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Local Pinning of Networks of Multi-Agent Systems
With Transmission and Pinning Delays

Wenlian Lu, Senior Member, IEEE, and Fatihcan M. Atay

Abstract—We study the stability of networks of multi-agent
systems with local pinning strategies and two types of time delays,
namely the transmission delay in the network and the pinning de-
lay of the controllers. Sufficient conditions for stability are derived
under specific scenarios by computing or estimating the dominant
eigenvalue of the characteristic equation. In addition, controlling
the network by pinning a single node is studied. Moreover, per-
turbation methods are employed to derive conditions in the limit
of small and large pinning strengths. Numerical algorithms are
proposed to verify stability, and simulation examples are presented
to confirm the efficiency of analytic results.

Index Terms— Delay, multi-agent system, pinning control,
stability.

I. INTRODUCTION

Control problems in multi-agent systems have been attracting atten-
tion in diverse contexts [1]–[7]. In the consensus problem, for example,
the objective is to make all agents converge to some common state
by designing proper algorithms [2]–[5], such as the linear consensus
protocol

ẋi = −
n∑

j=1

Lijxj(t), i = 1, . . . , n. (1)

Here, xi ∈ R is the state of agent i and Lij are the components of
the Laplacian matrix L, satisfying Lij ≤ 0 for all i �= j and Lii =
−
∑

j �=i Lij . The Laplacian is associated with the underlying graph G,
whose links can be directed and weighted. It can be shown that, if
the underlying graph has a spanning tree, then all agents converge to
a common number, which depends on the initial values [1], [4], [5].
On the other hand, if it is desired to steer the system to a prescribed
consensus value, auxiliary control strategies are necessary. Among
these, pinning control is particularly attractive because it is easily
realizable by controlling only a few agents, driving them to the desired
value s through feedback action

ẋi = −
n∑

j=1

Lijxj(t)− δD(i)c(xi − s), i = 1, . . . , n (2)
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where D denotes the subset of agents where feedback is applied, with
cardinality |D| = m, δD(i) is the indicator function (1 if i ∈ D and
0 otherwise), and c > 0 is the pinning strength. Eq. (2) provides the
local strategy that pins a few nodes to stabilize the whole network at a
common desired value. The following hypothesis is natural in pinning
problems and assumed in this technical note.

(H) Each strongly connected component of G without incoming
links from the outside has at least one node in D.

The following result is proved in [8], [9].
Proposition 1: If (H) holds, then system (2) is asymptotically stable

at xi = s ∀ i.
In many networked systems, however, time delays inevitably occur

due to limited information transmission speed; so Proposition 1 does
not apply. In this technical note we consider systems with both
transmission and pinning delays

ẋi = −
n∑

j=1,j �=i

Lij (xj(t− τr)− xi(t))− cδD(i) (xi(t− τp)− s)

(3)

for i = 1, . . . , n, where τr denotes the transmission delay in the
network and τp is the pinning delay of the controllers. Several recent
papers have addressed the stability of consensus systems with various
delays. It has been shown that consensus can be achieved under trans-
mission delays if the graph has a spanning tree [13]–[15]. However, if a
sufficiently large delay is present also in the self-feedback of the node’s
own state, then consensus may be destroyed [16]; similar conclusions
also hold in cases of time-varying topologies [17]–[19] and hetero-
geneous delays [20]–[22]. The stability of pinning networks with
nonlinear node dynamics have been studied in [6]–[12], [23]–[26].
However, the role of pinning delay was considered in only a few
papers [23]–[26], where it was argued that stability can be guaranteed
if the pinning delays are sufficiently small. Precise conditions on the
pinning delay for stability, the relation to the network topology, and
the selection of pinned nodes have not yet been addressed.

In this technical note, we study the stability of the model (3) under
both transmission and pinning delays. First, we derive an estimate
of the largest admissible pinning delay. Next, we consider several
specific scenarios and present numerical algorithms to verify stability
by calculating the dominant eigenvalue of the system. Included among
the scenarios are the cases when only a single node is pinned in
the absence of transmission delay, or when the transmission and
pinning delays are identical. Finally, we use a perturbation approach to
estimate the dominant eigenvalue for very small and very large pinning
strengths.

