the maximum likeli-
hood estimator [2], linear least-squares [7–9], squared-range least 
squares [10], projection onto convex sets [11–13], and convex re-
laxation techniques [14–18].

In asynchronous networks, the range estimate based on the TOA 
is highly sensitive to clock imperfections. Therefore, the positioning 
accuracy can be considerably degraded in the presence of clock im-
perfections. In particular, for an affine model describing the clock 
behavior, the accuracy of the positioning techniques based on the 
TOA measurements is affected by non-ideal clock offset and clock 
skew. The clock of a target node can be synchronized with a ref-
erence time (clock) with a synchronization technique using, e.g., 
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the MAC layer time stamp exchange, e.g., see, [19–23] and refer-
ences therein. Motivated by pairwise synchronization techniques, 
the authors in [24] formulate a joint synchronization and position-
ing problem in the MAC layer. If the major part of the delay is 
the fixed delay due to propagation through the radio channel, the 
joint position and timing estimation technique works well. In [25], 
the positioning problem is studied in the presence of clock im-
perfection, which is only due to the clock offset. Considering the 
effects of an imperfect clock on distance estimates in the physical 
layer, the authors in [26] investigate the positioning problem using 
time-difference-of-arrival (TDOA) measurements in the presence of 
clock imperfections. The TDOA technique effectively removes the 
clock offset, but still suffers from the clock skew. Another popular 
approach for estimating the distance between sensor nodes is to 
use a so-called two-way time-of-arrival (TW-TOA) or time-of-flight 
based technique, which is an elegant approach in removing the ef-
fect of the clock offset on range measurements [9]. TW-TOA based 
positioning has an important advantage over the conventional TOA 
and TDOA based positioning techniques in terms of implementa-
tion complexity. This is due to the fact that TOA based positioning 
requires synchronization among all reference nodes and the target 
node, and TDOA based positioning requires synchronization among 
all reference (anchor) nodes. On the other hand, no synchroniza-
tion is required for TW-TOA based positioning.

Range estimates obtained via TW-TOA are affected by the clock 
skew and a processing delay called the turn-around time [27]. 
A number of researchers have tackled the positioning problem or 
distance estimation based on TW-TOA in fully or partially asyn-
chronous networks [28–31]. The authors in [32] propose an ap-
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proach to refine the position and clocks of the reference nodes 
during positioning and synchronization. To improve the range es-
timation via TW-TOA, an effective technique based on a new clock 
counter scheme is proposed in [33]. The authors in [29] study the 
positioning problem in the presence of clock imperfections for a 
TW-TOA based technique and propose a linear least squares based 
approach to solve the problem. The proposed approaches work 
well in some scenarios, e.g., when there is a sufficient number 
of reference nodes at known positions. In general, the previously 
proposed approaches require modifications to be effectively ap-
plied to the positioning problem in which the clock skew and turn 
around times are also unknown. In addition, for practical applica-
tions the proposed algorithms may not be robust against outliers 
and non-line-of-sight errors. In this study, we consider the posi-
tioning of a single target node based on TW-TOA measurements 
in the presence of clock imperfections. In this approach, a target 
node transmits a signal to a reference node located at a known po-
sition and the reference node responds to the received signal after 
an unknown turn-around time delay. As it is common in the litera-
ture, we assume that the reference node measures the turn-around 
time by a loop back test and transmits the estimate to the target 
node [34,33]. The target node then computes the round-trip delay 
based on an estimate of the turn-around time. Assuming an affine 
model for the clock of the oscillator, it is observed that the range 
estimation using the TW-TOA measurement is affected by an un-
known clock skew of the target node. Modeling the measurement 
errors as Gaussian random variables, we obtain the optimal esti-
mator to find the clock skew, and the location of the target node, 
and the turn-around times for the reference nodes. The optimal es-
timator poses a high dimensional optimization problem and needs 
more than one distance estimate for every link to provide good 
estimates of the unknown parameters. We, then, omit the effect 
of the turn-around times using a linear transformation and con-
sequently obtain a near-optimal estimator to find the location and 
clock skew of the target node. Both the optimal and near-optimal 
estimators for the positioning problem considered in this study are 
nonconvex and difficult to solve. Using some approximations, we 
obtain two suboptimal estimators. In the first approach, we con-
sider the squared-range least-squares approach and formulate the 
problem as an extended general trust region subproblem (EGTR) – 
a quadratic programming with two nonconvex constraints. In gen-
eral, EGTR is difficult to solve; hence, we modify the proposed 
technique in [35] to approximately solve EGTR. In the second ap-
proach, we minimize the residual errors based on the �1 norm and 
arrive at a nonconvex problem in the form of the difference of con-
vex functions programming (DCP). The estimator based on �1 norm 
minimization of the residual can be an effective approach when 
there are outliers or when the measurement errors deviate from 
the Gaussian distribution. For example in practical scenarios, the 
direct path may be blocked and the measured distance may be 
larger than the actual distance, resulting in positive bias and non-
Gaussian errors. In the positioning literature the DCP approach was 
first applied to TDOA based positioning in [36]. We employ a simi-
lar concave–convex procedure as in [36] to solve the problem. Note 
that the latter approach is robust against outliers. Simulation re-
sults indicate the high performance of the proposed techniques, 
especially the DCP.

In summary, we extend our previous work [35] with the fol-
lowing main contributions:

• an approximate MLE (AMLE) to estimate the location and clock 
skew of the target node; (The MLE was first investigated in the 
previous work [35].)

• a suboptimal estimator based on extended general trust region 
subproblem (EGTR) for squared-range measurements; (The 
proposed approach is different from GTR in [35] since EGTR 
considers two constraints as opposed to a single constraint in 
GTR proposed in [35].)

• a suboptimal estimator formulated as DCP that can be solved 
using a concave–convex procedure.

