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ABSTRACT

NUMERICAL STUDY OF ORTHOGONAL
POLYNOMIALS FOR FRACTAL MEASURES

Ahmet Nihat Şimşek

M.S. in Mathematics

Advisor: Alexander Goncharov

July 2016

In recent years, potential theory has an essential effect on approximation

theory and orthogonal polynomials. Basic concepts of the modern theory of

general orthogonal polynomials are described in terms of Potential Theory. One

of these concepts is the Widom factors which are the ratios of norms of extremal

polynomials to a certain degree of capacity of a set. While there is a theory of

Widom factors for finite gap case, very little is known for fractal sets, particularly

for supports of continuous singular measures. The motivation of our numerical

experiments is to get some ideas about how Widom factors behave on Cantor

type sets.

We consider weakly equilibrium Cantor sets, introduced by A.P. Goncharov

in [16], which are constructed by iteration of quadratic polynomials that change

from step to step depending on a sequence of parameters. Changes in these

parameters provide a Cantor set with several desired properties. We give an

algorithm to calculate recurrence coefficients of orthogonal polynomials for the

equilibrium measure of such sets. Our numerical experiments point out stability

of this algorithm.

Asymptotic behaviour of the recurrence coefficients and the zeros of orthogonal

polynomials for the equilibrium measure of four model Cantor sets are studied

via this algorithm. Then, several conjectures about asymptotic behaviour of

the recurrence coefficients, Widom factors, and zero spacings are proposed based

on these numerical experiments. These results are accepted for publication [1]

(jointly with G. Alpan and A.P. Goncharov).

Keywords: Cantor Sets, Parreau-Widom sets, Orthogonal Polynomials, Zero

spacing, Potential Theory, Widom Factors.
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ÖZET

FRAKTAL ÖLÇÜMLERİN ORTOGONAL
POLİNOMLARININ NUMERİK ÇALIŞMASI

Ahmet Nihat Şimşek

Matematik, Yüksek Lisans

Tez Danışmanı: Alexander Goncharov

Temmuz 2016

Son yıllarda potansiyel teorisinin yaklaşım teorisi ve interpolasyon üzerinde

temel etkileri olmuştur. Genel ortogonal polinomların modern teorisinin temel

kavramları potansiyel teorisi açısından tanımlanmıştır. Bu kavramlardan biri

de ekstremal polinomların normlarının bir kümenin belli bir derecesine oranı

olan Widom faktörleridir. Widom faktörlerinin sonlu boşluk durumu için teorisi

varken, fraktal kümeler için çok az şey bilinmektedir, özellikle de dayanağı

sürekli tekil ölçümler için. Numerik deneyimizin motivasyonu Cantor tipindeki

kümelerde Widom faktörlerinin nasıl davrandığı hakkında bilgi edinmektir.

A.P. Goncharov tarafından [16]’te tanıtılan zayıf dengeli Cantor kümelerini

inceliyoruz. Bu kümeler, adım adım bir dizi parametreye bağlı olarak değişen

ikinci dereceden polinomların yinelenmesiyle elde edilmektedir. Bu parametrel-

erdeki değişimler çeşitli istenilen özelliklere sahip Cantor kümeleri sağlamaktadır.

Bu tür kümelerin denge ölçümleriyle ilgili ortogonal polinomlarının rekürens kat-

sayılarını hesaplamak için bir algoritma veriyoruz. Numerik deneylerimiz bu al-

goritmaya itimat edilebileceğini göstermektedir.

Dört model Cantor kümenin denge ölçümleriyle ilgili ortogonal polinomların

rekürens katsayıların ve sıfırlarının asimptotik davranışları bu algoritma ile in-

celenmiştir. Daha sonra rekürens katsayıların asimptotik davranışları, Widom

faktörleri ve sıfırlar arasındaki aralıklar hakkında çeşitli sanılarda bulunulmuştur.

Bu sonuçlar yayın için kabul edilmiştir [1] (G. Alpan ve A. Goncharov ile ortak

çalışmadır).

Anahtar sözcükler : Cantor Kümeleri, Parreau-Widom Kümeleri, Ortogonal Poli-

nomlar, Sfr Aralıkları, Potansiyel Teorisi, Widom Faktörleri.
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Chapter 1

Introduction

We present our numerical experiments and give the necessary preliminaries for

them. Motivation of our numerical experiments is to get a few ideas about how

Widom factors behave on Cantor type sets. For this purpose we consider a Cantor

set K(γ) introduced by A. Goncharov in [16]. Construction and some properties

of K(γ) are given. However, to that end we need to give some preliminary

information. Thus, we first start with elements of Potential Theory. Then, we

give some basic concepts of orthogonal polynomials on the real line. And finally

we introduce Widom factors and some of their properties.

In Chapter 2, we define some concepts from potential theory that we will use.

The term ′potential′ arise from the idea that forces in nature can be modelled

using potentials satisfing Laplace’s equation. Potential theory focuses on the

properties of harmonic functions. One of the main reasons, why potential theory

is useful, is that there is a direct connection between monic polynomials and

logarithmic potentials, that is, for any monic polynomial p(z) = (z−z1) · · · (z−zn)

we have log
(

1
|p(z)|

)
=
∫

log 1
|z−ω|dµ(ω) = Uµ(z), where µ is the counting measure

on the zeros of polynomial p. And thanks to this, potential theory has a huge

impact on approximation theory and the theory of orthogonal polynomials.

We give necessary concepts from potential theory in three sections: Potential

1



and Energy, Equilibrium Measure and Capacity, Green’s Functions and Parreau-

Widom Sets. In the first section we introduce the core concepts of potential

theory, the logarithmic potential and logarithmic energy. In the following section

we talk about logarithmic capacity and equilibrium measure which arise from

minimal energy the idea that a charge placed on a conductor will be distributed

to minimize its total energy. Then, in the last section we give a relation be-

tween Green’s functions and capacity, which help us to calculate capacity. Also,

we briefly talk about regularity with respect to Dirichlet Problem and introduce

Parreau-Widom sets. Note that some Cantor sets are Parreau-Widom (for exam-

ples see [6] and [19]).

