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ABSTRACT

ONLINE LEARNING IN STRUCTURED MARKOV
DECISION PROCESSES

Nima Akbarzadeh

M.S. in Electrical and Electronics Engineering

Advisor: Cem Tekin

July 2017

This thesis proposes three new multi-armed bandit problems, in which the learner

proceeds in a sequence of rounds where each round is a Markov Decision Process

(MDP). The learner’s goal is to maximize its cumulative reward without any a

priori knowledge on the state transition probabilities. The first problem considers

an MDP with sorted states and a continuation action that moves the learner to an

adjacent state; and a terminal action that moves the learner to a terminal state

(goal or dead-end state). In this problem, a round ends and the next round starts

when a terminal state is reached, and the aim of the learner in each round is to

reach the goal state. First, the structure of the optimal policy is derived. Then,

the regret of the learner with respect to an oracle, who takes optimal actions in

each round is defined, and a learning algorithm that exploits the structure of the

optimal policy is proposed. Finally, it is shown that the regret either increases

logarithmically over rounds or becomes bounded. In the second problem, we

investigate the personalization of a clinical treatment. This process is modeled

as a goal-oriented MDP with dead-end states. Moreover, the state transition

probabilities of the MDP depends on the context of the patients. An algorithm

that uses the rule of optimism in face of uncertainty is proposed to maximize the

number of rounds in which the goal state is reached. In the third problem, we

propose an online learning algorithm for optimal execution in the limit order book

of a financial asset. Given a certain amount of shares to sell and an allocated

time to complete the transaction, the proposed algorithm dynamically learns the

optimal number of shares to sell at each time slot of the allocated time. We model

this problem as an MDP, and derive the form of the optimal policy.

Keywords: Online Learning, Markov Decision Process, Multi-armed Bandits, Re-

inforcement Learning, Dynamic Programming, Clinical Decision Making, Limit

Order Book.
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ÖZET

ÖZEL YAPILI MARKOV KARAR SÜREÇLERİNDE
ÇEVRİMİÇİ ÖĞRENME

Nima Akbarzadeh

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Cem Tekin

Temmuz 2017

Bu tez öğrenicinin sıralı turlarla hareket ettiği üç yeni çok kollu haydut problemi

sunmaktadır. Her tur birer Markov Karar Süreci (MKS) olarak modellenmiştir.

Öğrencinin amacı durum geçiş olasılıkları üzerinde herhangi ön bilgi olmadan

toplam ödülü maksimize etmektir. İlk problem, sıralı durumların, öğreniciyi

komşu bir duruma hareket ettiren devam eylemlerinin ve öğreniciyi amaç veya

çıkmaz duruma götüren sonlandırma eylemlerinin olduğu bir MKSdir. Bu prob-

lemde, terminal duruma gelindiğinde tur sona erer ve bir sonraki tura geçilir. Her

bir turda öğrenicinin hedefi amaç durumuna erişmektir. Öncelikle, en iyi poliçenin

yapısı türetilmiştir. Sonrasında, öğrenicinin her turda en uygun aksiyonları alan

kahin poliçeye göre pişmanlığı tanımlanmış ve en uygun poliçenin yapısından

faydalanan bir öğrenme algoritması önerilmiştir. Son olarak, pişmanlığın tur

sayısına göre logaritmik olarak arttığı veya sınırlı olduğu gösterilmiştir. İkinci

problemde, kişiselleştirilmiş klinik tedaviler incelenmiştir. Bunlar amaç odaklı

çıkmaz durumlu MKS olarak modellenmiştir. Bununla birlikle, MKS’nin du-

rum geçiş olasılıkları hastanın bağlamıyla ilintilidir. Amaç durumuna erişen tur

sayısını belirsizlik karşısında iyimserlik kuralını kullanarak maksimize eden bir

algoritma geliştirilmiştir. Üçüncü problemde, limitli emir kitabında eniyi hisse

satışı problemi ele alınmştır. Belirli miktardaki hissenin belirli bir süre içerisinde

satılması gerektiğinde, algoritma, bu sürenin zaman aralıklarında satması gereken

en uygun hisse sayısını dinamik olarak öğrenir. Bu problem bir MKS olarak mod-

ellenmiş ve en iyi poliçenin formu türetilmiştir.

Anahtar sözcükler : Çevrimiçi örenme, Markov Karar Süreci, Çok Kollu Haydut-

lar, Pekiştirmeli Örenme, Dinamik Programlama, Klinik Karar Verme, Limitli

Emir Kitabı.
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Chapter 1

Introduction

This thesis introduces three new Multi-armed bandit (MAB) problems, where

each round involves a structured Markov Decision Process (MDP). Each round

includes multiple decision epochs, where a learner takes an action upon observing

the state of the system, which results in a new state or ends the current round.

Prior works proposed algorithms for achieving a specific objective, e.g. maximiz-

ing the reward, reaching certain states etc., for which the learner needs to select

a sequence of actions while observing the states of the system. However, in order

to find the optimal mapping from the states to the actions, the learner needs

to know all the parameters (state transition probabilities) of the MDP, which is

not practical. While learning algorithms that achieve performance comparable

to the optimal policy computed using the full knowledge of the state transition

probabilities are proposed in the literature [1,2], these works assume that the un-

derlying MDP is irreducible and focus on the notion of average reward optimality.

Hence, the learning speed of these algorithms strictly depend on the size of the

state space and the action set, which makes them impractical except for MDPs

with small to moderate sizes. In this thesis, we depart from this line of work

and focus on structured MDPs, for which we show that by knowing the structure

(form of the optimal policy) of the MDP, the learner can learn much faster than

prior works.
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The contributions of this thesis are listed as follows:

• We design online learning algorithms for three structured MDPs in which

the state transition probabilities are unknown a priori to the learner.

• For two of these, we obtain the form of the optimal policy and use this

result to efficiently learn the optimal policy through repeated interaction

with the environment.

• We derive regret bounds for one of the problems. Interestingly, based on

the problem parameters, this regret bound is either finite or grows logarith-

mically in the number of rounds.

• We provide numerical analysis for our algorithms, which shows that they

have superior performance compared to their competitors.

In the following sections, we review the literature on MDPs, MAB problem,

and reinforcement and online learning. Then, we give a general overview of each

problem and summarize our contributions to each problem.

1.1 Markov Decision Process

Markov Decision Process (MDP) is an essential tool in modeling decision problems

in dynamically changing environments. In an MDP, the system contains a set of

states, a set of actions, a set of rewards/costs associated with the set of states

or the tuple of states and actions. In this model, actions cause state transitions,

and at each state transition the learner may receive a reward or equivalently pay

a cost. The reward/cost can be random or deterministic. In addition, the state

transition caused by an action can be random or deterministic. If it is random,

then there is a probability distribution over the state space given the state and the

action selected in that state. MDPs have multifarious applications in economics,

robotics, communications and health-care [3–6].
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An MDP has an objective function that is required to be optimized. One

possible objective is to maximize the long term average reward or to minimize

the long term average cost [7, 8]. Another possible objective is to maximize the

possibility of reaching a goal state (or a set of goal states) while minimizing

the cost accumulated over the rounds before reaching the goal state. This type

of MDP is called the goal-oriented MDP or the stochastic shortest path (SSP)

problem [9].

In an MDP, a (deterministic) policy is a mapping from the state space into

the action space. Different policies may result in different sequence of actions.

The optimal policy is the one which optimizes the objective function by taking

the optimal action in each state of the system. Therefore, given any state of

the system, the learner seeks the optimal action. When the MDP parameters

and the objective function is defined, the optimal or near-optimal solutions can

be obtained by methods which are based on value iteration, heuristic search or

dynamic programming [7, 8]. For SSP problems, the optimal solution exists if at

least one proper policy can be found. Proper policy is the policy that reaches the

goal state with probability one.

An interesting variation of the SSP problem, in which a proper policy does not

necessarily exist is the SSP problem with Dead-end states (D) [10]. Kolobov et.

al. has proposed various numerical solutions in order to find the optimal policy

for problems of this kind [11, 12]. The objective function of these problems are

defined as maximizing the probability of hitting G while avoiding D. The tech-

niques developed for these problems require the knowledge of the state transition

probabilities in computing the optimal policy.

An important application of MDPs is medical treatment recommendation [6].

In this application, the state space represents the patient health status or the

degree of the illness, and therapies correspond to actions. A possible objective

function is that the patient recovers from the illness, which is indicated by reach-

ing to a “healthy” state. Another important application of MDPs is finance,

where the state represents the market condition or the inventory level of the

3



trader [3]. Investment options or the amount of shares to be traded can be re-

garded as possible actions. The objective function can be the profit made over a

fixed period of time.

1.2 Multi-armed Bandits

MABs are used to model a variety of problems that involve sequential decision

making under uncertainty. For instance, in telecommunications MAB can be used

to model opportunistic spectrum access [13–15], in medical decision making MAB

can be used to model clinical trials [16] and in recommendation systems MAB

can be used to model web advertising [17]. In the classical MAB problem [18–20],

the learner selects an action from the action set at each round, and receives a

random reward that results from the selected action.1 The learner’s objective is to

minimize its long-term expected loss (or maximize its long-term expected reward)

by learning to select actions that have small losses (or large rewards). This task is

not trivial due to the fact that the learner is unaware of the reward distribution of

the actions beforehand. Numerous order-optimal index-based learning rules have

been developed for the standard MAB problems in prior works [19,22,23]. These

rules act myopically by choosing the action with the maximum index in each

round. Moreover, the index of each action only depends on the past observations

collected from that action.

Over the past two decades many variations of the MAB problem have been

introduced and many different learning algorithms are proposed to solve these

problems. The solutions include the celebrated Gittins index for Bayesian ban-

dits [24], upper confidence bound policies (Normalized UCB, KL-UCB, UCB-1,

UCB-2) [19, 22, 23], greedy policies [19] and posterior sampling [20, 25]. In all

these problems, the goal is to balance exploitation and exploration, where ex-

ploitation means selecting actions with the goal of maximizing the reward based

1It is noteworthy to mention that in the MAB problem, when an action is taken in a round,
the learner only observes the reward of the chosen action, and does not receive any feedback
about the reward of the other actions. This is called bandit feedback [21]
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on the current knowledge, and exploration means selecting actions with the goal

of acquiring more information. An optimal algorithm needs to balance these

two phases to maximize the learner’s reward. Usually in MAB problems, an

alternative performance metric, which is called the regret, is used to asses the

performance of the learner. The regret simply measures the loss of the learner

due to not knowing the reward distributions of the actions beforehand. For in-

stance, in a MAB problem with K stochastic arms, the regret is defined as the

difference between the total (expected) reward of an oracle who knows the true

problem parameters (the expected reward of each arm) and acts optimally from

the beginning, and the total reward of the learning algorithm used by the learner,

which is unaware of the true problem parameters beforehand. It is shown that

the regret grows logarithmically in the number of rounds for this problem [18].

Therefore, the average loss with respect to the oracle converges to zero, which

shows that asymptotically, the learner achieves the same average reward with the

oracle. A comprehensive discussion on MAB problems can be found in [21].

1.3 Reinforcement Learning

Situations that require multiple actions to be taken in each round cannot be

modeled using conventional MAB. Hence, reinforcement learning in MDPs with

bandit feedback is also considered in numerous works where the problem param-

eters are unknown.

The solution methods discussed in Section 1.1 require the full knowledge of

the problem parameters. However, in some applications, such an assumption is

impractical. For instance, this problem appears when a new stock enters the

stock market or a new drug is introduced for a disease treatment. In these cases,

the learner is unaware of the state transition probabilities of the actions. As a

result, the learner is unable to calculate and apply the optimal policy from the

beginning. Thus, a learning algorithm is required in order to learn the state

transition probabilities, while minimzing the loss (maximizing the reward) of the

learner.

5



Some prior works in reinforcement learning assume that the underlying MDP

is unknown and ergodic, i.e., it is possible to reach all other states with a positive

probability under any policy given any state [1, 2, 26–29], or deterministic2 [30].

These works adopt the principle of optimism under uncertainty to choose a policy

that minimizes the long-run average cost from a set of MDP models that are

consistent with the estimated transition probabilities [1, 2] or estimated MDP

parameters [26]. An MDP with deterministic state transitions and adversarial

rewards is considered in [30]. In [31], the authors consider a sequential decision

making problem in an unmodeled environment where the transition probability

kernel is unknown. They use a learning method based on the Lempel-Ziv scheme

of universal data compression and prediction with the aim of minimizing the long-

term average loss. The mentioned related works use the history of observations

to calculate the index, and use this index to select the next action that is believed

to be the best.

In addition to the above methods, there exists other methods based on Q-

learning, which is a model-free reinforcement learning approach. For these meth-

ods, the Q-values of state action pairs are updated after each round. In Q-

learning, one possible way to balance exploration and exploitation is to use the

ε-greedy strategy. However, unlike the methods based on the principle of op-

timism under uncertainty, in general, Q-learning based methods do not come

with finite time performance bounds, i.e., they are only guaranteed to be opti-

mal asymptotically. The interested reader may refer to [32] for a comprehensive

discussion on Q-learning.

1.4 Contributions of Chapter 2

In Chapter 2 we propose a new online learning problem with a structured MDP

model called the gambler’s ruin bandit problem (GRBP). This model is inspired

by the gambler’s ruin problem (GRP). In the following subsection, we review the

GRP.

2Deterministic MDP is an MDP with deterministic state transitions.
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1.4.1 The Gambler’s Ruin Problem

The GRP has been widely used in literature [33–36]. It can be viewed as the

evolution of the wealth of a gambler betting on the success of independent trials.

In this problem, the states are sorted on a straight line and the terminal states

are set to lie at the ends of the line. At each time step, the state moves to the

right or left of the current state with a certain probability (based on whether

the gambler wins or loses the current trial). Hence, the GRP is a Markov chain.

Given the initial state and the parameters, i.e., the number of states and state

transition probabilities, the probability of winning (gambler finishing the game

with a certain level of wealth) and ruin (gambler finishing the game bankrupt) has

been calculated. Some other interesting aspects such as the exact and expected

duration of the game has been investigated as well [37].

Numerous modifications have been proposed to the GRP. For instance, [35]

considers four possible state transitions instead of two. The two extra state

transitions moves the state to one of the terminal states, named as the Windfall

state (goal state G) and the Catastrophic state (dead-end state D). The ruin and

winning probabilities and the duration of the game are calculated based on these

additional outcomes. In another model [38], modifications such as the chance

of absorption in states other than G and D and staying in the same state are

considered. The ruin and winning probabilities are calculated according to the

proposed state transition model.

1.4.2 Problem Overview

Consider the following example which appears in medical treatment administra-

tion. Assume that patients arrive to the intensive care unit (ICU) sequentially

in rounds. The initial health state of each patient is observed at the beginning

of each round. We assume the illness degree defines the state. Treatment choices

are assumed to be the actions that can be taken by the learner. An action shifts

the patient’s health state randomly over the state space according to an unknown

7



distribution. This distribution defines the effectiveness of the treatment. For the

state space, let discharge of the patient be the goal state and death of the patient

to be the dead-end state. The problem objective is to maximize the expected

number of patients that are discharged by learning the optimal treatment pol-

icy using the observations gathered from the previous patients. In the example

given above, each round corresponds to a goal-oriented Markov Decision Process

(MDP) with dead-ends [12] with fully observable states. The learner knows the

state space, goal and dead-end states, but does not know the state transition

distribution a priori. At each round, the learner chooses a sequence of actions

and only observes the state transitions that result from the chosen actions.

Motivated by the health-care application described above, a new MAB problem

is proposed in Chapter 2 in which multiple arms are selected in each round until

a terminal state is reached. The set of terminal states consists of the goal state

G and the dead-end state D. We assume that the terminal states are absorbing.