The remainder of the manuscript is organized as follows. Sec-
tion 2 explains the signal model considered in this study. In Sec-
tions 3 and 4 the localization algorithms are studied. Complexity 
analyses of different approaches are discussed in Section 5. Simu-
lation results are presented in Section 6. Finally, Section 7 makes 
some concluding remarks.

Notation: The following notations are used in this manuscript. 
Lowercase Latin/Greek letters, e.g., a, b, β , denote scalar values and 
bold lowercase Latin/Greek letters represent vectors. Matrices are 
shown by bold uppercase Latin/Greek letters. IM is the M by M
identity matrix. The operator E{·} is used to denote the expecta-
tion of a random variable (or vector). The �p norm of a vector is 
denoted by ‖ · ‖p . The diag(X1, . . . , XN) is a diagonal matrix with 
diagonal elements X1, . . . , XN . For two matrices A and B , A � B
means A − B is positive semidefinite. �g(a) denotes the gradient 
of g(x) at x = a. The set of all N-vector with positive components 
are denoted by RN+ . We use ⊗ to denote the Kronecker product.

2. System model

Consider a two dimensional network1 with N reference (an-
chor) nodes located at known positions ai = [ai,1 ai,2]T ∈ R

2, i =
1, ..., N . Suppose that one target node is placed at unknown posi-
tion x = [x1 x2]T ∈ R

2. We assume that the target node estimates 
the distance to a reference node by performing a TW-TOA mea-
surement. We further assume that the clock value of an imperfect 
clock follows an affine relation with the true (global) time t [37,
19,20,22,23]. That is, the clock value of reference node i is

hi(t) � wit + θi (1)

where wi is the skew and θi is the offset associated with the ith 
node clock. Note that a perfectly synchronized clock has wi = 1
and θi = 0. In practice, wi is a number close to 1. For convenience, 
we denote the target clock as h(t), where h(t) = wt + θ .

A TW-TOA measurement between the target node and the ith 
reference node for the kth round (time) is carried out as follows: 
(a) the target sends a message to the reference node at (global) 
time tk

i,1, (b) the message arrives at the reference node at time tk
i,2, 

(c) the reference node sends a return message at time tk
i,3, and 

(d) the return message arrives at the target node at time tk
i,4. 

Clearly, tk
i,2 − tk

i,1 = tk
i,4 − tk

i,3 = di/c, where c is the propagation 
speed and di � d(x, ai) � ‖x−ai‖2 is the distance between the tar-
get and ith reference node. Moreover, tk

i,3 = tk
i,2 + Ti , where Ti is 

the turn-around time in the ith reference node, which is assumed 
to be fixed during the positioning process. The TW-TOA measure-
ment is computed in the target local clock as

zk
i = 1

2

[
h(tk

4,i)−h(tk
1,i)+nk

i

]= w
di

c
+ w

Ti

2
+ nk

i

2
, k = 1,2, . . . , K

(2)

where nk
i is the TW-TOA measurement error, which we model

as a zero-mean Gaussian with standard deviation σi , i.e., nk
i ∼

N (0, σ 2
i ), and K as the number of the TW-TOA measurements dur-

ing the positioning process.

1 The generalization to a three dimensional network is straightforward, but is not 
explored in this study.
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The unknown parameter Ti either might be extremely small 
and can be neglected [20], (e.g., for a small network when there 
are no strict constraints on the MAC layer delay) or it needs to be 
estimated. One way to deal with the unknown parameter Ti is to 
jointly estimate it along with the location of the target node [38]. 
It can also be estimated by reference node i using a loop back test 
and is sent back to the target node [33]. In this study, we consider 
the latter approach. The estimate of Ti is

T̃ k
i = hi(t

k
3,i) − hi(t

k
2,i) + εk

i = wi Ti + εk
i , k = 1,2, . . . , K (3)

where we model the estimation error as ε ∼N (0, γ 2
i ).

In the sequel, we assume that the reference nodes are syn-
chronized with a reference clock, e.g., via a GPS signal.2 Therefore 
wi ≈ 1 and we can write T̃ k

i ≈ T̂ k
i , where

T̂ k
i � Ti + εk

i (4)

or equivalently

Ti = T̂ k
i − εk

i . (5)

Estimating the turn around time in reference nodes involves 
TOA measurements (in a loopback based test); hence, it is subject 
to TOA estimation errors [33].

We now replace Ti in (5) with that in (2) and obtain an ap-
proximate (transformed) model for measurements

zk
i = w

di

c
+ w

T̂ k
i

2
+ nk

i

2
− w

εk
i

2
. (6)

As mentioned, the approximation is good in the (reasonable) case 
when the reference nodes are equipped with accurate clocks.

In the following sections, we use the input data 
{{zk

i , T̂
k
i }N

i=1

}K
k=1

to obtain the optimal estimator based on models (2)–(4) or sub-
optimal estimators according to (6). The parameters w and Ti , 
i = 1, 2, . . . , N , are considered as unknown nuisance parameters, 
while σi , γi , and ai are assumed to be known for i = 1, 2, . . . , N .

3. Maximum likelihood estimator

We define the measurement vector

m �

⎡
⎢⎢⎢⎣

m1

m2

...

mK

⎤
⎥⎥⎥⎦ , (7)

where

mk �
[

zk
1 zk

2 · · · zk
N T̂ k

1 T̂ k
2 · · · T̂ k

N

]T
. (8)

To obtain the MLE for joint estimation of the position and clock 
skew of the target node, the following optimization problem needs 
to be solved [41]:[

x̂T ŵ t̂
T
a

]
= arg max

w∈R+; ta∈R N+; x∈R2
p(m; w, ta, x) (9)

where p(m; w, ta, x) is the probability density function (pdf) of 
vector m indexed by the vector [xT w tT

a ]T and ta =
[T1 T2 . . . T N ]T . Since the TOA measurement errors are assumed 
to be independent and identically distributed random variables, 
the pdf of m can be calculated from (2) and (4) as

