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ABSTRACT

THE UNIVERSAL ROBOT BUS: A LOCAL
COMMUNICATION INFRASTRUCTURE FOR SMALL

ROBOTS

Akın Avcı

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Uluç Saranlı

December, 2008

Design and construction of small autonomous mobile robots is a challenging task

that involves the selection, interfacing and programming of a large number of

sensor and actuator components. Facilitating this tedious process requires mod-

ularity and extensibility in both hardware and software components. This thesis

concerns the development of a real-time infrastructural architecture called the

Universal Robot Bus (URB), based on the popular Inter-Integrated Circuit (I2C)

bus standard. The main purpose of the URB is the rapid development and real-

time interfacing of local nodes controlling small sensor and actuator components

distributed on a mobile robot platform. It is designed to be very lightweight

and efficient, with real-time support for RS232 or USB connections to a central

computer.

The URB infrastructure is inspired from the RiSEBus architecture, which is

also an internal communication protocol for mobile robots, and developed to fit

our requirements. URB offers a modular and extensible architecture for rapid

and frequent changes to the platform design. Mobile robots also need to perform

accurate sensory processing and estimation in order to operate in unstructured

environments. Hence, the URB also supports real-time operations with reliable

hardware and software components.

The first novel contribution of this thesis is the design and implementation

of automatic synchronization of data acquisition across multiple nodes. Our syn-

chronization algorithm ensures that each node completes data acquisition tasks

simultaneously well before read operations. Our experiments also prove that

each individual node acquires data at approximately the same time instant. The

second major contribution of this thesis is the incorporation of automated and

iii



iv

unsupervised data acquisition across multiple nodes into the URB protocol. Au-

tonomous data acquisition helps acquire periodic and frequently needed data

over nodes. This enhancement reduces the computational load on the central

processing unit and reduces bandwidth costs over the communication medium.

This thesis also servers a survey on network architectures and protocols, network

applications in robotics, synchronization algorithms, and applications of synchro-

nization in robotics besides implementation details of the URB.

Keywords: Communication protocol, fieldbus, real-time communication, mobile

robotics, distributed systems, clock synchronization, time synchronization.



ÖZET

EVRENSEL ROBOT VERİYOLU: KÜÇÜK ROBOTLAR

İÇİN YEREL HABERLEŞME ALTYAPISI

Akın Avcı

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Uluç Saranlı

Aralık, 2008

Küçük özerk robotların tasarımı ve yapımı birçok algılayıcının seçilmesini,

programlanmasını ve ortak bir arayüz geliştirilmesini de kapsayan zorlu bir

iştir. Bu kapsamlı işlemi kolaylaştırmak, hem donanım hem de yazılım üzerinde

modülerliği ve genişletilebilirliği sağlamayı gerektirir. Bu tez, I2C tabanlı ve

gerçek zamanlı altyapısal bir mimari olan Evrensel Robot Veriyolu (URB)’nun

geliştirilmesiyle ilgilidir. URB’nin asıl amacı hareket eden bir robot platformu

üzerinde dağınık halde bulunan, küçük algılayıcıları ve hareket unsurlarını kon-

trol eden yerel düğümlerin hızlı ve gerçek zamanlı olarak sisteme dahil edilme-

sidir. URB, merkezi bir bilgisayara gerçek zamanlı RS232 ve USB bağlantı desteği

sağlayan etkili ve zahmetsiz bir altyapı olarak tasarlanmıştır.

URB altyapısı, benzer şekilde hareketli robotlarda dahili haberleşmeyi sağla-

yan RiSEBus’tan esinlenilerek geliştirilmiş olmakla birlikte, bizim ihtiyaçlarımıza

göre iyileştirilmiştir. URB protokolü hızlı ve sık platform tasarım değişiklikleri

için modüler ve genişletilebilir bir mimari önermektedir. Ayrıca, hareketli robot-

lar yapısal olarak düzensiz ortamlarda çalışabilmek için kesin algısal işlemlere

ve tahminlere ihtiyaç duyarlar. Bu nedenle, URB güvenilir donanım ve yazılım

bileşenleriyle gerçek zamanlı işlemleri desteklemektedir.

Bu tezin ilk önemli katkısı, çoklu düğümler üzerinden veri edinmenin otomatik

olarak senkronize edilmesinin tasarımı ve uygulamasıdır. Senkronizasyon algorit-

mamız, veri okuma işlemlerinden önce her düğümün veri edinme işlemlerinin aynı

anda bitirilmesini garanti etmektedir. Ayrıca deneylerimiz de her düğümün küçük

farklarla aynı anda veri edindiklerini kanıtlamaktadır. Bu tezin ikinci katkısı ise,

çoklu düğümler üzerinden otomatikleştirilmiş ve denetlenmemiş veri edinimidir.

Özerk veri edinimi, periyodik olarak ve sıkça ihtiyaç duyulan verilerin düğümler
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üzerinden edinilmesini sağlayan bir işlemdir. Bu geliştirme merkezi işlemci bir-

imi üzerindeki hesaplama yükünü azaltırken, haberleşme ortamı üzerindeki bant

genişliği masrafını da azaltır. Bu tez URB’nin uygulama detaylarının yanında

ayrıca ağ mimarileri ve protokolleri, ağ uygulamalarının robot sistemlerindeki

yeri, senkronizasyon algoritmaları ve robot sistemlerinde senkronizasyon uygula-

maları üzerine bir araştırma olarak da hizmet etmektedir.

Anahtar sözcükler : Haberleşme protokolü, alan veriyolu, gerçek zamanlı haber-

leşme, hareketli robotlar, dağınık sistemler, saat senkronizasyonu, zaman senkro-

nizasyonu.
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Yiğit Yazıcıoğlu and Professor Kemal Leblebicioğlu from Middle East Technical

University (METU) for their help and brilliant ideas in Project RHex. I learned

a lot from them during our research meetings and studies.

I am thankful to the members of the Bilkent Dexterous Robotics and Loco-
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Chapter 1

Introduction

The objective of this thesis is to provide information about a communication in-

frastructure designed for internal communication within mobile robots. The the-

sis, therefore, presents real-time communication capabilities, protocol and proper-

ties of the network connecting sensors, actuators and processing units distributed

over a robot.

1.1 Robotic Systems vs Embedded Systems

An embedded system is a special purpose computer dedicated to one or a few

specific tasks. Embedded systems often contain processors that are not re-

programmable by the end-user and they should often satisfy real-time computing

constraints. Some examples of embedded systems are microwave ovens’ con-

trol panels, chips monitoring automobile functions like Anti-lock Brake System

(ABS), digital watches, missile guidance systems, tanks’ turret targeting systems,

and traffic lights. As illustrated by these examples, embedded systems offer sta-

ble platforms closed to any modifications with limited user interface, sometimes

none.

On the other hand, robots are machines capable of sensing environmental

1



CHAPTER 1. INTRODUCTION 2

changes and making decisions based on their own and environmental states.

There are a variety of categories of robots such as assistive, industrial, humanoid

and mobile robots. In contrast to embedded systems, robots should offer a re-

programmable and modular structure. For instance, Programmable Universal

Manipulation Arm (PUMA) is a robot arm that is used for a variety of industrial

purposes. Behavior (software) of this robot may be changed according to type

of usage and one might even change the end effector for different manipulation

tasks.

Among other types of robots, mobile robots present further challenges. Mobile

robots are strictly real-time platforms that are not fixed to one physical location.

So, mobile robots can also be classified depending on the environment where

they travel: land, underwater and aerial robots. Because of their nature, mobile

robots should be concerned about energy, weight and space constraints as well.

Any extension to a mobile robot would increase the energy cost, weight as well

as the volume of the robot, effecting its dynamics and functionality.

1.2 Robotic System Architectures

Traditionally, a central architecture (Figure 1.1) is used to connect all sensors,

actuators and other peripherals to a central processor within embedded systems

and robots[30]. This simple architecture is easy to manage but it results in a

large amount of cabling. For robots in particular, modularity and extensibility

are two major constraints and large amounts of cabling makes it difficult to make

any modifications.

Distributed architectures constitute a viable alternative to centralized archi-

tectures and are illustrated in Figure 1.2. This type of architecture has some

advantages with respect to centralized architectures. First of all, there is a min-

imum amount of cabling since all the peripherals use the same communication

medium. Secondly, it is easy to make changes over this architecture. Each func-

tional block can be located anywhere on the whole system. This approach not
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Central
Processing

Unit

Actuator 1

Sensor 1

Actuator 2

Sensor 2

Human-Machine
Interface

Figure 1.1: Traditional central architecture used mostly for simple embedded
systems. All sensors, actuators and other peripherals are linked to a central
processor.

only reduces the complexity of the system but also increases its modularity. Last

of all, distributed architecture supports flexibility to extend the system without

affecting functionalities of other peripherals.

Controller 1

Controller 2 Actuator 1

Actuator 2

Sensor 1

Sensor 2

Communication Medium

Figure 1.2: Distributed architecture with sensors, controllers and actuator are
linked to the same communication medium.

As a result of the observations above, we can conclude that distributed archi-

tectures have more powerful characteristics than central architectures. However,

distributed peripherals should be connected to each other over a communication

medium which is sufficiently real-time and reliable enough.

1.3 Motivation

As already described in Section 1.1, robots are complex systems that should

support modularity and extensibility. Any modifications would cause extensive

changes over the software of the system and affect the hardware architecture as
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well. In order to simplify modifications to the system, one could choose a dis-

tributed architecture that accepts extensions and modifications without effecting

already installed components. This notion emphasizes the need for a communi-

cation medium that easily supports modifications.

The Universal Serial Bus (USB) is a good example of a modular communica-

tion infrastructure. USB is designed for connecting many different peripherals to

personal computers and to allow adding and removing devices without rebooting

the computer (plug-and-play). USB is a standardized and modular cable bus that

supports data exchange between a host computer and a wide range of simultane-

ously accessible peripherals[1]. However, USB is not designed to satisfy real-time

constraints and is not deterministic enough. These are essential components for

most robotic systems. For this reason, it is not suitable to use robotic systems.

Communication mediums supporting real-time data transmission are called

fieldbuses [32]. Today fieldbuses are used in many different industries such as

automobile, building automation, and robotics. Our goal is to build a unique

fieldbus applied to mobile robots with the constraints below:

• Modularity and Extensibility: Most mobile robots are designed for

different field applications and these require rapid hardware and software

changes. Modular robots are composed of modules that can be removed or

re-connected. Modifications would yield systems with different functional-

ities for different tasks. Similarly, some tasks may need extensions to the

system like adding a new sensor for detecting obstacles. A fieldbus should

allow changes and adapt the system to modifications and extensions.

• Real-time Performance: Autonomous mobile robots operate in environ-

ments that are not predictable and can change dynamically. Mobile robots

should decide and act rapidly to cope with these unpredictable and dynamic

environments. Robots with decentralized architecture should also handle

data transmission in a predictable and acceptable way so that they can act

fast enough to environmental changes.

• Reliabilty and Robustness: Autonomous mobile robots operating in
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dynamic environments in an unsupervised manner require a reliable elec-

tromechanical design with simplified cabling. Any mechanical or electrical

failures would result in loss of functionality for the whole system. On the

other hand, the internal communication medium should also minimize er-

rors and should be able to recover from failures. As it can be observed, both

hardware and software design are the key factors that effect the reliability

of a mobile robot.

1.4 Structure of This Thesis

Chapter 2 introduces various network standards and communication mediums

used for mobile robots. It also covers the details of previous researches about this

subject. Chapter 3 explains the communication protocol, internal mechanism,

and implementation details of URB. Chapter 4 and Section 5.1 covers the exper-

iments and explains the performance criteria that is used to gauge the system.

Finally Chapter 5 concludes with the explanation of the resulting system and

operation environments of the system.



Chapter 2

Background

During the last decade, complexity of embedded and robotic systems increased

substantially. This resulted in more complex hardware and software architectures.

Consequently, researchers recognized the advantages of distributed architectures.

As mentioned in Section 1.2, distributed architectures reduce cabling complexity

but they bring about a need for inter-processor network protocols. One can

find more than sixty standard communication protocols widely used in industrial

applications[48].

This chapter overviews standard network models and some of the inter-

processor communication protocols widely used for robotic and automation ap-

plications, as well as various applications of these protocols. It discusses the

advantages and disadvantages of specified protocols and applications.

2.1 Network Standards

Open Systems Interconnection Basic Reference Model (shortly OSI Model) was

first published in 1984 as an ISO standard (ISO 7498)[32]. In the early days of

networking technologies, each developer had their own way of networking. This

diversity causes many problems both in development and applications level. For

6
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instance, there are many networking protocols currently used in personal comput-

ers and one wants to change the communication medium (LAN, WLAN, Dial-up

Modem) without effecting or changing any software on the system. OSI model

provides this flexibility by defining a standard for all communication protocols.

The purpose of OSI Model is to coordinate development standards. OSI Model

introduces a 7 layered model as represented in Figure 2.1. A layer is a collection

of related functions that provides services to upper layers and get services from

the lower layers. Each layer is described explicitly and problems in data exchange

could be isolated in each layer. This model also gives the ability to use different

standards for different layers without changing the entire system. All 7 layers of

the OSI Reference Model are illustrated in Figure 2.1.

Application

Presentation

Session

Transport

Network

Data Link

Physical
Physical Layer is the core that deals with the

electrical means. It is  the part that transmits the bit
information.

Data Link Layer deals with combination of bits. It
passes information in octets and corrects
transmission errors if needed.

Network Layer handles the network connection and
controls the quality of connection. It routes data from
one application to the other.

Transport Layer provides a transparent transfer of
data. It optimizes the use of the available network
service.

Main purpose of this layer is to synchronize data
exchange between applications. It also organizes
data exchange.

Presentation Layer performs data transformations
in order to provide a common interface. Encryption
or compression is done by this layer.

Application Layer provides all the means needed
by two applications and services directly to the user.

Figure 2.1: OSI Reference Model with explanation [32].

The OSI Reference Model was primarily developed for Local Area Network

(LAN) and Wide Area Network (WAN) architectures[32]. A lot of distinctions

between LAN/WAN architectures and fieldbus applications have been published

but it is difficult to clearly distinguish these two. Fieldbuses are used for au-

tomation and control systems in order to communicate with sensors, actuators,

and devices. Data sent over a fieldbus is usually less than 100 bytes and it is

expected to be delivered to target within a second for real-time requirements. On

the other hand, LAN/WAN systems are usually used for office, management, or

visualization applications and do not need to support real-time transactions. In

general, LAN/WAN systems are used to link computers to printers, computers,
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or multimedia by transmitting data larger than 1 kbyte size without any time

constraints.

Even though some of the fieldbus applications such as LON bus are introduced

as a 7 layer OSI system, it is hard to fulfill strong real-time and short reaction

time requirements with a 7 layer model. Furthermore, fieldbuses for robotic appli-

cations should satisfy hard real-time constraints by receiving data from external

peripherals and sending commands from main processors to other peripherals .