Chapter 3 is divided into two subsections: Orthogonal Polynomials on the Real

Line and Widom Factors. In the first section, we begin with the definition of the

orthogonal polynomials for a measure µ. Then, their fundamental properties,

recurrence relation and the Jacobi matrix Hµ rise from the sequences of the

recurrence coefficients. Then, we give a relation between eigenvectors of Hµ and

the zeros of associated orthogonal polynomials via Gauss-Jacobi quadrature and

we introduce Christoffel numbers which are used to determine our algorithm’s

reliability.

For the next section of Chapter 3, we introduce a relatively new concept, called

Widom factors, due to the fundamental paper by H. Widom in 1969 [35], where

he considered the ratios
||Tn||L∞(K)

(Cap(K))n
and

||Qn(x;µ)||L2(K)

(Cap(K))n
for finite unions of smooth

Jordan curves and arcs. Also, we discuss some properties of Widom factors.

The last chapter begins with the construction of K(γ). In the construction

we use a sequence γ = (γs)
∞
s=1. Note that with different γ one obtains different

K(γ). Then, for the next section we talk about orthogonal polynomials on K(γ)

and we provide the algorithm, we have used in our experiments, to calculate the

recurrence coefficients of HµK(γ)
. Followed by a section for some properties of

K(γ), we note that, due to its construction K(γ) is somewhat flexible, that it

presents many properties but we cover only the ones that suits our purposes. We

introduce there four models, i.e., different γ’s, used for our experiments and give

the properties of each model.

2



The rest of the last chapter sections are for our numerical results obtained in

[1], joint work of G. Alpan and A. Goncharov. In calculations of these types,

one must ensure whether the algorithm used is stable or not. We show that our

experiments point out numerical stability. Then, for the next section we propose

conjectures linking geometric properties of sets and on asymptotic behaviour

of recurrence coefficients. In the next section, we introduce a notion of almost

periodicity and analyze the Jacobi matrix of K(γ) in this respect. In the following

section, we examine the Widom factors of K(γ). Here, one of our conjectures

gives a possible relation between Parreau-Widom sets and Widom factors. And

we finish with spacing properties of orthogonal polynomials on K(γ). This is

related with the recent paper by G. Alpan [2]. There is one more section for

figures done for easy access.

3



Chapter 2

Elements of Potential Theory

2.1 Potential and Energy

Edward B. Saff describes Potential Theory as an elegant blend of real and com-

plex analysis. It is important to state that Potential Theory had and still has

major impacts on Approximation Theory in recent years. As we will explain

partly, logarithmic potentials have a direct relation with polynomial and ratio-

nal functions. Some problems that Potential Theory resolved can be listed in

short tiles as: rate of polynomial approximation, asymptotic behaviour of zeros

of polynomials, fast decreasing polynomials, recurrence coefficients of orthogonal

polynomials, generalized Weierstrass problem, optimal point arrangements on the

sphere and rational approximation.

In this Chapter we followed [21], [25], [24] interchangeably to stay in our scope

of interest.

LetM be the collection of all finite Borel measures with compact support, and

given a compact set K, let M(K) be the collection of all finite Borel measures

on K. Also, let us denote the collection of all unit Borel measures on K with

4



Mu(K). Note that the support of a Borel measure µ is defined by

supp(µ) = {z ∈ C : ∀ε > 0 we have µ(B(z, ε)) > 0}.

Definition 2.1.1. Let µ ∈ M. Then, the logarithmic potential of µ defined as

the function

Uµ(z) :=

∫
log

1

|z − ω|dµ(ω), (2.1)

where Uµ : C→ (−∞,∞].

Let us give an example:

Example 2.1.2. Let K = {z1, z2, . . . , zN} and µ(·) =
∑N

i=1 δzi where N ≤ ∞
and for any i = 1, 2, . . . , N , δi(E) = 1 if zi ∈ E and it is 0 otherwise. Then,

Uµ(z) =

∫
log

1

|z − ω|dµ(ω) =
N∑
i=1

log
1

|z − zi|
=

= −
N∑
i=1

(log |z − zi|) = − log |
N∏
i=1

(z − zi)|.

Definition 2.1.3. The logarithmic energy I(µ) of a measure µ from the collec-

tion M(K) is defined by

I(µ) :=

∫
Uµ(z)dµ(z) =

∫ ∫
log

1

|z − ω|dµ(ω)dµ(z). (2.2)

Note that, I(µ) takes values from (−∞,∞]. Then, see a trivial example:

Example 2.1.4. Let K = {zk}Nk=1 and µ(E) =
∑N

i=1 αkδzi where N ≤ ∞ and,

for any i = 1, 2, . . . , N , let δi(E) = 1 if zi ∈ E and 0 otherwise. From Example

2.1.2 we know that

Uµ(z) =
N∑
i=1

log
1

|z − zi|
.

Then, logarithmic energy of the measure µ is

I(µ) =

∫
Uµ(z)dµ(z) =

∫ N∑
i=1

log
1

|z − zi|
µ(z) =

N∑
j=1

N∑
i=1

log
1

|zj − zi|
.

To finalize, observe that, setting i = j we see that log 1
|zi−zj | = ∞. Therefore,

logarithmic energy of µ is ∞.

5



2.2 Equilibrium Measure and Capacity

A charge placed on a conductor will be distributed to minimize its total energy,

which suggests:

Definition 2.2.1. Assume that there is a measure µ0 ∈ Mu(K) such that

I(µ0) <∞. Then, there is a measure µK ∈Mu(K) that satisfies

I(µK) = inf
µ∈Mu(K)

I(µ) = VK . (2.3)

This measure is called equilibrium measure for K and VK is called the minimal

energy of the set K.

Let us demonstrate the equilibrium measures for the interval [−1, 1] and the

unit disc.

Example 2.2.2. Let K = [−1, 1], then dµK =
dx

π
√

1− x2
(the arcsine measure)

is the equilibrium measure for K.

UµK (z) =

∫ 1

−1

log
1

|z − x|
√

1− x2
dx

=
1

2π

∫ π

−π
log

1

|z − cosθ|dθ

which equals log 2 for z ∈ [−1, 1] and log 2− log |z +
√
z2 − 1| otherwise. Also,

I(µK) =

∫
UµK (z)dµK =

1

π

∫ 1

−1

log 2
1√

1− x2
dx = log 2.

Example 2.2.3. For D we have µD = dλarc/2π (the normalized arclength mea-

sure) as the equilibrium measure.