2 There error of synchronization using GPS signals is on the order of 10 nanosec-
onds or less [39,40].
p(m; w, ta, x)

=
K∏

k=1

N∏
i=1

√
2

πσ 2
i

exp

(
−2(zk

i − wTi/2 − wd(x,ai)/c)2

σ 2
i

)

×
√

1

2πγ 2
i

exp

(
− (T̂ k

i − Ti)
2

2γ 2
i

)
. (10)

Then, the MLE is obtained as[
x̂T ŵ t̂a

]T = arg max
x∈R2; w∈R+; ta∈R N+

p(m; w, ta, x)

= arg min
x∈R2; w∈R+; ta∈R N+

K∑
k=1

N∑
i=1

2

σ 2
i

(
zk

i − w
Ti

2
− w

di

c

)2

+ (T̂ k
i − Ti)

2

2γ 2
i

. (11)

For the MLE formulated in (11) there are N + 3 unknowns. 
Therefore, for low numbers of messages K , the MLE problem can 
be ill-posed. To alleviate the difficulty for solving the optimal MLE 
in (11), we investigate another approximate MLE based on the 
model obtained in (6). In fact in the MLE we use both measure-
ments and prior knowledge about Ti to jointly estimate the lo-
cation, clock skew, and turn-around times, while, relying on the 
estimate of turn-around time, we can use the approximate model 
in (6) (a transformed model) to only estimate the location and 
clock skew.

We collect zk
i from (6) in a vector ma = [z1

1 . . . z1
N . . .

zK
1 . . . zK

N ]T . Next, we compute the pdf of ma as

p(ma; w, x) =
K∏

k=1

N∏
i=1

√
2

π(σ 2
i + w2γ 2

i )

× exp

(
−2(zk

i − wdi/c − wT̂ k
i /2)2

(σ 2
i + w2γ 2

i )

)
. (12)

We then find an approximate MLE (AMLE)3 as[
x̂T ŵ

]T = arg max
x∈R2; w∈R+

p(ma; w, x)

= argmin
x∈R2; w∈R+

K∑
k=1

N∑
i=1

2

(σ 2
i + w2γ 2

i )

(
zk

i − w
T̂ k

i

2
− w

di

c

)2

+ 1

2
ln(σ 2

i + w2γ 2
i ). (13)

It is observed that the search domain in the AMLE in (13) is limited 
to the location x and the clock skew w , thus a lower dimensional 
search compared to that of the MLE in (11).

It is also noted that both the MLE and AMLE formulations in 
(11) and (13) pose difficult global optimization problems. To avoid 
the drawbacks in solving these problems, we propose two subop-
timal estimators in the next section.

4. Proposed techniques

In this section, we propose two techniques based on squared-
range least squares and �1 norm minimization of residuals. First, 
we divide both sides of (6) by w (we safely assume that w 
= 0) 
and express the model as

3 We call the MLE in (13) as AMLE because it is based on the approximate model 
(6) instead of the original measurements in (7).
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zk
i α − T̂ k

i

2
= di

c
+ nk

i

2
α − εk

i

2
, i = 1,2, . . . , N, k = 1,2, . . . , K

(14)

where α = 1/w .
In the following, the model in (14) is employed in order to de-

rive the proposed suboptimal estimators.

4.1. Squared-range measurement least squares

In this section, we assume that the measurement noise αnk
i /2 −

εk
i /2 is small compared to di/c. Then, taking the square of both 

sides of (14) and dropping the small terms yield

(zk
i α)2 + (T̂ k

i )2

4
− zk

i T̂ k
i α � 1

c2
(xT x − 2aT

i x + ‖ai‖2
2) + νk

i , (15)

where νk
i = di(αnk

i −εk
i )/c. Now, we apply a weighted least squares 

criterion to the model in (15) and obtain the following minimiza-
tion problem:

minimize
x∈R2; α∈R+

K∑
k=1

N∑
i=1

1

d2
i (α

2σ 2
i + γ 2

i )

(
1

c2
xT x − 2

c2
aT

i x − (zk
i )

2α2

+ zk
i T̂ k

i α + 1

c2
‖ai‖2

2 − (T̂ k
i )2

4

)2

. (16)

The problem in (16) can be expressed as a quadratic programming 
problem

minimize
y

‖W 1/2(A y − b)‖2
2

subject to yT D1 y + 2 f T
1 y = 0

yT D2 y + 2 f T
2 y = 0 (17)

where matrices W , A, D1, and D2 and vectors b, f 1, f 2, and y
are defined as

W = I K ⊗ diag

(
1

d2
1(α

2σ 2
1 + γ 2

1 )
, . . . ,

1

d2
N(α2σ 2

N + γ 2
N )

)
,

A �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
c2 − 2

c2 aT
1 −(z1

1)
2 z1

1 T̂ 1
1

...
...

...
...

1
c2 − 2

c2 aT
N −(z1

N)2 z1
N T̂ 1

N
...

...
...

...
1
c2 − 2

c2 aT
1 −(zK

1 )2 zK
1 T̂ K

1
...

...
...

...
1
c2 − 2

c2 aT
N −(zK

N)2 zK
N T̂ K

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
c2 ‖a1‖2

2 + (T̂ 1
1 )2

4
...

− 1
c2 ‖aN‖2

2 + (T̂ 1
N )2

4
...

− 1
c2 ‖a1‖2

2 + (T̂ K
1 )2

4
...