So in our design, we used a much more appropriate model for our domain that

is also suggested for fieldbus applications. This model is called Enhanced Perfor-

mance Architecture (EPA). EPA implements only three layers of OSI Reference

Model: application, data link and physical layers. This reduced model increases

the performance of the network and reduces reaction time. Omitted layers might

be implemented in these three layers if needed in order to not loose functional-

ity provided by OSI Model. EPA also offers sufficient flexibility for a modular

network protocol.

2.2 Types of Physical Media

Each network needs a physical medium to connect nodes together. Physical

medium is the material substance which is used to transmit communication sig-

nals. There are several types of media used for linking nodes and we overview

some of them in this section.

2.2.1 Twisted Pair

Twisted pair wires are composed of two insulated wires that are twisted around

each other. Each twisted pair carries opposite and equal signals and these signals

are added on the receiver side to obtain the the exact signal. By this way, twisted

pair cables minimize electromagnetic interference from external sources. There

are three major types of twisted pair wires:
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2.2.1.1 Shielded Twisted Pair

Shielded Twisted Pair (STP) cabling includes shielding over each twisted pair

and a shield overall the twisted pairs as illustrated in Figure 2.2.b. A shield is a

conductor used for eliminating external electromagnetic interference and crosstalk

between pairs. STP is mostly used for industrial environments exposed to high

electromagnetic field up to a frequency of 155Mbps.

2.2.1.2 Unshielded Twisted Pair

Unshielded Twisted Pair (UTP) is another way of twisted pair cabling but this

type of twisted pair wiring doesn’t include any shields as displayed in Figure 2.2.a.

UTP based communication media can transmit data up to 100Mbps. Frequencies

greater than this value don’t allow reliable transmission.

Twisted Pair

Insulator
Outer Shield

Insulator

Twisted Pair

Inner Shield

Figure 2.2: Illustrations of (a)Unshielded Twisted Pair (b)Shielded Twisted Pair

2.2.2 Coaxial Cable

Caoxial cable is a communication medium designed for reliable transmission of

radio frequencies. It is composed of a solid inner wire in the core and outer plaited

layer of wire. Coaxial cabling is illustrated in Figure 2.3. The term coaxial cames

from the inner and outer wires sharing the same axis.

Insulator
Dielectric
Insulator

Metallic
Shield

Center Core

Figure 2.3: Coaxial Cable Structure

Structure of coaxial cables provides protection from external electromagnetic

fields. Electromagnetic field only occurs between inner and outer conductors.
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Coaxial cables can support up to 10 Mbps data transmission.

2.2.3 Optical Fiber

Fiber optic is a glass or plastic fiber that carries light along its length. Since

fibers carry light instead of electrons, fiber optics permits data transmission over

longer distances with higher bandwidths. Data rates depend on the equipment

that lights the fiber. Structure of a fiber is illustrated in Figure 2.4.

core
cladding

protective coat

Figure 2.4: Optical Fiber Structure

Optical fibers are not affected by electromagnetic and radio frequency inter-

ferences since fibers uses light for data transmission and light is not affected by

these interferences. This situation makes optical fibers suitable for almost all

environmental conditions.

2.2.4 Radio Frequency (RF)

Radio Frequency (RF ) denotes frequencies of radio waves ranging from 3 Hz

to 300 GHz. RF signals are radiated by an antenna with alternating current

flow over the antenna. RF signals are widely used for several different wireless

communication applications like TV broadcasting and mobile communications.

RF signals are categorized depending on their frequencies. Signals ranging

from 300MHz to 300 GHz are called microwave and microwave signals are used

for Bluetooth, wireless LAN and satellite communications. Nightvision, remote

control and Infrared Data Access (IrDA) applications use infrared signals that

have a frequency range of 3 GHz to 400 THz.
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2.3 Applications of Network Technologies in

Robotics

In section 2.1, we defined OSI and EPA models and explained differences between

the two models. There are numerous applications based on the two network

models and there are also various network applications in robotics. This section

gives a brief explanation for the usage of network applications in robotics.

2.3.1 Teleoperation

Robots can be roughly categorized into two groups based on their decision making

mechanism. One of these categories is autonomous robots and the other is human-

assisted robots. Autonomous robots are robots that perform desired and pre-

defined tasks without continous human assistance. On the other hand human-

assisted robots need someone to control the robot and make decisions on behalf

of the robot itself.

Human-assisted robots are driven by humans so there has to be a communica-

tion link between the human and the robot. The communication between human

and robot is called teleoperation. Teleoperation is the operation of a machine

from a distance. In other words it means ’remote control’ of robots. Inven-

tion of radio communication underlie the history of teleoperations and WLAN,

Wi-Fi, Bluetooth and Deep Space Network (DSN) are some protocols used for

teleoperation of robots.

2.3.2 Swarm Robotics

As opposed to single robot applications, swarm robotics concerns the coordination

of multiple robots. Swarm robotics evolved after research on artificial swarm

intelligence and biological studies of insects. Swarm robots are relatively simple

with respect to single robots but each robot in a swarm shares calculations and



CHAPTER 2. BACKGROUND 12

environmental interactions with other robots in the swarm.

Sharing data between robots in a swarm necessitates the usage of a commu-

nication medium between robots. Zigbee, CAN, Bluetooth and Wi-Fi are some

of the examples to network protocols used for swarm communication.

2.3.3 Internal Communication Infrastructures

Industrial network systems for real-time distributed control are called fieldbuses

[32]. Based on this definition, the most important characteristic of fieldbuses is

the real-time data transmission. Fieldbus systems have a wide range of applica-

bility from automation to robotic applications because of real-time constraints.

In automation applications, fieldbus is a communication medium that carries

data from a distributed system of sensors, actuators, lights and switches to the

main controller of the system. This time critical data is used for ensuring the

stability of the system. On the other hand, fieldbuses are also used as the internal

communication infrastructure for robots that adopt distributed architectures. In

such a system, sensors, actuators and controllers are distributed over the robot

as illustrated in Figure 1.2.

There are numerous fieldbus protocols used for internal communication within

robots. Robots, especially mobile robots, that need hard real-time operating con-

straints mostly use a fieldbus architecture. In this thesis, we are only concerned

with network protocols used for internal communication within robots and the

following sections introduce some of the mostly used real-time network protocols

as internal communication infrastructures.

2.4 Physical Connectivity Alternatives

In order to share data between elements of a network, each device on the network

must be physically connected. This section investigates some of the alternatives
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for bus standards to interface devices.

2.4.1 Universal Serial Bus (USB)

The Universal Serial Bus (USB) specification was first introduced in 1995 and

promoted by Intel. The main motivation of USB designers was to build a flex-

ible and low cost protocol with high transfer rates that support real-time data

transmission for audio and video.

USB physical interconnect is a tiered star topology that can be extended up

to 7 tiers [1]. The USB hub, that connects each device to the USB and other

hubs, and is the center of each star. Root hub for the USB is the center of the

entire architecture and is called USB host.

USB is a polled bus and every transfer is initiated by an interface called the

USB host controller. Each transmission is initiated with a starting packet, called

token packet, transmitted by the host controller. This packet includes the address

and end point information for the desired device. Connection between the host

controller and linked devices is established following the reception of this packet.

Once a connection is established, the host controller either sends or receives data

packets. In order to achieve a reliable communication, response to data packets

are handshake packets indicating that the transmission was successful.

Besides being a reliable and fast data transmission medium, USB is also a

flexible bus. USB implements three operating modes for various tasks. In order

to link interactive devices like mice, keyboards or game peripherals, the USB

host controller supports low speed connections. Tasks with real-time constraints

may need faster communication so USB implements full speed and high speed

operating modes. Full speed mode is used for audio peripherals like microphones

and speakers and provides a data rate of 12 Mb/s. Moreover, the high speed mode

can used for real-time tasks that need high data transmission. Some examples

for high speed operating mode might be video and storage tasks. Furthermore,

the USB protocol enables auto-detection of newly connected peripherals. Each
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device is connected over a hub and each hub has a status bit for connected devices.

The host controller queries for these bits in order to detect a new connection or

disconnection.

2.4.2 Firewire (IEEE-1394)

Firewire is a communication interface targeting personal peripheral communica-

tion market like USB. It was developed by Apple Computer in 1995 for high

speed communications and standardized as IEEE-1394 (”A High Performance

Serial Backplane Bus”). Firewire is designed up to the transport layer and it

provides asynchronous and isochronous real-time communication for multimedia

devices. It implements a bitwise arbitration algorithm for medium access control.

However, firewire does not require configuration at startup and supports hot-

plugging like USB. It supports communication speeds ranging from 12.5 Mbit/s

to 50 Mbit/s[6].

2.4.3 Recommended Standard 232 (RS232)

RS232 is an asynchronous serial communication interface defined by the Electric

Industries Association in 1962 as a recommended standard (RS). RS232 is also a

complete standard [42] and in a complete standard voltage and signal levels, pin

configurations are all defined and it needs minimal amount of control information.

Furthermore, the Universal Asynchronous Receiver/Transmitter (UART ) is the

primary component of the serial communication systems. UART takes bytes of

data and transmits each bit over a serial bus in a sequential order. On the receiver

side, UART receives data bits and assembles exact data in bytes.

RS232 operates in a wide range of voltage values. Different from most of the

communications protocols, RS232 defines positive voltage as +15V and negative

voltage as -15V. However it also supports +5V to +15V so RS232 can work with

various systems. This flexibility also brings some limitations to cable length and

operation frequency. The oscillation of voltage levels from +15V to -15V causes
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electromagnetic interference and limits the baud rate of the bus and cable length.

Baud rate can be defined as the bits transmitted within a second and RS232

operates in a range of 1200 to 115200 baud rate. Besides, different baud rate

values have different limitations over cabling. 2400 baud transmission permits 30

meters of cabling while 19200 baud transmission permits a maximum of 6 meters

cabling.

2.4.4 Peripheral Component Interconnect (PCI)

Peripheral Component Interconnect or PCI Standard was first designed

by Intel Architecture Lab in 1990 in order to build a low cost, flexible, high

performance local bus[21]. The motivation behind the design of PCI bus was to

connect components to a computer in order to increase interchangeability.

PCI presents a multi-master and peer-to-peer architecture. Each component

linked to the bus is able to be the master of the bus and transmit data directly

to other peripherals. PCI devices are plug and play devices so when a new

peripheral is linked to the bus, the system triggers a configuration task to use the

new peripheral without external intervention.

PCI buses can operate in 32 bit data paths or 64 bit data paths and 33 MHz

bus clock frequencies or 66 MHz bus clock frequencies. As a result of different

configurations, PCI can transmit data at a rate of 1Gbps for a 33MHz system

clock and 32 bit data path. PCI also can work at a rate of 4Gbps for a 66

MHz clock speed and 64 bit data path. Resulting performance is acceptable for

real-time applications with guaranteed low latency.

2.4.5 Controller Area Network (CAN)

Until early 80s, point-to-point wiring systems were used for automobile technol-

ogy. But this implementation made hardware systems more complex and any
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new technology added to the vehicles results in increased cabling cost. New ex-

tensions and modifications affected the design of automobiles. In order to solve

this problem, Bosch GmbH introduced CAN bus in 1988[37].

CAN is a serial communication infrastructure especially designed for small

scale networking purposes in decentralized architectures. CAN takes a dynamic

approach, using a priority based algorithm to decide which node is allowed to

send a message. Contrary to dynamic approaches, static approach uses a fixed

time interval for each connected station to send their data as described in Section

2.5.2. In the dynamic approach, each node acts like a master to the bus and the

one with the highest priority takes the control of the bus. After taking control

of the bus, sender broadcasts the message and related nodes receive the message.

This approach is good for transmitting most urgent messages but it does not

guarantee delivery of less urgent messages [45].

CAN applications range from automotive applications to robotic applications,

because of its very efficient real-time performance and reliability[36]. Since CAN

automatically checks errors and re-transmits data, it doesn’t require extra oper-

ations for checking errors.

2.4.6 Inter-Integrated Circuit (I2C)

I2C Bus was first invented by Philips in order to connect low speed devices by us-

ing two bi-directional lines[35]. These two lines are called Serial Data (SDA) and

Serial Clock (SCL), which are both open-drain lines. Open-drain is an interfering

technique widely used for linking multiple devices on a single line. Technically,

open-drain devices are actively sinking current (logic 0) or are high impedance,

but they do not actively feed the circuit with current. Both SDA and SCL lines

must be pulled-up with resistors.

I2C Bus protocol allows multiple master applications. This means that each

device connected to the bus can initiate a transmission over the bus. It can also

be implemented as a single master bus. In URB we used I2C as a single master
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device as displayed in Figure 2.5.

Master Slave Slave

SDA

SCL

Vdd

RpRp

. . .

Figure 2.5: Single master application of I2C as it is used in URB.

The reference design of I2C Bus has 7 bit address space with 16 reserved

addresses, so a total of 112 devices can be linked over a single I2C Bus[35].

I2C has 5 different operation modes: Low-Speed Mode(10kbit/s), Standard

Mode(100kbit/s), Fast Mode(400kbit/s), Fast Mode Plus(1Mbit/s), and High

Speed Mode(3.4Mbit/s).

2.5 Network Protocols Relevant to Robot Com-

munications

There are many communication protocols used as internal communication infras-

tructure for robots. Within these protocols, one needs to choose the most suitable

protocol for a specific application. All embedded and robotic applications have

different kinds of constraints and requirements. Design changes depending on the

specific functionality of the bus, would increase the performance of the whole sys-

tem. In this section, we discuss some of the widely used communication protocols

for fieldbus applications.

2.5.1 Local Operating Network (LON)

Local Operating Network (LON) is a computer network designed for small geo-

graphic areas like home, office or group of buildings. LON is a 7 layered, packet

based, peer-to-peer(P2P) network which also supports authentication and prior-

ity based messaging[11]. LON uses a diverse connectivity between participant

nodes and this makes LON work as a peer-to-peer network. Echelon Corp. and
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their partner Toshiba developed a sophisticated microcontroller with networking

and interfacing named Neuron. These chips are composed of 2 controllers for

networking purposes and one for executing user programs[47].

LON is designed for control systems and most control systems have common

requirements that are independent of application [11]. Control networks support

frequent, reliable, secure communication, short message formats and P2P func-

tionality. In order to satisfy the needs of control systems, LON is designed to be

flexible and scalable. LON systems runs on various media like twisted pair wire,

radio and power line. This property gives developers the flexibility of building the

system on a suitable media and port whole system to another media like power

line in places where the cabling cost is very high. This is handled by building the

physical connection of nodes through a transceiver[47].

LON systems are based around a protocol called LonTalk and this protocol

works like the Ethernet protocol. As in Ethernet protocols, simultaneous trans-

mission requests are possible. Ethernet handles collisions by using the Medium

Access Control (MAC) algorithm but this does not eliminate collisions. If a

collision occurs, the MAC algorithm defines a random delay for each peripheral

and then re-transmits data. This situation is not suitable for control networks

since the MAC algorithm causes non-determinism and does not guarantee data

transmission. So, LON implements a different MAC algorithm called predictive

p-persistent CSMA protocol. This protocol enhancement reduces collisions over

the connection medium but cannot eliminate all collisions.