II. NOTATION AND PRELIMINARIES

A directed graph G = {V, E} consists of a node set V = {v1, . . . ,
vn} and a link set E ⊆ V × V . A (directed) path of length l from
node vj to vi, denoted (vr1 , . . . , vrl+1

), is a sequence of l + 1 distinct
vertices with vr1 = vi and vrl+1

= vj such that (vrk , vrk+1
) ∈ E

for k = 1, . . . , l. The graph is called strongly connected if there is a
directed path from any node to any other node, and it is said to have a
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spanning tree if there is a node vp ∈ V such that for any other node j
there is a path from vp to vj .

We denote the imaginary unit by j and the n× n identity matrix
by In. For a matrix L, Lij denotes its (i, j)th element and L� its
transpose. The Laplacian matrix L is associated with the graph G in
the sense that there is a link from vj to vi in G if and only if Lij �= 0.
We denote the eigenvalues of L by {θ1, . . . , θn}. Recall that zero is
always an eigenvalue, with the corresponding eigenvector [1, . . . , 1]�,
and Re(θi) > 0 for all nonzero eigenvalues θi. Furthermore, if the
graph G is strongly connected (or equivalently, if L is irreducible),
then zero is a simple eigenvalue of L. The diagonal element Lii is the
weighted in-degree of node i. Let K = diag{L11, . . . , Lnn} be the
diagonal matrix of in-degrees and A = K − L. Let yi = xi − s, y =
[y1, . . . , yn]

�, and D = diag{d1, . . . , dn} with di = δD(i). System
(3) can be rewritten as

ẏ = −Ky +Ay(t− τr)− cDy(t− τp). (4)

Considering solutions in the form y(t) = exp(λt)ξ with λ ∈ C and
ξ ∈ C

n, the characteristic equation of (4) is obtained as

χ(λ) := det [λIn +K−A exp(−λτr) + cD exp(−λτp)] = 0. (5)

The asymptotic stability of (4) is equivalent to all characteristic roots
λ of (5) having negative real parts. The root having the largest real part
will be termed as the dominant root or the dominant eigenvalue. For
the undelayed case, Proposition 1 can be equivalently stated as follows.

Corollary 1: If (H) holds, then all eigenvalues of L+ cD have
negative real parts.

We also state an easy observation for later use:
Lemma 1: For any two column vectors u, v ∈ Rn, det(In +

uv�) = 1 + v�u.

III. ESTIMATION OF THE LARGEST ADMISSIBLE PINNING DELAY

We first show that the system (4) is stable for all values of the
pinning delay τp smaller than a certain value τ∗

p .
Proposition 2: Assume condition (H). Let

F (w, c, l, τ ) = c2 + ω2 + 2c [l cos(ωτ )− ω sin(ωτ )] (6)

and define

τ∗
p = sup

τ>0

{
τ : min

ω∈R

min
i∈D

F (w, c, Lii, τ ) > 0

}
. (7)

If τp < τ∗
p , then system (4) is stable for all τr ≥ 0.

Proof: First, we take τp = 0 and prove stability for all τr ≥ 0.
Assume for contradiction that there exists some characteristic root λ∗

of (5) such that Re(λ∗) ≥ 0. Applying the Gershgorin disc theorem to
(5), we have

|λ∗ + Lii + cdi| ≤
∑
j �=i

|Lij || exp(−λ∗τr)| ≤
∑
j �=i

|Lij | = Lii (8)

for some i, which implies

[Re(λ∗) + Lii + cdi]
2 + [Im(λ∗)]2 ≤ L2

ii.

Since Lii, c, di ≥ 0, it must be the case that Re(λ∗) = Im(λ∗) = 0;
i.e., λ∗ = 0. Then exp(−τrλ

∗) = 1, and since τp = 0, (5) gives
det(λ∗In + L+ cD) = 0. This, however, contradicts Corollary 1.
Therefore, when τp = 0, all characteristic roots of (5) have negative
real parts.

We now let τp ≥ 0. Suppose (5) has a purely imaginary root λ = jω,
ω ∈ R. By (8), we have, for some index q

|jω + Lqq + cdq exp(−jωτp)| ≤
∑
j �=q

|Lqj || exp(−jωτr)

=
∑
j �=q

|Lqj | = Lqq

implying√
[Lqq + cdq cos(ωτp)]

2 + [ω − cdq sin(ωτp)]
2 ≤ Lqq .