This means that if they are reached, the current round ends. The remaining

non-terminal (transient) states are assumed to be ordered between the goal and

dead-end states. In each of the transient states, there are two possible actions:

a continuation action (action C) that moves the learner randomly over the state

space to the adjacent states around the current state; and a terminal action

(action F ) that moves the learner directly into a terminal state.

The problem discussed above is very similar to the classical GRP. The major

difference is that a new action (action F ) is introduced to the problem, and the

learner has to decide the best action among the two available actions in each

state. Therefore, we call this new MAB problem the Gambler’s Ruin Bandit

Problem (GRBP). In the GRBP, the system proceeds in a sequence of rounds

ρ ∈ {1, 2, . . .}. Each round is modeled as a goal-oriented MDP with a dead-end

state (as in Fig. 1.1) where the state transition probabilities of all of the actions

are unknown. Starting from a random, non-terminal initial state, the learner

chooses a sequence of actions and observes the resulting state transitions until a

terminal state is reached. If G is hit, the learner receives a unit reward and if D

is hit, no reward is obtained in that round. Unlike other MDP models in which

an immediate reward is revealed for each visited state, the reward in the GRBP

8



is only revealed when a round ends. The goal of the learner is to maximize its

cumulative expected reward over the rounds. In addition, there is no limit on the

time duration of the rounds and the learner can take as many actions as possible

until the time when a round ends.

In this problem, the optimal policy is the one which maximizes the probabil-

ity of hitting the goal state from any given initial state. If the state transition

probabilities are known, the optimal policy can be obtained by using value iter-

ation based methods. We assume existence of an omnipotent oracle who knows

the state transition probabilities and applies the optimal policy from the initial

round. We define the regret of the learner by round ρ as the difference in the

expected number of times the goal state is reached by the omnipotent oracle and

the learner by round ρ.

First, we show that the optimal policy for the GRBP can be computed in a

straightforward manner: there exists a threshold state above which it is always

optimal to take action C and on or below which it is always optimal to take action

F . Then, we propose an online learning algorithm for the learner, and bound its

regret for two different regions that the actual state transition probabilities can

lie in. The regret is bounded (finite) in one region, while it is logarithmic in the

number of rounds in the other region. These bounds are problem specific, in the

sense that they are functions of the state transition probabilities. Finally, we illus-

trate the behavior of the regret as a function of the state transition probabilities

through numerical experiments.

Since the set of possible deterministic policies for the GRBP is exponential in

the number of states, it is infeasible to use “myopic” algorithms developed for

classical MAB problems [19, 23] to directly learn the optimal policy by experi-

menting different policies over rounds. In this inefficient approach each policy

can be considered as a super-arm. In addition, the GRBP model does not fit into

the combinatorial models proposed in prior works [39]. Therefore, a new learning

methodology that exploits the structure of the GRBP is needed.

The contribution of Chapter 2 is summarized as follows:
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Figure 1.1: State transition model of the GRBP. Only state transitions out of
state s are shown. Dashed arrows correspond to possible state transitions by tak-
ing action F , while solid arrows correspond to possible state transitions by taking
action C. Weights on the arrows correspond to the state transition probabilities.
The state transition probabilities for all other non-terminal states are the same
as state s.

• We define a new MAB problem, called the GRBP, in which the learner

takes a sequence of actions in each round with the objective of reaching the

goal state.

• We show that using conventional MAB algorithms such as UCB1 [19] in the

GRBP by enumerating all deterministic Markov policies is very inefficient

and results in high regret.

• We prove that the optimal policy for the GRBP has a threshold form and

the value of the threshold can be calculated in a computationally efficient

way.

• We derive problem dependent bounds on the regret of the learner with

respect to an omnipotent oracle that acts optimally. Unlike conventional

MAB where the problem dependent regret grows at least logarithmically in

the number of rounds [18], in the GRBP, regret can be either logarithmic

or bounded, based on the values of the state transition probabilities. We

explicitly define the condition on the state transition probabilities of the

actions for which the regret is bounded.

10



1.5 Contributions of Chapter 3

1.5.1 Artificial Intelligence in Clinical Decision Making

As recent studies show, there exists healthcare problems, where the standard

clinical procedure does not fit to the patients. For instance, a study conducted

in the United States identifies treatment quality scores for various diseases, and

shows that the treatment quality scores were 75.7% for the breast cancer patients

and 45.4% for the diabetes mellitus patients [40]. As the number and complexity

of the treatment methods have increased tremendously in the last decades, it

became more difficult to match patients with the appropriate treatments. The

recent advances in data science allows the development of artificial intelligence

systems that provide patient-specific (personalized) diagnosis and treatment [41].

In [6], the treatment process of the patients is modeled as an MDP. In this

model, the state transition probabilities of the MDP model is calculated by using

the available data. After that, by using the estimated set of state transitions

probabilities and backward induction, a policy which minimizes the treatment

cost is obtained. Similar to this study, MDPs were also used to model post-

operative observation methods of kidney transplantation, rectal cancer patients,

and liver transplantation time prediction [42]. Some of the previous studies model

the treatment process as a Partially Observable MDP (POMDP) since the patient

states were partially observable. The methods used in the above studies form the

system model and fix the decision mechanism only according to the training data.

Therefore, the model is not updated while test data is being observed. On the

contrary, the method presented in this chapter of thesis considers a treatment

process where the reward of each therapy is unknown and should be learned over

time. There is no training and test phase and the model becomes updated after

observing each data instance.

Since each patient’s response to a specific treatment might be different, similar-

ities between patients need to be used so that the optimal personalized treatment
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regimen can be learned. Our method can group patients according to their con-

texts and learn in a common way for similar patients. With this, we expect the

treatment performance to improve as more number of patients is being observed.

1.5.2 Problem Overview

In Chapter 3, we study a patient treatment process which is modeled as a Con-

textual Goal-oriented with Dead-ends Markov Decision Process (CGDMDP).

CGDMDP is a generalization of the Goal Oriented Markov Decision Processes

with Dead-ends [12] which is a fully observable MDP. In a CGDMDP, the state

transition probabilities depend on the treatment option (the selected action) and

the patient’s external variables (age, sex, disease history, level of substance, etc.),

which we collectively call as the context. Similar to the GRBP, there are goal

and dead-end states in CGDMDP. Goal states represents the success and dead-

end states represents the failure of the therapy. Similarly, we assume goal and

dead-end states are absorbing states and the rest of the states are transient (non-

absorbing). The initial state of the patient is one of the transient states. Our

aim is to choose the optimal actions such that probability of absorption to the

goal states is maximized or equivalently, the chance of being absorbed to a dead-

end state is minimized. In literature, this problem is defined as MAXPROB

and solved using a variant of value iteration, assuming that the state transition

probabilities are known [11]. Our problem is different from the MAXPROB prob-

lem since we assume that the state transition probabilities are unknown and are

dependent on the patient’s context.

The contribution of Chapter 3 is summarized as follows:

• The patient treatment process is modeled as a CGDMDP.

• An algorithm (called CODY) that learns the optimal actions by estimating

the state transition probabilities over time is developed.

• A simulator that mimics the actual disease model is created, and the impact
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of using the proposed method on the 5-year survival rate for breast cancer

is calculated.

The results obtained from this study show that the success rate of the treatments

can be improved by using the proposed learning method.

1.6 Contributions of Chapter 4

In Chapter 4, we will discuss the third problem where the goal is to trade effi-

ciently in limit order books. First of all, we give a brief overview on the limit

order books.

1.6.1 Limit Order Book

Optimal execution of trades is an important problem in finance [43–46]. Once

the decision has been made to sell a certain amount of shares the challenge often

lies in how to optimally place this order in the market. The objective is to sell

(buy) at the highest (lowest) price possible, while leaving minimal foot-print in

the market. Specifically, we consider the selling problem in this chapter.

Our goal is to sell a specific number of shares of a given stock during a fixed

time period in a way that minimizes the accumulated cost of the trade. This

problem is also called the optimal liquidation problem. In this problem, the

traders can specify the volume and the price of shares that they desire to sell in

the limit order book (LOB) [3,47].

Numerous prior works solve this problem using static optimization approaches

or dynamic programming [45, 48]. Several other works tackle this problem using

a reinforcement learning approach [3, 46,49].

Reinforcement learning based methods consider various definitions of state,
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such as the remaining inventory, elapsed time, current spread, signed volume,

etc. Actions are defined either as the volume to trade with a market order or as a

limit order. A hybrid method is proposed in [46]: firstly, an optimization problem

is solved to define an upper bound on the volume to be traded in each time slot,

using the Almgren Chriss (AC) model proposed in [45]. Then, a reinforcement

learning approach is used to find the best action, i.e., the volume to trade, which is

upper-bounded by a relative value obtained in the optimization problem. Another

prior work [3] implements the same approach with a different action set and state

space. In all of the above works, the authors used Q-learning to find the optimal

action for a given state of the system. In [3,46] the learning problem is separated

into training and test phases, where the Q values are only updated in the training

phase, and then, these Q values are used in the test phase.

1.6.2 Problem Overview

Unlike prior approaches, we use a model based approach, in which we start with

a market model, and then, learn the state transition dynamics of the model

in an online manner. For this, we design an algorithm which runs in rounds.

Specifically, we separate the state space into private and market variables. The

private variable is the inventory level of the available shares to be sold for the

remaining time in a round. We define the market variable as the difference in

bid price of a time slot from the bid price of the time slot at the beginning of a

round. This state model has not been used previously in reinforcement learning

approaches. In this problem, the action is defined to be the amount of shares

to be sold at a specific price (market order). This amount is upper-bounded by

the limit obtained by AC model for each time slot. The algorithm selects actions

by estimating the state transition probabilities of the market variables. At the

beginning of each round, the state transition probabilities of the market variables

are estimated based on the past observations.

We deduce the form of the optimal policy using the mentioned decomposition

of the state variables and dynamic programming. Then, we show that the optimal
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policy for this problem is as follows: there exists a condition for each time slot

where if it is satisfied, then the learner sells the maximum limit available for

that time slot, otherwise, it does not sell any shares. By using the structure of

the optimal policy, the number of actions to be learned is reduced and dynamic

programming method is not implemented in every round to obtain the estimated

policy. Hence, both optimization and learning speed up.

The contribution of Chapter 4 is summarized as follows:

• We propose a new model for LOB trade execution with private and market

states.

• We show that the optimal policy has a special structure: At each time slot,

the learner may decide to sell the suggested amount of shares by AC model

or do nothing.

• We propose an online learning algorithm that greedily exploits the estimated

optimal policy. Unlike other reinforcement learning based approaches [2,

50], this algorithm does not need explorations to learn the state transition

probabilities.

• We show that the proposed algorithm provides significant performance im-

provement over other learning algorithms for LOB in real-world datasets.
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Chapter 2

Gambler’s Ruin Bandit Problem

The contents of this chapter has appeared in [51].

2.1 Problem Formulation

2.1.1 Definition of the GRBP

In the GRBP, the system is composed of a finite set of states. Let S :=

{D, 1, . . . , G} denote the state space where integer D = 0 denotes the dead-

end state and G denotes the goal state. Let S̃ := {1, . . . , G − 1} be the set of

initial (starting) states. The system operates in rounds and let ρ = 1, 2, . . . be the

index of the round. The initial state of each round is drawn from a probability

distribution q(s), s ∈ S̃ over the set of initial states S̃. The current round ends

and the next round starts when the learner hits state D or G. Because of this, D

and G are called terminal states. All other states are called non-terminal states.

That is why we assume that q(0) = q(G) = 0 (no action is required for a round

which starts in state 0 or G). Each round is divided into multiple time slots. The

learner takes an action in each time slot from the action set A := {C,F} with

the aim of reaching G. Here, C denotes the continuation action and F is the

16



terminal action. Action C moves the learner one state to the right or to the left

of the current state according to Fig. 1.1. Action F moves the learner directly to

one of the terminal states. Possible outcomes of each action is shown in Fig. 1.1.

Actions are taken in transient states. Let sρt denote the state at the beginning of

the tth time slot of round ρ. The state transition probabilities for action C are

given by

Pr(sρt+1 = s+ 1|sρt = s, C) = pu

Pr(sρt+1 = s− 1|sρt = s, C) = pd

where t ≥ 1, s ∈ S̃ and pu + pd = 1. The state transition probabilities for action

F are given by

Pr(sρt+1 = G|sρt = s) = pF ,

Pr(sρt+1 = D|sρt = s) = 1− pF

where s ∈ S̃, t ≥ 1 and 0 < pF < 1. State transition probabilities are independent

of time. If the state transition probabilities are known, each round can be modeled

as an MDP and an optimal policy can be found by dynamic programming methods

such as value iteration [8, 52].

2.1.2 Value Functions, Rewards and the Optimal Policy

Let π = (π1, π2, . . .) be the sequence of actions taken by policy π, where πt :

S̃ → A is a mapping from state space to the action space for any t ≥ 1. π

represents a deterministic Markov policy. It is a stationary policy if πt = πt′ for

all t and t′ which means the policy does not change over rounds and the mapping

is independent from time. For this case we will simply use π : S̃ → A to denote

a stationary deterministic Markov policy. As the time horizon is not finite and

the state transition probabilities are not time-variant, it is sufficient to search

for the optimal policy within the set of stationary deterministic Markov policies.

The set of stationary deterministic Markov policies is denoted by Π. Let V π(s)

denote the probability of reaching G by using policy π given that the system is

in state s. V π(s) may also be called as the value function of policy π in state s.
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Let Qπ(s, a) denote the probability of reaching G by taking action a in state s,

and then acting according to policy π afterward. We have

Qπ(s, C) = puV π(s+ 1) + pdV π(s− 1),

Qπ(s, F ) = pF , s ∈ S̃. (2.1)

for s ∈ S̃. Then, V π(s), s ∈ S̃ can be solved by using the following set of

equations:

V π(G) = 1, V π(D) = 0, V π(s) = Qπ(s, π(s)), ∀s ∈ S̃

where π(s) denotes the action selected by π in state s. The value of policy π

(policy value) is defined as

V π :=
∑
s∈S̃

q(s)V π(s).

The optimal policy is denoted by π∗ := arg maxπ∈Π V
π and the value of the op-

timal policy is denoted by V ∗ := maxπ∈Π V
π. The optimal policy is characterized

by Bellman optimality equations:

V ∗(s) = max{pFV ∗(G), puV ∗(s+ 1) + pdV ∗(s− 1)}, s ∈ S̃. (2.2)

As it is sufficient to search for the optimal policy within stationary deterministic

Markov policies. As the possible number of actions that can be selected in each

state of the system is two, hence the number of all such policies becomes 2G−1.

In Section 2.2, we will prove that the optimal policy for the GRBP has a simple

threshold structure, which reduces the number of policies to learn from 2G−1 to

2.

2.1.3 Online Learning in the GRBP

As we described in the previous subsection, when the state transition probabilities

are known, optimal solution and its probability of reaching the goal can be found

by using Bellman optimality equations. When the learner does not know pu and
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pF (a part of problem parameters which are state transition probabilities), the

optimal policy cannot be computed a priori, and hence it has to be learned. We

define the learning loss of the learner, who is not aware of the optimal policy a

priori, with respect to an oracle, who knows the optimal policy from the initial

round. The mathematical definition of the total regret is as follows:

Reg(T ) := TV ∗ −
T∑
ρ=1

V π̂ρ

where π̂ρ denotes the policy that is used by the learner in round ρ. Let Nπ(T )

denote the number of times policy π is used by the learner by round T . For any

policy π, let ∆π := V ∗ − V π denote the suboptimality gap of that policy (loss of

the policy with respect to the optimal policy). The given formulation of regret

can be rewritten as

Reg(T ) =
∑
π∈Π

Nπ(T )∆π. (2.3)

In Section 2.3 of this chapter, we will design a learning algorithm that minimize

the growth rate of the expected regret, i.e., E[Reg(T )]. A straightforward way to

do this is to use UCB1 algorithm [19] or its variants [23] by taking each policy

as an arm. The result below states a logarithmic bound on the expected regret

when UCB1 is method is applied.