LonTalk protocol supports four addressing types[11]. Physical addressing uses

a 48 bit node identifier which is embedded in the hardware[17]. Device addressing

handles addressing in a more effective manner by categorizing the given address

according to the groups, subnets. etc. LonTalk also supports group addressing so

that a message can be delivered to a group of devices. In order to send a message

to the whole system, LonTalk implements broadcast addressing. LonTalk can

support up to 32385 devices and 256 groups.
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2.5.2 Time-Triggered Protocol (TTP)

Communication networks are categorized into two basic classes[25]: event-

triggered (ET) and time-triggered (TT) architectures. ET network architectures

initiate data transmission with the occurrence of specific events, such interrupts.

Each task and communication events are triggered by interrupts. Because of

this, replica determinism and collision problems cannot be solved[23]. TT pro-

tocols handles this problem by initiating events of each node depending on the

progression of the global time.

Time-Triggered Protocol (TTP) is based on Newtonian physics[24]. A time

interval from current time instant to an instant in the future consists of infinite

number of time instants. So TTP samples this interval and triggers events with

respect to the sample time instants. This approach introduces a new concept in

communication networks: synchronization. Each node connected to system has

its own clock and clocks of all nodes should be synchronized for accurate timing

of events. So, TTP implements a synchronization algorithm in order to acquire

a global time base with an acceptable error.

TTP is designed to be a fault-tolerant real-time protocol with guaranteed

timeliness. Each node is replicated[41] or grouped so that any failure in one of

the nodes can be recovered by a duplicate of defective node. Replicated nodes

perform the same operations and stores the exact state of the running node.

TTP also uses two bidirectional channels as communication medium in order to

tolerate communication errors.

2.5.3 Attached Resource Computer Network (ARCNET)

Attached Resource Computer Network (ARCNET) is a real time protocol de-

signed by John Murphy at Datapoint Corp. in 1976. ARCNET was designed

for fast transfer of large amounts of data over various types of media like coax,

twisted pair or optical waveguides[3]. It is intended for office applications but is

also an ideal fieldbus with time predictable message delivery[10].
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ARCNET uses a token passing algorithm as its Medium Access Control mech-

anism. A token is passed through participants of the bus and the one owning

the token has control of the network. Each participant can transfer up to 508

bytes of data at a time and should then pass the token to another participant.

The token passing algorithm is deterministic where each participant has a pre-

determined time for controlling the network. However this means extra work for

each participant and it becomes difficult to administer the bus.

ARCNET also supports handshaking and checksum calculation for reliability

of the data and automatic integration of participants defined by a unique ID range

from 1 to 255. A new participant is detected by the neighboring participant and

integrated to the network. Likewise, if any of the participants leave the network,

the neighboring participant detects this and reconfigures the Next ID (NID) value

stored for the token passing algorithm.

2.5.4 Building Automation and Control Network (BAC-

Net)

In the late 80s, work on intelligent buildings and control networks caused the

development of many networking protocols. One of the mostly used proto-

col for building automation is the Building Automation and Control Network

(BACNet). BACNet was introduced in 1991 and became an American Society

of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) standard in

1995.

BACNet eliminates 3 layers of the standard OSI model and implements only

the application, network, datalink and physical layers. This way, some of the

unnecessary operations are also eliminated. BACNet also supports confirmed

and unconfirmed message transactions, as well as single or multiple options for

networking technology[9].

BACNET implements an object based data representation in order to abstract

the internal design of devices and prevent application dependency. There are 18
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different object types such as device, command, group, etc. One device might

contain one or many of these objects except the device object. Any device should

have exactly one device object defining device information (like vendor name,

model name, protocol version, etc.). Each of these objects has a unique 4 bytes

object identifier defining object type and object instance.

2.6 Application Protocols Relevant to Internal

Communications Within Robots

Section 2.5 discussed some of the mostly used network protocols. Today these

protocols became standards and they are widely used for industrial, office, build-

ing automation, and control applications. But some of these protocols stand out

with their convenience for mobile robotic and real-time applications.

CAN protocol is one of the mostly used protocols for robotic and real-time

systems. Wargui and Rachid[53] proposed a decentralized architecture for mobile

robots based on CAN. Decentralized architectures provide autonomy to each

specialized unit. This means local control tasks are executed locally, reducing

communication delays in local control loops.

Wargui and Rachid categorize network models into two: probabilistic and

deterministic models. In the probabilistic model, all devices compete for access to

the bus and in case of a collision, all devices back-off and try again after a random

delay. Since this model doesn’t guarantee exact timing and even delivery of

message, this model is not suitable for real-time applications. On the other hand,

deterministic models guarantee a predictable delay by using a ”right to transmit”.

Satisfying real-time constraints with a deterministic model, they also mention the

importance of modularity for robotic applications. A network protocol used for

robotic systems should be easily extensible and reconfigurable for future device

additions.

Fernandez and Souto[14] also proposed a USB like communication system
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to share sensor and actuator data based on the CAN protocol. Different from

[53], they developed a centralized system in order to detect new additions. The

proposed system is capable of auto-detection of new modules and the master of

the system loads appropriate drivers for the specified module.

Some researchers don’t find the pure CAN protocol suitable for real-time appli-

cations and developed extensions to it. Perez and Posadas[34] presented a hybrid

communication protocol between TTP and ETP based on CAN protocol. Fur-

thermore, Hong and Kim[18] offer a bandwidth allocation algorithm to efficiently

control the traffic in CAN. In pure CAN applications, real-time data might be

interfered by non-real-time data transmissions. Real-time data consists of feed-

back control data and event data that should be delivered with an acceptable

delay. Bandwidth allocation algorithm is used to satisfy the delay requirements

for control and event based data by implementing a window scheduling algorithm.

Alike [18], Mock and Nett[29] proposed an enhancement for a Time-division

Multiple-Access (TDMA) protocol intended for real-time communications in

robots. In pure TDMA, time-slots are allocated for the worst case and most

of the time these slots are not even used. They solved this problem by sharing a

time slot between events. This concept is designed for multiple access buses like

WLAN and field-buses. Main idea is to give a higher priority to the to real-time

messages and sharing the time slot with non-real-time message. By this way, this

approach guarantees a predictable delay for real-time transmissions and optimizes

the load over the bus.

The LON protocol is also used widely for robotic and real-time applications.

Janet and Wiseman[22] approached the concept of real-time distributed systems

by using the LON protocol. This study is actually a summary for the usage of the

LON in three different types of projects: biped walking robot, hexapod colony,

and complex autonomous robot. They denote the reason for choosing the LON for

these projects is its flexibility. By using LON, the system can easily be expanded

without rewiring or re-programming. Besides, the LON protocol supports both

predefined timely events (static) and interrupt based events (dynamic).

All these studies confirm the need for a reliable, real-time, and deterministic
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network protocol used in a distributed fashion. On the other hand, another

problem arises within distributed architectures. Each device connected to the

communication medium has its own time base and other devices don’t know

when the data is obtained. This problem is named node synchronization.

2.7 Node Synchronization and Determinacy

Time critical applications require a real-time clock to trigger events and detect

exact time of occurance for an event[16]. In a central architecture, internal clock

and timers are responsible for triggering and detecting timely events. However,

in a distributed architecture, each peripheral has its own clock and there is no

global time concept. Even if all the processors are started at the same time,

clocks on processors may drift one second in every ten days[40]. Therefore, it is

mandatory for clocks to be synchronized in a distributed architecture for accurate

and deterministic timing of events. Generally, a virtual clock is generated locally

for each peripheral depending on the global time base.

Synchronization of data is one of the main real-time constraints for a mobile

robot platform capable of dynamic locomotion. Accuracy of the global timing

of events directly affects the performance of the computational infrastructure.

Sensory data received from external peripherals should be consistent and actuator

commands should be accurately timed. Accurate synchronization of peripherals

improve the performance of state estimations and environmental perception for

highly mobile robots.

2.7.1 Types of Synchronization Algorithms

Clock synchronization within a distributed architecture requires a synchronization

algorithm. A wide variety of algorithms have been proposed in the literature and

these algorithms can be categorized under three classes[40]:
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2.7.1.1 Convergence Based Algorithms

Convergence based synchronization algorithms are used to combine the values of

all the processor clocks over a distributed system[40]. A function is used on each

peripheral in order to calculate the drift of this associated processor, and the result

of this function is a global time base for each processor. This function is called

the convergence function and its primary goal is to minimize maximum deviation

between clocks[15]. This function takes N+1 arguments for N processors and

first argument is used to define the processor evaluating the function.

Algorithms based on convergence functions implement a simple approach.

Each peripheral reads the clock values of other peripherals at the end of each

synchronization round. The convergence function is used to calculate the global

time and the resulting time value is used to adjust the clock of each peripheral for

the next synchronization round. Thereafter, each peripheral agrees on the same

global time base and each of them converges to the common global time value.

2.7.1.2 Agreement Based Algorithms

Agreement based algorithms are another way of synchronizing clocks over a dis-

tributed architecture. The idea to synchronize processors’ clocks is to sending

messages between each processor and reaching an agreement for the global clock.

In the absence of faulty processors, it is easy to reach an agreement[33]. But in

most of the cases there might be one or more faulty clock sources.

Agreement based algorithms allow processors over a distributed system to

agree on an action or set of values[40]. Agreement protocols start the synchro-

nization process by broadcasting a message at a pre-agreed time instant[50]. After

some message exchanges, it is the responsibility of an agreement based algorithm

to define a global time value by using each received local clock value. It is also

the algorithm’s responsibility to define the agreement protocol. For instance,

median, or modulus operations can be easily used to calculate the global time.

Furthermore, faulty processor clock readings might cause a bad calculation and
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they might be eliminated by the agreement algorithm.

2.7.1.3 Diffusion Based Algorithms

The main goal of diffusion based synchronization algorithms is to use local opera-

tions to achieve global agreement[27]. Different from agreement based algorithms,

diffusion based algorithms force each peripheral to exchange and update infor-

mation locally with their neighbors. Diffusion based algorithms are widely used

for various applications like load-balancing[44], sensor networks and clock syn-

chronization. The principle is to exchange data with neighboring peripherals and

diffuse the global value to an average or highest value or lowest value. After a

series of rounds, each peripheral would agree on a global value.

Diffusion based algorithms can be used for clock synchronization over a dis-

tributed system. Neighboring nodes exchange clock values and the average of

values are used for synchronization[27]. Converging to highest and lowest values

may lead erroneous situations if a node results a faulty clock value that is too

low or too high, so it might mess up the synchronization.

2.7.2 Applications of Clock Synchronization

Section 2.7.1 gives the most common algorithms used for clock synchronization

over distributed systems. These generic algorithms are used in various network

applications and there are many applications of these algorithms. These applica-

tions can also be categorized under four basic classes:

2.7.2.1 Traditional Clock Synchronization Protocols

Most traditional clock synchronization protocols share the same basic design prin-

ciples:

• Connectionless messaging protocol
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• Exchange of clock information between server and clients/nodes

• Method to reduce effects of non-deterministic communication delay

• Update client time-stamp based on server clock

Network Time Protocol (NTP) is one of the oldest synchronization protocols.

It is designed by David Mills and still in use since 1985. NTP is designed to

support accurate, reliable time for financial, legal transactions, transportations

and distributed systems and it is used in the Internet to synchronize clocks and

coordinate time distribution[28]. The main idea of NTP is to generate a global

time on a global server and each subnet connected to this server is synchronized

according to the disseminated time-stamp.

Gergeleit proposed a clock synchronization algorithm specifically for the CAN

bus[16]. Proposed synchronization algorithm is based on a master-slave configura-

tion and it can be seen as an implementation of a posteriori agreement approach.

According to this algorithm master of the CAN bus broadcasts a periodic start

message that triggers a virtual clock on each slave. If the master is healthy and

running properly, CAN guarantees delivery of broadcast messages and precision

of virtual clocks.

With respect to real-time properties of distributed systems, the concept of

temporal firewalls is also an interesting and useful one, presenting a mecha-

nism to preserve real-time properties in the presence of independently operat-

ing subsystems[26]. Temporal firewall is a unidirectional control-free interface

that connects the almost autonomous partitions of a system[26]. [34] proposes a

temporal firewall approach used to synchronize subsystems linked to CAN bus.

2.7.2.2 Wireless Clock Synchronization Protocols

There are a few synchronization algorithms for wireless networks. Römer [39]

also proposed one of these algorithms for ad hoc networks. Ad hoc networks are

wireless mobile networks and characteristics of ad hoc networks makes traditional
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synchronization protocols difficult to use. Due to limited connectivity range, each

node is connected to only some of the nodes located in the range of communication

and can communicate other nodes outside the range by using reachable devices

as bridges. Hence, it is difficult to synchronize clocks of each device.

Römer proposed an algorithm to synchronize to generate time-stamps and

use time-stamps for unsynchronized devices rather than synchronizing clocks of

processors. As a message moves from hop to hop, each hop converts time-stamp

of the message to its own time-stamp with some error. Error in time-stamp

increases with the number of hops.

2.7.2.3 Receiver-Receiver Synchronization

Some of the clock synchronization algorithms show big differences from traditional

approaches. Their ideas are to synchronize a set of receivers among themselves.

Verissimo and Rodrigues [51] were the first to use this idea.

After Verissimo, PalChaudhuri[31] proposed a Receiver-Receiver clock syn-

chronization algorithm for sensor networks. Clock synchronization is also im-

portant for sensor networks for data integration in sensors and sensor reading

fusion. But the characteristics of sensor networks complicates the use of a tra-

ditional approach for sensor networks. Non-deterministic random time delay for

a transmission of the synchronization signal, makes it difficult to make precise

calculations.

According to Receiver-Receiver synchronization approach, a sender broad-

casts a signal over the network and it is assumed that all receivers receive the

synchronization signal. Each receiver on the network marks the time that they re-

ceived the signal and exchange the information of reception time. Therefore, they

approximately estimate the clock value of neighboring receivers and synchronize

among all receivers.
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2.7.2.4 Probabilistic Clock Synchronization

Arvind [5] proposed a probabilistic synchronization algorithm for a master-slave

architecture. This synchronization protocol is composed of two main parts. First

part is called Time Transmission Protocol (TTP) where the master sends its clock

to slaves and each slave synchronize to master node clock. Second part is called

Probabilistic Clock Synchronization (PCS ) where slaves receiving the clock value

of master estimate master clock compute the difference between its own clock

and master’s clock probabilistically.

The synchronization procedure is repeated every interval of time and preci-

sion of synchronization can be increased by increasing running frequency of the

procedure. Arvind showed minimum number of messages needed for achieving a

given maximum error.

2.7.3 Phase Locked Loops

There is also an old but well-known method used for synchronizing clocks and

signals, called Phase-Lock Loop (PLL). PLL achieves synchronization of the fre-

quency of a signal, with the frequency of a reference signal by using the phase

difference between the two signals [13]. Phase-locked loops are widely used in

radio, telecommunications, computers and other electronic applications since it

has been invented.