UD(z) =

∫
log

1

|z − ω|dµ(ω)

=
1

2π

∫ π

−π
log

1

|z − eiθ|dθ,

which equals 0 for |z| ≤ 1 and log 1
|z| otherwise. Moreover,

I(µD) = 0

6



Definition 2.2.4. (p. 25 in [25]) For a compact set K ⊂ C, the logarithmic

capacity of K is defined as

Cap(K) := e−VK . (2.4)

Moreover, the capacity of an arbitrary Borel set E defined as

Cap(E) := sup{Cap(K) : K ⊂ E, K compact}. (2.5)

Note that, we may use just capacity to refer to logarithmic capacity. The

following theorem is for basic properties of Cap(E) as a set function.

Theorem 2.2.5. For A and B, Borel subsets of C, we have that

i) if A ⊂ B, then Cap(A) ≤ Cap(B),

ii) ∀α, β ∈ C we have Cap(αA+ β) = |α|Cap(A),

iii) Cap(A) = sup{Cap(K) : compact K ⊂ A},

iv) if A is compact, then Cap(A) = Cap(∂eA)(the exterior boundary of set A).

It is easy to see the following proposition by 2.4 and the definition of the

equilibrium measure.

Proposition 2.2.6. Let K ⊂ C be compact and has non-zero capacity. Then,

we have

I(µK) = log
1

Cap(K)

where µK is the equilibrium measure for K.

Let us give capacities of some basic cases. Remark that by Examples 2.2.2 and

2.2.3 we have I(µK) = log 2 for K = [−1, 1] and I(µK) = 0 for K = D.

Example 2.2.7. Let K be a line segment and set its length as t. Then we have

Cap(K) = Cap([− t
2
,
t

2
]) =

t

2
Cap([−1, 1]) =

t

2
e−log2 =

t

4
.

7



Example 2.2.8. Take a closed ball B(r, z0) ⊂ C with radius r and center z0.

Then,

Cap(B(r, z0)) = r.Cap(D) = r.

Observe that Cap(·) is a monotone function. One might wonder the continuity

of Cap(·) for nested family of sets. We have the following theorem:

Theorem 2.2.9. (Theorem 5.1.3 in [21]) Let C ⊃ A1 ⊃ A2 ⊃ A3 ⊃ . . . for

compact An. Then, we have

Cap(∩∞n=1An) = lim
n→∞

Cap(An).

On the other hand, if we have Borel sets B1 ⊂ B2 ⊂ B3 ⊂ . . . ⊂ C then,

Cap(∪∞n=1Bn) = lim
n→∞

Cap(Bn).

Now, we will give an important notion and some remarks about it.

Definition 2.2.10. In Potential Theory, a set is called polar if its capacity is

zero.

Remark that polarity gives a concept of negligible sets in Potential Theory.

Remark 2.2.11. Any set that is a subset of a polar Borel set is polar. Then, it

is easy to see that the countable union of polar sets is polar.

Remark 2.2.12. By the definition of capacity, for a Borel set to be non-polar it

has to be the support of a positive measure that has finite minimal energy. And

a Borel set A is polar if and only if for each µ ∈M(K) for every compact subset

K of A, logarithmic energy I(µ) is infinite.

Now, we will introduce a notion called quasi-everywere to exclude the negli-

gible (polar) parts of a set.

Definition 2.2.13. We use quasi-everywere (q.e.) for a property to state that

this particular property holds everywhere on a set except on a set of zero capacity.

8



The following theorem gives conditions for existence and uniqueness of equi-

librium measures.

Theorem 2.2.14. (Theorem 3.3.2 and 3.7.6 in [21]) For every compact set K ⊂
C there exists an equilibrium measure µK ∈M(K). If, in addition, Cap(K) > 0,

then the equilibrium measure for K is unique and support of µK is a subset of

exterior boundary of K.

Now, with the definition of polarity and the previous theorem in mind we will

give a lemma about the relation of capacity and equilibrium measure.

Lemma 2.2.15. (Lemma 1.2.7 in [23]) If we have a compact non-polar set K ⊂
C, then

Cap(supp(µK)) = Cap(K).

The following theorem is called Frostman Theorem and it is considered as the

fundamental theorem of potential theory due to its importance for determining

equilibrium measures via potential and energy.

Theorem 2.2.16. (Frostman Theorem)([24]) For a non-polar compact set K ⊂
C and its equilibrium measure µK, we have

• UµK (z) ≤ I(µK) for all z ∈ C.

• UµK (z) = I(µK) q.e. on K.

In general, it is difficult to show the equilibrium measure for a given set.

However, sometimes the Frostman Theorem can be used for this purpose. It is

easy to see by Frostman Theorem that the measures used in Examples 2.2.2 and

2.2.3 are the equilibrium measures of respected sets.

2.3 Green’s Function and Parreau-Widom Set

As it can be seen from the examples, although Definition 2.2.4 is conceptually

useful, it is hard to calculate exactly the capacity of a set even in simple cases.

9



However, thanks to a relation between capacity and Green functions, we can

compute the capacities of compact sets.

Definition 2.3.1. (p. 53 in [25]) Suppose that ΩK is the component of C\K
that contains ∞ where K is non-polar and compact. Then, remark that K and

∂ΩK have the same equilibrium measure, also we have Cap(K) = Cap(∂ΩK) (see

Corallary 4.5 in [25]). Then, Green′s function gΩK (z) of ΩK with pole at ∞ is

defined uniquely with the following properties:

i) gΩK (z) is nonnegative and harmonic on ΩK\{∞},

ii) gΩK (z) = log |z|+ log 1
Cap(K)

as |z| → ∞,

iii) lim
z→t, t∈ΩK

gΩK (z) = 0 for q.e. t ∈ ∂ΩK .

Note that since K is chosen of positive capacity the existence follows if we set

gΩK (z) = log
1

Cap(K)
− UµK (z). (2.6)

Now, we will introduce another notion called regularity with respect to the

Dirichlet problem. Dirichlet Problem, basically, is to find a harmonic function on

a domain with given initial boundary values.

Definition 2.3.2. A point z0 ∈ ∂eK is called a regular point of the unbounded

component ΩK of C\K, if gΩK (z) is continuous at z0. Otherwise, it is called

irregular. This implies that z ∈ ∂ΩK is a regular point if and only if

gΩK (z) = 0

which is equivalent to

UµK (z) = log
1

Cap(K)

by Equation 2.6. And if every point of ∂ΩK is regular, then ΩK is said to be

regular with respect to the Dirichlet problem.