Theorem 1. When UCB1 in [19] is used to select the policy to follow at the

beginning of each round (with set of arms Π), we have

E[Reg(T )] = 8
∑

π:V π<V ∗

log T

∆π

+

(
1 +

π2

3

)∑
π∈Π

∆π. (2.4)

Proof. See [19].

As shown in Theorem 1, the expected regret of UCB-1 depends linearly on

the number of suboptimal policies. For the GRBP, the number of policies can be

very large. For instance, we have 2G−1 different stationary deterministic Markov

policies for the defined problem. Thus, it can be inferred that using UCB1 to
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learn the optimal policy is highly inefficient for the GRBP. The learning algorithm

we propose in Section 2.3 exploits a result on the form of the optimal policy that

will be derived in Section 2.2 to learn the optimal policy in a fast manner. This

learning algorithm calculates an estimated optimal policy using the estimated

transition probabilities and the structure of the optimal policy, and hence learns

much faster than applying UCB1 naively. Moreover, our learning algorithm can

even achieve bounded regret (instead of logarithmic regret) under some special

cases which will be discussed later.

2.2 Optimal Policy for the GRBP

In this section, we prove that the optimal policy for the GRBP has a threshold

form. The threshold is a state where action F is taken for states equal or lower

than the threshold. While for states upper than the threshold, action C is taken.

The value of the threshold depends only on the state transition probabilities and

the number of states. First, we give the definition of a stationary threshold policy.

This definition is only specific to the GRBP problem.

Definition 1. π is a stationary threshold policy if there exists τ ∈ {0, 1, . . . , G−1}
such that π(s) = C for all s > τ and π(s) = F for all s ≤ τ . We use πtr

τ to denote

the stationary threshold policy with threshold τ . The set of stationary threshold

policies is given by Πtr := {πtr
τ }τ={0,1,...,G−1}.

Next, we will discuss two lemmas before the theorem in which we obtain the

form of the optimal policy. The next lemma constrains the set of policies that

the optimal policy lies in.

Lemma 1. In the GRBP it is always optimal to select action C at s ∈ S̃ − {1}.

Proof. See Appendix 2.6.1.

The result that we have obtained in Lemma 1 holds regardless of the set of

transition probabilities and the number of states. Lemma 1 leaves out only two
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candidates for the optimal policy. The first candidate is the policy which selects

action C for all transient states, ∀s ∈ S̃. The second candidate selects action C

in all states except state 1. In state 1, action F will be selected. Hence, the set of

the optimal policies is {πtr
0 , π

tr
1 }. This result, considerably reduces the number of

stationary threshold policies which can be candidate optimal policies from 2G−1

to 2. Let r := pd/pu denote the failure ratio of action C. The following lemma

gives V ∗(s) for s ∈ S̃ for the two candidate optimal policies.

Lemma 2. In the GRBP, the value functions are

(i)

V ∗(s) =


1− rs
1− rG , when pu 6= pd

s

G
, when pu = pd

if π∗ = πtr
0 ,∀s ∈ S̃.

(ii)

V ∗(s) =


pF + (1− pF )

1− rs−1

1− rG−1
, when pu 6= pd

pF + (1− pF )
s− 1

G− 1
, when pu = pd

if π∗ = πtr
1 ,∀s ∈ S̃.

Proof. See Appendix 2.6.2.

Finally, the form of the optimal policy is given in the following theorem.

Theorem 2. In the GRBP the optimal policy is πtrτ∗, where

τ ∗ =


sign(pF − 1− r

1− rG ), If pu 6= pd

sign(pF − 1

G
), If pu = pd

where sign(x) = 1 if x is nonnegative and 0 otherwise.

Proof. See Appendix 2.6.3.
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When pu 6= pd (r 6= 1), the term (1 − r)/(1 − rG) represents probability of

hitting G starting from state 1 by always selecting action C. This probability is

equal to 1/G when pu = pd (r = 1). As pF is the probability of hitting G by only

taking action F , we compare the mentioned values with pF to select the optimal

policy. As the result, it might be optimal to take the terminal action in state 1 for

some cases where we have pu > pF . The reason behind this is that although the

continuation action can move the system state in the direction of the goal state

for some time, the long term probability of hitting G by taking the continuation

action can be lower than the probability of hitting G by immediately taking the

terminal action at state 1.

Equation of the boundary region for which the optimal policy changes from

πtr0 to πtr1 is

pF = B(r) :=
1− r

1− rG (2.5)

when r 6= 1. This decision boundary is illustrated in Figure 2.1 for different

values of G. We call the region of transition probabilities for which πtr
0 is optimal

as the exploration region, and the region for which πtr
1 is optimal as the no-

exploration region. In exploration region, the optimal policy does not take action

F in any state of the system. Therefore, any learning policy that needs to learn

how well action F performs, needs to explore action F . On the other hand, in

no-exploration region, action F is taken if state 1 is visited. We know that there

is a positive probability that action F is taken in a round. A rigorous proof of

that is given in Lemma 5. Therefore, there is no need for exploration in this case.

As the value of G increases, area of the exploration region decreases due to the

fact that probability of hitting the goal state by only taking action C decreases.

In Section 2.3, we define a learning algorithm to learn the optimal policy.

This algorithm applies greedy maximization in learning the optimal policy if the

estimated optimal policy is πtr1 , while it uses the separation of exploration and

exploitation principle with control function D(ρ) if the estimated optimal policy

is πtr0 (exploration region) to ensure that action F is taken sufficiently many times

to have an accurate estimate about its transition probability. We will show that

this algorithm achieves finite regret when the actual transition probabilities lie
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in the no-exploration region, and will achieve logarithmic regret when the actual

transition probabilities lie in the exploration region. The choice of the control

function is limited to the functions given in Theorem 3.

2.3 A Greedy Algorithm for the GRBP

In this section, we propose a learning algorithm that minimizes the regret when

the state transition probabilities are unknown. The proposed algorithm forms

estimates of state transition probabilities based on the history of state transi-

tions, and then, uses these estimates together with the form of the optimal policy

obtained in Section 2.2 to calculate an estimated optimal policy at each round.

The learning algorithm for the GRBP is called Greedy Exploitation with

Threshold Based Exploration (GETBE) and its pseudocode is given in Algorithm

1. Unlike conventional MAB algorithms [18, 19, 23] which require all arms to be

sampled at least logarithmically many times, GETBE does not need to sample

all policies (arms) logarithmically many times to find the optimal policy with a

sufficiently high probability. GETBE achieves this by utilizing the form of the op-

timal policy derived in the previous section. Although GETBE does not require

all policies to be explored, it requires exploration of action F when the estimated

optimal policy never selects action F . This forced exploration is done to guaran-

tee that GETBE does not get stuck in the suboptimal policy. To illustrate better,
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Figure 2.1: The boundary region

23



assume the true state transition probabilities fall in no-exploration region but the

learner does not know this. Hence, when the learner is estimating the true values,

the estimated optimal policy may fall into exploration region. When the policy

of this region is applied, action F is not taken. Hence, the parameters relative to

this action are not updated and thus, there is a chance that the estimated policy

does not converge to the optimal one.

GETBE keeps counters NG
F (ρ), NF (ρ), Nu

C(ρ) and NC(ρ): (i) NG
F (ρ) is the

number of times action F is selected and terminal stateG is entered upon selection

of action F by the beginning of round ρ, (ii) NF (ρ) is the number of times action

F is selected by the beginning of round ρ, (iii) Nu
C(ρ) is the number of times

transition from some state s to s + 1 happened (i.e., the state moved up) after

selecting action C by the beginning of round ρ, (iv) NC(ρ) is the number of times

action C is selected by the beginning of round ρ. Let TF (ρ) and TC(ρ) represent

the number of times action F and action C is selected in round ρ, respectively.

Since, action F is a terminal action, it can be selected at most once in each round.

However, action C can be selected multiple times in the same round. Let TGF (ρ)

and T uC(ρ) represent the number of times state G is reached after selection of

action F and the number of times the state moved up after selection of action C

in round ρ, respectively.

At the beginning of round ρ, GETBE forms the transition probability estimates

p̂Fρ := NG
F (ρ)/NF (ρ) and p̂uρ := Nu

C(ρ)/NC(ρ) that correspond to actions F and

C, respectively. Then, it computes the estimated optimal policy π̂ρ by using the

form of the optimal policy given in Theorem 2 for the GRBP. If π̂ρ = πtr
1 , then

GETBE operates in greedy exploitation mode by acting according to πtr
1 for the

entire round. Else if π̂ρ = πtr
0 , then GETBE operates in triggered exploration

mode and selects action F in the first time slot of that round if NF (ρ) < D(ρ),

where D(ρ) is a non-decreasing control function that is an input of GETBE. This

control function helps GETBE to avoid getting stuck in the suboptimal policy

by forcing the selection of action F , although it is suboptimal according to π̂ρ.

When NF (ρ) ≥ D(ρ), GETBE employs π̂ρ for the entire round.
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At the end of round ρ the values of counters are updated as follows:

NF (ρ+ 1) = NF (ρ) + TF (ρ),

NG
F (ρ+ 1) = NG

F (ρ) + TGF (ρ)

NC(ρ+ 1) = NC(ρ) + TC(ρ),

Nu
C(ρ+ 1) = Nu

C(ρ) + T uC(ρ). (2.6)

These values are used to estimate the transition probabilities that will be used

at the beginning of round ρ + 1, for which the above procedure repeats. In the

analysis of GETBE, we will show that when NF (ρ) ≥ D(ρ), the probability that

GETBE selects the suboptimal policy is very small, which implies that the regret

incurred is very small.

Algorithm 1 GETBE Algorithm

1: Input : G,D(ρ)
2: Initialize: Take action C and then action F once to form initial estimates:
NG
F (1), NF (1) = 1, Nu

C(1), NC(1) = 1 (Round(s) to form the initial estimates (at
most 2 rounds) are ignored in the regret analysis). ρ = 1

3: while ρ ≥ 1 do
4: Get initial state sρ1 ∈ S̃, t = 1

5: p̂Fρ =
NG
F (ρ)

NF (ρ)
, p̂uρ =

Nu
C(ρ)

NC(ρ)
, r̂ρ =

1− p̂uρ
p̂uρ

6: if p̂uρ = 0.5 then

7: τ̂ρ = sign(p̂Fρ − 1/G)
8: else

9: τ̂ρ = sign(p̂Fρ −
1− r̂ρ

1− (r̂ρ)G
)

10: end if
11: while sρt 6= G or D do
12: if (τ̂ρ = 0 && NF (ρ) < D(ρ)) || (sρt ≤ τ̂ρ) then
13: Select action F , observe state sρt+1

14: TF (ρ) = TF (ρ) + 1, TGF (ρ) = I(sρt+1 = G)1

15: else
16: Select action C, observe state sρt+1

17: TC(ρ) = TC(ρ) + 1, T uC(ρ) = T uC(ρ) + I(sρt+1 = sρt + 1)
18: t = t+ 1
19: end if
20: end while
21: Update Counters according to (2.6)
22: ρ = ρ+ 1
23: end while

1I(·) denotes the indicator function which is 1 if the expression inside evaluates true and 0
otherwise.
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2.4 Regret Analysis

In this section, we will bound the (expected) regret of GETBE. We will show that

GETBE achieves bounded regret when the true state transition probabilities lie

in no-exploration region and logarithmic (in number of rounds) regret when the

true state transition probabilities lie in exploration region. Based on Theorem 2,

GETBE only needs to learn the optimal policy from the set of policies {πtr
0 , π

tr
1 }.

Using this fact and taking the expectation of (2.3), the expected regret of GETBE

can be written as

E[Reg(T )] =
∑

π∈{πtr
0 ,π

tr
1 }

E[Nπ(T )]∆π.

Let ∆(s) := |V πtr
1 (s) − V πtr

0 (s)|, s ∈ S̃ be the suboptimality gap in estimating

the probability of hitting G when the system is in state s and let the maximum

suboptimality gap be ∆max := maxs∈S̃ ∆(s). For the suboptimal policy π, we

have ∆π ≤ ∆max. The next lemma gives a closed-form expression for ∆(s) and

∆max.

Lemma 3. We have

∆(s) =


G−s
G−1
|pF − 1

G
| if r = 1

rG−1−rs−1

rG−1−1
|pF − 1− r

1− rG | if r 6= 1

and

∆max =


|pF − 1

G
| if r = 1

|pF − 1− r
1− rG | if r 6= 1

Proof. See Appendix 2.6.4.

The next corollary characterizes the suboptimality gap in terms of ∆max when

the initial distribution over the states is uniform. The result of this corollary can

be used in Theorem 1 in order to obtain a bound the regret that depends on pF

and pu.
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Corollary 1. If we assume a uniform distribution over the initial states, then

the gap used in Theorem 1 is

∆π =


G

2(G− 1)
∆max if r = 1(

rG−1

rG−1 − 1
+

1

(1− r)(G− 1)

)
∆max if r 6= 1

Proof. If r = 1, then we have

∆π =
G−1∑
s=1

q(s)∆(s) =
1

G− 1

G−1∑
s=1

G− s
G− 1

∆max

=
∆max

G− 1

(
G(G− 1)

G− 1
−

G−1∑
s=1

s

G− 1

)

=
∆max

G− 1

(
G−

G(G−1)
2

G− 1

)
=

G

2(G− 1)
∆max.

If r 6= 1, then we get

∆π =
G−1∑
s=1

q(s)∆(s) =
1

G− 1

G−1∑
s=1

rG−1 − rs−1

rG−1 − 1
∆max

=
∆max

G− 1

(
(G− 1)rG−1

rG−1 − 1
−

G−1∑
s=1

rs−1

rG−1 − 1

)

=
∆max

G− 1

(
(G− 1)rG−1

rG−1 − 1
−

rG−1−1
r−1

rG−1 − 1

)

=

(
rG−1

rG−1 − 1
+

1

(1− r)(G− 1)

)
∆max.

Finally, the proof is complete.

Next, we will bound E[Nπ(T )] for the suboptimal policy in a series of lem-

mas. At first, let δ be the minimum Euclidean distance of pair (pu, pF ) from the

boundary region (x,B(x)) given in Figure 2.1, where

B(x) :=
1− 1− x

x

1− (
1− x
x

)G
.

In the next lemma, we give the equation which has to be solved such that the

value of δ can be achieved by that.
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Lemma 4. We have

δ =
√

(x0 − pu)2 + (B(x0)− pF )2

where x0 = 1/(1 + r0) and r0 is the positive, real-valued solution of

pF +
(1−rG
r+1

)2( 1
r+1
− pu)

(G− 1)rG −GrG−1 + 1
=

1− r
1− rG .

Proof. See Appendix 2.6.5.

The value of δ found in Lemma 4 specifies the hardness of the GRBP. When δ

is small, it is harder to distinguish the optimal policy from the suboptimal policy.

If the pair of estimated transition probabilities (p̂uρ , p̂
F
ρ ) in round ρ lies within a

ball around (pu, pF ) with radius less than δ, then GETBE will select the optimal

policy in that round. The probability that GETBE selects the optimal policy is

lower bounded by the probability that the estimated transition probabilities lie

in a ball centered at (pu, pF ) with radius δ. Therefore, if the true state transition

probabilities lie close to the boundary, more samples are required to be taken so

that we become more confident that the estimated policy is close to the optimal

one.

The following lemma gives the probability of selecting each action in a round.

It also provides a bound on the number of times an action is selected up to a

certain round. We will use the result of this lemma while bounding the regret of

GETBE.