2.7.3.1 History

Concept of synchronization dates back to 1920s[52]. Early studies on synchro-

nization is to synchronize oscillator signals. Vincent[52] and Appleton[2] exper-

imented and analyzed practical synchronization of oscillators. In the following

10 years, the synchronization problem became more interesting with the devel-

opments in communications. In 1932, a French engineer called De Bellescize[7]

implemented first analog PLL circuit. Bellescize is known as the inventor of
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‘coherent communications ’ after his work on PLL circuits.

After Bellescize research on synchronization focused on synchronization of lo-

cal oscillator in FM demodulation[20]. Travis[46] designed automatic frequency

tuning for FM receivers. Until then, FM receivers are tuned manually and me-

chanically by the user and visual indicators were provided. Travis’ design is

composed of two primary elements: a tunable oscillator and a frequency discrim-

inator used to tune the oscillator.

Advancements in synchronization of local oscillators lead to of the greatest

inventions of the century: television. First versions of television are colorless and

PLL is used to synchronize the image on the screen. PLL circuit keeps heads at

the top of the screen and feet at the bottom of the screen[8]. Color televisions

wouldn’t also be possible without PLL. PLL circuit makes sure green remains

green and red remains red[8].

First PLL integrated circuits (IC) appeared in 1965 and they were purely

analog. With the development of cheap PLL ICs, PLL is started to be used

widely in industry. In 1970s, PLL circuits drifted to digital territory and played

a key role for digital communication devices.

2.7.3.2 Classification of PLL

First implementations of PLL were purely analog and mostly used for synchro-

nizing clocks for radio communication. Purely analog versions of PLL is also

known as ”linear PLLs”, illustrated in Figure 2.6. Linear PLLs are composed of

three primary elements: phase detector, loop filter and voltage controlled oscil-

lator (VOC). Phase and frequency differences of a reference signal and output

signal are detected by the phase detector and according to this difference VOC

generates an output signal with the same frequency and phase of the reference

signal.

In the 1970s, the need for synchronizing digital signals motivated the digi-

tal implementations of PLLs. Although they were used for synchronizing digital
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Figure 2.6: Block Diagram of the Phase Locked Loop

signals, first digital PLL systems were hybrid, also including analog peripherals.

After a few years, first all-digital PLLs occurred and they are still widely used

in ethernet, WLAN, digital signal processors (DSP), etc [19]. The idea behind

digital PLLs was simply to take the difference between the reference signal and

output signal. Result of this operation is also a digital signal and this signal

would be used to adjust the output signal. This advancement proved the pos-

sibility of implementing a software PLL. Software PLLs provides the freedom

for implementation but performance depends on a fast algorithm and effective

implementation.



Chapter 3

URB: The Universal Robot Bus

We observed in previous chapters that extensibility and modularity are essential

features for mobile robot designs as well as space optimization and power uti-

lization. Considering these requirements on reliability, modularity, extensibility

and computational power, we designed a distributed communication infrastruc-

ture. The proposed architecture provides local computational entities linked to

a multi-task central processing unit. This central processing unit is responsible

from coordinating all entities linked to the system so that they perform sensory

acquisition and actuation tasks. This local communication architecture for robots

is called The Universal Robot Bus (URB). This chapter describes the design de-

tails, concepts, protocol details, and architecture of the URB.

3.1 Overview of the URB Infrastructure

As noted above, a physically centralized control system where all signals physi-

cally connect to a single multi-task controller would be inappropriate. However,

commanding all the necessary sensor and actuator devices from a central con-

troller is a desirable method for simplicity and ease of development. For this pur-

pose URB implements a logically centralized system architecture as illustrated

in Figure 3.1. In this logical architecture, all sensor and actuator nodes work

31
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together with the central processing unit (CPU) in order to accomplish required

tasks. URB implements user level libraries both for the CPU and nodes, ab-

stracting away from physical implementation details.
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Figure 3.1: The Logical Topology of the URB System

The advantage of the URB architecture lies in its physical topology, illustrated

in Figure 3.1. The physical topology of the URB system includes ”bridges” that

link the main CPU to nodes as illustrated in Figure 3.2. Since there might

be multiple I2C buses linked to the main CPU, bridges are essential to direct

commands and requests sent to nodes. Bridges are transparent to programmers

and are similar to USB host controllers. However, USB host controllers are

different from URB bridges in their hardware topology. URB implements a two

tiered architecture linked with bridges while USB implements a multiple tiered

system separated with hubs.
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Figure 3.2: The Physical Topology of the URB System

As illustrated in Figure 3.2, the physical topology of the URB is composed of

three main components, described in the following sections.

3.1.1 The URB Central Processing Unit (CPU)

URB CPU is the central authority of the bus and is responsible from the coor-

dination of all devices linked to the bus. It collects sensory data, sends actuator
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actions and implements complex control and decision algorithms. It is usually an

embedded PC or a similarly powerful computational device.

URB CPU also implements drivers that handle communication details and

convenient Application Programming Interface (API). Different types of bridge

implementations require different instances of drivers and CPU API libraries.

3.1.2 The URB Bridge

Each URB bridge is a gateway between URB CPU and nodes as illustrated in

Figure 3.2. The connection between the URB CPU and bridges are called up-

link, and connections between bridges and nodes are called downlink. The main

purpose of a URB bridge is to buffer incoming asynchronous data and requests

from the uplink and enabling data exchange with hardware nodes as the master

of each I2C downlink connection.

In order to achieve hardware modularity, URB bridge firmware is designed to

incorporate three functional layers.

3.1.2.1 The Uplink Interface

The uplink interface subsystem implements a connection between the URB CPU

and bridges, and detects asynchronous data and command transmissions over

the uplink. Different uplink connection media (such as ISA, USB, RS232, etc.)

require different instances of the uplink interface to handle uplink communication

services. Incoming data from the uplink is received and buffered in this layer to

be served according to priority and reception time.

3.1.2.2 The Job Controller

The job controller subsystem is responsible from classifying incoming uplink mes-

sages and providing appropriate responses to these messages. Each incoming
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message is classified as either a bridge command, a node command or a node

read/write operation. The job controller interfaces the downlink to the uplink,

and schedules new events.

3.1.2.3 The Downlink Interface

The downlink interface subsystem provides a connection between the URB bridge

and linked nodes. It also implements the I2C based communication functional-

ities to master the downlink. Node requests and commands are directed to the

downlink interface subsystem by the job controller and any responses from nodes

are directed back to the job controller. Although the downlink interface is cur-

rently constrained to I2C, other alternative implementations, such as the CAN

bus are also possible.

3.1.3 URB Nodes

URB nodes are embedded devices interfacing with sensors and actuators. Each

node is linked to a bridge and could be accessed over an I2C bus. URB node

firmware also offers a two layered structure: the downlink interface layer and the

node application layer. The downlink interface layer implements I2C communi-

cation details and downlink protocol details. In contrast, the node application

layer manages domain specific sensory acquisitions and actuation actions.

A simple node library is provided to ease development of a node. This library

implements protocol details and users are free to implement custom nodes ac-

cording to their needs. A simple and standard API is also provided to users in

order to offer a simple and fast development environment. The following section

includes details of node implementation.
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3.2 Functional Requirements

The URB is a modular, real-time, and reliable communication infrastructure

designed for small robots as it was explained in previous chapters. In order to

satisfy these needs, the URB communication protocol should implement some

requirements and these requirements are listed as follows:

3.2.1 System Requirements

A modular communication protocol needs to be extended by adding new de-

vices, namely nodes. New nodes need to be detected by the system in order

to be included in the whole operation. Therefore, the URB protocol supports

auto-discovery which is a method for discovering the network configuration

and identifying devices that reside in a network[4]. The URB doesn’t need to

support hot-plugging, so discovery can be handled during the initialization of the

bus.

Extending the network is limited in almost all communication protocols

because of either electrical or protocol related constraints. For instance, in the

USB specification[1], USB is limited up to 5 tiers and 127 devices for each tier.

Analogously, the URB protocol implements exactly 2 tiers and 17 nodes can be

connected to each bridge. However, no substantial limits should be imposed for

the URB protocol. Extensions to the URB bus must be primarily limited by the

available downlink and uplink bandwidths.

Besides modularity and extendibility, the URB protocol is also subject to

strict real-time constraints. Hence, latency is a key constraint for its design.

URB guarantees that a command sent by the main CPU is responded to in at

most 2 ms. In other words, the latency between the time the CPU requests data

from a node and the time it receives the information should be at most 2 ms.

One of the most important characteristics of the URB protocol is the syn-

chronization of nodes. Each URB node implements its own clock and their
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clocks drift away from each other even they are initiated at the same time.

Therefore, periodic local data updates for each node is done at different time

instants. URB protocol should also support a synchronization approach to solve

this problem.

3.2.2 Hardware Requirements

Depending on the hardware configuration and types of µC used for devices, lim-

itations of the whole communication system may change. However, for real-time

purposes, the URB hardware should support 1Mbps raw communication speed

for each downlink and 10Mbps raw communication speed for each uplink. These

requirements might be relaxed for debugging purposes and soft real-time imple-

mentations.

Safety is another concept that needs to be taken into account for a dynamic

autonomous robot. Each URB bridge supports shutting all actuator and sensor

nodes in case of any emergency. URB bridges should have the ability to turn on

and off all nodes associated with that bridge, so URB nodes receive power from

their downlink connection.

3.2.3 Software Requirements

One of the primary purposes of the URB infrastructure is to provide a rapid

development of a communication environment. In order to provide a simple

development environment, there should be various libraries and APIs provided

by the URB protocol. Therefore, URB should provide node libraries associated

with a wide range of µCs and versatile, simple APIs should be also provided for

fast and efficient development of nodes.

On the CPU side, a driver layer is needed for different uplink implementations

such as RS232 and USB. These drivers should be supported for various operating

systems such as Linux, Windows and QNX. Purpose of these drivers is to abstract
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away details of low level uplink implementation. URB CPU APIs should be

provided for fast CPU implementation, as well. However, implementation details

of CPU libraries and APIs are excluded from the content of this thesis.

3.3 Autonomous Data Acquisition

Most of the data acquisition operations need to be executed periodically within

robotic applications. For a mobile robot, sensory data and motor positions are

good examples for periodic data acquisition and they are mandatory for safe,

reliable motion. In case of a physically distributed architecture, this kind of data

should be received from relevant components periodically over a communication

medium.

Since URB is also developed for mobile robots, periodic data acquisitions con-

stitute the largest proportion of data transmitted over the URB. When the URB

CPU needs to retrieve data from sensory or actuator nodes, the CPU requests

the data and receives the response to the request. In other words, each data

acquisition is expected to be handled through a two way data flow over the URB.

This situation brings a heavy workload over the URB and occupies the largest

bandwidth. In order to reduce workload and bandwidth occupation, the URB

protocol proposes a solution by automating periodic data acquisition operations.

For this purpose, the URB CPU may instruct a bridge for periodic data

acquisition from a specified node and the bridge responds periodically with the

requested data. In other words, the CPU does not put extra effort for requesting

data periodically buy it only waits for the data to be read from pre-defined nodes.

This way, the bridge does not need to control periodic data acquisition operations

and the workload on the uplink and the CPU is significantly reduced. This

means extra time for computational operations on the CPU and more bandwidth

for other uplink transactions. Autonomous data acquisition is one of the most

important contributions of this thesis together with node synchronization.
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3.4 Node Synchronization

Physically distributed architectures bring various advantages to robotic applica-

tions. However, the primary problem in these architectures is the asynchrony

in data acquisition operations. To address these problems, the URB protocol

proposes a node synchronization approach.

In the absence of an explicit synchronization scheme, two important problems

arise. First and foremost is the drift in periodic tasks over nodes. Each node has

its own micro-controller and there are inevitable differences in clocks of different

µCs. The differences in local clocks effect the periodicity of local data acquisition

operations.

Second problem is caused by the timing of read operations. Assume that a

node periodically performs data acquisition operations and the bridge reads the

data just before the data is updated. This situation would cause a bridge to read

a relatively old data, increasing data latency.
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Figure 3.3: Timeline of events for a bridge and two unsynchronized URB nodes.

These two problems are illustrated in Figure 3.3 where bridge requests read

operations from two different nodes with asynchronous periodic data acquisition.

Node #1 issues a data acquisition at point A and Node #2 issues a similar request

at point B. Even if each node were to be initiated at the same time, it is possible

that local clocks would drift in time, illustrated by difference between points A

and B. Points C and D also illustrate read events but at point D, the bridge sends

a premature read request that cause the bridge to read stale data. This situation

results in an increase in data latency.
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In order to solve these problems, there are a wide variety of approaches pub-

lished in the literature. Some of the synchronization algorithms and implemen-

tations are surveyed in Section 2.7. Among these approaches, the URB proto-

col implements an elegant node synchronization mechanism inspired from Phase

Locked Loops.

3.4.1 Node Synchronization Algorithm

PLL is an old but efficient way of matching phases of two distinct signals. The

primary idea behind this approach is to detect the phase and frequency of an

input signal and try to minimize the difference between input and output signals

by using a voltage controlled oscillator. Figure 2.6 illustrates the basic form of

PLL. The URB protocol implements a PLL like approach in order to make nodes

lock to a central, broadcast signal.

The first component of our approach is the broadcasting of a downlink heart-

beat signal. The downlink heartbeat signal is broadcast by the bridge in the form

of a simple node command. This command is transmitted periodically by a bridge

and received simultaneously by all nodes linked to a downlink connection. This

node command is used as an input signal providing a consistent timebase to each

node and the idea is to synchronize each internal node heartbeat according to this

periodic message. Figure 3.4 illustrates the synchronization scheme implemented

by each node.
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Figure 3.4: Block diagram for the downlink synchronization algorithm.

In this scheme, two simple filters are used to measure the phase of the down-

link heartbeat and adjust the period of node heartbeat. The initial step of this

scheme is to detect the period of the downlink heartbeat and measure the differ-

ence between the phases of the downlink and local heartbeats. Then, the node
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heartbeat is adjusted appropriately based on the period of the downlink heart-

beat signal and the phase difference between the downlink and node heartbeats.

As a result, the node heartbeat converges to the downlink heartbeat.

In order to eliminate small variations in the period of the incoming downlink

heartbeat and the effects of external noise, we used a simple filter to estimate the

period of the downlink heartbeat

T̂d[k + 1] = T̂d[k] − Kd(T̂d[k] − Td), (3.1)

where Td is the most recently measured downlink heartbeat period and T̂d[k] is the

estimated heartbeat period. According to this filter, each node tries to estimate

the reception time of the next heartbeat signal T̂d[k+1]. Kd is the predefined gain

value used to reduce the effect of alternations in the downlink heartbeat. If this

value is too small, changes in the downlink heartbeat would effect the estimated

heartbeat period slowly and if its value is closer to 1 then these changes would

effect the estimated period immediately.