Remark 2.3.3. ([25], p. 54) The set of all irregular points has capacity zero.

10



For further discussion on Green’s functions see [25] section I.4.

Now, we will combine compactness, regularity and non-polarity to obtain an-

other notion called Parreau-Widom sets.

Definition 2.3.4. A compact, regular set K ⊂ R with positive logarithmic

capacity is called a Parreau − Widomset if
∑

i gΩK (ci) < ∞ where {ci} are

the critical points of gΩK (z).

Remark 2.3.5. (see [36]) If a compact non-polar regular set K ⊂ R is a finite

union of closed disjoint intervals, then K is Parreau-Widom. Moreover, each gap

in between intervals contains one critical point of gΩK and gΩK does not have any

other critical points.

And also note that a Parreau-Widom set has positive Lebesgue measure (see

[28]).

2.3.1 Smoothness of Green’s Functions

Definition 2.3.6. Let f be real or complex function on the Euclidean space. If

there exists α ∈ (0, 1] and β ∈ (0,∞) such that

|f(x)− f(y)| ≤ β|x− y|α

for all x, y in the domain of f , then we say that f is Hölder continuous of order

α.

Then, note that, a Green’s function is said to be optimally smooth if K ⊂ R
it is Hölder continuous of order 1/2. Now, let us show some basic examples.

Example 2.3.7. Let K = [−1, 1], then by 2.6 we have

gΩK (z) = log |z +
√
z2 − 1|.

Then, for z = 1 + x x > 0 we have

gΩK (1 + x) = log |1 + x+
√
x2 + 2x| ≤ log |1 +

√
3x+ 3x/2| ≤

√
3x1/2.

11



It is possible to show that gΩK (z) ≤
√

3(dist(z, [−1, 1]))1/2 for every z. Thus, gΩK

is Hölder continuous of order 1/2.

Example 2.3.8. Take K = D. By (2.6) we have

gΩK (z) = log |z|

for z ∈ C\K and 0 otherwise. Then observe that,

gΩK (z) = log |z| ≤ log(1 + r) ≤ r

for all z ∈ B(1 + r, 0). Therefore, gΩK is Hölder continuous of order 1.

12



Chapter 3

Orthogonal Polynomials on the

Real Line and Widom Factors

3.1 Orthogonal Polynomials On The Real Line

P. L. Chebyshev developed Orthogonal polynomials in 19th century from a study

of fractions. Since then the field has been pursued by many great mathematicians,

and as mentioned before, potential theory lead to major developments in this field

recently.

We followed [29] and [33] interchangeably in this section.

Let us begin with definition of orthonormal relation.

Definition 3.1.1. A set of functions φ0(x), φ1(x), . . . , φn(x) from L2(µ) is called

orthonormal if the relation

(φi(x), φj(x)) =

∫
φi(x)φj(x)dµ(x) = δij

holds for i, j = 0, 1, . . . , n.

Using this relation one can orthogonalize a set of linearly independent func-

tions. It is well known that for a set of real-valued and linearly independent

13



functions f0(x), f1(x), f2(x), . . . of the class L2(α) defined on (a, b) there exists an

orthonormal set φ0(x), φ1(x), . . . , φn(x) such that

φn(x) =
n∑
i=0

cnifi(x).

The process to obtain this orthonormal set from the set of linearly independent

functions is called Gram-Schmidt orthogonalization and the orthonormal set gen-

erated by this process is uniquely determined. Now, we apply this orthogonaliza-

tion process to {1, x, x2, . . .} to obtain orthogonal polynomials:

Definition 3.1.2. Let the moments

mn =

∫
xndµ(x)

exist and be finite for n = 0, 1, 2, . . .(They always exist and are finite for a measure

µ ∈ M(K) where K ⊂ R). Then, apply Gram-Schmidt process to the set

{1, x, x2, . . .} to get the polynomials q0(x;µ), q1(x;µ), q2(x;µ), . . .. Note that these

polynomials satisfy ∫
qn(x;µ)qm(x;µ)dµ(x) = δnm

where n,m = 0, 1, 2, . . ., the degree of qn is n and κn > 0, the coefficient of xn in

qn. Then, we call Qn(x;µ) :=
qn(x;µ)

κn
the n-th monic orthogonal polynomial for

µ (and qn is the n-th orthonormal polynomial for µ).

Note that, ||xn+1 − Qn+1(x)||L2(µ) is the projection of xn+1 on the set

{1, x, x2, . . . , xn}.

Now, we give some elementary properties of the zeros of orthogonal polynomi-

als.

Theorem 3.1.3. ([33], p. 7)The zeros of the orthogonal polynomials qn(x;µ) are

real, distinct and in (a, b) where a = inf supp(µ) and b = sup supp(µ).

Theorem 3.1.4. (Theorem 3.3.2 in [29]) Let the set {x1, x2 . . . xn} be the zeros

of the orthogonal polynomial qn(x) such that they are enumerated in ascending

order. For m = 1, . . . n− 1 every interval [xm, xm+1] there is exactly one zero of

qn+1.

14



Theorem 3.1.5. (Theorem 3.3.3 in [29]) At least one zero of qi(x) lies in between

two zeros of qj(x) for i > j.

Remark that zeros of orthogonal polynomials generate the Gauss-Jacobi

quadrature:

Definition 3.1.6. (Lemma 0.2 in [33]) Let x1 < x2 < . . . < xn be the zeros of

the polynomial qn(x;µ). Then, for any polynomial p(x) of degree at most 2n− 1

there are positive real numbers λ1, λ2, . . . , λn called Christoffel numbers such

that ∫
p(x)dµ(x) =

n∑
i=1

λip(xi). (3.1)

Note that dµ(x) and n determine Christoffel numbers λi uniquely. In fact, we

have

λn =
−κn+1

κnqn+1(xi)q′n(xi)
=

κn
κn−1qn−1(xi)q′n(xi)

. (3.2)

Now, we will give a recurrence relation which is a significant property of or-

thogonal polynomials on the real line.

Theorem 3.1.7. (Lemma 0.3 in [33]) Assume that q−1(x;µ) := 0 and q0(x;µ) :=

1. For every three consecutive orthogonal polynomials we have the following re-

currence formula:

xqn(x;µ) = an+1qn+1(x;µ) + bn+1qn(x;µ) + anqn−1(x;µ) n ∈ N0, (3.3)

where an, bn are real constants such that an > 0 and

an =
κn
κn−1

, bn =

∫
xq2

n(x)dµ(x).