− 1
c2 ‖aN‖2

2 + (T̂ K
N )2

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D1 � diag(0,1,1,0,0),

f 1 �
[
−1

0 0 0 0

]T

D

f

y

k
m
a
x̂
tr
h
d
it
w
ta

e
m
T
(E
so
so
st
p
It
th
4
p
b
p
b
g
li
it
th
a
th

(

(

(

U
le

y

In
y

φ

w
μ

I

w
(A
lu
c
p
([

th
2
2 � diag(0,0,0,0,1)

2 �
[

0 0 0 − 1

2
0

]T

�
[
‖x‖2

2 xT α2 α
]T

. (18)

Note that since the weighting matrix W depends on the un-
nown distance di and α, we first replace W with the identity 
atrix and find an estimate of the location and α as described 

bove. Then, we reconstruct the distance considering the estimate 
as d̂i = ‖x̂ − ai‖2 and form a new approximate weighting ma-

ix. This approach can be continued for a number of iterations; 
owever, as we have observed through simulations, after two up-
ates, the estimation accuracy improves only slightly via additional 
erations. For i.i.d. measurement errors, σi = σ and γi = γ , the 
eighing matrix will be simplified and only be dependent on dis-
nces.

The constraints in (17) equivalently express two constraints on 
lements of y, i.e., xT x = ‖x‖2

2 and αα = α2. The problem in (17)
inimizes a quadratic function over two quadratic constraints. 

his type of problems is called the extended trust region problem 
GTR) or two trust region problem and is generally difficult to 
lve [42,43]. For special cases, the EGTR problem can be exactly 
lved [44]. In the previous work, by dropping the second con-
raint in (17), the problem was formulated as a trust region sub-
roblem (GTR) [35] that can be solved under mild conditions [45]. 
 has also been known that the GTR has zero duality gap and 
e optimal solution can be extracted from the dual solution [46,

4,45]. However, in this study, we consider both constraints and 
ropose an algorithm to approximately solve the problem in (17)
y modifying the GTR approach in [35]. The performance of the 
roposed approach requires further investigations in future work, 
ut as investigated through the simulations, the algorithm provides 
ood performance in various situations. The proposed approach re-
es on a fact about the structure of the problem and tries to adjust 
erations toward a reasonable solution. To this end, we first omit 
e second constraint and consider a GTR similar to [35]. For GTR, 

 necessary and sufficient condition for y∗ to be optimal in (17) is 
at there exists a μ ∈ R such that [46]

AT W A + μD1)y∗ = (AT W b − μ f 1),

y∗)T D1 y∗ + 2 f T
1 y∗ = 0,

AT W A + μD1) � 0. (19)

nder the conditions considered in (19), the solution to the prob-
m of (17) is given by

(μ) = (AT W A + μD1)
−1(AT W b − μ f 1). (20)

 such a situation to find μ, we simply replace (20) into constraint 
T D1 y + 2 f T

1 y = 0, i.e.,

(μ) = yT (μ)D1 yT (μ) + 2 f T
1 y(μ) = 0, μ ∈ I (21)

here the interval I consists of all μ such that AT W A +
D1 � 0. The interval I is given by [10]

= (−1/μ1,∞), (22)

ith μ1 representing the largest eigenvalue of
T W A)−1/2 D1(AT W A)−1/2 [45]. Next in order to force the so-
tion to satisfy the second constraint, we check the last two 

omponents of y(μ) to see if [y(μ)]4 = ([y(μ)]5)
2. If not, we re-

lace the values of [y(μ)]4 and [y(μ)]5 by [y(μ)]4 = ([y(μ)]4 +
y(μ)]5)

2)/2 and [y(μ)]5 = √[y(μ)]4
In summary, the suggested algorithm to (approximately) solve 

e problem in (17) is expressed as
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Algorithm 1 EGTR.
1: Initialization: λ1 = −1/μ1 and λ2 = 1/μ1 and set values of ς and s
2: for k = 0 until convergence or predefined number K do
3: Compute y(λi), i = 1, 2 from (20)
4: If |[y(λi)]4 − ([y(λi)]5)2| ≥ ς (ς is a predetermined small value), then 

replace [y(λi)]4 and [y(λi)]5 by [y(λi)]4 = ([y(λi)]4 + [(y(λi)]5)2)/2 and 
[y(μ)]5 = √[y(μ)]4

5: Compute φ(λi), i = 1, 2 from (21)
6: if φ(μ1)φ(μ1) > 0 then
7: λ1 = λ2 and λ2 = sλ2

8: else
9: λ′ = (λ1 + λ2)/2

10: compute φ(λ′)
11: if φ(λ′) > 0 then
12: λ1 = λ′
13: else
14: λ2 = λ′
15: end if
16: end if
17: end for

• Use a bisection search to find a root of φ(μ) = 0, say μ∗ . 
Note that φ(μ) is a strictly decreasing function with re-
spect to μ [45]. In every step of the bisection search, if 
|[y(μ)]4 − ([y(μ)]5)

2| ≥ ς (ς is a predetermined small value), 
then replace [y(λi)]4 and [y(λi)]5 by [y(λi)]4 = ([y(λi)]4 +
[(y(λi)]5)

2)/2 and [y(μ)]5 = √[y(μ)]4.
• Replace μ∗ into (20) to obtain y∗ = y(μ∗).
• Estimate the unknown parameters as x̂ = [y∗]2:3 and ŵ =

1/[y∗]4, with [v]i: j denoting the ith to the jth elements of 
vector v .

The details of the algorithm are shown in Algorithm 1.
The main difference between the GTR approach in [35] and the 

EGTR in this work is in the step four of Algorithm 1. Namely, this 
step is not present in our previous work. In the simulation sec-
tion, we compare the performance of the EGTR in this study and 
the GTR in [35] and observe that the proposed approach generally 
outperforms the previous algorithm.

Remark 1. Yet another approach to approximately solve the prob-
lem in (17) is to break the problem into two GTR problems. That 
is, we consider two separate GTRs with the same objective func-
tions but different constraints, one with the first constraint and the 
other with the second constraint. We then solve GTRs in parallel, 
but for every iteration, we make sure both solutions are close to 
each other. That is, we force both solutions to agree on their com-
ponents. We will not investigate this technique since it is more 
complex than the approach proposed above.