Thus

(cdq)
2 + ω2 + 2cdq (Lqq cos(ωτp)− ω sin(ωτp)) ≤ 0. (9)

We claim that q must be a pinned node. For if dq = 0, then ω
must be zero, which implies that zero is a characteristic root of (5),
contradicting Corollary 1. Therefore, dq = 1. In the notation of (6), the
inequality (9) can then be written as F (w, c, Lqq , τp) ≤ 0. By (7),
however, we have that F (w, c, Lqq , τp) > 0 for all p ∈ D, ω ∈ R and
τp < τ∗

p . We conclude that (5) does not have purely imaginary roots
for τp < τ∗

p . Thus, by [27, Theorem 2.1], all characteristic roots of (5)
have strictly negative real parts for τp < τ∗

p . �
Remark 1: Proposition 2 provides an estimate for the largest

admissible pinning delay for which system (4) is stable. This estimate
needs only the knowledge of the set of pinned nodes and their weighted
in-degrees.

IV. PINNING A SINGLE NODE

We now consider the possibility of controlling the network using
a single node, say, the qth one. Then D = uqu

�
q , where uq denotes

the qth standard basis vector, whose qth component is one and other
components zero. If λIn +K −A exp(−λτr) is nonsingular, the
characteristic equation (5) becomes

χ(λ) = det
[
λIn +K −A exp(−λτr) + cuqu

�
q exp(−λτp)

]
= det (λIn +K −A exp(−λτr))

× det
[
In + cuqu

�
q (λIn +K −A exp(−λτr))

−1

exp(−λτp)
]

= det (λIn +K −A exp(−λτr))

×
(
1 + cu�

q (λIn +K −A exp(−λτr))
−1

× uq exp(−λτp)
)

(10)

using Lemma 1. Then we have the following result.
Proposition 3: Assume (H). If all solutions λ of the equation

1 + cu�
q (λIn +K −A exp(−λτr))

−1 uq exp(−λτp) = 0 (11)

satisfy Re(λ) < 0, then system (4) is stable.
Proof: As in the first part of the proof of Proposition 2, the

equation det[λIn +K −A exp(−λτr)] = 0 has no solutions with
Re(λ) ≥ 0. Hence, if all solutions λ of (11) have negative real parts,
then all roots of (5) have negative real parts. �

We consider two specific cases to obtain more information about
the solutions of (11). First, we consider the absence of transmission
delays, i.e., τr = 0. Suppose for simplicity that L is diagonalizable
and has only real eigenvalues: L = Q−1JQ for some nonsingular Q
and a real diagonal matrix J = diag{θ1, . . . , θn} of eigenvalues of L.
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The column vectors of Q−1 (resp., the row vectors of Q) are the right
(resp., left) eigenvectors of L. Then, (11) can be written as

1 + cζ�(λIn + J)−1ξ exp(−λτp) = 0 (12)

where ζ� = u�
q Q is the qth left eigenvector and ξ = Q−1uq is the qth

right eigenvector of L. We expand (12) as

1 + c
n∑

i=1

ξiζi exp(−λτp)

λ+ θi
= 0 (13)

in terms of the components ξi, ζi of ξ and ζ, respectively. Consider the
smallest value of τp for which there exists a purely imaginary solution,
λ = jω. Then, the real and imaginary parts of (13) give{

1 + a(ω) cos(ωτp)− b(ω) sin(ωτp) = 0

b(ω) cos(ωτp) + a(ω) sin(ωτp) = 0

where

a(ω) = c
n∑

i=1

ξiζiθi
ω2 + θ2i

, b(ω) = c
∑
i

ξiζiω

ω2 + θ2i
. (14)

Rearranging gives cos(ωτp) = −a(ω)/(a2(ω) + b2(ω)) and
sin(ωτp) = b(ω)/(a2(ω) + b2(ω)). This implies a(ω)2 + b2(ω) = 1
and

cos(ωτp) = −a(ω), sin(ωτp) = b(ω). (15)

We then have the following result.
Proposition 4: Suppose τr = 0, L is diagonalizable, irreducible,

and all its eigenvalues are real. Let the eigenvalues {θi} of L be sorted
so that θq = 0, and let ζ = [ζ1, . . . , ζn],

∑n
k=1 ζk = 1, be the left

eigenvector of L corresponding to the zero eigenvalue. Let Z denote
the set of positive solutions of the equation

a2(ω) + b2(ω) = 1 (16)

with respect to the variable ω2, where a(ω) and b(ω) are given by (14).
Define

τM
p =

arccos
(
−a

(√
maxZ

))
√
maxZ

. (17)

Then system (4) is stable for τp < τM
p .