Here, (an)∞n=1 and (bn)∞n=1 are called the recurrence (or Jacobi) coefficients.

Then, observe that the relation evolves for monic orthogonal polynomials Qn(x;µ)

defined in Definition 3.1.2 with distribution dµ(x) such that

Qn+1(x;µ) = (x− bn+1)Qn(x;µ)− a2
nQn−1(x;µ), n ∈ N0, (3.4)

where an ∈ R+ and bn ∈ R. Moreover, we have ||Qn(·;µ)||L2(µ) = a1 · · · an since

||Qn(x;µ)||L2(µ) = κ−1
n and an = κn

κn−1
.
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Now, given this recurrence relation (3.4), we can introduce a Jacobi matrix of

order n. If we are given two sequences (an)∞n=1 and (bn)∞n=1 where an is positive

and bn is real for all n ∈ N and both are bounded, then we can define the

corresponding Jacobi Matrix

Hµ =


b1 a1 0 0 . . .

a1 b2 a2 0 . . .

0 a2 b3 a3 . . .
...

...
...

...
. . .

 . (3.5)

Remark that if µ is the scalar valued spectral measure of Hµ for the cyclic

vector e = (1, 0, . . . , 0)T (i.e, `2(N) can be spanned by {e,Hµe, (Hµ)2e, . . .}), then

it has (an)∞n=1 and (bn)∞n=1 as recurrence coefficients. Here, Hµ : `2(N) → `2(N)

is a self-adjoint bounded operator. For more on spectral theory of orthogonal

polynomials, see [27, 33].

Moreover, if we set

Hµn
K(γ)

=



b1 a1

a1 b2 a2

a2
. . . . . .
. . . . . . an−1

an−1 bn


, (3.6)

then, by expanding det
(
Hn
µ − xI

)
along the n-th row we have the following result:

Lemma 3.1.8. (p. 9 of [33]) The eigenvalues of the matrix Hn
µ are equal to

the zeros of the associated orthogonal polynomial qn(x;µ). And a normalized

eigenvector ν for the eigenvalue v = xm, the m-th zero of qn(x;µ), is given by√
λm(q0(xm), q1(xm), . . . , qn−1(xm))

where (λm)nm=1 are the Christoffel numbers.

Therefore, the monic orthogonal polynomials with respect to measure µ can

be written as

Qn(x;µ) = det
(
xI −Hn

µ

)
.
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3.2 Widom Factors

Definition 3.2.1. The polynomial Tn(x) = xn+. . . is called the n−th Chebyshev

polynomial of the first kind on K if

||Tn||L∞(K) = min{||Qn||L∞(K) : Qn monic polynomial of degree n}

where K ⊂ R is an infinite compact set and ||.||L∞(K) denotes the supremum

norm on K.

Remark 3.2.2. (Corollary 5.5.5 in [21]) Between the Chebyshev polynomial

Tn(x) on the set K and the logarithmic capacity of that set there is a relation of

the form

lim
n→∞

||Tn||1/nL∞(K) = Cap(K).

Definition 3.2.3. Let Tn be the n-th Chebyshev polynomial on a non-polar

compact K ⊂ C. The n-th Widom Factor for the supremum norm on K is

defined as

Wn(K) =
||Tn||L∞(K)

(Cap(K))n
.

Let us give a couple of examples.

Example 3.2.4. For K = [−1, 1] we have ||Tn||L∞(K) = 21−n (see [22]), and from

Chapter 2 we know that Cap(K) = 1/2. So,

Wn(K) =
21−n

(1/2)n
= 2.

Example 3.2.5. For K = D we have ||Tn||L∞(K) = 1( see [22]), and from Chapter

2 we know that Cap(K) = 1. Hence,

Wn(K) = 1.

Let us give an important remark

Proposition 3.2.6. Widom factor is invariant under dilation and translation for

any compact non-polar K ⊂ C, i.e.,

Wn(αK + β) = Wn(K)

where α > 0, β ∈ C.
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Proof. It is easy to see that ||Tn||L∞(αK+β) = αn||Tn||L∞(K), and recall part (ii) of

Theorem 2.2.5; thus we have the desired equality.

Recall that one of the main points of this research is to analyse the asymptotic

behaviour of Widom factors. By previous remark, Examples 3.2.4 and 3.2.5, we

have established that Widom factors of any disc or interval is a constant sequence.

But except for very few cases the limit of (Wn(K))∞n=1 does not exist. And the

behaviour of the sequence is quite irregular for even simple cases. Thus, we con-

sider lower and upper estimates. We have the following theorem by Schiefermayr

for sets on the real line.

Theorem 3.2.7. [26]For a compact non-polar set K ⊂ R we have

Wn(K) ≥ 2

for all n ∈ N.

Note that, we have limn→∞Wn(K) = 1 for any disc or circle (by Example

3.2.5). However, V. Totik showed that this is not true for the case when the

unbounded connected component ΩK of C\K is not simply connected (see [35]).

Theorem 3.2.8. (Theorem 2 in [32]) For a compact set K ⊂ C let ΩK denote

the unbounded connected component of C\K. If ΩK is not simply connected, then

there is a ε > 0 such that

Wni(K) ≥ ε+ 1

for some subsequence of (Wn(K))∞n=1.

Now, observe that, Theorem 3.2.7 and Remark 3.2.2 imply the following

lemma:

Lemma 3.2.9.

lim
n→∞

(Wn(K))1/n = 1

Hence, we have
1

n
logWn(K)→ 0

as n→∞. That is, (Wn)∞n=1 has subexponential growth.
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Observe that, this lemma imposes a theoretical constraint on the growth rate

of Wn(K), i.e. lim inf Wn(K) ≥ 1. Moreover, if we have a infinite and compact

set K which is union of disjoint closed intervals, there are several results (see

[30, 31, 32, 35]) saying that (Wn(K))∞n=1 is bounded. Now, recall that one goal of

this research to analyze Widom factors on Cantor sets, particularly, their bounds.

It is recently proven in [10] that there are some Cantor sets K such that the

Widom factor Wn(K) is bounded.
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Chapter 4

Weakly Equilibrium Cantor Sets

and Numerical Experiments

In this chapter we discuss our numerical experiments from [1], joint work of G.