After estimating the period of next heartbeat signal, the node heartbeat is

adjusted based on the difference between heartbeat signal and node heartbeat

according to the equation

T [k + 1] = T̂d[k + 1] − Kn((tnhb + ∆tacq) − tdhb), (3.2)

where T[k+1] is the period value to be used for the next node heartbeat cycle.

tdhb is the time that downlink heartbeat signal is received and tnhb stands for the

time that node heartbeat cycle starts. Each node should also be aware of the

duration of its own data acquisition in order to adjust its heartbeat, so that data

acquisition events end before the downlink heartbeat signal received. As a result,

∆tacq indicates an upper bound on the duration of data acquisition for a node

and is included in this calculation. ∆tacq varies in each cycle and nodes keep

track of its largest value in order to guarantee that data acquisition events end

well before downlink heartbeat reception. Kn is also a predefined gain value to

reduce the effect of variations in ∆tacq.

As a result of this algorithm, the downlink heartbeat signal from a bridge prior

to read requests guarantees the bridge to retrieve the results of most recent data



CHAPTER 3. URB: THE UNIVERSAL ROBOT BUS 41

acquisition events. The next downlink heartbeat causes nodes to trigger data

acquisition events and update older data. Therefore, node data between two

downlink heartbeat signals is said to be synchronized and the bridge should read

before the next downlink heartbeat signal to preserve data synchrony. Figure

3.5 illustrates the results of this algorithm and improvements to the situation

illustrated in Figure 3.3.
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Figure 3.5: Timeline of events for a bridge and two synchronized URB nodes.

3.5 URB Nodes and The Downlink Communi-

cation Protocol

3.5.1 Downlink Communication Model

In URB, nodes are linked to the associated bridges over an I2C bus and each

node is configured as a slave to the associated bridge (master). Being masters of

a downlink connection, each transaction is initiated by bridges and related nodes

respond to these requests.

URB nodes implement a message box structure similar to USB device end-

points [1]. Each node is allowed to have 8 outboxes and 8 inboxes, each of which

are internally double buffered as illustrated in Figure 3.6. Outbox is the message

box type used to send data out. In contrast, nodes use inboxes to receive input in

the form of a command or data from bridges. In other words, inbox is the place

where a bridge writes a message to and outbox is the place where a bridge reads

related data from. Each message box is initialized by the user with a fixed static

size and used by the URB libraries for communication transactions.
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Figure 3.6: Protocol details of a URB node. Each node supports a total of 16 (8
outboxes and 8 inboxes) double buffered message boxes.

Each downlink transaction includes an address byte in order to identify in-

terested nodes. This address information includes 4 bits node address and 3 bits

message box address. Nodes receiving the the first byte of incoming transaction

use this information in order to accept incoming data and relate the data to one

of the message boxes according to message box address. By using 4 bits for ad-

dress definition enables us to define 16 different nodes for each bridge. However

transactions with node address 0 is accepted by all nodes. In other words, node

address 0 is reserved for broadcasted transactions. 3 bits of message box data

define one of the 8 outboxes or inboxes and read/write transactions are identified

by a single bit.

3.5.1.1 Built-in Message Boxes

Each URB node implements 8 inboxes and 8 outboxes as described above. Among

these message boxes, 2 are unique for each node and used for special purposes.

Outbox 0 is used to store node configuration information and Inbox 0 is used for

receiving node commands from bridges.

Outbox 0 is defined by the node API during node initialization and is used to

provide information about node configuration and attributes. Bridges should read

the information stored in this outbox to discover node configuration information.

Table 3.1 illustrates the layout of Outbox 0.

In URB, each node is expected to provide a specific functionality, such as

distance sensing or motor control. The node class identifier defines the func-

tionality of a node. Nodes with the same functionality are further identified by

node indexes. The state field is used to display the current state of a node such
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outbox 0
7 6 5 4 3 2 1 0

node class

state node index

- C ver rev

Table 3.1: Outbox[0] fields and layout.

as uninitialized, idle, active or reserved. Version and revision information about

the firmware deployed on a node is defined in ver and rev fields. Finally, the C

bit is used as a flag in order to define if the node supports compressed read and

write operations. Compressed transactions are designed to improve the overall

transmission performance and will be described in Section 3.5.2 in details.

The second built-in message box of nodes is the Inbox 0. This inbox is used to

receive protocol commands from bridges or the URB CPU. Table 3.2 illustrates

the layout and fields of Inbox 0 structure:

inbox 0
7 6 5 4 3 2 1 0

opcode reserved

argument[0]

argument[1]

Table 3.2: Inbox[0] fields and layout.

The URB protocol uses inbox 0 to send predefined protocol commands to

nodes by using built-in operation codes (opcode). Each opcode and related ar-

guments defines a specific task for nodes and is written to related fields of Inbox

0. Reception of a protocol command invokes associated procedures over a node.

Table 3.3 defines the node commands and details of each command.

• NOP: This command is a dummy command that has no effect.

• SIGNAL: This command is used to send an asynchronous signal to nodes.

Specifics of this command should be implemented by the node application

layer. Both URB CPU and nodes should agree on the semantics of signals.

One byte argument is used to parametrize the behaviour of this command.
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Opcode Command Arg[0] Arg[1] Description

00000b NOP N/A N/A No operation

00001b SIGNAL BYTE N/A Asynchronous signal

00010b SYNC N/A N/A Synchronization signal

00011b SYNC LOCK BYTE N/A Enable/disable locking to SYNC

00100b ACTIVATE N/A N/A Activate data update

00101b DEACTIVATE N/A N/A Deactivate data update

11111b RESET N/A N/A Reset node

Table 3.3: Opcodes and arguments for node commands.

• SYNC: The concept of synchronization was explained in Section 3.4.

Briefly, this command is used as a central heartbeat to enable synchronous

data acquisition across nodes. Any bridge that needs to synchronize its

nodes should broadcast this signal periodically, so that nodes can syn-

chronously update data acquisition.

• SYNC LOCK: Initially each node starts local update periods depending

on their own clock cycles and each node has an independent update period

from other nodes. This command is used to enable or disable locking to the

heartbeat signal broadcasted by any bridge. Details of this command are

examined in Section 3.4.

• DEACTIVATE: By default, each node boots up with periodic local up-

dates enabled. This command is used to deactivate periodic update opera-

tions within a node.

• ACTIVATE: This command is the opposite of DEACTIVATE command

and activates periodic updates within a node.

• RESET: This command resets the states and all used variables of the

firmware and brings the node to a state identical to the state immediately

after boot-up.
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3.5.1.2 Double Buffering Approach

Generally, embedded systems require small response times with no tolerance for

busy-waiting. Therefore embedded systems usually implement an interrupt mech-

anism to detect and respond to external events [43]. An interrupt is an asyn-

chronous signal from hardware, indicating the need for attention. For instance,

a serial port chip needs attention when it receives a character and raises an in-

terrupt indicating the need for attention. When the microprocessor detects an

interrupt, it stops what it was executing and switches context to start executing

an interrupt service routine (ISR).

Interrupts and ISRs are essential for multitasking, especially for real-time

computing. However, interrupts need to communicate with the rest of the code

as well. ISR and task code, most of the time, share variables which may cause

shared-data problems. Suppose that in a program, task code and an ISR share a

variable which is wider than one byte. Task code or ISR may want to manipulate

the variable while the other one reads the variable. If task code is in the middle of

a process related with the variable, an incoming interrupt would stop execution

of task code and invoke related ISR. In this scenario, switching context to the

ISR would result erroneous variable values either for the ISR or for the task code.

One of the methods used for solving a data sharing problem is to disable

interrupts until task code completes its task with the variable. Yet, this solution

results in a potentially long delay in responding to interrupts. Hence we use a

double buffering approach for both inboxes and outboxes. Double buffering is a

widely used technique for minimizing the delay in input/output operations.

In order to safely use double buffering, each inbox and outbox contains seper-

ate read and a write buffers with identical size. If a message box is in use, it is

locked by that task so that variables stored in the buffer are guaranteed to stay

the same. When a task finishs its job, it releases the message box. Data in a

message box is updated by writing over the write location of the double buffer

and write/read buffers are switched if the message box is not in use. Figure 3.7

and 3.8 illustrate our double buffering state machine for inboxes and outboxes
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relatively.
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Figure 3.7: State diagram for double buffered inboxes.
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Figure 3.8: State diagram for double buffered outboxes.

3.5.1.3 Downlink Transactions

Conventional microcontrollers that support I2C/SMBUS transactions have some

differences in the way they implement transactions. Some of these microcon-

trollers allow software decoding of addresses. On the other hand, some micro-

controllers decode address information in hardware and checks with a preselected

node address. For the purpose of supporting both these implementations, we

have defined 6 different transaction types. Packet formats and details of these

transaction types are listed below:
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• Default Reads: Default read transactions are used to read from the default

outbox. Default outbox is defined by each node internally and it is set to

Outbox 0 after bootup or reset. The default outbox is changed to the last

read outbox after a targeted read.

This transaction type results in substantial bandwidth savings, especially

for nodes that don’t support software address decoding, especially if only

a single outbox is continuously and periodically read. Table 3.4 illustrates

the sequence of data exchange during a default read operation.

Byte Count 7 6 5 4 3 2 1 0 Direction

1 node address 0 0 0 1(R) B → N
2 content byte[1] N → B

...
N+1 content byte[N] N → B

Table 3.4: I2C data transactions for default read.

• Targeted Reads: This type of read transaction is defined and used espe-

cially for nodes that do not support software address decoding. This trans-

action is simply a write request followed by a read request. Firstly a write

transaction is issued to set the new outbox that is to be read. Secondly a

default read transaction is issued to read from previously set outbox. Table

3.5 describes data exchanges for a targeted read transaction. As illustrated

in Table 3.5, the second byte of the transaction defines the outbox and very

first bit of this byte defines the subsequent operation (i.e. if it is a targeted

read or targeted write transaction).

Byte Count 7 6 5 4 3 2 1 0 Direction

1 node address 0 0 0 0(W) B → N
2 1 reserved message box # B → N
3 node address 0 0 0 1(R) B → N
4 content byte[1] N → B

...
N+3 content byte[N] N → B

Table 3.5: I2C data transactions for targeted read.

• Compressed Reads: As described above, some microcontrollers support
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software address decoding. This allows us to embed the message box num-

ber into a single byte within the node address information. This implemen-

tation eliminates the inefficiency of read transactions and saves us significant

bandwidth. Table 3.6 illustrates compressed read requests.

Byte Count 7 6 5 4 3 2 1 0 Direction

1 node address message box # 1(R) B → N
2 content byte[1] N → B

...
N+1 content byte[N] N → B

Table 3.6: I2C data transactions for compressed read.

• Targeted Writes: Targeted write transactions are similar to targeted read

transactions but we do not need to change transfer mode after writing the

message box number to be used. So, a message box number is transmitted

after node address and data is directly written to the specified message box.

Table 3.7 describes details of targeted write transactions.

Byte Count 7 6 5 4 3 2 1 0 Direction

1 node address 0 0 0 0(W) B → N
2 0 reserved message box # B → N
4 content byte[1] B → N

...
N+2 content byte[N] B → N

Table 3.7: I2C data transactions for targeted write.

• Compressed Writes: Microcontrollers supporting software address de-

coding also allow us to increase performance of write transactions and save

bandwidth. Similar to compressed read transactions, the message box num-

ber is encoded in the first byte of downlink messages within node address

information. Table 3.6 illustrates compressed write transactions.

• Broadcast Writes: The main difference between broadcast write trans-

actions and the write transactions described above is their node addresses.

Write transactions with node address 0 are accepted by all nodes, namely

they are broadcast requests.
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Byte Count 7 6 5 4 3 2 1 0 Direction

1 node address message box # 0(W) B → N
2 content byte[1] B → N

...
N+1 content byte[N] B → N

Table 3.8: I2C data transactions for compressed write.

Broadcast write transactions are used to send a command to all nodes at

the same time. For example, the downlink heartbeat message is one and

most important broadcast transaction within the URB protocol. It is used

to synchronize all nodes linked to a downlink connection (Section 3.4).

3.5.2 Downlink API Details

The URB communication protocol provides a simple and versatile API in order to

facilitate rapid deployment of URB nodes. Users should use related libraries and

API in order to develop application specific firmware on URB nodes. Currently,

URB node API supports 8051 based microcontrollers from Silicon Libraries.

The URB node API is flexible enough for all types of firmware development

and associated libraries provide all necessary components for node development.

Some of the functions are implemented by the API and are ready to be used

by node developers. However, it is important to provide a flexible node imple-

mentation, since node firmware implementations would differ according to user

and implementation needs. So, some of the core methods are left for the user

to implement. These two types of functions are listed under below sections. A

sample node firmware implementation is also provided in Appendix B.

3.5.2.1 Functions Implemented by the URB Node API

This section describes usage and functionalities of methods provided by the URB

node API. These methods are implemented by the node libraries such that all
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implementation details are abstracted from the user. They handle local config-

uration of nodes and all communication details. These functions are listed as

follows:

• void URB_SetAddress( byte i2c_address )

This function is used to set node address to be used as the protocol address

of the node. This address is defined with 4 bits and is supplied with the

least significant 4 bits of input argument i2c address.

• void URB_SetClass( byte class )

This function sets the class of the URB node. Node class specifies the

functionality of nodes such as sensor and actuator nodes.

• void URB_SetIndex( byte index )

This function sets the node index, used to identify nodes with the same

functionality (i.e. same class).

• void URB_SetVersion( byte version )

This function is used to set the version of node firmware.

• void URB_SetRevision( byte revision )

This function is used to set the revision of node firmware.

• bool URB_SetupInbox( byte boxID,

byte size, byte xdata *head, bool overwrite )

The URB node API gives great flexibility with user-defined message box

sizes and message box behaviors. This function is used by API users to

setup inboxes except Inbox 0 since it is internally configured and reserved

to be used by the URB protocol. The user should provide a pointer to an

external memory area that is twice th size of needed area. This is needed

to implement double buffering and used internally. Even the area should be

twice the size of inbox size, input argument size should indicate the size of

the inbox. The overwrite flag is used to determine whether a buffer overflow

results when new data overwrites old data on the incoming message box.
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• bool URB_SetupOutbox( byte boxID,

byte size, byte xdata *head )

Similar to URB SetupInbox, this function is used to configure node outboxes

except Outbox 0 since it is configured internally by the URB node API.

• byte* URB_LockInbox( byte boxID )

URB message boxes implement a double buffered approach in order to pre-

vent data loss and shared data problems as described in Section 3.5.1.2.

This function locks the inbox specified with boxID, preventing double buffer-

ing code from swapping and returns a pointer to the specified inbox that is

to be read by the user. This function must be used to access an inbox for

reliable data operations.

• byte* URB_LockOutbox( byte boxID )

Similar to URB LockInbox function, this function is used to lock outboxes.

It must be called before writing to an outbox.

• void URB_ReleaseInbox( byte boxID )

This function releases (un-locks) a locked inbox and it must be called once

a read operation is completed.

• void URB_ReleaseInbox( byte boxID )

This function releases (un-locks) a locked outbox and it must be called

after a write operation is completed.