Proof: Eq. (10) implies that any purely imaginary solution jω of
(5) should also be a solution of (13). Then ω must be a real solution of
(16). By the definition of Z , the solution set of (16) with respect to ω
is {±

√
z : z ∈ Z}. By the assumption of irreducibility, θi > 0 for all

i �= q and ζi, ξi > 0 ∀ i. If ω =
√
z, then the smallest positive solution

of (15) with respect to τp is arccos(−a(
√
z))/

√
z. If, on the other

hand, ω = −
√
z, noting that a(ω) > 0 and b(ω) ≤ 0, the smallest

positive solution of (15) is again arccos(−a(
√
z))/

√
z. Therefore,

given ω2 ∈ Z , the smallest nonnegative solution of (15) with respect
to τp should be in the set {arccos(−a(

√
z))/

√
z : z ∈ Z}. Since the

mapping z 	→ arccos(−a(
√
z))/

√
z is a decreasing function of z > 0,

the quantity τM
p defined in (17) is the smallest nonnegative solution of

(15) with respect to τp, given ω2 ∈ Z . Hence, for τp < τM
p (13) does

not have any purely imaginary solutions. Since for τp = 0 all charac-
teristic roots of (5) have negative real parts, we conclude that all roots
have negative real parts for τp < τM

p . �
Remark 2: By derivation, (13) is independent of the ordering of the

eigenvalues or the eigenvectors in J . Therefore, the bound τM
p for

allowable pinning delays given in Proposition 4 does not depend on
the choice of the pinned node.

Fig. 1. (a) Stability region {(c, τp) : τp < τMp } in the parameter plane
(c, τp), where the dashed line depicts τMp as a function of c. Direct simulation
verifies that the system is indeed stable for the parameter values c = 4.48
and τp = 0.7724 (b), and unstable for the slightly different values c = 4.48
and τp = 0.9441 (c), corresponding to the blue and red stars, respectively,
in subfigure (a). (a) Stability region {(c, τp) : τp < τMp }, (b) c = 4.48 and
τp = 0.7724, (c) c = 4.48 and τp = 0.9441.

Proposition 4 suggests an algorithm to calculate τM
p :

1) Find the largest positive solution ω2 of the equation

n∑
k=1

(ξkζk)
2

ω2 + θ2k
+ 2

∑
i>j

ξiξjζiζj(θiθj + ω2)

(ω2 + θ2i )(ω
2 + θ2j )

=
1

c2
. (18)

2) Calculate (17).

We illustrate this approach in an Erdős-Renyi (E-R) random net-
work of n = 100 nodes with linking probability 0.03, where the first
node is pinned. The left and right eigenvectors of L associated with
the zero eigenvalue are given by ζ = [1, . . . , 1]/

√
n. Fig. 1 shows

the parameter region {(c, τp) : τp < τM
p }, illustrating the inverse

dependence of τM
p on c. Note that τp > τM

p does not necessarily
imply instability, since Proposition 4 gives only a sufficient condition.
Nevertheless, the curve shown in Fig. 1(a) turns out to be a good ap-
proximation of the boundary of the exact stability region. To illustrate,
we take two parameter points very close (± 10% of the τM

p ) to the
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curve but on different sides of it, as indicated by blue and red stars in
Fig. 1(a). We simulate (3) at the corresponding parameter values, with
the same Laplacian as above and τr = 0. As seen in Fig. 1(b) and (c),
the two points indeed yield different stability properties.