Alpan, A. Goncharov, A. N. Şimşek, as mentioned before.

4.1 Construction of Weakly Equilibrium Cantor

Sets

In this section, we give the construction of the Cantor set K(γ) we used in our

numerical experiments that is introduced by A. Goncharov in [16]. Let us begin

by taking a sequence γ = (γs)
∞
s=1, where γs is in the interval (0, 1/4) for all s.

Then, define r = (rs)
∞
s=0 with r0 = 1 and rs := γsr

2
s−1 for s ∈ N. Now, let

P1(x) := x− 1 and P2s+1(x) := P2s(P2s(x) + rs) (4.1)

for s ∈ N0. For any choice of γ = (γs)
∞
s=1 this recursive relation yields

P2(x) = x(x− 1).

However, for s ≥ 2 the polynomial P2s heavily depends on the sequence γ, hence,

a different set of polynomials for different choices of γ. Then, for s = 0, 1, 2, . . .
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consider the sets

Es = {x ∈ R|P2s+1(x) ≤ 0}.

Now, we define our set as

K(γ) :=
∞⋂
s=0

Es.

Note that, Es is equivalent to[
2

rs
P2s + 1

]−1

([−1, 1]) =
2s⋃
j=1

Ij,s ∀s.

Here, Ij,s are closed basic intervals of the s-th level which are necessarily dis-

joint. Then, setting lj,s as the length of Ij,s, we see that by Lemma 2 in [5],

max1≤j≤2s lj,s → 0 as s→∞. Hence, K(γ) is a Cantor set.

4.2 Orthogonal Polynomials On Weakly Equi-

librium Cantor Sets

Now that we have constructed our set, we can begin discussing orthogonal poly-

nomials on K(γ). To that end in [5], G. Alpan and A. Goncharov gave some

important Theorems about orthogonal polynomials on K(γ) and also an algo-

rithm to calculate the elements of the Jacobi matrix HµK(γ)
.

Theorem 4.2.1. (Prop. 1 in [16] and Thm. 2.1 in [5]) The polynomial P2s + rs
2

is the Chebyshev polynomial for K(γ) for all s = 0, 1, 2, . . ..

Theorem 4.2.2. (Theorem 2.4 [16]) For a non-polar compact set K let µK be

its equilibrium measure. And let the normalized counting measures on the zeros

(xi)
2s

i=1 of the Chebyshev polynomial P2s + rs
2

be σs := 2−s
2s∑
i=1

δxi. Then, σn → µK

in weak star topology.

Lemma 4.2.3. (Lemma 2.5 in [5]) If s > n with s ∈ N and n ∈ N0, we have∫ (
P2n +

rn
2

)
dσs = 0.

21



Lemma 4.2.4. (Lemma 2.5 in [5]) Take indices (ki) such that 0 ≤ k1 < k2 <

. . . < kn < s. Then,

i)

∫
P2k1P2k2 . . . P2kndσs =

∫
P2k1dσs . . .

∫
P2kndσs = (−1)n

n∏
i=1

rki
2

.

ii)

∫ (
P2k1 +

rk1
2

)
. . .
(
P2kn +

rkn
2

)
dσs = 0.

Observe that, by Theorem 4.2.2, µK(γ) can be used instead of σn in previous

two lemmas. Now, we have the following important theorem:

Theorem 4.2.5. (Theorem 2.8 in [5]) For all s ∈ N0, the 2s-th monic orthogonal

polynomial Q2s(·;µK(γ)) for the equilibrium measure of K(γ) equals P2s +
rS
2

.

Then, by (4.1) we have (Corollary 2.9 in [5])

Q2s+1(·;µK(γ)) = Q2
2s(·;µK(γ))− (1− 2γs+1)

r2
s

4
. (4.2)

Then, by (4.2) for all s ∈ N0 we have

||Q2s
(
·;µK(γ)

)
||L2(µK(γ)) =

√
(1− 2 γs+1) r2

s/4. (4.3)

We already know that the diagonal elements, the bn’s of HµK(γ)
, are equal to

1/2 by Section 4 in [5]. For the outdiagonal elements, an, by Theorem 4.3 in [5]

we can calculate (an)∞n=1 recursively; here is the algorithm:

a1 = ‖Q1

(
·;µK(γ)

)
‖L2(µK(γ)), (4.4)

a2 =
‖Q2

(
·;µK(γ)

)
‖L2(µK(γ))

‖Q1

(
·;µK(γ)

)
‖L2(µK(γ))

. (4.5)

If n+ 1 = 2s > 2 then

an+1 =
||Q2s

(
·;µK(γ)

)
||L2(µK(γ))

||Q2s−1

(
·;µK(γ)

)
||L2(µK(γ)) · a2s−1+1 · a2s−1+2 · · · a2s−1

. (4.6)
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If n+ 1 = 2s(2k + 1) for some s ∈ N and k ∈ N, then

an+1 =

√√√√‖Q2s
(
·;µK(γ)

)
‖2
L2(µK(γ))

− a2
2s+1k · · · a2

2s+1k−2s+1

a2
2s(2k+1)−1 · · · a2

2s+1k+1

, (4.7)

If n+ 1 = (2k + 1) for k ∈ N then

an+1 =

√
‖Q1

(
·;µK(γ)

)
‖2
L2(µK(γ))

− a2
2k. (4.8)

To see how we used this algorithm in Matlab see Codes, Appendix A.

4.3 Properties of Weakly Equilibrium Cantor

Sets

We will now give some properties of K(γ).

Theorem 4.3.1. (see [5]) If γs ≤ 1/6 ∀s ∈ N, then K(γ) has zero Lebesgue

measure, and µK(γ) is purely singular continuous and lim inf an = 0 for µK(γ).

We use the following theorem to determine whether the corresponding Green’s

function is optimally smooth or not:

Theorem 4.3.2. (see [6]) gΩK(γ)
is optimally smooth (Hölder continuous with

exponent 1/2) if and only if
∑∞

s=1(1− 4γs) <∞.

Parreau-Widom characterization for K(γ):

Theorem 4.3.3. (see [6]) K(γ) is a Parreau-Widom set if and only if∑∞
s=1

√
1− 4γs <∞.