Another estimator based on a linear least squares (LLS) ap-
proach obtained in Appendix 8.1 can be alternatively applied to 
the model in (15). Note that the algorithm derived in Appendix 8.1
is similar to the one proposed in [29], except the correction tech-
nique introduced in this study. As will be observed in the simu-
lations section the proposed approach in this section, i.e., EGTR, 
has better performance than the LLS approach, especially for low 
number of reference nodes.

4.2. A concave–convex procedure (CCCP)

In this section, we take the �1 norm minimization of residual 
errors into account and propose a technique to solve the position-
ing problem. Namely, based on (14), we consider the following �1
norm minimization problem:

minimize
x∈R2; α∈R+

‖r‖1 (23)
where r = [r1
1 . . . r1

N . . . rK
1 . . . rK

N ]T with rk
i = zk

i α − T̂ k
i /2 −di/c. Note 

that for high signal-to-noise ratios (low standard deviations of 
noise), the �2 and �1 minimization approaches have similar perfor-
mance [47]. Moreover, the �1 norm minimization in (23) is robust 
against outliers [47]. Outliers in the positioning process may arise 
due to various reasons; e.g., blockage of the direct path can lead to 
outliers in some situations. The optimization problem in (23) can 
be written (in the epigraph form) as [47,36,48]

minimize
x∈R2;α∈R+;t∈RN+

K∑
k=1

N∑
i=1

tk
i

subject to zk
i α − T̂ k

i /2 − di/c ≤ tk
i

zk
i α − T̂ k

i /2 − di/c ≥ −tk
i . (24)

The nonconvex problem in (24) is reminiscent of a well-known 
nonconvex problem called difference of convex functions program-
ming (DCP) [49]. The general form of DCP is as follows:

minimize
x

f0(x) − g0(x)

subject to wi(x) − gi(x) ≤ 0, i = 1, . . . , M (25)

where f0, wi(x) and gi(x) are smooth convex functions for i =
1, . . . , M . A method to solve (25) is to sequentially solve the prob-
lem. That is, we first approximate the concave function (−gi(x))

with a convex one by an affine approximation. Let us consider a 
point x j in the domain of the problem in (25), linearize the con-
cave function around x j and write the optimization problem in 
(25) as

minimize
x

f0(x) − g0(x j) − �g0(x j)T (x − x j)

subject to wi(x) − gi(x j) − �gi(x j)T (x − x j) ≤ 0. (26)

The convex problem in (26) can now be solved efficiently. Denote 
the solution of (26) as x j+1. Next we go for further improving the 
solution by convexifying (25) for the new point x j+1 similar to the 
procedure employed for x j . This sequential programming proce-
dure, called concave–convex programming (CCCP), continues for a 
number of iterations. The convergence of the CCCP to a stationary 
point has been shown in the literature, e.g., [49,50] and references 
therein.

Applying the CCCP technique to the problem in (24), we get the 
following optimization problem:

minimize
x∈R2;α∈R+;t∈RN+

K∑
k=1

N∑
i=1

tk
i

subject to zk
i α − hT

i, jx − b j
i,k − tk

i ≤ 0

1

c
‖x − ai‖2 − zk

i α + T̂ k
i

2
− tk

i ≤ 0 (27)

where

hi, j = (x j − ai)/(cd(ai, x j))

b j
i,k = T̂ k

i /2 − hT
i, jx

j + d(ai, x j)/c. (28)

The optimization problem in (27), which is called second order 
cone programming (SOCP), can be efficiently solved. We call the 
corresponding CCCP as CCCP-SOCP. Algorithm 2 shows a high level 
implementation of the algorithm.

5. Complexity analysis

In this section, we study the complexity of the proposed tech-
niques in terms of floating point operations (flops) and also run-
ning time in Matlab. We compare the complexity of the MLE, LLS, 
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Algorithm 2 CCCP-SOCP.
1: Initialization: choose initial value for x0

2: for j = 0 until convergence or predefined number J do
3: Compute hi, j and b j

i,k from (28)
4: Solve problem (27) and denote the solution xo

5: set x j+1 = xo

6: end for

Table 1
Complexity of different approaches.

Method Complexity

MLE (GN initialized with good initial points) O (kmle K 2 N3)

AMLE (GN initialized with good initial points) O (kamle(K N)2)

CCCP-SOCP O (kcccp(K N)3.5 log (1/ε))

LLS O (K N)

EGTR O (ksq K N)

EGTR, and CCCP-SOCP. To compute the complexity of the MLE, we 
assume that a good initial point is available, and an iterative al-
gorithm such as the Gauss–Newton (GN) method converges to the 
global minimum after a number of iterations. Of course, finding a 
good initial point for the MLE is a challenging problem and this 
study also aims to tackle it. For the problem at hand the com-
plexity of the MLE for every Newton step can be computed as 
O (K 2N3). For the AMLE, the complexity for every Newton step 
can be computed as O ((K N)2). The corresponding LLS needs an 
order of O (K N) to implement. For the EGTR, we need to use a 
bisection search to solve (21), which is the most complex part of 
the algorithm. Suppose the bisection search takes ksq steps, then 
the total cost of the proposed approach can be approximated as 
O (ksq K N). In the simulations, we have observed that the bisection 
search algorithm usually takes 20 to 30 iterations to find the opti-
mal value of γ . Note that we need to run the LLS and EGTR twice. 
Thus the corresponding complexities are increased by a factor of 
two. Finally, the complexity of the CCCP-SOCP can be computed as 
follows. Consider a general form of the SOCP problem as

minimize
x∈Rn

cT x

subject to ‖Aix + bi‖2 ≤ cT
i x + di, i = 1, . . . ,m,

‖x‖2 ≤ R (29)

where Ai ∈ R
ki×n, bi ∈ R

ki , and di ∈ R. Note that the constraint 
on the norm of x ensures the strong convexity of the centering 
problem in the barrier approach [47]. The worst-case complexity 
of the problem in (29) can be computed as O ((1 + m)1/2n(n2 +
m +∑m

i=1 k2
i ) log (1/ε)) [51], where ε is an accuracy tolerance in 

solving the problem.
The complexity of the CCCP-SOCP for every estimate x j can now 

be approximated as

O ((K N)3.5 log (1/ε)).