The other situation we consider is the homogeneous case when L
is diagonalisable and normalised, i.e., Lii = l ∀ i for some l > 0, and
τr = τp. Then (11) becomes

1 + cu�
q ((λ+ l)In −A exp(−λτr))

−1 uq exp(−λτp) = 0. (19)

Let L = QJQ−1; thus A = Q(lIn − J)Q−1. Then, by the same
algebra as above, (19) becomes

1 + c
n∑

k=1

ζkξk exp(−λτp)

(λ+ l) + (θk − l) exp(−λτp)
= 0. (20)

We have the following result.
Proposition 5: Suppose that τr = τp, L is diagonalizable, irre-

ducible, normalized (Lii = l ∀ i), and all its eigenvalues {θi} are real.
Denote θq = 0 and let ζ = [ζ1, . . . , ζn] be the left eigenvector of L
corresponding to the eigenvalue 0, with

∑
i ζi = 1. Let S denote the

set of all the branches of the solutions of the equation

1 + c
n∑

k=1

ζkξk
exp(−lτp)s/τp + (θk − l)

= 0 (21)

with respect to the variable s. Then system (4) is stable whenever the
real parts of the numbers {(W (s)/τp)− l : s ∈ S} are all negative,
where W is the Lambert W function [28].

Proposition 5 can be proved by transforming (20) into (21) with
s = τp(λ+ l) exp(τp(λ+ l)) and using Proposition 3.

V. SMALL AND LARGE PINNING STRENGTHS

In this section, we consider the extreme situations when the pinning
strength c is very small or very large. We will employ the perturbation
approach in [29], [30] to approximate the eigenvalues and eigenvectors
in terms of c.

The characteristic roots λ of (5) are eigenvalues of the matrix
Σ(c, λ) = −K +A exp(−λτr)− cD exp(−λτp). Hence, when c =
0, the characteristic roots of (5) equal to the eigenvalues {σi} of
Σ(0, λ). Under the condition (H), there is a single eigenvalue σ1 = 0.
We denote the right and left eigenvectors of Σ(0, σi) by φi and ψi�

respectively, withψi�φi = 1. It can be seen that ψ1 and φ1 (associated
with σ1 = 0) are, respectively, the right and left eigenvectors of L
associated with the zero Laplacian eigenvalue.

Let λi(c) denote the characteristic roots of (5) and φ̃i(c) and ψ̃i(c)
denote the right and left eigenvectors of Σ(c, λi(c)), regarded as
functions of c, with λi(0) = σi, φ̃i(0) = φi and ψ̃i(0) = ψi. Using
a perturbation expansion [29], [30]

λi(c) = σi + λ1
i c+ o(c), φ̃i(c) = φi + φi,1c+ o(c)

ψ̃i(c) =ψi + ψi,1c+ o(c)

where o(c) denotes terms that satisfy limc→0 |o(c)|/c = 0. Thus

[−K +A exp(−λi(c)τr)− cD exp(−λi(c)τp)] φ̃
i(c) = λi(c)φ̃

i(c).

When c is sufficiently small, the dominant eigenvalue is λ1(c), since
σ1 = 0 is the dominant eigenvalue when c = 0. Hence, we consider
i = 1. Then exp(−λ1(c)τ ) = 1− cλ1

1τ + o(c). Comparing the first-

order terms in c on both sides, (−Aλ1
1τr −D)φi − Lφi,1 = λ1

1φ
i.

Multiplying both sides with ψ1� and noting that ψ1�φ1 = 1

λ1
1 = − ψ1�Dφ1

1 + τr
(
ψ1�Aφ1

) . (22)

Hence, we have the following result.
Proposition 6: Suppose that the underlying graph is strongly con-

nected and at least one node is pinned. Then, for sufficiently small c,
all characteristic roots of (5) have negative real parts and the dominant
root is given by

λ1(c) = − ψ1�Dφ1

1 + τr
(
ψ1�Kφ1

)c+ o(c). (23)

Proof: Since the graph is strongly connected, L has a simple
zero eigenvalue. When c = 0, the dominant root of (5) is σ1 = λ1(0).
Since the roots of (5) depend analytically on c, they are given by λ1(c)
for all sufficiently small c. Substituting (22) into λ1(c) and noting that
ψ1� (−K + A)φ1 = 0 completes the proof. �

In order to understand the meaning of (23), consider the special
case of an undirected graph with binary adjacency matrix A. Then,
with φ1 = [1, . . . , 1]� and ψ1 = [1, . . . , 1]�/n, we have ψ1�Kφ1 =∑n

i=1 Lii/n, which equals the average degree of the graph. In ad-

dition, ψ1�Dφ1 =
∑n

i=1 δD(i)/n, which is the fraction of pinned
agents. Then, (23) yields the approximation

λ1(c) ≈ − Pinning Fraction
1 + τr × Mean Degree

c (24)

for small c, which uses only the pinning fraction and the mean degree
of the graph. Since the real part of the dominant characteristic value
measures the exponential convergence of the system, Proposition 6
implies that, for sufficiently small c, the convergence rate is improved
if the number of pinned nodes is increased, the transmission delay is
reduced, or the mean degree is decreased. If the graph is directed, a
similar statement can be obtained by taking the components of ψ1 as
weights: ψ1Dφ1 =

∑n
j=1 ψ

1
j δD(j).