Upper bound characterization for Widom-Hilbert factor (W 2
n(µK(γ)) which is

a special case of Widom factors) for K(γ):
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Theorem 4.3.4. (see [7]) If
∑∞

s=1(1− 4γs) <∞, then there is Cn > 0 such that

for all n ∈ N we have

Cn ≥ W 2
n(µK(γ)) :=

‖Qn

(
·;µK(γ)

)
‖L2(µK(γ))

(Cap(K(γ)))n
=

a1 · · · an
(Cap(K(γ)))n

.

Capacity of K(γ):

Theorem 4.3.5. (see [16]) Cap(K(γ)) = exp (
∑∞

k=1 2−k log γk), which implies

that K(γ) is non-polar if and only if

∞∑
n=1

2−n log (1/γn) <∞.

How to obtain the zeros of the 2s-th monic orthogonal polynomial for µK(γ):

Theorem 4.3.6. (see [2]) Let v1,1(t) = 1/2− (1/2)
√

1− 2γ1 + 2γ1t and v2,1(t) =

1− v1,1(t). For each n > 1, let v1,n(t) =
√

1− 2γn + 2γnt and v2,n(t) = −v1,n(t).

Then the zero set of Q2s
(
·;µK(γ)

)
is {vi1,1 ◦ . . . ◦ vis,s(0)}is∈{1,2} for all s ∈ N.

Theorem 4.3.7. (see [2]) We have supp(µK(γ)) = ess supp(µK(γ)) = K(γ). If

K(γ) = [0, 1] \
∞⋃
k=1

(ci, di)

where ci 6= dj for all i, j ∈ N, then µK(γ)([0, ei]) ⊂ {m2−n}m,n∈N, where ei ∈
(ci, di). Moreover for each m ∈ N and n ∈ N with m2−n < 1, there is an i ∈ N
such that µK(γ)([0, ei]) = m2−n.

4.4 Models

Now, having some idea about K(γ) we will give the models we used for numerical

experiments and the properties of those models briefly.

We use the following four models for our numerical experiments:
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1: (γs) = 1/4− (50 + s)−4

2: (γs) = 1/4− (50 + s)−2

3: (γs) = 1/4− (50 + s)−5/4

4: (γs) = 1/4− 1/50

And each of them represent different properties:

i) Model 1 represents as an example where K(γ) is Parreau-Widom.

ii) Model 2 gives a non-Parreau-Widom set with a fast growth of γ and gΩK(γ)

optimally smooth.

iii) Model 3 gives a non-Parreau-Widom set with a relatively slow growth of γ

but still with gΩK(γ)
optimally smooth.

iv) Model 4 produces a set which is neither Parreau-Widom nor with Green’s

function for its complement optimally smooth.

4.5 Numerical Stability of Algorithm

We need to show that our algorithm points out numerical stability. To that end,

we need to compare zeros and Christoffel numbers obtained by our algorithm

and their theoretical values. By using the following remark we have compared

the eigenvalues of H2n

µK(γ)
to zeros obtained by Theorem 4.3.6. Recall Lemma

3.1.8; the eigenvalues of H2n

µK(γ)
are equal to the zeros of Q2n(.;µK(γ)).

Let {vni }2n

i=1 be the set of eigenvalues of H2n

µK(γ)
and {xni }2n

i=1 be the set of zeros

of Q2n(.;µK(γ)) (where zeros are enumerated in ascending order). Then, setting

E1
n := 2−n(

2n∑
k=1

|vnk − xnk |) we have Figure 4.1.

Before we can draw Figure 4.2 we need two remarks.

25



Remark 4.5.1. (see [15]) The squares of the eigenvectors’ first components give

the Christoffel numbers corresponding to Q2n(.;µK(γ)).

Remark 4.5.2. (see Theorem 1.3.5 in [27]) The Christoffel numbers correspond-

ing to Q2n(.;µK(γ)) are exactly equal to 2−n.

Now, let {νni }2n

i=1 be the set of squared first components of normalized eigen-

vectors of H2n

µK(γ)
. Then, setting E2

n := 2−n(
2n∑
k=1

|2−n − νnk |) we have the Figure

4.2. Thus, as it can be seen from Figure 4.1 and 4.2, our Algorithm is reliable

with small errors. These values can be compared with Figure 4.2 in [18].

4.6 First Observations

Now that we have established that we can rely on our algorithm up to a small

error, we can begin our analysis. Our numerical experiments (we found the

minimum via the code in Appendix A) suggests that mini∈1,...,2n ai = a2n for

n ≤ 14. Therefore, we make the following conjecture:

Conjecture 4.6.1. For µK(γ) we have min
i∈{1,...,2n}

ai = a2n and, in particular,

lim inf
s→∞

a2s = lim inf
n→∞

an.

Also, remark that by (4.4) and (4.8) we have max
n∈N

an = a1.

Before we continue let us give a remark about Parreau-Widom sets.

Remark 4.6.2. For Parreau-Widom K we have lim inf an > 0 where an’s are

outdiagonal elements of HµK (see Remark 4.8 in [5]).

Now, consider Theorem 4.3.3 and the previous remark. Then, we have

lim inf an > 0 for µK(γ) if
∑∞

s=1

√
1− 4γs < ∞. In addition, by previous remark

and [13], if lim inf an = 0, where an’s are outdiagonal elements of HµK(γ)
, then

K(γ) has zero Lebesgue measure. In this respect, we have computed the ratio
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ρn := a2n
a2n+1

for n = 1, . . . , 13 to find for which of our models we have lim inf an = 0

(see Figures 4.3 and 4.4). And, note that, we assume that Conjecture 4.6.1 is

correct.

For the first model, ρn is very close to 1, however, this is expected since for

this model lim inf an > 0 since it is Parreau-Widom. For the rest of the models,

it seems that (ρn)13
n=1 behaves like a constant. Thus, this experiment can be read

as: lim inf an = 0 unless
∑∞

s=1

√
1− 4γs <∞. Hence, the following conjecture:

Conjecture 4.6.3. K(γ) is of positive Lebesgue measure if and only if
∞∑
s=1

√
1− 4γs <∞ if and only if lim inf an > 0.

4.7 Almost Periodicity

Definition 4.7.1. A sequence α = (αn)∞n=−∞ with αn ∈ C for all n is called

almost periodic if the set {αm = (αn+m)∞n=−∞ : m ∈ Z} is precompact in `∞(Z).

And a one-sided sequence is called almost periodic if it is the restriction of a

two-sided almost periodic sequence to natural numbers.