Lemma 5. Assume that the initial distribution over S̃ is uniform 2 and D(ρ) is

a sublinear monotonic function in ρ.

(i) Let pF,1 be the probability of taking action F in round ρ when π̂ρ = πtr
1 and

pC,1 be the probability of taking action C at least once in round ρ when π̂ρ = πtr
1 .

Then

pC,1 =
G− 2

G− 1
, pF,1 =

 G
2(G−1)

if r = 1

(G−1)(1−r)−r+rG
(G−1)(1−r)(1−rG−1)

if r 6= 1
.

2We make the uniform initial distribution assumption to obtain a simple analytical form
for the selection probabilities. Generalization of our results to arbitrary initial distributions is
straightforward.
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(ii) Let

fa(ρ) :=

0.5pC,1ρ, for a = C

0.5pF,1dD(ρ)e, for a = F

and ρ′C be the first round in which 0.5pC,1ρD −
√
ρD log ρ becomes positive where

ρD = ρ−dD(ρ)eand ρ′F be the first round in which 0.5pF,1dD(ρ)e−
√
dD(ρ)e log ρ

becomes positive. Then for a ∈ {F,C} we have

P (Na(ρ) ≤ fa(ρ)) ≤ 1

ρ2
, for ρ ≥ ρ′a.

The control function also has to satisfy the condition that D(ρ) ≥ (1/(pF,1)2) log ρ.

Proof. See Appendix 2.6.6.

Let Aρ denote the event that a suboptimal policy is selected in round ρ. Let

Cρ := {|pu − p̂uρ |≥ δ/
√

2} ∪ {|pF − p̂Fρ |≥ δ/
√

2}.

Then, using the union bound, we have

E[I(Aρ)] ≤ E[I(Cρ)] ≤ P
(
|pu − p̂uρ |≥ δ/

√
2
)

+ P
(
|pF − p̂Fρ |≥ δ/

√
2
)
.

as a result of which we have

E[
T∑
ρ=1

I(Aρ)] =
T∑
ρ=1

E[I(Aρ)] ≤
T∑
ρ=1

∑
a∈{F,C}

P
(
|pa − p̂a

ρ|≥ δ/
√

2
)
.

Let IR(T ) denote the number of rounds by round T in which the estimated

transition probabilities lie in the incorrect side of the boundary. We have

IR(T ) ≤ E[
T∑
ρ=1

I(Aρ)] ≤ E[
T∑
ρ=1

I(Aρ)]

≤
T∑
ρ=1

∑
a∈{F,C}

P
(
|pa − p̂a

ρ|≥ δ/
√

2
)
. (2.7)

Finally, we can decompose the regret into two: (i) regret in rounds in which the

estimated transition probabilities lie in the incorrect side of the boundary, (ii)
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regret in rounds in which the estimated transition probabilities lie in the correct

side of the boundary and GETBE explores. Let Iexp
ρ be the indicator function for

the exploration event of GETBE. Then,

Reg(T ) ≤
(

IR(T ) +
T∑
ρ=1

Iexp
ρ

)
∆max. (2.8)

In the next theorem, we bound E[Reg(T )].

Theorem 3. Let x1 :=
(

1 +
√

(16pF,1/δ2) + 1
)
/2pF,1. Assume that the control

function is

D(ρ) = γ log ρ where γ > max{(x1)2,
1

(pF,1)2
}.

Let ρ′ := max{ρ′C , ρ′F}, and

w := 2ρ′ + 12 +
4

pC,1δ2
.

Then, the regret of GETBE is bounded by

E[Reg(T )|π∗ = πtr1 ] ≤ w

and

E[Reg(T )|π∗ = πtr0 ] ≤ dD(T )e+ w∆max.

Proof. See Appendix 2.6.7.

Theorem 3 states that after finite number of rounds, the optimal threshold will

be identified with a high probability. Theorem 3 bounds the expected regret of

GETBE as a function of time. When π∗ = πtr
1 , Reg(T ) = O(1) since both actions

will be selected with positive probability by the optimal policy at each round.

When π∗ = πtr
0 , Reg(T ) = O(D(T )) since GETBE forces to explore action F

logarithmically many times to avoid getting stuck in a suboptimal policy.
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2.5 Numerical Results

We create a synthetic medical treatment selection problem based on [53]. Each

state is assumed to be a stage of gastric cancer (G = 4, D = 0). The goal state is

defined as at least three years of survival. Action C is assumed to be chemother-

apy and action F is assumed to be surgery. For action C, pu is determined by

using the average survival rates for young and old groups at different stages of

cancer given in [53]. For each stage, the survival rate of three years is taken

to be the probability of hitting G by taking action C continuously. With this

information, we set pu = 0.45. Also, the five-year survival rate of surgery given

in [54] (29%) is used to set pF = 0.3.

The regrets shown in Fig. 3 and 4 correspond to different variants of GETBE,

named as GETBE-SM, GETBE-PS and GETBE-UCB. Each variant of GETBE

updates the state transition probabilities in a different way. GETBE-SM uses

the control function together with sample mean estimates of the state transition

probabilities as discussed in Algorithm 1. Unlike GETBE-SM, GETBE-UCB and

GETBE-PS do not use the control function. GETBE-PS uses posterior sampling

from the Beta distribution [25] to sample and update pF and pu. The mean of the

Beta distribution corresponds to the sample mean estimation. The variance of the

distribution decreases as more rounds being played. Therefore, more mass will

be assigned to the mean value and hence the algorithm is expected to converge to

the true value. In case of GETBE-UCB, an inflation term is added to the sample

mean estimates of action a which is equal to

Ua(ρ) =

√
2 log(NF (ρ) +NC(ρ))

Na(ρ)
. (2.9)

As the probabilities should sum up to 1, the estimated transition probability of

each action is normalized as follows:

p̂aρ =

N∗a (ρ)

Na(ρ)
+ Ua(ρ)

1 + Ua(ρ)
, a ∈ {F,C}

where N∗F (ρ) := NG
F (ρ) and N∗C(ρ) := Nu

C(ρ).
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We compare GETBE with three other algorithms as well. PS-PolSelection

and UCB-PolSelection algorithms treat each policy as a super-arm in multi-

armed bandit problems. In PS-PolSelection, we use the same posterior sam-

pling method as discussed, however, this time the algorithm is applied over the

two candidate optimal policies rather than the state transition probabilities. In

UCB-PolSelection, the same inflation term has been used as given in (2.9). For

the two latter methods, instead of updating the state transition probabilities, the

reward of each policy is updated directly. The final algorithm which is compared

with GETBE is NoExplore algorithm. This algorithm computes a new policy at

each round by solving the MAXPROB problem in [12] using the sample mean

estimates of the state transition probabilities. There is no exploration mechanism

for NoExplore.

Initial state distribution is taken to be the uniform distribution. Initial esti-

mates of the transition probabilities are formed by setting NF (1) = 1, NG
F (1) ∼

Unif[0, 1], NC(1) = 1, Nu
C(1) ∼ Unif[0, 1]. The time horizon is taken to be 5000

rounds, and the control function is set to be D(ρ) = 10 log ρ. Reported results

are averaged over 100 iterations.
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Figure 2.2: Regrets of GETBE and the other algorithms as a function of the
number of rounds.

In Fig. 2.2 the regrets of GETBE and other algorithms are shown for pF

and pu values given above. For this case, the the optimal policy is πtr
1 , and all
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variants of GETBE achieve finite regret, as expected. However, the regrets of

UCB-PolSelection and PS-PolSelection increase logarithmically, since they sam-

ple each policy logarithmically many times. For this case, the regret of NoExplore

algorithm grows linearly, because it cannot update p̂Fρ when the estimated opti-

mal policy falls into the exploration region. This shows that NoExplore algorithm

has been stuck in the suboptimal region.
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Figure 2.3: Regrets of GETBE and the other algorithms as a function of the
number of rounds. when transition pair is in exploration region (pu = 0.65, pF =
0.3, G = 4).

Figure 2.4: Regret of GETBE for different values of pu, pF .

Next, we set pu = 0.65 and pF = 0.3, in order to show how the algorithms

perform when the optimal policy is πtr
0 . The results for this case are given in
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Fig. 2.3. As expected, the regret grows logarithmically over the rounds for all

variants of GETBE, PS-PolSelection and UCB-PolSelection. On the other hand,

NoExplore achieves finite regret because its transition probability estimates are

stuck in the optimal region and it does not explore the suboptimal policy.

In order to obtain a general overview about the performance of GETBE, we

have plotted the regret of GETBE-SM as a function of pF and pu in Fig. 2.4.

As the state transition probabilities shift from the no-exploration region to the

exploration region the regret increases. A sharp growth in the regret happens

near the boundary region. As it is clear from the figure, more cost for exploration

(regret) has to be paid if the optimal region in exploration region and the state

transition probabilities values are such that (pu, pF ) is far away from the boundary

region.

2.6 Proof of Theorems and Lemmas in Chapter

3

2.6.1 Proof of Lemma 1

By (2.2), for s ∈ S̃ − {1} we have

V ∗(s) = max{pF , pCV ∗(s+ 1) + pDV ∗(s− 1)}.

If V ∗(s) = pF , this implies that

pCV ∗(s+ 1) + pDV ∗(s− 1) ≤ pF ⇒

V ∗(s− 1) ≤ pF − pCV ∗(s+ 1)

pD
.

By (2.2), we also have

pF ≤ V ∗(s),∀s ∈ S̃. (2.10)

Therefore,

V ∗(s− 1) ≤ pF − pCV ∗(s+ 1)

pD
≤ pF − pCpF

pD
= pF .
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Calculations above imply that V ∗(s− 1) = pF . Hence, we also obtain

V ∗(s+ 1) ≤ pF − pDV ∗(s− 1)

pC
= pF .

Similar to the previous case, combining the above result with (2.10) results in

V ∗(s+ 1) = pF . Consequently, if V ∗(s) = pF for some s ∈ S̃ − {1}, then

V ∗(s+ 1) = V ∗(s− 1) = pF . (2.11)

By (2.11) and considering all of the states in S̃ − {1}, if V ∗(s) = pF for some

s ∈ S̃ − {1}, then this implies that V ∗(G− 1) = pF . Since V ∗(G) = 1, we have

V ∗(G− 1) = max{pF , pC + pDpF} = pF

⇒ pF ≥ pC + pDpF ⇒ pF (1− pD) ≥ pC

⇒ pF ≥ 1⇒ pF = 1.

This shows that unless pF = 1, it is suboptimal to select action F in states

S̃ − {1}. Hence, it is always optimal to select action C at s ∈ S̃ − {1}.

2.6.2 Proof of Lemma 2

Case (i):

35



For πtr1 we have:

V πtr1 (G) = 1

V πtr1 (G− 1) = pCV πtr1 (G) + pDV πtr1 (G− 2)

. . .

V πtr1 (2) = pCV πtr1 (3) + pDV πtr1 (1)

V πtr1 (1) = pF

⇒


(pC + pD)V πtr1 (G− 1) = pC + pDV πtr1 (G− 2)

. . .

(pC + pD)V πtr1 (2) = pCV πtr1 (3) + pDpF

⇒



pC(V πtr1 (G− 1)− 1) = pD(V πtr1 (G− 2)− V πtr1 (G− 1))

. . .

pC(V πtr1 (s+ 1)− V πtr1 (s+ 2)) = pD(V πtr1 (s)− V πtr1 (s+ 1))

. . .

pC(V πtr1 (2)− V πtr1 (3)) = pD(pF − V πtr1 (2))

⇒



V πtr1 (G− 1)− 1 = rG−2(pF − V πtr1 (2))

. . .

V πtr1 (s)− V πtr1 (s+ 1) = rs−1(pF − V πtr1 (2))

. . .

V πtr1 (2)− V πtr1 (3) = r(pF − V πtr1 (2))

(2.12)
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We first consider the case r 6= 1. Summation of all the terms above results in

1− V πtr1 (2) = (V πtr1 (2)− pF )(
G−2∑
i=1

ri) (2.13)

⇒ V πtr1 (2)(
G−2∑
i=0

ri) = 1 + pF (
G−2∑
i=1

ri)

⇒ V πtr1 (2)(
G−2∑
i=0

ri) = 1− pF + pF (
G−2∑
i=0

ri)

⇒ V πtr1 (2) = pF +
1− pF

(
∑G−2

i=0 ri)

⇒ V πtr1 (2) = pF + (1− pF )
1− r

1− rG−1
.

Then, to obtain the value for the sth state, we sum up to the (s− 1)th equation

in (2.12):

V πtr1 (s)− V πtr1 (2) = (V πtr1 (2)− pF )(
s−2∑
i=1

ri)

⇒ V πtr1 (s) = pF + (V πtr1 (2)− pF )(
s−2∑
i=0

ri) (2.14)

⇒ V πtr1 (s) = pF + (1− pF )
1− rs−1

1− rG−1
. (2.15)

When r = 1, continuing from (2.13), we obtain

V πtr1 (2) = pF + (1− pF )
1

G− 1

and

V πtr1 (s) = pF + (1− pF )
s− 1

G− 1
.

Case (ii):

Since action F is never selected by πtr0 , for this case, standard analysis of the

gambler’s ruin problem applies. Thus, the probability of hitting G from state s

is

1− rs
1− rG (2.16)

for r 6= 1, and s/G for r = 1 [55].
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2.6.3 Proof of Theorem 2

Since we have found in Lemma 1 that it is always optimal to select action C

when the state is in {2, . . . , G − 1}, to find the optimal policy, it is sufficient to

compare the value functions of the two policies for s = 1. When r 6= 1, this gives

π∗ = πtr1 if

1− r
1− rG < pF

and π∗ = πtr0 otherwise.3 Similarly, when r = 1 and 1/G < pF , then π∗ = πtr1 .

Otherwise, π∗ = πtr0 . Using these, the value of the optimal threshold is given as

τ ∗ =


sign(pF − 1− r

1− rG ) when r 6= 1

sign(pF − 1

G
) when r = 1

which completes the proof.

2.6.4 Proof of Lemma 3

According to Lemma 2 we have

Case (i) r = 1:

∆(s) = |V πtr1 (s)− V πtr0 (s)|= |pF + (1− pF )
s− 1

G− 1
− s

G
|

= |pF (
G− s
G− 1

) +
s− 1

G− 1
− s

G
|= G− s

G− 1
|pF − 1

G
|.

The above equation is maximized when s = 1. Therefore, when r = 1,

∆max = |pF − 1

G
|.

3When (1 − r)/(1 − rG) = pF both πtr
1 and πtr

0 are optimal. For this case, we favor πtr
1

because it always ends the current round.
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Case (ii) r 6= 1:

∆(s) = |V πtr1 (s)− V πtr0 (s)|

= |pF + (1− pF )
rs−1 − 1

rG−1 − 1
− rs − 1

rG − 1
|

= |pF (
rG−1 − rs−1

rG−1 − 1
) +

rs−1 − 1

rG−1 − 1
− rs − 1

rG − 1
|

= |pF (
rG−1 − rs−1

rG−1 − 1
) +

rs − rs−1 + rG−1 − rG
(1− rG−1)(1− rG)

|

= (
rG−1 − rs−1

rG−1 − 1
)|pF − 1− r

1− rG |.

Again, the above equation is maximized when s = 1. Therefore, when r 6= 1,

∆max = |pF − 1− r
1− rG |.

2.6.5 Proof of Lemma 4

We define L(x) =
√

(x− pC)2 + (B(x)− pF )2 as the distance between any point

on the surface to the boundary. In order to find its minimum value, we set

dL(x)

dx
= 0⇒ (x− pC) + (B(x)− pF )

dB(x)

dx
= 0

⇒ B(x) = pF +
pC − x
dB(x)
dx

(2.17)

We use the chain rule to obtain dB(x)
dx

. We have

dB(x)

dr
= −(G− 1)rG −GrG−1 + 1

(1− rG)2

and

dr

dx
= − 1

x2

By the chain rule and replacing x = 1/(1 + r) in combination with (2.17), we get

B(r) = pF +
(1−rG
r+1

)2(pC − 1
r+1

)

(G− 1)rG −GrG−1 + 1
.
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From the definition of the boundary region (2.5) we have

B(r) =
1− r

1− rG .