As mentioned before we need to solve the problem in kcccp steps, 
hence the total cost is O (kcccp(K N)3.5 log (1/ε)). As we observe, 
a small number of updatings, usually three, kcccp = 3, is enough 
to obtain the solution. Table 1 summarizes the complexity of the 
different approaches.

We have also measured the average running time of differ-
ent algorithms for a network consisting of 6 reference nodes as 
considered in Section 6. In the simulations, we set K = 2 and 
σi = γi = 10. The algorithms have been implemented in Matlab 
on a MacBook Pro (Processor 2.3 GHz Intel Core i7, Memory 8 GB 
1600 MHz DDR3). The MLEs are implemented by Matlab function 
fminsearch initialized with the true values of the target position, 
the clock skew, and turn-around times. It is noted that the func-
tion fminsearch is based on the Nelder-Mead simplex algorithms, 
which does not compute gradients or Hessians to find; hence, its 
Table 2
Running time of different algorithms.

Method Time (ms)

AMLE 32
MLE 317
LLS 0.74
EGTR 6.2
CCCP-SOCP 976

complexity might not be the same as the complexity of Newton-
type algorithms. The CCCP-SOCP is implemented by the CVX tool-
box [52]. We use three updatings to get an estimate.

We run the algorithms for 500 realizations of the network and 
compute the average running time in ms. The results are shown 
in Table 2. Considering the complexity analysis and average run-
ning time in Tables 1 and 2, respectively, we can conclude that the 
proposed approach has reasonable complexity and running time. 
Although CCCP-SOCP takes a longer amount of time than MLE, it 
does not need a good initial point. While for the MLE with an 
arbitrary initial point, the algorithm may converge to a local mini-
mum resulting in a large position error. As we will see in the next 
section, the CCCP-SOCP outperforms both the LLS and EGTR ap-
proaches in terms of the root-mean-squared-error.

6. Numerical results

In this section, we evaluate the performance of the proposed 
approaches through computer simulations. We consider a 1600 m 
by 1600 m area and a number of reference nodes that are lo-
cated at fixed positions a1 = [800 800], a2 = [800 −800], a3 =
[−800 800], a4 = [−800 −800], a5 = [800 0], a6 = [0 800], a7 =
[−800 0], and a8 = [0 −800]. In the simulations, we pick the 
first N reference nodes, i.e., a1, . . . , aN . One target node is ran-
domly distributed inside the area. The turn-around time is set to 
0.001 ms. The clock skew is assumed to be unknown and is set to 
100 PPM, i.e., w = 1.0001. Such a value for clock skew is common 
for a practical oscillator. For example for a center carrier frequency 
fc = 100 MHz and a frequency offset � f = 10 kHz, the actual fre-
quency is given by fc ±� f . Therefore, the period of the oscillating 
signal (versus the nominal period T0 = 1/ fc) is given by

T = 1

fc ∓ � f
≈ 1

fc
(1 ± � f

fc
) = T0(1 ± 0.0001) (30)

which shows how the clock of the oscillator is scaled with respect 
to the nominal clock T0.

To compare different approaches, we use the root-mean-
squared-errors (RMSEs) defined as

RMSE �
√
E‖x̂ − x‖2

2. (31)

We compare the proposed techniques (CCCP-SOCP, which is im-
plemented using CVX, and EGTR) with the MLE and AMLE in (11)
and (13), respectively, (which are implemented by Matlab function 
fminsearch initialized with the true values of the target location, 
turn-around times, and clock skew), the GTR in [35], the LLS de-
rived in Appendix 8.1, and the Cramér–Rao lower bound (CRLB) 
as derived in Appendix 8.2. In the simulations, we assume that 
σi = γi = σ , i = 1, . . . , N . We randomly initialize the CCCP-SOCP 
inside the network and we also set kcccp = 3. We use 2000 Monte 
Carlo simulations to generate the results. To simulate the range 
measurements and estimates of turn around times, we use mod-
els (4) and (2), respectively. To implement the bisection search, we 
consider an interval defined by I lower and Iupper and investigate if 
the zero crossing of φ(μ) in (21) occurs in the interval. To check 
if the solution lies in the interval, we simply check the sign of 
φ(μ) at I lower and Iupper. No change in sign means that the solu-
tion lies outside of the current interval. For initialization, we set 
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Fig. 1. The RMSE of different approaches for K = 2 for (a) five reference nodes, (b) six reference nodes, (c) seven reference nodes, and (d) eight reference nodes.
I lower = −1/μ1 and Iupper = 1/μ1. If the solution of φ(μ) = 0 is 
not found in the interval, we change the interval as I ′lower = Iupper
and I ′upper = 10Iupper (s = 10 in Algorithm 1). If the solution lies in 
an interval, we bisect the interval and investigate which subinter-
val contains the solution. We also set ς = 0.05.

Fig. 1 shows the RMSEs of location estimates for different ap-
proaches for various numbers of reference nodes. In the simula-
tions, we set K = 2. It is observed that the proposed approach, 
CCCP-SOCP, achieves good performance very close to the optimal 
estimator MLE and the CRLB, especially for low number of refer-
ence nodes and high signal-to-noise ratios. From the figure, it is 
noted that the EGTR proposed in this study generally outperforms 
the previous GTR and LLS, especially for low numbers of reference 
nodes. As the number of reference nodes increases, the LLS, GTR, 
and EGTR show similar performance. We have observed a similar 
behavior for other network deployments. In general, EGTR pro-
vides more robust and accurate estimates than GTR, especially for 
small number of measurements (small K or N). It is also observed 
that for large numbers of reference nodes, the least squares based 
approach shows better performance compared to the CCCP-SOCP 
approach for the low standard deviation of noise. The reason is 
that for low measurement errors, the squared term (vk

i )
2 is negli-

gible and thus the approximation in (15) is more likely to be valid. 
In addition for a larger number of reference nodes, matrix A will 
be well-conditioned and thus numerical roundoff errors will de-
crease.