To illustrate this result, we employ a numerical method to calculate
the real part of λ1(c), namely, by simulating the system (4) and
expressing its exponential convergence rate in terms of its largest
Lyapunov exponent. In detail, letting τm = max{τr, τp}, we parti-
tion time into disjoint intervals of length τm, tk = kτm, and define
ηk(θ) = y(tk + θ) for θ ∈ [0, τm]. Then, the largest Lyapunov ex-
ponent, which equals to the largest real part of solutions of (5), is
numerically calculated via [31]

Re(λ1,sim) = lim
N→∞

1

Nτm
log ‖ηN‖

= lim
N→∞

1

Nτm

N∑
k=1

log
‖ηk‖

‖ηk−1‖
(25)

where ‖ · ‖ stands for the function norm. The latter is numerically
calculated by approximating ηk(·) with a finite-dimensional vector
ϕk obtained by evaluating ηk at a finite number of equally spaced
points and using the vector norm ‖ϕk‖. The estimate (25) can then be
compared with the analytical estimate for Re(λ1) obtained from (23):

Re(λ1,est) = − ψ1�Dφ1

1 + τr
(
ψ1�Kφ1

) c. (26)

For simulations, we generate an undirected E-R random graph of
n = 100 nodes with linking probability p = 0.03 and randomly select
a given fraction f of them as the pinned nodes. The pinning delay is
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Fig. 2. Variation of Re(λ1) with system parameters. The estimate (26) (plotted with +) shows good agreement with the values obtained via simulation and (25)
(plotted with �). The parameters that are kept fixed are: (a) f = 0.3, τr = 0.1, mean degree = 3.4; (b) c = 0.1, τr = 0.1, mean degree = 3.4; (c) c = 0.1,
f = 0.3, τr = 0.1; (d) c = 0.1, f = 0.3, mean degree = 3.4.

taken as τp = 0.1. Fig. 2 shows that the simulated value of Re(λ1)
decreases almost linearly with respect to c and f , and increases with
respect to τr and the mean degree. The simulation results are in a good
agreement with the theoretical results. The error between Re(λ1,est)
and Re(λ1,sim) depends on the values of λ1

1 and c. It can be seen that
the error will increase as c or λ1

1 (or equivalently, f ) increases, or else
as the mean degree or τr decreases.

Next, we consider the case of large c. Letting ε = 1/c and μ = λ/c,
(5) is rewritten as

det [μIn + εK − εA exp(−μτr/ε) +D exp(−μτp/ε)] = 0. (27)

By the foregoing results, one can see that when ε is sufficiently small,
equivalently, c is sufficiently large, the largest admissible pinning
delay for (4) approaches zero. It is therefore natural to assume that
τp depends on c in such a way that τpc is bounded as c grows large.
Thus, we assume that τpc := τpc remains bounded as c → ∞.

When ε = 0, (27) becomes approximately ẋ = −Dx(t− τp∞),
where τp∞ can be any value between limc→∞τpc and limc→∞τpc. In
terms of components, ẋi = −xi(t− τp∞) if i ∈ D, and 0 otherwise.
The characteristic equation (27) with ε = 0 can be written as

(μ+ exp(−μτp∞))m μn−m = 0 (28)

where m = |D|. It is known that Re(μ) < 0 for all roots of the func-
tion μ 	→ μ+ exp(−μτp∞) if and only if τp∞ < (π/2). Therefore,
we impose the condition: τp c < (π/2).

Thus, the largest real part of the solutions of (28) is zero, and is
obtained for the solution μ = 0. The corresponding eigenspace has
dimension n−m and has the form

ES =
{
u = [u1, . . . , un]

� ∈ R
n : ui = 0, ∀ i ∈ D

}
.