• void URB_UpdateDone( void )

URB nodes periodically update internal data specified by the user. Update

sequences are application dependent activities and are defined by user as

described in Section 3.5.2.2. For synchronization purposes, nodes need to

know the time cost of update operations. So this function is used by the

URB libraries to calculate the time duration of an update activity. This

function must be called subsequent to the completion of update events, but

the user should be aware of the place it is used. See app update() definition

in Section 3.5.2.2.
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3.5.2.2 Firmware Dependent Functionalities

The URB node API facilitates node configuration and communication but it

also gives the flexibility of defining firmware dependent activities. Functions

described below are used to define firmware related functionalities and should be

implemented by users. These functions are internally called by node libraries and

define the mechanism of each node.

• void app_bootup( void )

This function is called when the microcontroller boots boots up. It is re-

sponsible for configuring system clock, pins, submodules (such as ADC,

serial communication submodules), interrupt sources and setting up node

address, class, index, version, revision, and message boxes. Users could

configure nodes depending on their needs and operation specific events.

• void app_fault( byte errno )

The URB node allows users to catch and handle communication errors.

This function is used to define the behavior of nodes in case of any errors.

• void app_idle( void )

This function is called continually by the URB node libraries within the

main loop when there is nothing better to do. It does not guarantee pe-

riodicity but is called as frequently as possible. The example node imple-

mentation in Appendix B illustrates the usage for this function. It is better

to use this function for checking events that do not require periodicity such

as checking inboxes for incoming data.

• void app_init( void )

This function is called immediately after the first boot up or soft reset

command issued by bridge. It allows nodes to prepare all internal data

structures needed by the application and to enable interrupt sources. After

a soft reset, this function clears all the application data and brings the

application state to its initial value after first boot-up.
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• void app_reset( void )

This function is called after receiving a reset command from the bridge

and it should restore submodules used by the application to their initial

states. Subsequent to this function, app init is called to reinitialize relevant

components of the node application.

• void app_signal( byte signo )

This function is used as an instant messaging service for user-defined tasks.

As described in Table 3.3, signal message is directly written to Inbox 0 as

a node command and one byte argument parametrizes the reaction of the

node to this message. After receiving a signal command, this function is

called by node libraries and should handle this message as defined by the

user.

• void app_update( void )

This function is called with a constant frequency by node libraries in order

to update acquired data values. An example usage of this function would

be periodic data acquisition as illustrated in Appendix B.

app update function plays a key role in synchronization of nodes. The call-

ing frequency of this function changes according to the downlink heartbeat

to match with the phase and frequency of heartbeat message. Subsequently,

URB UpdateDone is called in order to measure time cost of update oper-

ations and the time cost is used for synchronization of nodes. See Section

3.4 for detailed explanation of synchronization.
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3.6 URB Bridges and The Uplink Communica-

tion Protocol

3.6.1 Uplink Communication Model

As described in Section 3.1.2, the URB uplink connections link the URB CPU to

bridges. Uplink communication establishes a bi-directional stream of bytes and

can be categorized based on the direction of data transactions. Job Dispatch

Packets (JDPs) are incoming messages to bridges sent by the CPU. Similarly,

Job Response Packets (JRP) are sent by bridges to the CPU in response

to JDPs. Both job dispatch and job response packets can hold a maximum of

32 bytes of data content. Packet formats and details for each packet type are

discussed in this section.

Uplink communications can be implemented through a variety of channels,

such as RS232, USB, or ISA bus. Currently, the URB uplink communication is

implemented for both RS232 and USB. However, in this thesis we only investigate

RS232 based uplink communication.

3.6.1.1 Job Dispatch Packets (JDP)

JDPs are transmitted by the URB CPU to dispatch new tasks for either the

bridge or nodes. Bridges receiving a JDP, identify the type of the request by

considering the most significant bit of the packets’ first byte. This byte also

defines two additional flags: UR and RR flags. The UR flag is used to define

whether the associated task is urgent and RR flag defines whether a response for

the associated task is required. Beside these flags, the first byte of a JDP includes

the size of the packet content. Table 3.9, Table 3.10 and Table 3.11 illustrate the

detailed definitions of these packets.

Node requests initiate a data transfer to or from a node by sending a node

command to the related bridge. The second byte of node request packets are
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7 6 5 4 3 2 1 0

0 RR UR packetsize - 2

Node address msgbox # 0

Packet Content (32 bytes max.)

Table 3.9: Node request packet format for write operations.

7 6 5 4 3 2 1 0

0 RR UR packetsize - 2 (1)

Node address msgbox # 0

Outbox size

Table 3.10: Node request packet format for read operations.

similar except the last bits. The last bit for each of these two packet types

is used to identify if this operation is a read or write. The second byte also

includes information for the target of data transmission: the node address and

the message box number. A 4 bit node address allows us to support up to 16 nodes

for each bridge and a 3 bit message box number supports up to 8 outboxes and

8 inboxes. If the node request is a write operation, the packet contents include

data to be written to a specified node and inbox. The URB protocol supports

write operations to transmit up to 32 bytes of data in a single packet. But if the

operation is a read request, packet content is fixed to one byte, defining the size

of the message box that is to be read.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2

Bridge Command

Command Args. (32 bytes max.)

Table 3.11: Bridge request packet format.

Bridge requests, in contrast, encode data and command exchanges between the

CPU and the bridge. The second byte of the packet indicates the bridge command

type defined by the URB protocol. Appendix A provides a list of bridge request

types, brief description for these requests, command arguments and responses for

each command. Section 3.6.2 also provides a detailed description for all requests.
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3.6.1.2 Job Response Packets (JRP)

Upon reception of any job dispatch packet, the bridge is expected to send a

response packet to the URB CPU if a response is expected. Some of the JDPs

are set to send a response packet by default (see Section 3.6.2). However, the

CPU indicates that a response to a dispatch packet is needed by setting the RR

field in the JDP.

Node response packets contain the results of a node read or write operations.

However, bridges can initiate a read operation from nodes autonomously and send

response packets to the CPU as described in Section 3.3. In order to distinguish

node response packets for explicit node requests from autonomous responses gen-

erated by bridges, JRPs contain a field called Autonomous Response (AR). If the

response packet is the result of an explicit response, then the AR bit is cleared

(0), otherwise it is set. Table 3.12 and Table 3.13 illustrate both read response

and write response packets.

7 6 5 4 3 2 1 0

0 AR UR packetsize - 2

URB node addr. msgbox # 1

Content Byte 1

...

Content Byte N

Table 3.12: Node response packet format for read operations.

Response packets to node read operations contain the most recently acquired

data in the specified outbox. Both the CPU and the addressed node have common

knowledge of the content of the data located in a read response packet. The data

size for a read response packet can be at most 32 bytes.

7 6 5 4 3 2 1 0

0 AR UR packetsize - 2

URB node addr. msgbox # 0

X X X X X X X ACK

Table 3.13: Node response packet format for write operations.

Response to a node write operation contains only one byte data indicating the
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status of the write operation as illustrated in Table 3.13. The least significant bit

(LSB) of the response packet (ACK) is set to indicate that the write operation is

successful, it is cleared otherwise.

Responses to bridge request packets contain the corresponding response to the

related bridge command as illustrated in Table 3.14. Bridge response packets do

not contain any record of the bridge request packet. Since bridge request packets

are handled sequentially by bridges, the CPU should keep track of the order in

which bridge request are sent.

7 6 5 4 3 2 1 0

1 ER UR packetsize - 2

Response Content (33 bytes max.)

Table 3.14: Bridge response packet format.

Note that bridge response packet format does not include the AR field in the

first byte. The AR field is used to identify autonomous node response packets,

so bridge responses do not need such a field. Instead, bridge response packets

include the ER field in order to report erroneous situations. If the ER bit is set

(1), the packet content provides a single byte indicating the error type.

3.6.2 Bridge Commands and Uplink Protocol Details

This section presents all the details of bridge commands and their application.

• BRG RESET CMD

This command resets the bridge so that it can recover from any erroneous

conditions. It requires no input arguments and returns no response even

if RR bit is set. Packet structure for this command is illustrated in Table

3.15.

• BRG GETVER CMD
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7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG RESET CMD (0X00)

Table 3.15: Packet structure for BRG RESET CMD.

This bridge command is used for receiving the version and revision of the

firmware running on the bridge. Response packet includes the version and

revision data in two separate bytes. The RR flag should be set to receive a

response to this command. Packet structure for this command is illustrated

in Table 3.16.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG GETVER CMD (0X01)

Table 3.16: Packet structure for BRG GETVER CMD.

• BRG CLOCK CMD

Each bridge includes its own timer and generates a tick at 10 KHz. This

command is used for reading this tick value in 4 bytes. The RR flag should

be set if a response is requested. Packet structure for this command is

illustrated in Table 3.17.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG CLOCK CMD (0X02)

Table 3.17: Packet structure for BRG CLOCK CMD.

• BRG LED CMD

This command can be used to turn on/off LEDs located on the bridge. It

requires only one argument indicating the next state of the specified LED

and returns the previous state of the LED. The most significant 7 bits of

the argument is used for defining LED number and the least significant bit

defines the next state of the LED. Packet structure for this command is

also illustrated in Table 3.18.

• BRG PKTCOUNT CMD
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7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (1)

BRG LED CMD (0X03)

LED Number (0/1)

Table 3.18: Packet structure for BRG LED CMD.

Bridges count packets received from the CPU and packets sent to nodes over

the downlink connection. This command returns the packet count data in

8 bytes. First 4 bytes are packets received from the uplink and last 4 bytes

are packets sent over the downlink. Packet structure for this command is

illustrated in Table 3.19.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG PKTCOUNT CMD (0X04)

Table 3.19: Packet structure for BRG PKTCOUNT CMD.

• BRG DISCOVER CMD

When the bridge boots up, it is not aware of linked nodes and information

for the nodes connected to the downlink. This command is used to discover

nodes linked to the bridge. It is called with no arguments as illustrated in

Table 3.20 and it returns two bytes as the result of the discovery. Bridges

always respond to this command with two bytes even the CPU does not

request a response (RR=0). The most significant bit of the first received

byte indicates the result for node with address 16 and the least significant

bit of the second byte indicates address 0. Interim bits are ordered from

adresses 15 to 1. Node address is used for broadcast downlink transactions.

Discovery operation causes the bridge to search through the whole node

address space except 0 (1 through 16). The discovery operation is simply a

node read operation from outbox 0. As a result, bridges acquire node infor-

mation from active nodes and store them for further CPU requests of node

information. As noted, if a node is removed or added to the URB downlink

connection, a new discovery should be initiated to detect modifications.

• BRG NODEINFO CMD
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7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG DISCOVER CMD (0X05)

Table 3.20: Packet structure for BRG DISCOVER CMD.

This command is used to get node information for a specific address and

structure of this command packet is illustrated in Table 3.21. After receiving

this command, the bridge responds with the 4 byte node information packet

(address, class, index, version and revision) received from nodes during

the last discover operation. If information for a node address that is not

found during last discovery is requested, then bridge responds with four

bytes of 0 as the node information. So, if the BRG DISCOVER CMD was

not received before this command, there will not be any recorded node

information on the bridge and it will return 0 for all addresses.

NOTE: BRG DISCOVER CMD should be sent before this command in

order to read correct information for nodes. The BRG DISCOVER CMD

command should be re-sent in order to update node information (for in-

stance, in the case of new node addition).

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (1)

BRG NODEINFO CMD (0X06)

Node address (0x01 to 0x0f)

Table 3.21: Packet structure for BRG NODEINFO CMD.

• BRG AUTOMATE CMD

URB supports synchronization of nodes and periodic data acquisition from

nodes without intervention from the CPU. This functionality is fulls con-

trolled by bridges and this command is used to enable autonomous syn-

chronization and autonomous data acquisition from nodes. This command

requires one byte argument defining the flags for autonomous synchroniza-

tion and data fetch messages and the frequency of the downlink heartbeat

messages as multiples of 10 KHz. The packet structure for this command is

presented in Table 3.22. The AS field is used to enable/disable autonomous

synchronization messages and the AF field enables/disables autonomous
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data fetch operations. The remaining six bits of the command argument

defines the period of the downlink heartbeat signal. The response to this

command is an acknowledgment byte with value 1 for setting automation

operation correctly and 0 otherwise.

NOTE: In order to activate autonomous data acquisition (auto fetch),

BRG DISCOVER CMD should be sent beforehand.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (1)

BRG AUTOMATE CMD (0X07)

AS AF Freq. of auto-sync. msg.

Table 3.22: Packet structure for BRG AUTOMATE CMD.

• BRG AUTOFETCH CMD

This command is used to inform bridges about nodes and message boxes

that are going to be read autonomously. It requires 3 arguments for defin-

ing node address, message box ID and size, period and offset of this au-

tonomous data fetch operation as illustrated in Table 3.23. Responses to

this command return the ID of the defined autonomous data fetch opera-

tion. Autofetch IDs start from 0 and go up to 15. The returning ID should

be saved so that bridges could use it later to cancel a previously defined

auto-fetch operation.

Two important arguments for this command are period and offset. The for-

mer is used to define the period of autonomous data acquisition in terms of

ticks (1 ms). The other one is the offset value used to shift data acquisition

in terms of ticks. For instance, if period is set to 5 and offset is set to 1,

related autonomous data acquisition is handled in every 5 ms starting after

1 ms.

NOTE: This command should be issued at least once before starting au-

tonomous data acquisition in order to define the node and the message box

that is going to be read autonomously.

NOTE: Maximum number of BRG AUTOFETCH CMD commands that

can be accepted by a bridge is 16. More than 16 requests results in an error.
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7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (3)

BRG AUTOFETCH CMD (0X08)

Node addr. msgbox # 0

Messagebox Size

Period Offset

Table 3.23: Packet structure for BRG AUTOFETCH CMD.

• BRG CANCEL AUTOFETCH CMD

This command is used to remove previously defined autonomous data

acquisition operation from the bridge queue. It requires the ID of

the AUTOFETCH operation received after the associated BRG AUTO-

FETCH CMD as an arguement (Table 3.24). So the CPU should keep

track of previously issued autonomous data fetch operations to be able to

cancel them. The bridge also responds with 1 if cancellation operation is

successful, 0 if otherwise.

As an example, assume that the CPU requests 3 autonomous read opera-

tions and receives IDs 0, 1 and 2. If the CPU cancels operation with ID

2, and requests a new auto-fetch operation, the bridge would assign this

request to ID 2 but indexes it after ID 3. Besides, if there is no available

slot to assign a new auto-fetch operation, the bridge responds with a value

0xFF.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (1)

BRG CANCEL AUTOFETCH CMD (0X09)

Autofetch ID (0 to 15)

Table 3.24: Packet structure for BRG CANCEL AUTOFETCH CMD.

• BRG NOP CMD

This command is a dummy command and is ignored by bridge (Table 3.25).

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG NOP CMD (0X17)

Table 3.25: Packet structure for BRG NOP CMD.
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• BRG TOKEN CMD

This command transmits a response packet with a special 4-byte token (0xff,

0xa5, 0xb9, 0x9f) back through the uplink. The purpose of this command

is error detection and error recovery. (Table 3.26)

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG TOKEN CMD (0X18)

Table 3.26: Packet structure for BRG TOKEN CMD.