The value of r0, and hence, the value of x0 = 1/(1 + r0) is found by solving

pF +
(1−rG
r+1

)2(pC − 1
r+1

)

(G− 1)rG −GrG−1 + 1
− 1− r

1− rG = 0.

Define X̃ as the solution set to the above equation, then the real-valued positive

x’s from X̃ are set in function L. Then, the minimum distance to boundary

region is given by δ = L(x0) in which x0 is the one which minimizes the function

L.

2.6.6 Proof of Lemma 5

The following expressions will be used in the proof:

• N0(ρ) : Number of rounds by ρ for which π̂ρ = πtr0 .

• N1(ρ) : Number of rounds by ρ for which π̂ρ = πtr1 .

• NF,1(ρ) : Number of rounds by ρ for which action F is taken when π̂ρ = πtr1 .

• NC,1(ρ) : Number of rounds by ρ for which action C is taken when π̂ρ = πtr1 .

• na(ρ) : Indicator function of the event that action a is selected for at least

once in round ρ.

(i) When π̂ρ = πtr1 , action C is not taken only if the initial state is 1. Hence,

pC,1 = 1− Pr(sρ1 = 1) = 1− q(1).

Let H1 denote the event that state 1 is reached before state G when π̂ρ = πtr1 .

We have

pF,1 =
G−1∑
s=1

Pr(H1|sρ1 = s)q(s).

40



When r = 1, pF,1 is equivalent to the ruin probability (probability of hitting the

terminal state 1) of a fair gambler’s ruin problem over G− 1 states, where states

1 and G are the terminal states. For this problem, the probability of hitting G

from state s is s−1
G−1

. Hence, probability of hitting state 1 from state s is

Pr(H1|sρ1 = s) = 1− s− 1

G− 1
=
G− s
G− 1

.

When r 6= 1, the problem is equivalent to an unfair gambler’s ruin problem with

G− 1 states in which probability of hitting G from state s is 1−rs−1

1−rG−1 . Then, the

probability of hitting state 1 from state s becomes

Pr(H1|sρ1 = s) = 1− 1− rs−1

1− rG−1
=
rs−1 − rG−1

1− rG−1
.

(ii) Since action C might be selected for more than once in a round, we have

Na(ρ) ≥ na(1) + na(2) + · · · + na(ρ). This holds because in the initialization of

GETBE, each action is selected once. Basically, we derive the lower bounds for

Na(ρ+1), but these lower bounds also hold for Na(ρ) because of the way GETBE

is initialized. For a set of rounds ρ ∈ T ⊂ {1, . . . , T}, na(ρ)s are in general not

identically distributed. But if π̂ρ is same for all rounds ρ ∈ T and if GETBE does

not explore in any of the rounds in T , then na(ρ)s are identically distributed.

First, assume that N1(ρ) = k, 0 ≤ k ≤ ρ. Then, the probability that action C

is selected at least once in each of these k rounds is pC,1. Let ji denote the index

of the round in which the estimated optimal policy is πtr1 for the ith time. The

sequence of Bernoulli random variables nC(ji), i = 1, 2 . . . are independent and

identically distributed. Hence, the Hoeffding bound can be used to upper-bound

the deviation probability of sum of these random variables from the expected

sum. Since the estimated optimal policy will be πtr0 for the remaining ρ − k

rounds, the number of times action F is selected in all of these rounds will be at

most dD(ρ)e. Therefore, the probability of taking action C is zero for at most

dD(ρ)e rounds. Let ρD := ρ − dD(ρ)e and N ′C(ρ) denote the sum of ρ random

variables that are drawn from an independent identically distributed Bernoulli
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random process with parameter pC,1. Then,

NC(ρ) ≥ ρ− k − dD(ρ)e+
k∑
i=1

nC(ji)

≥
ρ−dD(ρ)e∑

i=1

nC(ji) = N ′C(ρ− dD(ρ)e)

= N ′C(ρD). (2.18)

According to the Hoeffding bound, we have for z > 0

Pr (N ′C(ρD)− E(N ′C(ρD)) ≤ −z) ≤ e−2z2/ρD .

When z =
√
ρD log ρ the above bound becomes

Pr
(
N ′C(ρD) ≤ E(N ′C(ρD))−

√
ρD log ρ

)
≤ 1

ρ2

⇒Pr
(
N ′C(ρD) ≤ pC,1(ρ− dD(ρ)e)−

√
(ρ− dD(ρ)e) log ρ

)
≤ 1

ρ2
.

Then, by using (2.18) we obtain

Pr
(
NC(ρ) ≤ pC,1(ρ− dD(ρ)e)−

√
(ρ− dD(ρ)e) log ρ

)
≤ 1

ρ2
.

Since ρ′C is the first round in which 0.5pC,1ρ − pC,1dD(ρ)e − √ρD log ρ becomes

positive, on or after ρ′C , we have pC,1ρD −
√
ρD log ρ > 0.5pC,1ρ. Therefore, we

replace pC,1ρD −
√
ρD log ρ with 0.5pC,1ρ and then

Pr (NC(ρ) ≤ 0.5pC,1ρ) ≤ 1

ρ2
, for ρ ≥ ρ′C

which is equivalent to

Pr (NC(ρ) ≤ fC(ρ)) ≤ 1

ρ2
, for ρ ≥ ρ′C . (2.19)

Again, assume that N1(ρ) = k. Then, the probability of selecting action F

is pF,1 in each of these k rounds. Let R denote the set of the remaining ρ − k
rounds. For a round ρr ∈ R, action F is selected only if NF (ρr) ≤ D(ρr). Among

the rounds in R, the number of rounds in which action F is selected is bounded

below by min{ρ− k, dD(ρ− k)e}. Then, nF (ji), i = 1, 2, . . . is a sequence of i.i.d.
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Bernoulli random variables with parameter pF,1. From the argument above, we

obtain

NF (ρ) ≥ min{ρ− k, dD(ρ− k)e}+
k∑
i=1

nF (ji)

≥
k+min{ρ−k,dD(ρ−k)e}∑

i=1

nF (ji).

When min{ρ− k, dD(ρ− k)e} = ρ− k, we have

NF (ρ) ≥
ρ∑
i=1

nF (ji) ≥
dD(ρ)e∑
i=1

nF (ji), for ρ ≥ ρ′F .

When min{ρ− k, dD(ρ− k)e} = dD(ρ− k)e, we have

NF (ρ) ≥
k+dD(ρ−k)e∑

i=1

nF (ji).

Next, we will show that D(ρ−k)+k ≥ D(ρ) when ρ is sufficiently large. First,

min{ρ− k, dD(ρ− k)e} = dD(ρ− k)e implies that

ρ ≥ dD(ρ− k)e+ k ≥ D(ρ− k) + k. (2.20)

Also, D(ρ− k) + k ≥ D(ρ) should imply that

D(ρ)−D(ρ− k) ≤ k ⇔ γ log(ρ/(ρ− k)) ≤ k

⇔ ρ/(ρ− k) ≤ ek/γ ⇔ ρ ≥ kek/γ

ek/γ − 1
. (2.21)

Using the results in (2.20) and (2.21), we conclude that D(ρ − k) + k ≥ D(ρ)

holds when

D(ρ− k) + k ≥ kek/γ

ek/γ − 1
. (2.22)
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By setting D(ρ) = γ log ρ and manipulating (2.22) we get

γ log(ρ− k) + k ≥ kek/γ

ek/γ − 1

⇔ γ log(ρ− k) ≥ k(
ek/γ

ek/γ − 1
− 1)

⇔ log(ρ− k) ≥ k/γ

ek/γ − 1

⇔ ρ− k ≥ e
k/γ

ek/γ−1

⇔ ρ ≥ k + e
k/γ

ek/γ−1 . (2.23)

First, we evaluate the term h(k) := e
k/γ

ek/γ−1 . We will show that h(k) ∈ [1, e] for

all k ∈ R+. By applying L’Hopital’s rule we get

lim
k→0

k/γ

ek/γ − 1
= lim

k→0

1/γ

(1/γ)ek/γ
= 1

and

lim
k→∞

k/γ

ek/γ − 1
= 0.

These two conditions and using the fact that exponential function is continuous

we conclude that

lim
k→0

e
k/γ

ek/γ−1 = e
limk→0

k/γ

ek/γ−1 = e

and

lim
k→∞

e
k/γ

ek/γ−1 = e
limk→∞

k/γ

ek/γ−1 = 1.

Next, we will show that e
k/γ

ek/γ−1 is decreasing in k. Since e
k/γ

ek/γ−1 is a monotonically

increasing function of k/γ

ek/γ−1
, it is sufficient to show that k/γ

ek/γ−1
is decreasing in

k. We have

d

dk

k/γ

ek/γ − 1
=

1
γ
(ek/γ − 1)− k

γ
(ek/γ/γ)

(ek/γ − 1)2
.

The denominator is always positive for k > 0. Therefore, we only consider the

numerator and write it as

1

γ
(ek/γ − 1)− k

γ
(ek/γ/γ) =

(γ − k)ek/γ − γ
γ2

.
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As the denominator is positive, we only need to show that (γ − k)ek/γ − γ is

always negative. The derivative of the above expression is −(k/γ)ek/γ, which is

negative for k > 0. We also have (γ − k)ek/γ − γ = 0 when k = 0. These two

conditions imply that (γ − k)ek/γ − γ is always negative for k > 0, by which we

conclude that e
k/γ

ek/γ−1 is decreasing in k. Hence, we have

1 ≤ e
k/γ

ek/γ−1 ≤ e

This implies that k + e
k/γ

ek/γ−1 ≤ k + e. Hence (2.23) holds when ρ ≥ k + e. This

implies that when k ≤ ρ− e, we have

k+dD(ρ−k)e∑
i=1

nF (ji) ≥
dD(ρ)e∑
i=1

nF (ji).

The only cases that are left out are k = ρ, k = ρ− 1 and k = ρ− 2. But we know

from the definition of ρ′F that for ρ ≥ ρ′F , ρ − 2 − dD(ρ)e is positive. Hence for

these cases we also have

k+dD(ρ−k)e∑
i=1

nF (ji) ≥
ρ−2∑
i=1

nF (ji) ≥
dD(ρ)e∑
i=1

nF (ji).

Let N ′F (ρ) denote the sum over nF (ji) for ρ rounds. From all of the cases we

derived above, we obtain

NF (ρ) ≥
dD(ρ)e∑
i=1

nF (ji) = N ′F (dD(ρ)e) for ρ ≥ ρ′F . (2.24)

Now, by using Hoeffding bound we have

Pr (N ′F (dD(ρ)e)− E(N ′F (dD(ρ)e)) ≤ −z) ≤ e−2z2/dD(ρ)e

and if z =
√
dD(ρ)e log ρ then,

Pr
(
N ′F (dD(ρ)e) < E(N ′F (dD(ρ)e))−

√
dD(ρ)e log ρ

)
≤ 1

ρ2

Pr
(
N ′F (dD(ρ)e) < pF,1dD(ρ)e −

√
dD(ρ)e log ρ

)
≤ 1

ρ2
.

By using (2.24), we get

Pr
(
NF (ρ) < pF,1dD(ρ)e −

√
dD(ρ)e log ρ

)
≤ 1

ρ2
. (2.25)
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Then, by using D(ρ) = γ log ρ, γ > 1/p2
F,1, we have

pF,1dD(ρ)e −
√
dD(ρ)e log ρ

= pF,1dγ log ρe −
√
dγ log ρe log ρ

≥ pF,1γ log ρ−
√

(γ log ρ+ 1) log ρ

= pF,1γ log ρ−
√
γ log2 ρ+ log ρ

≥ pF,1γ log ρ−
√
γ log2 ρ−

√
log ρ (2.26)

= (pF,1γ −
√
γ) log ρ−

√
log ρ (2.27)

where (2.26) occurs due to the subadditivity4 of the square root. Next, we will

show that (2.27) becomes positive when ρ is large enough. To do this, we first

show that the first term in (2.27) is always positive. This is proven by observing

that

γ > 1/p2
F,1 ⇒ pF,1

√
γ − 1 > 0⇒ pF,1γ −

√
γ > 0. (2.28)

Since log ρ increases at a higher rate than
√

log ρ, it can be shown that 0.5(pF,1γ−
√
γ) log ρ−√log ρ will always increase after some round. Since limρ→∞ 0.5(pF,1γ−
√
γ) log ρ − √log ρ = ∞, this term is expected to be positive after some round.

From the statement of the lemma, it is known that ρ′F is greater than or equal

to this round. Therefore, for ρ ≥ ρ′F , (pF,1γ − √γ) log ρ − √log ρ > 0.5(pF,1γ −
√
γ) log ρ. Using this and (2.27), we obtain

pF,1dD(ρ)e −
√
dD(ρ)e log ρ ≥ (pF,1γ −

√
γ) log ρ−

√
log ρ

≥ 0.5(pF,1γ −
√
γ) log ρ.

Then, we use this result and (2.25) to get

Pr (NF (ρ) ≤ 0.5(pF,1γ −
√
γ) log ρ) ≤ 1

ρ2
, for ρ ≥ ρ′F

which is equivalent to

Pr (NF (ρ) ≤ fF (ρ)) ≤ 1

ρ2
, for ρ ≥ ρ′F . (2.29)

4For a, b > 0 we have
√
a+
√
b >
√
a+ b since (

√
a+
√
b)2 > a+ b.
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2.6.7 Proof of Theorem 3

First, we bound E[IR(T )]. For this, we change the order of summations in (2.7)

and we have

E [IR(T )] ≤
∑

a∈{F,C}

T∑
ρ=1

Pr
(
|pa − p̂aρ|≥ δ/

√
2
)
. (2.30)

Let N∗F (ρ) := NG
F (ρ) and N∗C(ρ) := Nu

C(ρ). By using the law of total probability,

we obtain for a ∈ {F,C}
T∑
ρ=1

Pr

(
|pa − p̂aρ|≥

δ√
2

)

=
T∑
ρ=1

∞∑
n=1

Pr

(
|pa − N∗a (ρ)

Na(ρ)
|≥ δ√

2
|Na(ρ) = n

)
Pr (Na(ρ) = n)

=
T∑
ρ=1

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n). (2.31)

For each action, we use the result of Lemma 5 and divide the summation in (2.31)

into two summations. Note that the bounds on Na(ρ) given in Lemma 5 hold

when ρ ≥ ρ′ = max{ρ′C , ρ′F}. Therefore, we have

T∑
ρ=1

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n)

=

ρ′−1∑
ρ=1

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n)

+
T∑

ρ=ρ′

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n)

=
T∑

ρ=ρ′

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n)

+K ′ (2.32)

where

K ′ =

ρ′−1∑
ρ=1

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n).
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Since Pr
(
|npa −N∗a (ρ)|≥ n δ√

2

)
≤ 1 and

∞∑
n=1

Pr (Na(ρ) = n) = 1, we have

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n) ≤ 1.