Next, we study the effects of NLOS measurements on the per-
formance of estimators. We assume that a range measurement can 
be affected by NLOS errors with probability 0.2. For every NLOS 
measurement, we add a uniform noise to the measurements as 
follows:

zk
i = w

(
di

c
+ Ti

2

)
+ qiu

k
i + nk

i

2
(32)

where we assume that uk
i ∼ U [0, 5/c] and qi ∈ {0, 1} are iid 

Bernoulli random variables with Pr{qi = 1} = 0.2. The uniform dis-
tribution is commonly used to model NLOS error, e.g., [53,54,12].

Fig. 2 depicts the performance of different approaches in NLOS 
conditions for K = 2. It is observed that the CCCP-SOCP achieves 
high performance compared to the other approaches, especially for 
low standard deviations of noise, and it is robust against outliers 
as expected. For small σ , the dominant perturbation is outlier dis-
turbance and consequently the MLE derived in this study is not 
optimal, explaining why the MLE is worse than the CCCP-SOCP ap-
proach. For large standard deviations of noise, which indicates the 
Gaussian measurement noise is dominant, the CCCP-SOCP seems 
to outperform the MLE. This can be explained by the fact that 
the MLE is only guaranteed to be asymptotically optimal, i.e., for 
low noise standard deviation or large number of measurements. 
Note that we have employed the MLE computed in (11) and (13)
to study their robustness against NLOS conditions. It may be pos-
sible to derive an MLE to deal with NLOS measurements if the 
distribution of outliers is known. From the figure, it is observed 
that the proposed EGTR outperforms GTR and LLS, especially for 
low numbers of reference nodes. In general, for a fixed network, 
the performance of algorithms is affected by two perturbations: 
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Fig. 2. The RMSE of difference approaches for NLOS conditions (K = 2) for (a) five reference nodes and (b) six reference nodes.

Fig. 3. Convergence of proposed approaches for 50 random initializations for cσ = 10 and K = 2 for (a) 6 reference nodes, (b) 8 reference nodes.
measurement noise and NLOS errors. As the measurement error 
becomes smaller, the performance is mainly affected by NLOS er-
rors. Since NLOS statistics are fixed in the simulation, we expect a 
kind of flat behavior for RMSE.

We now study the convergence of CCCP-SOCP through simula-
tions. Fig. 3 depicts the convergence speed of the proposed ap-
proach for 50 random initializations. In the simulations, we set 
K = 2. For every estimate given by CCCP-SOCP, we compute the 
residual ‖r‖1, where r is given by (23). It is observed that the 
CCCP-SOCP approach converges very fast, approximately in three 
sequential updatings.

Finally we briefly compare the performance of EGTR with GTR-
based algorithm without considering the clock skew. The signal 
model of (2) can be expressed as

zk
i = di

c
+ Ti

2
+ nk

i

2
+ ρ(

di

c
+ Ti

2
)︸ ︷︷ ︸

�bi

, k = 1,2, . . . , K (33)

where ρ is the clock skew deviation from one, i.e., w = 1 + ρ . It 
is observed that imperfect clock skew causes a bias bi in the mea-
surement compared to the ideal scenario, i.e., for ρ = 0. For very 
small bi , estimating the clock skew parameter along with the lo-
cation estimate may result in large location errors. However, when 
the bias is considerable compared to the measurement error nk

i
2 , 

the joint estimation leads to improve accuracy. Considering the 
model in (33), we may need to take into account different issues 
to design an algorithm. For example, since the mean of the per-
turbation is nonzero, we may need to estimate and subtract the 
mean from the measurement for designing an algorithm such as 
least squares. Here, we employ a localization algorithm proposed 
for the ideal scenario when the model actually comes form (33). In 
particular, the proposed GTR algorithm for ideal clock is compared 
with EGTR for different values of ρ .

Fig. 4 shows the RMSE of EGTR and GTR without clock skew 
consideration. It is observed that the joint estimation of the loca-
tion and clock skew for high SNR improves the accuracy of local-
ization. For low SNRs, the accuracy mainly depends on the variance 
of measurement noise. It is also observed that as the clock skew 
deviation from one increases, the performance of the traditional 
approach without considering the clock parameter degrades dras-
tically, especially for high SNRs. The performance of EGTR remains 
almost the same as ρ changes. This figure also shows an improved 
performance for EGTR compared to GTR. In fact, it can be observed 
that EGTR is more robust than GTR.

7. Conclusions

In this manuscript, TW-TOA based positioning has been stud-
ied in a semi-asynchronous network in which the clock of the 
target node is not synchronized with a perfect clock. Since the op-
timal ML estimator is highly nonconvex and difficult to solve, two 
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Fig. 4. The RMSE of EGTR and GTR omitting clock skew for K = 2 for different values of ρ (a) ρ = 0.0001, (b) ρ = 0.0002, (c) ρ = 0.0003, and (d) ρ = 0.0004.
efficient suboptimal estimators have been obtained for the prob-
lem under some approximations and conditions. The first method 
is based on the squared-range least squares that is formulated as 
an extended general trust region subproblem (EGTR). A simple ap-
proach has been proposed to solve EGTR. The second approach is 
derived by replacing the �2 norm minimization of residuals by 
an �1 norm minimization, which in turn can be formulated as 
difference of convex programming (DCP). A concave–convex pro-
cedure has been employed to solve the resulting DCP. Simulation 
results show the high performance of the proposed techniques, 
especially the DCP approach. It has also been observed through 
simulations that the DCP approach is robust against NLOS errors. 
The future work considers the extension of the approaches stud-
ied in this manuscript to cooperative scenarios. Simulation results 
show a promising performance for EGTR, in terms of robustness 
and accuracy. Although we have not encountered any convergence 
problems of the proposed EGTR approach, an extensive study of 
the convergence properties of EGTR is left as a topic for future 
work.