• BRG ECHO CMD

This command forces the bridge to directly send the received data argument

back over the uplink. Since response to this command doesn’t fit into the

generic response format defined in Section 3.6.1.2 and Table 3.14, it is very

dangerous to use this command.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (1)

BRG ECHO CMD (0X19)

Data to be echoed

Table 3.27: Packet structure for BRG ECHO CMD.

• BRG DL GETVER CMD

This command is used to receive the version of the downlink subsystem and

it includes version, revision and type string of the currently used downlink

on the bridge (for instance ”i2c”). It does not require any arguments and

it responds with 10 bytes of downlink version information.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG DL GETVER CMD (0X20)

Table 3.28: Packet structure for BRG DL GETVER CMD.

• BRG DL CUSTOM CMD

This command is used to send a custom command for the downlink sub-

system on the bridge. The number of arguments and response packet size

vary according to the implementation.
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7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (VAR)

BRG DL CUSTOM CMD (0X39)

Table 3.29: Packet structure for BRG DL CUSTOM CMD.

• BRG UL GETVER CMD

This command is used to receive version data for the uplink subsystem on

the bridge and it includes version, revision and type string of currently used

uplink (such as ”rs232”). It does not require any arguments and it responds

with 10 bytes of uplink version information.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (0)

BRG UL GETVER CMD (0X40)

Table 3.30: Packet structure for BRG UL GETVER CMD.

• BRG UL CUSTOM CMD

This command is used to send a custom command for the uplink subsystem

of the bridge. The number of arguments and response packet size vary

according to the implementation.

7 6 5 4 3 2 1 0

1 RR UR packetsize - 2 (VAR)

BRG UL CUSTOM CMD (0X59)

Table 3.31: Packet structure for BRG UL CUSTOM CMD.



Chapter 4

Discussions on URB Performance

In this chapter, we describe some of the mostly used fieldbus applications, algo-

rithms used for these applications and implementation details of the URB. This

chapter concerns discussions on the URB protocol performance and implementa-

tion details compared to previously discussed applications.

4.1 Event Based vs. State Based

In event based fieldbuses, events are the source that triggers the initiation of

data transmissions. Nodes detecting an event that causes a shift in the local

node state, should employed to inform the central processing unit. According to

this scenario, event based fieldbuses provide efficient use of bandwidth and node

buffer space by transmitting only crucial data.

Hence, each message is important in terms of robustness and event based

networks are not tolerant to any errors and loss in data transmission[38]. It is

important to check whether a message is delivered successfully and re-transmit

the same data in case of an error. Accordingly it is difficult to predict maximum

number of messages transmitted from a node.

Besides, event based network protocols are inefficient under heavy network

65
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loads, like alarm conditions for several nodes. In case of an alarm condition, each

node tries to transmit at the same time instant and competes for communication

channel. Therefore, it is difficult to predict the latency of a message delivery and

contain adequate bandwidth for such a situation.

On the other hand, state based network protocols check each node in certain

time intervals and can detect changes in internal state of nodes. Although this

causes periodic messaging and bandwidth consumption, it is obvious that state

based protocols are more predictable and tolerant to message loss than event

based protocols. If a message is lost or erroneous, it is probable that this value

is transmitted correctly in the next cycle with a predictable delay. State based

systems can tolerate message loses by sending messages twice or third times

faster than required in order to ensure the real time constraints. Also state based

approach solves the race conditions during an alarm within the system by nature.

However, it is difficult to detect transient data over a state based protocol.

Transient data is the term used for a data that is valid for a short time period

and temporary. If a data within a node changed two times between two read

cycles, main CPU would not be aware of the interim state of the node.

In the light of these discussions, it is simple to organize data transmission

within a state based protocol and eliminating the effects of erroneous data by

sacrificing the network bandwidth. Therefore, the URB protocol implements a

state based approach in order to increase performance and reliability by avoiding

the race conditions during hazardous circumstances.

4.2 Efficiency

Communication traffic for embedded systems is usually composed of short and

periodic messages. Therefore, it is very important to use network bandwidth

efficiently. Network efficiency can be defined as data bits delivered compared

to raw network bandwidth[48]. Two factors characterizing network efficiency are

packet overhead and media access overhead.
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4.2.1 Packet Overhead

Packet overhead is all non-data bits added by the protocol to ensure proper

communication and reliable transportation. These non-data bits might be CRC

bits, address bits and acknowledgment bits. Network efficiency can be improved

by reducing packet overhead. Hence, the URB protocol is designed to eliminate

most of the extra bits as long as it is possible to do so.

There is a tradeoff between reliability and efficiency and decision is left for the

user in most of the cases. As it is described in Section 4.1 user has the freedom to

define a CRC algorithm and include this into the protocol for reliability. Other

efficiency metrics are defined by the protocol and tried to be improved wherever

it is possible.

Packet overhead for the URB protocol can be investigated as uplink overhead

and downlink overhead, since uplink and downlink communication implement

distinct protocols. Figure 4.1 illustrates package overhead for uplink commu-

nication. It can be easily observed that uplink efficiency is increased with the

packet content size for both bridge commands and node requests. It is similar for

responses of these packets. It is the user’s responsibility to increase uplink effi-

ciency by defining message box sizes in an optimal way. Since node requests and

responses to these request compose the main part of the protocol, users should

be aware. However, bridge requests are defined by uplink protocol and they do

not depend users or application.

The URB uplink protocol defines 15 bridge commands and most of them do

not have any arguments. If it is assumed that each bridge command is sent

once in a second, 37 bytes should be transmitted over uplink media. 59.46% of

these packet bits are actual data bits and this results reduction in the uplink

ecciency. However, bridge commands are not periodic and frequent messages so

they reduce uplink efficiency in excessive amounts. With a similar approach,

responses to bridge commands include 79.03% of actual data bits which would

be considered as a adequate efficiency.



CHAPTER 4. DISCUSSIONS ON URB PERFORMANCE 68

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Content Size

%
 o

f d
at

a 
bi

ts

 

 

Node Requests
Bridge Commands

Figure 4.1: Uplink packet overhead.

In a similar manner, we can also illustrate downlink efficiency and packet

overhead. Figure 4.2 can also be used to investigate efficiency of the downlink

protocol. As it is mentioned earlier in this section, efficiency of node transactions

is directly depends on the user and application. It can be optimized by using rel-

evant messegaboxes effectively for read and write operations. Although efficiency

of downlink communication is dependent on the user specifications, Figure 4.2 il-

lustrates the performance enhancement with the usage of compressed translations

and default read operations.
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Figure 4.2: Downlink packet overhead.
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Node transactions are usually periodic, therefore their effect on the perfor-

mance of both downlink and uplink should be considered by users carefully.

Besides, downlink heartbeat is also a periodic message defined strictly by the

protocol. Downlink heartbeat is a write operation to inbox[0] in nature and han-

dled by transmitting 3 bytes if targeted write is used or 2 bytes if compressed

write operations are used. For both cases, heartbeat packets include 1 byte for

command definition resulting 66.66% and 50% packet overhead respectively. This

situation effects downlink efficiency for sure and should be used responsibly.

To sum up, it is obvious that network efficiency is dependent on the appli-

cation and user definitions. However, the URB protocol provides some func-

tionalities that improve performance of the bus. One of these improvements is

the compressed and default read operations. These operations present a dense

communication protocol handled both by transmitter and receivers. Second im-

portant improvement is the autonomous data transactions handled by bridges.

So bandwidth occupation caused by periodic node transactions are shifted to

downlink and only results of these transactions are directed through uplink con-

nection. Synchronization messages can be considered as a bandwidth sacrifice for

the sake of timely data acquisitions.

4.2.2 Media Access Overhead

Media access overhead is the network bandwidth used to arbitrate network access

among transmitting nodes. Token passing approaches can be considered as exam-

ples to protocols that are exposed to media access overhead. However, the URB

protocol is a deterministic approach to fieldbus applications. Each node is linked

to a bridge, namely masters of the downlink, and can only transmit data with

the request of a node. Responses to node request are also directly transmitted

to the URB CPU by bridges. Therefore, the URB protocol is free from media

access overheads.



CHAPTER 4. DISCUSSIONS ON URB PERFORMANCE 70

4.3 Latency

Latency is the time delay between the moment a network transmission is initi-

ated and the moment that takes effect within the destination. Therefore it is

important for real-time network protocols to minimize communication latency.

Latency properties of the URB protocol are constrained by many factors. This

section expresses the experimental results over a USB system with RS232 uplink

connection and I2C downlink connection. The RS232 uplink raw bandwidth is

set to 115200Kbit/s and I2C downlink raw bandwidth is set to 1 MHz for these

experiments.

4.3.1 Round-Trip Time

By definition, round-trip time (RTT) is the time required for a packet to travel

from a specific source to a specific destination and traveling the same path back

again. We used round-trip latency for the URB as the time required for the

CPU to transmit a node request and receive the response for the specific pack-

age. Therefore, round-trip latency for the URB depends on the type of node

transaction, size of response packet, and downlink transaction type as well.

Basic and the most common read transaction for every node application type

is the targeted read node transactions. Series of targeted read transactions

are caused by consecutive read operations from different outboxes. Figure 4.3

illustrates targeted read operations for 2 and 3 bytes of node data. Requesting 2

bytes of data and receiving the response packet took approximately 1.170 ms for

the CPU with a variance of 7.79x10−5 ms. Similarly reading a 3 bytes of data

results a round-trip time with mean value 1.284 ms and variance of 2.94x10−4

ms. It could be observed from these results that reading one extra byte from a

node would increase the round-trip time of a read request by 0.113 ms.

The URB protocol implements default and compressed read operations in

order to increase illustrated performance. While default read transactions are

applicable to all kinds of nodes, compressed transactions should be supported by
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Figure 4.3: Round-trip time between the request and response of 1000 targeted
read transactions from 2 and 3 byte long outboxes.

node hardware. (See Section 3.5 for details.) However, default read transactions

are useful if a specific outbox data is requested periodically without requesting

another data. Both compressed and default read transactions share the same

notion, so resulting round-trip time values are approximately 1.139 ms and 1.135

respectively for 2 byte long data requests. Figures 4.4 and 4.5 illustrate test

results for both transaction types from 2 byte and 3 byte long outboxes.
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Figure 4.4: Round-trip time between the request and response of 1000 default
read transactions from 2 and 3 byte long outboxes.

Finally, Figure 4.6 illustrates 2 byte long read operations for each transaction

types and performance enhancement by using compressed and default read trans-

actions. This slight improvement in latencies of read transactions would result

significant enhancement in the performance of a system where periodic and fre-

quent transactions are subject of matter. Besides this, Table 4.1 also summarizes
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Figure 4.5: Round-trip time between the request and response of 1000 com-
pressed read transactions from 2 and 3 byte long outboxes.

transaction round-trip latencies with mean and variance values.
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Figure 4.6: Mean and variance of round-trip times between the request and re-
sponse of 10000 read transactions from 2 byte long outboxes for each transaction
type.

4.3.2 Uplink Round-Trip Time

Section 4.3.1 gives the results for round-trip time measurements of a URB system.

Round-trip time latencies of the whole URB system are actually caused by two

components: uplink and downlink round-trip latencies.

By calculating uplink latencies we could also distinguish downlink from total
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Targetted Compressed Default

mean(ms) var mean(ms) var mean(ms) var

2 byte 1.170 7x10−5 1.139 2x10−4 1.135 2x10−4

3 byte 1.284 2x10−4 1.286 8x10−5 1.282 1x10−4

Table 4.1: Round-Trip latencies for each kind of node request transactions.

round-trip delays. For instance, Figure 4.7 illustrates round-trip latencies of up-

link BRG LED CMD command for 10000 requests. Each BRG LED CMD

request is composed of 3 byte packets and results in 2 bytes of response packets.

Experiments proved that uplink round-trip time for this bridge request is ap-

proximately 0.8846 ms with a variance of 6.0076x10−005 and standard deviation

of 0.0078 ms.
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Figure 4.7: Round-trip time between the request and response of 10000 targeted
BRG LED CMDs.

These results also proved that a great amount of round-trip time latency is

caused by uplink subsystem. In other words, RS232 protocol creates a bottleneck

that increases round-trip time latency. Being aware of this observation, we have

proposed to implement uplink libraries for USB protocol. However, this thesis

does not concern USB based uplink implementation.

4.4 Synchronization Performance

There are three different metrics that characterize the performance of URB syn-

chronization algorithm. Firstly, initial convergence delay is the time delay
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starting from when the microcontroller is powered up and successfully locks its

local heartbeat to the downlink heartbeat signal. We performed our experiments

on a SiLabs F340 board running at 48 MHz and the bridge generates a downlink

heartbeat signal at every 1 ms. Resulting maximum initial delay is 88.4 ms and

the average is 78.4 ms for a single node.

Second one of our experiments is performed to detect the single-node jitter

in tadc end (See Figure 3.5). This metric is also important to leave a gap between

tadc end and downlink heartbeat arrival time. We inserted a gap slightly larger

than the maximum jitter after tadc end to guarantee that the downlink heartbeat

always arrives after the end of data acquisition. This ensures that the sequence of

events illustrated in Figure 3.5 is always achieved. Our experiments showed that

maximum single-node jitter in tadc end is 1.33µs with an average value of 0.92µs.

Last of all, we tested inter-node difference in tadc end in order to detect the

difference between the end of data acquisition for individual nodes. Inter-node

difference in tadc end actually illustrates the difference between local node heart-

beats for different nodes. This metric is also important to verify the success of our

synchronization algorithm and it points out how multiple nodes can successfully

lock to the downlink heartbeat. Our experiments result in with a maximum of

0.56µs with an average of 0.19µs. Table hede also summarizes these results.

Parameter Max Average

initial convergence delay 88.4 ms 78.4 ms
inter-node difference in tacq end 0.56µs 0.19µs

single-node jitter on tacq end 1.33µs 0.92µs

Table 4.2: Performance metrics for node synchronization. Results were obtained
after 20 experiments measuring key transitions with an oscilloscope.

4.5 Determinacy

Determinacy is the ability to predict worst-case response time and it is very

important for meeting real-time constraints of many embedded systems [48]. Most

of the URB requests are started by the CPU and responded accordingly except
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autonomous responses. Requests generated by the CPU are guaranteed to be

finished within 2 ms and as it is already described, its variation is in degree of

10−4. Therefore, CPU could calculate the worst-case delay of the response for a

request.

However, autonomous requests are initiated periodically by bridges and re-

sponses are directed to the CPU. Determinacy for autonomous responses are also

important in a system requires periodicity in data acquisition from distributed

nodes. Assume that, CPU requests for autonomous responses from a two byte

outbox with 10 ms period from a bridge. After enabling autonomous data fetch,

bridge should response with the requested data for every 10 ms and the CPU

should predict the reception time of the resulting message. Figure 4.8 illustrates

this scenario by presenting periodicity of messages. These results verify that each

autonomous response packet is received by the CPU within approximately 9.9370

ms with a standard deviation of 0.0069. As a result, an autonomously generated

response packet is delivered to the CPU well before the CPU needs the data.
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Figure 4.8: Period of 10000 autonomous responses generated for every 10 ms.