Therefore, an upper bound on K ′ is ρ′. Next, by using Hoeffding’s inequality we

get

T∑
ρ=ρ′

∞∑
n=1

Pr

(
|npa −N∗a (ρ)|≥ n

δ√
2
|Na(ρ) = n

)
Pr (Na(ρ) = n)

≤
T∑

ρ=ρ′

∞∑
n=1

2e−2
(nδ/

√
2)2

n Pr (Na(ρ) = n)

=
T∑

ρ=ρ′

∞∑
n=1

2e−nδ
2

Pr (Na(ρ) = n)

=
T∑

ρ=ρ′

fa(ρ)∑
n=1

2e−nδ
2

Pr (Na(ρ) = n) +
T∑

ρ=ρ′

∞∑
n=fa(ρ)+1

2e−nδ
2

Pr (Na(ρ) = n). (2.33)

For the first summation in (2.33), we use (2.19) and (2.29) for each action as an

upper bound since n ≤ fa(ρ). Therefore,

T∑
ρ=ρ′

fa(ρ)∑
n=1

2e−nδ
2

Pr (Na(ρ) = n) ≤
T∑

ρ=ρ′

2e−nδ
2

ρ2

≤
∞∑
ρ=1

2

ρ2
=
π2

3
. (2.34)

For the second summation in (2.33), we first consider a = C. We have

T∑
ρ=ρ′

∞∑
n=fC(ρ)+1

2e−nδ
2

Pr (NC(ρ) = n) ≤
T∑

ρ=ρ′

2e−fC(ρ)δ2
∞∑

n=fC(ρ)+1

Pr (NC(ρ) = n)

≤
T∑

ρ=ρ′

2e−fC(ρ)δ2 =
T∑

ρ=ρ′

2e−0.5pC,1ρδ
2

≤ 2e−0.5pC,1ρ
′δ2 1− e−0.5pC,1δ

2(T−ρ′+1)

1− e−0.5pC,1δ2

≤ 2e−0.5pC,1ρ
′δ2

1− e−0.5pC,1δ2
≤ 2

1− e−0.5pC,1δ2
. (2.35)
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Next, we consider a = F . For this case, we have

T∑
ρ=ρ′

∞∑
n=fF (ρ)+1

2e−nδ
2

Pr (NF (ρ) = n) ≤
T∑

ρ=ρ′

2e−fF (ρ)δ2
∞∑

n=fF (ρ)+1

Pr (NF (ρ) = n)

≤
T∑

ρ=ρ′

2e−fF (ρ)δ2

≤
T∑

ρ=ρ′

2e−2 log ρ (2.36)

≤
∞∑
ρ=1

2

ρ2
=
π2

3
. (2.37)

The inequality in (2.36) holds due to the fact that δ2 ≥ 2 log ρ/fF (ρ) = 4/(pF,1γ−
√
γ), which follows from γ ≥ (x1)2. This can be proved as follows. The term

pF,1γ −√γ is positive because of (2.28). Then, in order to have δ2 ≥ 4/(pF,1γ −
√
γ), we must have pF,1γ−√γ− 4/δ2 ≥ 0. In order to check this, we re-write the

left-hand-side of this inequality as a second order polynomial function, which is

given by

g(x) = ax2 + bx+ c ≥ 0

where a = pF,1, b = −1, c = −4/δ2 and x =
√
γ. Since γ is positive, we will

find positive values of x for which g(x) is nonnegative. Note also that g(x) is a

convex function since its second derivative is 2a, which is positive. Hence, g(x)

is nonnegative for positive values of x that are greater than the largest root of

g(x). The roots of g(x) are given as

x1 =
1 +

√
1 +

16pF,1
δ2

2pF,1
, x2 =

1−
√

1 +
16pF,1
δ2

2pF,1
.

It is clear that only x1 is positive. Thus, g(x) is nonnegative for x =
√
γ ≥ x1.

This implies that γ has to be greater than (x1)2 in order to have δ2 ≥ 4
pF,1γ−

√
γ
,

which holds for our problem.

Finally, we combine the results of (2.32), (2.33), (2.34), (2.35) and (2.37) and

sum the final result over the two actions to get a bound for the expression in
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(2.30). This results in

E[IR(T )] ≤ 2(ρ′ +
π2

3
) +

2

1− e−0.5pC,1δ2
+
π2

3

≤ 2ρ′ + π2 +
2

1− e−0.5pC,1δ2
. (2.38)

Next, we derive an upper-bound on 1/(1 − e−0.5pC,1δ
2
) by using the inequality

e−x ≤ 1/(x+ 1) for x > 0. Thus, we have

1− e−x ≥ x

1 + x
⇒ 1

1− e−x ≤ 1 +
1

x
.

By replacing x with 0.5pC,1δ
2 we have

1

1− e−0.5pC,1δ2
≤ 1 +

1

0.5pC,1δ2
. (2.39)

Then, we use (2.39) in (2.38) to obtain

E[IR(T )] ≤ 2ρ′ + π2 +
2

1− e−0.5pC,1δ2
+
π2

3
≤ 2ρ′ + 2 + π2 +

4

pC,1δ2

≤ 2ρ′ + 12 +
4

pC,1δ2
= w. (2.40)

Next, we derive the regret bounds. Firstly, assume that the optimal policy is πtr1 .

Then, the expected number of rounds in which the suboptimal policy is selected

is finite and bounded by w (independent of T ) given in (2.38). In this case, the

exploration is done only when the suboptimal policy is selected and there will

be no extra regret term due to exploration. Since the suboptimality gap can be

upper bounded by 1 for both when GETBE explores and exploits, we have

E[Reg(T )|π∗ = πtr1 ] ≤ w.

Secondly, assume that the optimal policy is πtr0 . Similar to the previous case,

the expected number of rounds in which the suboptimal policy is selected is at

most w. Since the suboptimal policy for this case is πtr1 , GETBE will never

explore in rounds in which the suboptimal policy is selected. Hence, the regret

incurred by GETBE in a round in which it selects the suboptimal policy is at

most ∆max. On the other hand, GETBE might explore action F when the optimal

policy is selected. This results in an additional regret term. Since, the number
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of explorations of GETBE by round T is bounded by dD(T )e, the regret from

explorations is bounded by dD(T )e. Therefore, we have

E[Reg(T )|π∗ = πtr0 ] ≤ w∆max + dD(T )e.
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Chapter 3

Contextual Goal-oriented with

Dead-end State MDP

The contents of this chapter has appeared in [56].

3.1 Problem Formulation

3.1.1 Definition of CGDMDP Model

The CGDMDP can be defined as the tuple of< X ,S, T,Z,D,G,A,P , s0 >. Here,

X is the context set where in the breast cancer therapy, it can a combination of

race, age, sex, genetic factors and etc. S := {C, 1, 2, . . . ,W − 1,W} is the set of

states which defines the illness degree (ID). C = 0 is the state where the patient is

in its best condition (Clear state) where all symptoms of illness are cleared, while,

W is the state where the condition of the patient is worst (such as death). For

breast cancer, a related state model is Ivy’s model [57]. The initial state of the

patient is s0, which is an element of S̃ := {1, . . . ,W −1}. T is the target survival

time. In real-world applications, T can be interpreted as number of months or

years that the patient lives from the start of the disease (patient arrival time).
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We define Z as the set of global states which is a set of tuples, where each tuple

includes the amount of time passed from the arrival of the patient and the ID:

Z = {z := (z1, z2) = (s, t) : t = 0 and s ∈ S̃ or 1 ≤ t ≤ T and s ∈ S}.

D and G are the set of dead-end states and the goal states, respectively, which

are given as:

G = {(s, T ) ∈ Z : s 6= W}, D = {(s, t) ∈ Z : s = W}.

The states in D and G are absorbing, i.e., if they are reached, the patient stays

there with probability 1 (current round ends).

The finite action set is denoted by A. For example, for breast cancer, the

actions can be surgery, hormone therapy, chemotherapy and combinations of drug

types and drug doses used for these therapies. Let Q be the set of all transition

probabilities for all possible contexts, IDs and the actions. q(x, s, a, s′) ∈ Q
denotes the transition probability from state s ∈ S to s′ ∈ S when context is

x ∈ X and action a ∈ A is selected. We assume that if q(x, s, a, s′) > 0, then

q(x′, s, a, s′) > 0, ∀x′ ∈ X . In addition, for any x ∈ X and a ∈ A, we have

q(x,W, a,W ) = 1. Let J(s, a) := {s′ ∈ S : q(x, s, a, s′) > 0 for x ∈ X} and

S+(s, a) := {s′ ∈ J(s, a) : s′ < s}. J(s, a) represents the set of ID states which

are immediately reachable with a positive probability when action a is taken in

ID state s, and S+(s, a) denotes the subset of ID states in J(s, a) with a higher ID

state than the current ID state. Next, based on q(x, s, a, s′), we define p(x, z, a, z′)

which is the transition probability of moving from global state z = (z1, z2) ∈ Z
(z2 < T ) to z′ = (z′1, z

′
2) ∈ Z when context is x ∈ X and action a ∈ A is selected.

We have

p(x, z, a, z′) :=

q(x, z1, a, z
′
1), if z′2 = z2 + 1

0, if z′2 6= z2 + 1
. (3.1)

Then, we have P := {p(x, z, a, z′)}.

We assume that P is unknown to the learner apriori, and hence, the learner

cannot directly use MAXPROB [11] or dynamic programming [8] to compute

the optimal policy, since these methods require knowledge of the state transition

probabilities for every context.
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3.1.2 Patient Arrival Model and Performance Metric

The patients arrive sequentially in rounds where n ∈ {1, 2, . . .} is the index of

the round. Each round consists of T time slots, and t is used as the time slot

index, where t ∈ {1, . . . , T}. The nth patient is denoted by Hn. The context

and the initial state of Hn is denoted by xn and sn,0 respectively. We assume the

context of the patient does not change in a round. The global state, ID state of

Hn and the action selected for Hn in time slot t is denoted by zn,t, sn,t and an,t

respectively. In each round, we want to select the actions such that dead-end

states are not reached up to time T given the initial state and the context of the

patient. The ultimate goal is to find a strategy by which the number of times

patients survive for T time slots is maximized over all rounds.

For this objective, the reward in N rounds is defined as

R(N) :=
N∑
n=1

I(sn,T 6= W )

where I is the indicator function. The reward can be interpreted as the number

of rounds in which the patients have not visited W by time slot T .

The optimal solution to this problem can be obtained by using dynamic pro-

gramming or value iteration methods when all the problem parameters (i.e., the

transition probability matrix P) are known. For instance, the MAXPROB algo-

rithm of [11] can be used to obtain the optimal policy of each round, when P is

known in each global state (or dynamic programming can be used directly).

Let the optimal policy of round n be πn, which is a mapping of πn : Z → A.

The pseudo-code of the optimal policy is given in Algorithm 2.

3.2 The Learning Algorithm

The learning algorithm we propose in this section is called Contextual Optimistic

DYnamic programming (CODY). Its pseudo-code is given in Algorithm 3.
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Algorithm 2 Optimal Policy (OP)

1: Input : T,S,N ,P
2: while n ≤ N do
3: Get initial state sn,0 and context xn
4: Calculate πn by using Pxn := {p(xn, z, a, z′)} in Dynamic Programming.
5: t = 0
6: while t < T do
7: zn,t = (t, sn,t)
8: an,t = πn(zn,t)
9: t = t+ 1
10: end while
11: rn = I(sn,T 6=W )
12: n = n+ 1
13: end while

CODY separates the context space into M disjoint sets by using similarities

between the contexts. To model the similarity, we use the Lipschitz similarity

metric:

|q(x, s, a, s′)− q(x′, s, a, s′)|≤ L× dist(x, x′), ∀x, x′ ∈ X , ∀s, s′ ∈ S,∀a ∈ A.
(3.2)

(3.2) holds naturally in many applications. For instance, in healthcare, patients

with similar environmental factors can respond to the same therapy in a similar

way. We assume that the distance metric used in (3.2) is known by CODY, and

hence, it can create a partition such that for all contexts inside the same set of

the partition, the variation of the transition probabilities is less than some ε > 0.

Such an assumption is commonly used in the literature [58]. The partition of the

context space created by CODY is denoted by B.

CODY keeps the following counters: Nn(b, s) is the number of times ID state

s is observed in partition b by the beginning of round n. Nn(b, s, a) is the number

of times ID state s is observed in partition b and action a is selected by the

beginning of round n. Nn(b, s, a, s′) is the number of times ID state s is observed

in partition b and action a is selected and ID state s′ is observed immediately

after state s upon taking a by the beginning of round n.

CODY operates as follows: At the beginning of each round, CODY observes
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the context xn and finds the set bn ∈ B. CODY estimates the ID state transition

probabilities for partition bn and all actions in the action set, based on the history

of ID state transitions and selected actions in that set. We use q̂n(bn, s, a, s
′) to

denote the noisy estimate of qn(xn, s, a, s
′) when xn belongs to set bn. Basically,

CODY sets:

q̂n(bn, s, a, s
′) =


Nn(b, s, a, s′)

Nn(b, s, a)
, if Nn(b, s, a) > 0

1

|J(s, a)| , if Nn(b, s, a) = 0

The policy generated by solving MAXPROB (or dynamic programming) us-

ing {q̂n(bn, s, a, s
′)} may not converge to the optimal policy. As an example, it

is known that such a policy would not converge to the optimal policy even in

the MAB problem [19], which is much simpler than CGDMDP. Furthermore, it

is known that an algorithm that estimates {q(x, s, a, s′)} with the minimum er-

ror does not maximize the reward over all rounds [59]. To maximize the total

reward, an algorithm that can tradeoff between the estimation error and reward

maximization according to estimated values is required. CODY uses the opti-

mism under uncertainty principle, which is a key approach used in solving such

problems [1].

The confidence value for round n and the tuple (b, s, a) is denoted by φn(b, s, a),

∀b ∈ B, ∀s ∈ S and ∀a ∈ A. Then, the confidence set around the estimated value

of ID state transition probability is given as follows:

[q̂n(b, s, a, s′)− φn(b, s, a), q̂n(b, s, a, s′) + φn(b, s, a)].

Let un(bn, s, a, s
′) := q̂n(bn, s, a, s

′) + φn(bn, s, a), ∀s′ ∈ S+(s, a) be the index that

corresponds to tuple (bn, s, a, s
′). This index reflects CODY’s uncertainty about

the estimated state transition probability. Due to the rule of optimism in face

of uncertainty, we use un(bn, s, a, s
′) instead of q̂n(bn, s, a, s

′) where the estimated

state transition probabilities are inflated toward the states with better conditions.

As the sum of the estimated state transition probabilities for a given action must
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some up to 1, we normalize the index as follows:

un(bn, s, a, s
′) :=

un(bn, s, a, s
′)∑

s′′∈J(s,a)

un(bn, s, a, s′′)
, ∀s′ ∈ S

and we define Un := {un(bn, s, a, s
′)}. Then, CODY forms the transition proba-

bility estimates for the global states for z2 < T , as follows:

p̂n(bn, z, a, z
′) :=

un(bn, z1, a, z
′
1), if z′2 = z2 + 1

0, if z′2 6= z2 + 1
(3.3)

and uses P̂n := {p̂(bn, z, a, z′)} in dynamic programming to obtain the estimated

policy of round n which is denoted by π̂n. The action selected by the estimated

policy in time slot t of round n is denoted by ân,t. Then, in round n, CODY

keeps updating the relative counters of that round, i.e., Nn(bn, s), Nn(bn, s, a) and

Nn(bn, s, a, s
′). The updated values of these counters are used to calculate the

estimated state transition probabilities and the estimated policies in the following

rounds.

3.3 Numerical Results

3.3.1 Simulation Setup

In this part, we discuss the simulation setup that has been implemented to verify

the fact that CODY converges asymptotically to the optimal one and can out-

perform the best fixed algorithm which does not exploit the context information.

We consider the survival rate problem in breast cancer patients.