8. Appendices

8.1. Linear least squares (LLS)

In this section we obtain an LLS estimator similar to [8,28]. We 
consider the following linear model (originated from (15)):
b = A y + ν, (34)

where ν = [ν1
1 . . . ν1

N . . . νK
1 . . . νK

N ]T , A, b, and y are given in 
(18). We assume that A has full column rank. A necessary condi-
tion for this is that K N ≥ 5.

The unconstrained weighted least squares solution to (34) is 
given by [41]

ŷ = (AT W A)−1 AT W b, (35)

where W is as in (18). The covariance matrix of ŷ can be com-
puted as

C ŷ = (AT W A)−1. (36)

Note that for a large network, matrix A can be ill-conditioned 
[28]. Then, we can use a regularization technique to resolve the 
drawback in the least squares solution [47,28].

We can further improve the location estimate by applying a 
correction technique similar to [8,28]. We consider the following 
relations:

[y]1 = ‖x‖2
2 + ξ1,

[y]4 = α2 + ξ4,

[y]2 = x1 + ξ2,

[y]3 = x2 + ξ3,

[y]5 = α + ξ5, (37)
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where ξ = [ξ1 . . . ξ5]T is the estimation error. Assuming small 
estimation errors, we take the squares of both sides of last three 
equations in (37) and obtain the following expressions:

[y]2
2 � x2

1 + 2x1ξ2,

[y]2
3 � x2

2 + 2x2ξ3,

[y]2
5 � α2 + 2αξ5. (38)

Based on (37) and (38), we obtain a linear model as

h = Bθ + Pξ , (39)

where

B =

⎡
⎢⎢⎣

1 1 1
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎣

1 0 0 0 1
0 2x1 0 0 0
0 0 2x2 0 0
0 0 0 2α 0

⎤
⎥⎥⎦

h =

⎡
⎢⎢⎢⎣

[y]1 + [y]4

[y]2
2

[y]2
3

[y]2
5

⎤
⎥⎥⎥⎦ , θ = [x2

1 x2
2 α2]T . (40)

The least squares solution to (39) is given by

θ̂ = (BT C−1
θ̂

B)−1 BT C−1
θ̂

h, (41)

where the covariance matrix C θ can be computed as

C
θ̂

= P C ŷ P T . (42)

To compute the matrix P , we use the estimate of x̂ obtained in 
(35) instead of unknown vector x.

Finally the location estimate can be obtained as

x̃i = sgn([y]i+1)

√
|[θ̂]i |, i = 1,2, (43)

where sgn denotes the signum function defined as

sgn(x) =
{

1 if x ≥ 0;
−1 if x < 0.

(44)

The covariance matrix of the estimate in (43) can be obtained 
similar to [28].

8.2. Cramér–Rao lower bound (CRLB)

Considering the measurement vector in (7) with mean μK =
1K ⊗ μ and covariance matrix C K = I K ⊗ C where

μ =
[

f

(
d1

c
+ T1

2

)
. . . f

(
dN

c
+ T N

2

)
T1 . . . T N

]T

,

C = diag

(
σ 2

1

4
, . . . ,

σ 2
N

4
, γ 2

1 , . . . , γ 2
N

)
, (45)

the elements of the Fisher information matrix can be computed 
as [41, Ch. 3]

Jnm = [ J ]nm =
[

∂μK

∂ψn

]T

C−1
K

[
∂μK

∂ψm

]
, n,m = 1,2, . . . , N + 3,

(46)

where

ψn =

⎧⎪⎨
⎪⎩

xn, if n = 1,2

w, if n = 3

Tn, if n > 3.

(47)

From (45), ∂μK /∂ψn can be obtained as follows:
[
∂μK

∂ψn

]
= 1K ⊗

[
∂μ1

∂ψn
. . .

∂μN

∂ψn

]T

, n = 1,2, . . . , N + 3, (48)

where

∂μi

∂ψn
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w xn−a1,n
c d(ai ,x)

, if n = 1,2, i ≤ N

di
c + Ti

2 , if n = 3, i ≤ N

0, if n = 1,2,or 3, i > N
w
2 , if n > 3, i ≤ N

1, if n > 3, i > N.

(49)

After some calculations, the entries of the Fisher information ma-
trix can be computed as follows:

J11 = 4K w2
N∑

i=1

(
x1 − ai,1

σicd(ai, x)

)2

,

J22 = 4K w2
N∑

i=1

(
x2 − ai,2

σicd(ai, x)

)2

,

J33 = 4K
N∑

i=1

(
di/c + Ti/2

σi

)2

,

J j j = K

(
2w2

σ 2
j

+ 1

γ 2
j

)
, j > 3

J12 = J21 = 4K w2
N∑

i=1

(
x1 − ai,1

σic d(ai, x)

)(
x2 − ai,2

σic d(ai, x)

)
,

J13 = 4K w
N∑

i=1

(
x1 − ai,1

σicd(ai, x)

)(
di/c + Ti/2

σi

)
,

J23 = 4K w
N∑

i=1

(
x2 − ai,2

σicd(ai, x)

)(
di/c + Ti/2

σi

)
,

J j1 = J1 j = K

(
w

x1 − ai,1

σ 2
i cd(ai, x)

)
,

J j2 = J2 j = K

(
w

x2 − ai,2

σ 2
i c(ai, x)

)
,

J j3 = J3 j = 4K w
N∑

i=1

(
x1 − ai,1

σic d(ai, x)

)(
di/c + Ti/2

σi

)
,

J i j = J ji = 0, i 
= j, i, j > 3 (50)

The CRLB, which is a lower bound on the variance of any unbiased 
estimator, is given as

Var(ψ̂i) ≥ [ J −1]i,i . (51)
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