A prioritization mechanism is also included in some systems to improve de-

terminacy of the system [49]. URB protocol also implements urgent messages

for this purpose. However, we usually do not need urgent messages since each

message is responded by nodes subsequent to its reception.
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4.6 Robustness

Robustness is basicaly the ability to detect and recover from any error. Error de-

tection is important for embedded systems and especially time critical systems like

autonomous mobile robots[38]. However, most error detection techniques need

significant amount of computation or cause bandwidth occupation. Therefore,

the URB protocol left error detection and recovery from errors to the application

layer and user of the URB.

One possible source of erroneous data transmission is channel noise, causing

mis-decoding the data. The most popular solution of this problem is to use a

Cyclic Redundancy Check (CRC). CRC is a function that takes any number of

data stream as an input and it produces a a value with defined size. The resulting

value is used as a checksum to detect alternation of data during transmission

or storage as well. Therefore, memory errors caused by copying a stream of

data within a node can also be detected by using CRC. A CRC function can be

implemented by a user if the URB is used in a noisy environment that cause a

great number of erroneous transmissions. It could be done easily by adding an

extra byte to a message box as a checksum value.

Another erroneous situation can also be detected in the form of repeated

messages. If a node fails to update a data acquired from a sensor or actuator,

it would cause the CPU to read the same message located in the buffer. Some

protocols include a serial number for each message to detect repeated or out of

sequence messages. The serial number can also be used as a tool to detect error

losses and it can be implemented by including extra bytes for serial number within

a message box.

Although these solutions to detecting and recovering from errors increase the

reliability of the URB system, they need either computational power or increase

bandwidth occupation. Trade off between reliability and performance depends

on the application type and constraints, so the URB protocol leaves this issue to

the user.



Chapter 5

Evaluation and Conclusion

5.1 Evaluation

In most commercial network protocols, designers optimize the protocol to spe-

cific applications, resulting reduction in performance in different, incompatible

domains [12]. For instance, the CAN is designed for reliable and deterministic

communication within automotive networks. Firewire is also designed for fast

isochronous data transmission without large receive and transmit buffers. On the

other hand, LonTalk was tailored to provide flexibility. This section states the

pitfalls of the most popular three commercial protocols and explains the reasons

for designing and using the URB protocol.

5.1.1 Network Protocol Pitfalls

Although there are many communication protocols in embedded systems market,

only very few of these protocols spread through the market[49]. LonTalk and CAN

are accepted as embedded market standards, while Firewire is widely used for real-

time isochronous communication. Therefore, we would discuss the performance

of these three protocols in this section.

77
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One of the most important drawbacks to LonTalk is its medium access control

(MAC) protocol. As it is discussed earlier in Section 2.5.1, LonTalk implements

a form of carrier sense multiple access with collision avoidance (CSMA/CA) al-

gorithm for MAC protocol. However, CSMA/CA is a non-deterministic and

probabilistic collision avoidance approach. Collision based protocols are not suit-

able for real-time applications, because randomness caused by the protocol makes

it impossible to estimate message delivery time bounds. Nevertheless, collisions

based protocols are not efficient in heavy traffic where nodes are synchronous.

Each collision increases the number of nodes ready to transmit and it takes a

long time to serve every waiting node. Lastly, LonTalk provides all six layers

of OSI model implementation except application layer, which leaves users very

limited access to protocol details and modification opportunity.

On the other hand CAN is one of the mostly used protocol for real-time ap-

plications. However, CAN specifies a basic set of network applications and leaves

most of the application details to users. Opposed to LonTalk, implementation of

a CAN system is costly and tricky with requirement to additional services. For

instance, CAN protocol allows to transmit communication packets up to eight

bytes and a fragmentation algorithm should be implemented by users to transmit

packets larger than eight bytes. This algorithm should break data packets longer

than eight bytes and reconstruct the data at the receiver side.

Firewire seems to be the most convenient commercial product for real-time

robotic application with its support for isochronous communication. However

fast communication speed of firewire requires the transmitted data to be handled

as fast as communication speed. Otherwise accumulated data in receiving buffer

would cause data overflow and data loss. Therefore micro-controller should be

chosen wisely in order to prevent data loss which results increase in cost of the

system. Besides, firewire requires packet headers larger than 20 bytes which

occupies most of the bandwidth in a system only requires transmission of small

and periodic data packets.
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5.1.2 Advantages of the URB

Taking into consideration above pitfalls of most popular commercial networks, the

URB presents an efficient, fast, real-time, synchronous and cheap communication

infrastructure for internal communication within mobile robots. Master-slave ar-

chitecture gives the full control of the bus to the URB CPU, hence collisions and

contentions between nodes are controlled and handled by a central authority. Un-

like probabilistic collision avoidance algorithms, the URB protocol is completely

deterministic and matches well for real-time applications. Deterministic protocol

applied by the URB is also gives satisfactory results within synchronous heavy

traffic.

On the other hand, supported libraries and APIs provide enough flexibility

and modularity for users while abstracting details of the communication protocol.

Complex protocols like LON limits user flexibility and protocols like CAN requires

a longer implementation phase. Being aware of disadvantages of both edges, we

implemented a more user friendly and modular development library supporting

various commercial microcontrollers.

Most of the commercial microcontrollers presents support for popular I2C

and RS232 communication mediums. This gives users the flexibility to use de-

sired microcontroller with computational power suitable for a specific application.

Besides, one can minimize the system cost by choosing the right microcontrollers

for the system. Therefore, URB is not as expensive as Firewire protocol but

providing satisfactory embedded communication performance.

5.2 Conclusion

In this thesis, we described a new modular, robust and real-time communica-

tion protocol for small and mid-sized mobile robots. The Universal Robot Bus

protocol stands for the communication infrastructure interfacing local sensor and

actuator nodes to a central processing unit. Our application domain is composed
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of robots requiring modular, extensible and reliable systems for performing real-

time tasks robustly. Therefore, URB presents a reliable, modular and extensible

communication architecture with real-time communication capabilities.

One of the most important features of the URB framework is the automation

of periodic data transfer requests. The other important functionality presented

by the URB is the automatic synchronization of data acquisition across multiple

nodes. Both of these features are implemented and analyzed throughout this

thesis. They help reducing the communication workload over the central prosessor

and improving data acquisition reliability, respectively.

The first URB architecture was implemented on 8051 microcontrollers de-

veloped by Silicon Laboratories (SiLabs) by using UART (RS232) and SMBUS

(I2C) modules of these chips. Current CPU libraries and drivers provide support

for RS232 and USB on Linux platforms. However, our intended goal is to port

these libraries and drivers into QNX operating system in order to use URB within

dynamic hexapod robot platform called RHex.
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Appendix A

Bridge Request Commands

Table A.1: Bridge command types with description

Bridge Command Type #args #resp

BRG RESET CMD 0 N/A

Reset the bridge and all nodes.

Arguments: NONE

Response: NONE even if RR=1

BRG GETVER CMD 0 2

Request bridge firmware version and revision.

Arguments: NONE

Response: Version followed by revision (each in one byte).

BRG CLOCK CMD 0 4

Request current clock value of bridge.

Arguments: NONE

Response: 4 byte integer with most significant byte first.

Continued on next page.
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Bridge Command Type #args #resp

BRG LED CMD 1 1

Sets the states of a specified LED located on each bridge.

Arguments: 1 byte to define the LED number (MS 7 bits) and next state of

the specified LED (LS 1 bit).

Response: 1 byte to define the previous state of the LED.

BRG PKTCOUNT CMD 0 8

Request uplink and downlink packet counts.

Arguments: NONE.

Response: 4 byte integer with uplink packet count (most significant byte first),

followed by a 4 byte integer with the downlink packet count (most significant

byte first).

BRG DISCOVER CMD 0 2

Request for discovery of nodes and respond with a report of active nodes.

Arguments: NONE

Response: 1st byte encodes availability of nodes 15-8, 2nd byte encodes avail-

ability of nodes 7-0. Active nodes are indicated with binary 1.

BRG AUTOMATE CMD 1 1

Enables or disables autonomous synchronization messages and autonomous

data fetch operations coordinated by the bridge and defines the frequency of

the synchronization messages.

Arguments: 1 bit for enable autonomous synchronization (MSB 1 for enable,

0 for disable), 1 bit to enable autonomous fetch operations (bit #6) and (6

bits) frequency of the heartbeat messages.

Response: 1 byte of ACK is sent if RR is enabled(1 for success, 0 for failure).

BRG AUTOFETCH CMD 2 1

Defines the nodes and message boxes to be read periodically after enabling

autonomous fetch operation.

Continued on next page.
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Bridge Command Type #args #resp

Arguments: 1 byte to define node address (MS 4 bits) and message box ID (3

bits). 1 byte for outbox size that is to be fetched.

Response: If RR=1 then 1 byte of ID is sent. This ID is used to identify the

queued autonomous fetch operations.

BRG CANCEL AUTOFETCH CMD 1 1

This command is used to remove any previous autonomous fetch operations

stored in the queue.

Arguments: 1 byte with the ID of the fetch operation that is going to be

deleted from queue or 0xFF to remove all the previously defined autonomous

fetch operations.

Response: If RR=1 then 1 byte of ACK is sent (1 for success, 0 for failure).

BRG NODEINFO CMD 1 4

This command is used to retrieve node information of a particular node.

Bridge responds to this command with the information of nodes after the

last discovery.

Arguments: 1 byte with node address.

Response: 1 byte with the node address, followed by 3 bytes with the same

format as outbox[0] encoding node information.

BRG NOP CMD 0 1

Dummy command with no effect. Ignored by bridges.

Arguments: NONE

Response: If RR=1 a dummy response of 1 byte with value 0 is generated by

bridges.

BRG TOKEN CMD 0 4

In response to this command, bridges send a special 4 bytes token.

Arguments: NONE

Response: 0xFFA5B99F (MSB first).

Continued on next page.



APPENDIX A. BRIDGE REQUEST COMMANDS 89

Bridge Command Type #args #resp

BRG ECHO CMD 1 -

Directly echoes the argument through uplink.

Arguments: 1 byte to be echoed.

Response: Response to this command is not in standard packet format. Given

argument directly echoes through uplink.

BRG DL GETVER CMD 0 10

In response to this command, downlink version, revision and type string is

sent.

Arguments: NONE

Response: Downlink version (1 byte), revision (1 byte) and string encoding

the type of the downlink (8 bytes).

BRG DL CUSTOM CMD VAR VAR

Send a custom, user defined command to downlink system.

Arguments: Variable

Response: Variable

BRG UL GETVER CMD 0 10

In response to this command, uplink version, revision and type string is sent.

Arguments: NONE

Response: Uplink version (1 byte), revision (1 byte) and string encoding the

type of the uplink (8 bytes).

BRG UL CUSTOM CMD VAR VAR

Send a custom, user defined command to uplink system.

Arguments: Variable

Response: Variable
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Code

Sample node firmware implementation

#include "silabs_util.h"

#include "test_urb_node.h"

#include "urb_node_lib.h"

byte xdata ADC_Value[4];

byte xdata buttonValue[4];

byte *tempPtr;

/**< Period between successive calls to app_update().

Units are in microseconds */

#define URB_NL_UPDATE_PERIOD 4000

void SYSCLK_init( void ) {

unsigned char delay = 100;

//set internal oscilator - divided by 1 (highest)

OSCICN |= 0x03;

CLKMUL = 0x00; // Reset the clock multiplier

CLKMUL |= rbMULEN; // Enable clock multiplier

while ( delay-- ); // Delay for >5us

// Initialize the clock multiplier

90
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CLKMUL |= rbMULEN + rbMULINIT ;

// Wait for multiplier to lock

while( !(CLKMUL & rbMULRDY) );

// Select 4X multiplier as the system clock

CLKSEL = (CLKSEL & ~rmCLKSL_MASK) | rvCLKSL_4X; }

void PORT_init( void ) {

P0MDOUT = 0x00; //P0 pins are open-drain

P0 = 0xFF;

P2MDOUT |= 0x0C; //P2.2 and P2.3 are push-pull

P2 &= ~0x0C;

// P2.5 is analog input for analog acquisition

P2MDIN &= ~0x20;

P2SKIP |= 0x20;

XBR0 = 0x04;

XBR1 = 0x40; }

void ADC0_init ( void ) {

// normal tracking mode; ADC0 conversions are initiated

// with AD0BUSY; ADC0 data is left-justified

ADC0CN = 0x00;

AMX0P = 0x04; // P2.5 analog input source

AMX0N = 0x1F; // ground as negative input

ADC0CF = 0x80; // ADC conversion clock = SYSCLK/16

ADC0CN |= 0x80; // Enable ADC0

EIE1 |= 0x08; /* enable ADC interrupts */ }

void T2_init ( void ) {

// Configure and initialize Timer 2.

// Use SYSCLK/12 as timebase

TMR2CN = 0x00;

// Timer2 clocked based on T2XCLK;

CKCON &= ~0x60;

// Init reload values and set to reload immediately

TMR2RL = -URB_NL_UPDATE_PERIOD;
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TMR2 = TMR2RL;

// Enable Timer2 interrupts and start Timer 2

ET2 = 1;

TR2 = 1; }

void app_bootup( void ) {

PCA0MD &= ~0x40; //disable watchdog timer

SYSCLK_init();

PORT_init();

ADC0_init();

T2_init();

URB_SetClass( 1 );

URB_SetIndex( 10 );

URB_SetVersion( 10 );

URB_SetRevision( 3 );

URB_SetAddress( 14 );

URB_SetupOutbox( 0x01, 2, ADC_Value );

URB_SetupInbox( 0x02, 2, buttonValue, true );

LED = 0;

EA = 1; /* enable global interrupts */ }

void app_reset( void ) {

byte i = 0;

for ( i = 0; i < sizeof( ADC_Value ); i++ )

ADC_Value[i] = 0;

for ( i = 0; i < sizeof( buttonValue ); i++ )

ADC_Value[i] = 0; }

void app_init( void ) {

EIE1 |= 0x08; // enable ADC interrupts

tempPtr = XNULL; }

void app_idle( void ) {

if ( URB_CheckInbox(2) ) {

byte *tmp = URB_LockInbox(2);
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if (*tmp) LED = 1;

else LED = 0;

if (*(++tmp)) LED2 = 1;

else LED2 = 0;

URB_ReleaseInbox(2);

}

}

void app_update( void ) {

AD0BUSY = 1; }

void app_signal( byte arg ) {

if ( arg == 0xff )

LED2 = ~LED2; }

void app_fault( byte errno ) {

byte tmp = errno; }

void ADC0_ISR (void) interrupt INTERRUPT_ADC0_EOC {

AD0INT = 0;

tempPtr = URB_LockOutbox( 1 );

*tempPtr = ADC0H;

tempPtr++;

*tempPtr = ADC0L;

URB_ReleaseOutbox( 1 );

URB_UpdateDone(); }