The goal is set to maximizing the five-year survival rate. The patients are

assumed to be women suffering from breast cancer. The state transition model

is given in Figure 3.1. The set of ID states is S = {C, 1, 2, 3,W}. C = 0 is the

stage of ”No Cancer”, while W = 4 is the death of the patient. States 1, 2 and 3

represent ”Local Cancer”, ”Regional Cancer” and ”Distant Cancer”, respectively.
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Algorithm 3 CODY

1: Input : N,M, J(s, a),S+(s, a), ∀s ∈ S and ∀a ∈ A.
2: Initialize: Partition X into M sets and generate B
3: Counter Initialization: Nn(b, s) = 0, ∀b ∈ B, s ∈ S − {W}, Nn(b, s, a) = 0, ∀b ∈ B,
s ∈ S − {W}, a ∈ A and Nn(b, s, a, s

′) = 0, ∀b ∈ B, s ∈ S − {W}, a ∈ A, s′ ∈ S.
4: n = 1
5: while n ≤ N do
6: Get the initial state sn,0 and context xn. Find the set bn that contains xn
7: Calculate the values in Un using the counters
8: Find the estimated (optimal) policy π̂n using Un and dynamic programming
9: t = 0
10: while t < T do
11: zn,t = (t, sn,t)
12: ân,t = π̂n(zn,t) is selected
13: Nn(bn, sn,t) = Nn(bn, sn,t) + 1
14: Nn(bn, sn,t, ân,t) = Nn(bn, sn,t, ân,t) + 1
15: ID state of sn,t+1 is observed
16: Nn(bn, sn,t, ân,t, sn,t+1) = Nn(bn, sn,t, ân,t, sn,t+1) + 1
17: t = t+ 1
18: end while
19: rn = I(sn,T 6=W ) is obtained
20: n = n+ 1
21: end while

The action set is A = {a, b} where J(i, a) = {i + 1, i− 1} and J(i, b) = {C,W},
∀i ∈ {1, 2, 3}. No action is taken when the ID state is C, and we assume that

state 1 might be observed with a fixed probability in the next time slot after C

is hit. We take T = 5, and each time slot represents one year. We use a two

dimensional context space given as X = {(H,F ), (nH,F ), (H,nF ), (nH, nF )}
where H, nH, F and nF are used for Hispanic patients, Non-Hispanic patients,

patients who have family history of having cancer and patients who does not

have family history of having cancer, respectively. We assume the context of

each patient is independent from the context of the other patients. [60] provides

the distribution over the context space. We assume the context arrival probability

distribution is fixed over all rounds and the probability of having context (H,F )

is 6%, (H,nF ) is 40%, (nH,F ) is 9% and (nH, nF ) is 45%.

We generate context arrival process according to this distribution for all

rounds. The same procedure is also performed for the initial state distribution.

58



Figure 3.1: State transition model of the CGDMDP. Dashed arrows correspond
to possible state transitions by selecting action b, while solid arrows correspond to
possible state transitions by selecting action a. Weights on the arrows correspond
to state transition probabilities. qai is the probability that the state moves to state
i + 1 when action a is taken and qbi is the probability that the state moves to C
upon taking action b. qr is the probability that the patient ID state changes from
state C to 1. This figure only shows the state transitions for state 2 when action
a is selected. The state transition probabilities for {1, 3} are the same as state 2.

Based on [61], we assume that the patients arrive at ID states {1, 2, 3} with prob-

abilities {0.61, 0.33, 0.06}, respectively. The number of patients is set to be 1000,

and hence, we have N = 1000 number of rounds. The true transition probabili-

ties of each action are given in Appendix 3.4. Next, we set the confidence value

according to [19], which is given as

φn(b, s, a) =

√
2 logNn(b, s)

Nn(b, s, a)
.

This confidence value is proven to yield order optimal performance for the stochas-

tic MAB problem. We run CODY with three different partitions of the context

space.

• B1 : {{(H,F )}, {(H,nF )}, {(nH,F )}, {(nH, nF )}} (All possible combina-

tions)

• B2 : {{(H,F ), (H,nF )}, {(nH,F ), (nH, nF )}} (Combination based on the

race)

• B3 : {{(H,F ), (nH,F )}, {(H,nF ), (nH, nF )}} (Combination based on the

family history of having cancer)
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3.3.2 Performance of CODY

The performance of CODY is compared with two other algorithms. The first one

is OP (pseudo-code is given in Section 3.1). OP uses the true state transition

probabilities to calculate the optimal policy for each context. In addition, we

compare CODY with the best fixed policy over all time slots which we refer to it

as BFP. BFP knows the true state transition probabilities but does not use the

context information.

In Table 3.1, the five-year survival percentage of 1000 patients is reported for

the three considered algorithms. For CODY, three results are provided, where

each result corresponds to a specific partition used by CODY. The improvement

in the performance of CODY as a function of rounds is given in Figure 3.2. This

shows that the performance of CODY approaches to the performance of OP as

the number of rounds increase.

Metric / Methods OP BFP CODY
(B1)

CODY
(B2)

CODY
(B3)

Five-year survival rate 78.00 65.70 74.10 74.75 69.92

Table 3.1: The overall performance of CODY and other algorithms over 1000
patients.

The final average reward per round shows that CODY’s performance is 8%

better than BFP and only 4% worse than OP. From these results it can be

observed that the B3 partition does not provide enough information about the

state transitions while theB1 andB2 partitions provide more valuable information

about the state transitions.

3.4 Appendix

State transition probabilities are given in the following matrices. The rows cor-

respond to the contexts {(H,F ), (nH,F ), (H,nF ), (nH, nF )}, respectively, and
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Figure 3.2: The five-year survival rate of the policies averaged over the rounds.

the columns correspond to the ID states {1, 2, 3} for action a and b, respectively.

For state 0, the transition probability of moving to state 1 is given in qr vector

for each context in {(H,F ), (nH,F ), (H,nF ), (nH, nF )}, respectively.

qa =


0.71 0.62 0.42

0.76 0.69 0.49

0.90 0.47 0.38

0.95 0.67 0.52

, qb =


0.95 0.86 0.12

0.95 0.89 0.15

0.94 0.88 0.57

0.92 0.88 0.68

, qr =


0.38

0.35

0.23

0.15

.
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Chapter 4

Limit Order Book Trade

Marketing

4.1 Problem Formulation

4.1.1 States, Actions, Transitions and Cost

We use |A| to denote the cardinality of a set A. The system operates in rounds

indexed by ρ ∈ {1, 2, . . .}. Each round is composed of L time slots, where L

denotes the maximum execution time. Time slots are indexed by l ∈ L. The set

of time slots is denoted by L := {1, . . . , L}. The current round ends and a new

round begins when the maximum execution time is reached.

States: The system is composed of a finite set of states denoted by S :=

I ×M, where I denotes the private state space andM denotes the market state

space.

I := {Wmin, . . . ,Wmax} is the set of inventory levels of shares at the beginning

of each round, where 0 < Wmin ≤ Wmax < ∞ and Wmin, Wmax are integers. The

private state at time slot l of round ρ is denoted by I lρ. We assume that I1
ρ = Wρ
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where Wρ ∈ I is the initial inventory level at round ρ.

Next, we define M. For this, let pb(ρ, l), pa(ρ, l) and pm(ρ, l) be the bid, ask

and mid-price (the average between bid and ask price) of time slot l in round ρ.

The return of round ρ is defined as

Ret(ρ) := log(pm(ρ, L)/pm(ρ, 1)).

The mean of return and volatility (standard deviation of the return) up to round

ρ is denoted by µρ and σρ, respectively, which are calculated as follows.

µρ =
1

ρ− 1

ρ−1∑
j=1

Ret(j), σρ =

√√√√ 1

ρ− 1

ρ−1∑
j=1

(Ret(j)− µρ)2.

Based on this, M is defined as the set of integers that represent the amount

of change in the bid price of a time slot in a round from the bid price in the

beginning of the round in units of σρ. The market state at time slot l of round ρ

is denoted by M l
ρ. By definition, M1

ρ = 0 for all rounds. We define the reference

price of round ρ as pr(ρ) and the bid-ask spread in time slot l of round ρ as Bl
ρ

as follows.

pr(ρ) := pm(ρ, 1), Bl
ρ := pa(ρ, l)− pb(ρ, l)

and we have

pb(ρ, l) = pm(ρ, l)−Bl
ρ/2.

In our model, when the market is in state M in time slot l of round ρ, the bid

price is modeled as

pb(ρ, l) = pb(ρ, 1) +Mσρ.

This means that the bid prices are put into discrete values with width σρ, where

each one of them is indexed by M ∈ M. We let Slρ = (I lρ,M
l
ρ) denote the joint

state in time slot l of round ρ.

Actions: Actions are defined to be the amount of shares to be traded with a

market order1 [46, 49]. In each round, a sequence of actions is selected with the

1A market order to sell is an order to execute a trade at whatever the best prevailing bid
price which is a limit order with a price limit of zero at that time.
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aim of minimizing the total trade cost. Let alρ be the action taken at time slot l

in round ρ. The number of actions that the user can take in a round is bounded

by L. We impose the following assumption on the effect of actions to the market

states.

Assumption 1. It is assumed that the order book is resilient to the trading ac-

tivities.

Assumption 1 implies that an action in a time slot has to be chosen such that

it does not have an influence on the market state during a round. In practice this

means that the market order should not be larger than the depth of the order

book at the best bid. This is imposed, for instance, in [45, 46], which effectively

prevents taking large actions (large volume of transaction). We assume that the

action taken in time slot l of a round cannot be larger than the integer Al, where

Al, l ∈ L is obtained in each round by using the AC model, and hence, we have∑L
l=1Al = Wρ. Then, we have alρ ∈ Al := {0, . . . , Al}, ∀l ∈ L − {L}. For

l = L, the only possible action is to sell the remaining inventory since we require

a complete liquidation at the end of a round. Therefore, we have

aLρ = ILρ , ∀ρ ≥ 1.

Transitions: Assumption 1 implies that the market state in a round evolves

independently from the actions selected by the trader. Hence, the actions only

affect the private state, and the market state is modeled as a Markov chain. Let

S ′ := (I ′,M ′) and S := (I,M). The state transition probability between time

slots l and l + 1 of round ρ can be written as

Pr(Sl+1
ρ = S ′|Slρ = S, alρ = a) = P (M,M ′)I(I ′ = I − a),

∀S,∀S ′ ∈ S,∀a ∈ Al,∀l ∈ L − {L},∀ρ ≥ 1 (4.1)

where I(a = b) represents the indicator function which is zero when a 6= b and

one when a = b, and P (M,M ′) denotes the probability that the market state

transitions from M to M ′.
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Cost : The cost of trade in a round is defined as the implementation shortfall,

which is given as

ISρ :=

Wρpr(ρ)−
L∑
l=1

alρpb(ρ, l)

Wρpr(ρ)
(4.2)

for a sequence of market states (M1
ρ , . . . ,M

L
ρ ), a sequence of actions (a1

ρ, . . . , a
L
ρ ),

an inventory level Wρ such that
∑L

l=1 a
l
ρ = Wρ, and a reference price pr(ρ).

The objective is to minimize the accumulated cost in a round. Let Xρ :=(
Wρ, pr(ρ), σρ, B

1
ρ

)
be the trade vector of round ρ and let X be the support of

this vector. By using the state definition and B1
ρ , (4.2) can be re-written as

ISρ =
1

Wρpr(ρ)

[
L∑
l=1

alρ (pr(ρ)− pb(ρ, l))
]

=
1

Wρpr(ρ)

[
L∑
l=1

alρ

(
B1
ρ

2
−M l

ρσρ

)]

=
L∑
l=1

CXρ(M
l
ρ, a

l
ρ). (4.3)

where

CXρ(M
l
ρ, a

l
ρ) :=

1

Wρpr(ρ)

[
alρ

(
B1
ρ

2
−M l

ρσρ

)]
which can be considered as the immediate cost incurred at time slot l of round ρ.

4.1.2 Value Functions and the Optimal Policy

If the state transition probabilities were known in advance, then, the optimal

policy can be computed by dynamic programming. In this subsection, we consider

this case to gain insight on the form of the optimal policy.

A deterministic Markov policy with time budget L specifies the actions to be

taken for each state and trade vector at each time slot. Let π := (π1, π2, . . . , πL)

denote such a policy, where πl : S ×X → Al. We use πl(Ml, Il, X) to denote the

action selected by policy π in time slot l when the joint state is (Ml, Il) in time
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slot l and the trade vector is X where Ml and Il represent the market and private

variables, respectively. When clear from the context, we will drop the arguments,

and represent the action selected by the policy in time slot l by πl. We replace

M l
ρ and I lρ with Ml and Il when the round is clear from the context. We define

Π denote the set of all deterministic Markov policies with time budget L.

The cost incurred by following policy π given trade vector X ∈ X is

Cπ
X =

L∑
l=1

CX (Ml, πl(Ml, Il, X)) .

The optimal policy is the one which minimizes the expected cost of a round which

is given as

π∗(X) := arg min
π∈Π

E[Cπ
X ]

where the expectation is taken over the randomness of the market states. The

expected cost of the optimal policy given the trade vector Xρ is denoted by µ∗(X).

Let V ∗l (M, I,X) denote the expected cost (value function) of policy π∗(X)

starting from state S = (M, I) at time slot l given X. The Bellman optimality

equations [62,63] are given below: ∀M ∈M, ∀I ∈ I, ∀X ∈ X , ∀l ∈ L − {L},

Q∗l (M, I,X, a) := CX(M,a) + E[V ∗l+1(M ′, I − a,X)|M ]

= CX(M,a) +
∑
M ′∈M

P (M,M ′)V ∗l+1(M ′, I − a,X). (4.4)

Then, the value function of the optimal policy and optimal action can be obtained

∀l ∈ L − {L} by

V ∗l (M, I,X) = min
a∈Al

Q∗l (M, I,X, a)

π∗l (M, I,X) = arg min
a∈Al

Q∗l (M, I,X, a).

For the final time slot, we have

V ∗L (M, I,X) = CX(M, I), π∗L(M, I,X) = I.

In order to obtain the optimal action, these equations need to be solved backwards

from time slot L down to 1.
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4.2 On the Form of the Optimal Policy

In this section, we show that the optimal policy takes a simple form, which reduces

the set of candidates for the optimal action in each time slot to two. Before we

discuss the theorem which proves the form of the optimal policy, let us decompose

the cost function into two parts as CX(M,a) = agX(M) where gX(M) is defined

to be

gX(M) :=
B/2−Mσ

prW
(4.5)

given the trade vector X = (W, pr, σ, B).

Theorem 4. Given the LOB model defined in Section 4.1, the optimal action at

each time slot is

π∗l =

0 if gX(Ml) > E[gX(ML)|Ml]

Al if gX(Ml) ≤ E[gX(ML)|Ml]
,∀l ∈ L − {L}

and π∗L = IL.

Proof. Let V π
l (Ml, Il, X) := E[

∑L−l
k=0 CXMl+k, πl+k(Ml+k, Il+k, X)|Ml] be the

value function of policy π ∈ Π at time slot l given the triplet (Ml, Il, X). Using

the tower property of the conditional expectation, we obtain

E[V π
l (Ml, Il, X)|Ml−1] = E

[
E

[
L−l∑
k=0

CX(Ml+k, πl+k(Ml+k, Il+k, X))
∣∣∣Ml

] ∣∣∣Ml−1

]

=
L−l∑
k=0

E
[
E
[
CX(Ml+k, πl+k(Ml+k, Il+k, X))

∣∣∣Ml

] ∣∣∣Ml−1

]
=

L−l∑
k=0

E[CX(Ml+k, πl+k(Ml+k, Il+k, X))|Ml−1].

We use backward induction to prove the theorem. Induction basis consists of

time slots L, L− 1 and L− 2.