Without loss of generality, we assume D = {1, . . . ,m}. Thus, we
consider perturbation in terms of ε near zero eigenvalues μi and its cor-
responding right and left vectors, ξi, ζi

� ∈ ES such that (ζi)�ξi = 1

and (ζj)
�
ξi = 0 if i �= j, i, j = m+ 1, . . . , n. Let μi(ε) stand for the

perturbed solution of (27), ξ̃i(ε) and ζ̃i(ε) be the corresponding right
and left eigenvectors, respectively. By a perturbation expansion

μi(ε) =μ1
i ε+ o(ε), ξ̃i(ε) = ξi + ξi,1ε+ o(ε)

ζ̃i(ε) = ζi + ζi,1ε+ o(ε) (29)

as ε → 0. Thus, from (27)

[
−εK + εA exp

(
−μi(ε)

τr
ε

)
−D exp(−μi(ε)τPc)

]
ξ̃i(ε)

= μi(ε)ξ̃
i(ε).

Since exp(−μi(ε)τ ) = 1− εμ1
i τ + o(ε), by comparing the coeffi-

cients of order 1, we have[
−K +A exp(−μ1

i τr)
]
ξi −Dξi,1 = μ1

i ξ
i. (30)

We write

K =

[
K1 0
0 K2

]
, A =

[
A11 A12

A21 A22

]
, D =

[
Im 0
0 0

]

and ξi = [ξi
�

1 , ξi
�

2 ]
�

, ξi,1 = [ξi,1
�

1 , ξi,1
�

2 ]
�

, with K1, A11, ξi1 = 0
and ξi,11 corresponding to the pinned subset D of dimension m. Then
(30) becomes{

[−K2 + A22 exp (−μ1
i τr)] ξ

i
2 = μ1

i ξ
i
2

exp (−μ1
i τr)A12ξ

i
2 − ξi,11 = 0.

(31)

We have the following result.
Proposition 7: Suppose that the underlying graph is strongly

connected and at least one node is pinned. Fix τr ≥ 0, and suppose
τpc < (π/2) as c → ∞. Then the dominant root of (27) has the form

λ(c) = μ1
∗ + o(1) as c → ∞ (32)

where μ1
∗ is the dominant eigenvalue of the delay-differential equation

ẏ = −K2y(t) +A22y(t− τr). (33)

Furthermore, Re(λ(c)) < 0 for all sufficiently large c.
Proof: The condition τpc < π/2 implies that, when ε = 0, the

dominant root of the characteristic equation (27) is zero and corre-
sponds to the eigenspace ES. So, for sufficiently small ε, the dominant
root of equation (27) and the corresponding eigenvector have the form
(29), where μ1

i satisfies the first equation in (31), i.e., is an eigenvalue
of (33). Since λ(ε) = μ/ε, (32) follows. Moreover, since −K2 +A22

is diagonally dominant, one can see that Re(μ1
i ) < 0 under condition

(H). Therefore, for sufficiently large c, all characteristic values of
system (3) have negative real parts. �
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Fig. 3. Variation of Re(λ1) with large values of c, calculated for f = 0.3,
τr = τp = 0.1, and mean degree = 3.4. The estimation Re(λ1,est) is plotted
by the blue solid line and the real values by the dash line with red �.

We note that μ1
∗ depends only on the coupling structure of the

uncoupled nodes. To illustrate this result, we consider examples
with a similar setup as in Section V. We take an E-R graph with
n = 100 nodes and linking probability p = 0.03, and pin m = 30
nodes. We set τr = 0.1 and τp = (1/c). The real part of the dominant
characteristic root of (5) is numerically calculated via the largest
Lyapunov exponent, using formula (25). Its theoretical estimation
comes from Theorem 7: Re(λ1,est) = max{Re(μ1): det(μ1Im +
K2 −A22 exp(−μ1τr)) = 0}, where the largest real part of μ1 is
similarly calculated from the largest Lyapunov exponent of (33).
Fig. 3 shows that as c grows large, the real part of the dominant
root of (5) obtained from simulations approach the theoretical result
Re(λ1,est), thus verifying Proposition 7.

We have shown in this technical note that the stability of the multi-
agent systems with a local pinning strategy and transmission delay may
be destroyed by sufficiently large pinning delays. Using theoretical and
numerical methods, we have obtained an upper-bound for the delay
value such that the system is stable for any pinning delay less than
this bound. In this case, the exponential convergence rate of the multi-
agent, which equals the smallest nonzero real part of the eigenvalues
of the characteristic equation, measures the control performance.
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