Induction basis:

Since all shares must be sold by the end of a round, in time slot L, the trader
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must sell all remaining shares IL. Hence, we have π∗L = IL. We also have

E [V ∗L (ML, IL, X)|ML−1] = E [CX(ML, IL)|ML−1]

= E [ILgX(ML)|ML−1]

Thus, for π∗L−1, we have

π∗L−1(ML−1, IL−1, X) = arg min
a∈AL−1

{CX(ML−1, a) + E[V ∗L (ML, IL−1 − a,X)|ML−1]}

= arg min
a∈AL−1

{CX(ML−1, a) + E [CX(ML, IL−1 − a)|ML−1]}

= arg min
a∈AL−1

{agX(ML−1) + E[(IL−1 − a)gX(ML)|ML−1]}

= arg min
a∈AL−1

{agX(ML−1) + E[−agX(ML)|ML−1]}

= arg min
a∈AL−1

{a (gX(ML−1)− E[gX(ML)|ML−1])}.

Hence,gX(ML−1) > E[gX(ML)|ML−1]⇒ π∗L−1 = 0

gX(ML−1) ≤ E[gX(ML)|ML−1]⇒ π∗L−1 = AL−1

⇒ π∗L−1 ∈ {0, AL−1}. (4.6)

We also have

π∗L−2(ML−2, IL−2, X) = arg min
a∈AL−2

{CX(ML−2, a) + E[V ∗L−1(ML−1, IL−2 − a,X)|ML−2]}

= arg min
a∈AL−2

{CX(ML−2, a) + E[π∗L−1(ML−1, IL−2 − a,X)gX(ML−1)|ML−2]

+ E[π∗LgX(ML)|ML−2]}
= arg min

a∈AL−2

{CX(ML−2, a) + E[π∗L−1(ML−1, IL−2 − a,X)gX(ML−1)|ML−2]

+ E[(IL−2 − a− π∗L−1(ML−1, IL−2 − a,X))gX(ML)|ML−2]}.

From (4.6), we know that π∗L−1 only depends on the market statistics. It does

not depend on the inventory level, and hence, the action selected in time slot

L− 2. Therefore, we have

π∗L−2(ML−2, IL−2, X) = arg min
a∈AL−2

{agX(ML−2) + E[−agX(ML)|ML−2]}

= arg min
a∈AL−2

{a(gX(ML−2)− E[gX(ML)|ML−2])}.
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Thus,gX(ML−2) > E[gX(ML)|ML−2]⇒ π∗L−2 = 0

gX(ML−2) ≤ E[gX(ML)|ML−2]⇒ π∗L−2 = AL−2

⇒ π∗L−2 ∈ {0, AL−2}.

Induction step:

Fix l ∈ {1, . . . , L − 3}. We will prove that if π∗l+k ∈ {0, Al+k}, ∀k ∈ {1, . . . , L −
l − 1}, where π∗l+k’s only depend on the market statistics, then π∗l ∈ {0, Al}. We

have

π∗l (Ml, Il, X) = arg min
a∈Al

{CX(Ml, a) + E[V ∗l+1(Ml+1, Il+1, X)|Ml]}

= arg min
a∈Al

{
CX(Ml, a) +

L−l∑
k=1

E[CX(Ml+k, π
∗
l+k(Ml+k, Il+k, X))|Ml]

}
.

= arg min
a∈Al

{
agX(Ml) +

L−l−1∑
k=1

E[π∗l+k(Ml+k, Il+k, X)gX(Ml+k)|Ml]

+E

[(
Il − a−

L−l−1∑
k=1

π∗l+k

)
gX(ML)

∣∣∣Ml

]}
where the last equality holds since

π∗L = IL = Il − a−
L−l−1∑
k=1

π∗l+k.

Since by the induction assumption π∗l+k, k ∈ {1, . . . , L− l − 1} only depends on

the market statistics, they are all independent from a. Therefore, we have

π∗l (Ml, Il, X) = arg min
a∈Al

{agX(Ml) + E[−agX(ML)|Ml]}

= arg min
a∈Al

{a (gX(Ml)− E[gX(ML)|Ml])}

from which we obtaingX(Ml) > E[gX(ML)|Ml]⇒ π∗l = 0

gX(Ml) ≤ E[gX(ML)|Ml]⇒ π∗l = Al
⇒ π∗l ∈ {0, Al}.

This proves that π∗l ∈ {0, Al}, ∀l ∈ {1, . . . , L− 1}.
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The theorem shows that the optimal action at each time slot depends on the

current market state and the distribution of the market state at the final time slot

given the current state. The trader may decide to sell all of the available limit at

the current time slot or save the shares up to the final time slot. The intuitive

reason behind the result is that we have a linear cost function in a and gX(M). If

the expected market state is greater than the current market state, we desire to

wait and sell the maximum allowed amount of shares to sell in the current time

slot in the final time slot. The reason for this is that, the final time slot is the

only time slot where we can sell more than the pre-defined limit. Thus, the set of

candidate optimal actions is given as A∗l := {0, Al}, ∀l ∈ L−{L}. Therefore, the

learning problem reduces to learning the best of these two actions in each time

slot. In addition, the number of candidate optimal policies reduces to 2L−1.

4.3 The Learning Algorithm

In this section, we propose a learning algorithm that learns the optimal policy

by exploiting the form of the optimal policy given in the previous section by

learning the state transition probabilities of the Markov chain of the market

variables. This algorithm is named as Greedy exploitation in Limit Order Book

Execution (GLOBE) and its pseudo-code is given in Algorithm 4.

By round ρ, GLOBE observes (ρ− 1)(L− 1) state transitions. Let Nρ(M,M ′)

denote the number of occurrences of a state transition from market state M to

M ′ and Nρ(M) denote the number of times market state M is visited by round

ρ. The estimate of the transition probability from state M to M ′ used at round
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Algorithm 4 GLOBE

1: Input: L, S
2: Initialize: ρ = 1, N1(M,M ′) = N1(M) = 0, P̂ρ(M,M ′) = 0, ∀M,M ′ ∈M
3: while ρ ≥ 1 do
4:

P̂ρ(M,M ′) =
Nρ(M,M ′) + I(Nρ(M) = 0)

Nρ(M) + |M|I(Nρ(M) = 0)

5: Update σρ and temporary price impact parameter of the AC model based
on the past observations

6: Observe Xρ = (Wρ, pr(ρ), σρ, B
1
ρ)

7: Compute Al [45, 46], ∀l ∈ L
8: I1

ρ = Wρ, l = 1
9: while l < L do
10: Observe market state M l

ρ

11: Compute ĝXρ(M
l
ρ) := E[gXρ(ML)|M l

ρ] using P̂ρ(M,M ′), M,M ′ ∈M
12: alρ = Al × I(gXρ(M l

ρ) ≤ ĝXρ(M
l
ρ))

13: Calculate CXρ(M
l
ρ, a

l
ρ)

14: I l+1
ρ = I lρ − alρ

15: l = l + 1
16: end while
17: aLρ = ILρ
18: ρ = ρ+ 1
19: Compute Nρ(M) and Nρ(M,M ′), ∀M,M ′ ∈M
20: end while

ρ is denoted by P̂ρ(M,M ′). These variables are calculated as follows:

Nρ(M,M ′) =

ρ∑
ρi=1

l−1∑
li=1

I(M li
ρi

= M)I(M li+1
ρi

= M ′),

Nρ(M) =

ρ∑
ρi=1

l−1∑
li=1

I(M li
ρi

= M) =
∑
M ′∈M

Nρ(M,M ′),

P̂t(M,M ′) =
Nρ(M,M ′)

Nρ(M)
, for Nρ(M) > 0.

After observing the state of each time slot l, it implements the rule given in

Theorem 4 to decide on whether to sell Al or 0, by finding the expected market

state in the final time slot of the round using P̂ρ(M,M ′)s. This allows GLOBE

to operate fast without solving the Bellman optimality equations for all actions

in each round. The above procedure repeats in each round.
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4.4 Numerical Analysis

Our numerical analysis is based on four real-world datasets that contain the

order book data for Apple, Amazon, Google, Intel and Microsoft shares traded

on NASDAQ to illustrate some aspects of the performance of GLOBE algorithm

and other modified version of it with respect to state-of-are algorithm.2

In this problem, the trader wants to sell Wρ number of shares in round ρ at

the best price using market orders. We take the difference in the bid prices as

the only market variable and the private variable is assumed to be the inventory

level. The number of states varies from dataset to dataset based on the volatility

scale. We assume that when the market is at state M in time slot l of round ρ,

we have

pb(ρ, 1) + (M − 0.5)σρ ≤ pb(ρ, l) ≤ pb(ρ, 1) + (M + 0.5)σρ.

To reduce the number of market states, we use 20σρ instead of σρ in the market

state definition and the above inequalities, for which GLOBE is shown to work

well. The initial inventory level of each round is drawn uniformly at random from

[10, 100]. The time horizon is approximately 6 hours and 30 minutes. Each data

instance for each time slot is created by taking the average of the mid/bid/ask

prices for every 10 second interval. Then, the dataset is divided into rounds,

where each round consists of L = 4 consecutive time slots.

The volatility parameter used in the AC model is updated in an online manner

as we observe more data. Furthermore, similar to [46], we set the permanent price

impact parameter to 0. In addition, we set λ = 0.1 in the AC model given in [45],

and the temporary price impact parameter is calculated and updated according

to [45] in an online manner as well. Next, we describe the algorithms that we

compare GLOBE against:3

(1) Equal Shares (EQ): In this method, we divide the shares equally among

the time slots and at each time slot of round ρ, we sell bWρ/Le [48] except the

2https://lobsterdata.com/info/DataSamples.php.
3The results of all of the Q-learning based methods are averaged over 50 iterations.
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ending time slot where the remaining inventory is sold (this fact happens due to

discretization and rounding Wρ/L into an integer value).

(2) Almgren Chriss (AC): This algorithm is defined in [45]. We use the same

algorithm, however, the volatility and temporary price impact parameters are

updated after each round. In addition, we round the suggested number of shares

to be sold in each time slot to an integer value. Therefore, in the final time slot,

we sell of the remaining inventory.

(3) Q-Exp: This is a Q-learning based method, which uses the state space

defined in [46] and the action space defined in this chapter. It uses the ε-greedy

policy [32] to explore the actions with probability of 0.5 or exploit with probability

of 0.95. In this method, the market state space is the combination of bid-ask

spread and bid volumes, where each variable consists of 10 different states. The

result is averaged over 100 iterations.

(4) Q-Mat: This is the method proposed in [46], but with the action space

defined as in this chapter. This method uses the first half of the dataset as the

training set to calculate the Q values and build a Q-matrix for all combination

of market and inventory states, actions and time slot. The rest of the data is

used as the test set. In this method, the market state space is the combination of

bid-ask spread and bid volumes as given in Q-Exp method definition. The result

is averaged over 100 iterations as well.

(5, 6, 7) Q-Exp+, Q-Mat+ and GLOBE+: These are almost the same as Q-

Exp, Q-Mat and GLOBE, where the only difference is that the set of available

actions in time slot l ranges from 0 to 2Al.

For each method, we calculate the Averaged Cost Per Round (ACPR) at the

end of each round, which is given as

ACPRρ =

ρ∑
i=1

ISi
ρ
. (4.7)

Then, we compare ACPRR of each method (alg) against the AC model by round

R starting from the first round in the test set, using a performance metric similar
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Method /
Dataset

GOOG AMZN INTC MSFT

EQ 0.35 -0.39 0.409 0.327
Q-Exp -3.974 -2.677 -4.705 -2.833
Q-Mat -5.429 -5.087 -7.491 -4.68
Q-Exp+ -0.009 -0.955 0.237 0.002
Q-Mat+ -2.913 -3.089 -7.454 -2.979
GLOBE -0.611 0.501 1.477 0.443
GLOBE+ 4.763 3.793 8.516 5.452

Table 4.1: RC of the algorithms at the end of the time horizon with respect to
the AC model calculated over the test set.

to the one used in [64], which we call it as the Relative averaged Cost per round

(RC), given as

RCR(alg) :=
ACPRR(AC)− ACPRR(alg)

|ACPRR(AC)| × 100.

In Table 4.1 we report the RC of the algorithms for the second half of the dataset

(test dataset)4. We observe that GLOBE outperforms other methods in three of

the datasets while GLOBE+ outperforms other methods in all of the datasets

with a much larger margin. We also would like to mention that the poor result of

GLOBE in the GOOG dataset is possibly due to the limited number of samples

available in these datasets. We expect the performance to improve, when the

algorithm learns through larger datasets.

In addition, we also show the standard deviation of ACPR over the test set for

all of the algorithms in Table 4.2. The table shows that GLOBE and GLOBE+

algorithms are among the methods with the lowest standard deviation in general.

In addition, the ACPR value for all rounds in the test set is depicted for the

four mentioned datasets in Figures 4.1, 4.2, 4.3 and 4.4. As it is clear from

the figures, GLOBE rand GLOBE+ algorithms has lower costs in general with

respect to other algorithms.

4This is done in order to have a fair comparison between the models.
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Figure 4.1: This figure illustrates the average cost per round of all of the algo-
rithms over the test set for AMZN dataset.
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Figure 4.2: This figure illustrates the average cost per round of all of the algo-
rithms over the test set for GOOG dataset.

75



50 100 150 200 250
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

−4

Test Set Rounds

A
ve

ra
g

ed
 C

o
st

 p
er

 R
o

u
n

d
INTC Dataset

 

 

AC
EQ
Q−Exp
Q−Mat
Q−Exp+
Q−Mat+
GLOBE
GLOBE+

Figure 4.3: This figure illustrates the average cost per round of all of the algo-
rithms over the test set for INTC dataset.

0 50 100 150 200 250
0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−4

Test Set Rounds

A
ve

ra
g

ed
 C

o
st

 p
er

 R
o

u
n

d

MSFT Dataset

 

 

AC
EQ
Q−Exp
Q−Mat
Q−Exp+
Q−Mat+
GLOBE
GLOBE+

Figure 4.4: This figure illustrates the average cost per round of all of the algo-
rithms over the test set for MSFT dataset.
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Method /
Dataset

GOOG AMZN INTC MSFT

AC 0.166 0.223 0.188 0.192

EQ 0.167 0.224 0.201 0.207

Q-AC 0.266 0.392 0.316 0.338

Q-Mat 0.233 0.299 0.277 0.277

Q-AC+ 0.207 0.294 0.226 0.247

Q-Mat+ 0.219 0.279 0.268 0.264

GLOBE 0.19 0.262 0.199 0.199

GLOBE+ 0.118 0.317 0.068 0.067

Table 4.2: Standard deviation of the costs of the algorithms incurred over the
test set. All of the values are multiplied by 103.
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Chapter 5

Conclusion

We study the problem of learning in structured Markov decision processes when

some problem parameters (such as the state transition probabilities) are unknown.

We propose a series of online learning algorithms that learn the unknown param-

eters on-the-fly to maximize a certain objective.

In Chapter 2, we introduce the GRBP, which is inspired by the gambler’s

ruin problem. We prove that the optimal policy is a threshold policy. Then,

we introduce an algorithm named GETBE that exploits the form of the optimal

policy to learn fast. We also prove that the regret of GETBE is either finite or

O(log(n)) depending on the unknown problem parameters.

In Chapter 3, we introduce the contextual goal-oriented with dead-end states

MDP. This MDP is parameterized by a context variable, which is assumed to

change from round to round. We propose a learning algorithm called CODY that

performs context space partitioning to exploit similarities between the contexts,

and implements dynamic programming with estimated state transition probabil-

ities to approximate the optimal policy. Finally, we provide a healthcare appli-

cation of CODY and analyze its performance numerically.

In Chapter 4, we discuss the online learning problem in limit order book trade

execution. We consider a selling problem where a number of shares have to be
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sold within a certain time span. Similar to the first problem, we derive the

form of optimal policy and propose an online learning algorithm called GLOBE,

which exploits the form of the optimal policy to speed up learning. We show

on a financial dataset that GLOBE is significantly better than Q-learning based

methods proposed in prior works.
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