However, they are essentially the same objects since every one-sided almost pe-

riodic sequence has a unique extension to a two-sided almost periodic sequence(see

5.13 in [27]).

Now, we extend this notion to the Jacobi matrix Hµ.

Definition 4.7.2. A Jacobi matrix Hµ is called almost periodic if the recurrence

coefficients (an)∞n=1 and (bn)∞n=1 for the measure µ are almost periodic.

Definition 4.7.3. We call a sequence β = (βn)∞n=1 asymptotically almost periodic

if there exists an almost periodic sequence α = (αn)∞n=1 such that limn→∞(αn −
βn) = 0. Note that if it exists, α is unique and called the almost periodic limit.

In this section, we shift our focus to a more interesting problem: Is HµK(γ)

almost periodic or, at least, asymptotically almost periodic? Before we begin our
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analysis, first note that, K(γ) is a generalized Julia set for infs γs > 0 ([8]). And

Jacobi matrix of an equilibrium measure for Julia sets is almost periodic (see

[8, 36]), so we suspect that it is almost periodic or at least asymptotically almost

periodic. Here, a Julia set (named after Gaston Julia(1893-1978)) can be defined

as:

Definition 4.7.4. ([33], p. 35 or see [9]) Take the monic polynomial Q(z) =

zn + · · · and let Qm(z) = Qm−1(Q(z)) to be its m-th iterate with Q0(z) = z.

Then, the Julia set for the polynomial Q is

J := {z ∈ C : Qm(z) = z and |Q′n(z)| > 1}.

Lemma 4.7.5. (see [9]) We have the following properties for a Julia set J for a

monic polynomial Q:

i) J is compact,

ii) J 6= ∅,

iii) J is completely invariant (Q(J) = Q = Q−1(J)),

iv) Cap(J) = 1,

v) supp(µJ) = J .

We refer the reader to [9] for more about Julia sets. Now, recall that bn = 1/2

for all n ∈ N, hence, it is periodic. So, we need to analyse (an)∞n=1 for periodicity.

We need a few definitions for this.

Definition 4.7.6. Suppose that µ is a measure with infinite compact support and

also suppose that ωn be the normalized counting measure on the zeros of Qn(·;µ).

Then, if there exists a measure ω such that ωn → ω (here the convergence is

weak star convergence:
∫
fdωn →

∫
fdω for a continuous function f ), we call

ω density of states (DOS) measure for Hµ. Moreover, integrated density of

states (IDS) is defined as the integral
∫ x
−∞ dω.

By Theorem 1.7 and 1.12 in [27] and by [34] we have the following for HµK(γ)
:
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Remark 4.7.7. Density of states of HµK(γ)
is µK(γ). This implies that if one

chooses x ∈ (ci, di) (see Theorem 4.3.7) (choosing x from a gap of supp(µK(γ))),

then IDS is
∫ x
−∞ dµK(γ) = m2−n and m2−n ≤ 1. Moreover, for any m,n ∈ N if

m2−n < 1, then there exists a gap (ck, dk) where IDS is m2−n.

Note that, in the previous remark, a bounded component of R\K is what we

mean by a gap of a compact set K ⊂ R. Now, we need one more definition.

Definition 4.7.8. We define the frequency moduleM(α) of an almost periodic

sequence α = (αn)∞n=1 as the Z-module of the real numbers modulo 1 generated

by

{θ : lim
n→∞

1

N
αne

2iπnθ 6= 0}.

Remark 4.7.9. We have several results/properties for frequency module:

i) M(α) is countable.

ii) α can be written as a uniform limit of Fourier series, where frequencies

chosen from M(α).

iii) Frequency module M(H) of a Jacobi matrix H is generated by M(a) and

M(b) where a = (an)∞n=1 and b = (bn)∞n=1 coefficients of H.

iv) For an almost periodic Jacobi matrix H the values of IDS in gaps are from

M(H) (see Theorme III.1 in [12]).

v) DOS measure of an asymptotically almost periodic Jacobi matrix is the

same as its almost periodic limit (see Theorem 2.4 in [14]).

Definition 4.7.10. For N ∈ N the discrete Fourier transform α̂ = (α̂n)Nn=1 of

(αn)Nn=1 is defined by

α̂k :=
N∑
n=1

αne
−2(k−1)iπ(n−1)/N

where k = 1, 2, . . . , N .

We computed the discrete Fourier transform (ân)214

n=1 for the first 214 recurrence

coefficients an. Note that, for every model the frequencies run from 0 to 1. Also,
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we normalized |â|2 by dividing it by
∑214

n=1 |ân|2. We plotted this normalized

power spectrum (see Figure 4.5) without the big peak at 0.

For all models, the spectrum yield a small number of peaks compared to 214

frequencies which points out almost periodicity of an’s. In here, we consider only

model 1 but we have similar pictures for other models. The highest peaks are

at 0.5, 0.25, 0.75, 0.375, 0.625, 0.4375, 0.5625, 0.125, 0.875, 0.3125 which are of the

form m2−n where n ≤ 4. Note that these frequencies are exactly the values of

IDS for HµK(γ)
in the gaps. Note that they appear earlier in the construction

of the weakly equilibrium Cantor set. Thus, we have the following conjecture

naturally:

Conjecture 4.7.11. For any γ, (an)∞n=1 for HµK(γ)
is asymptotically almost peri-

odic where the almost periodic limit has frequency module equal to {m2−n}m,n∈{N0}

modulo 1.

4.8 Widom Factors

We examine Widom Factors for K(γ) in this section. We have the following

relation between sequences with subexponetial growth and Widom factors:

Remark 4.8.1. (Theorem 4.4 in [17]) For each sequence (cn)∞n=1 of positive real

numbers such that limn→∞
1
n

log cn = 0, there is a Cantor set K(γ) such that

Wn(K(γ)) > cn for all n ∈ N.

Note that, for a unit Borel measure with infinite compact support on R we

have

||Qn(.;µK)||L2(µK) ≤ ||Tn||L2(µK) ≤ ||Tn||L∞(K), (4.9)

where Qn is the n-th monic polynomial for µK . Also, by [21, 27], if a non-

polar compact K ⊂ R is regular, then supp(µK) = K (recall Lemma 2.2.15;

if we lift the regularity condition for K, instead of the last equality we have

Cap(supp(µK)) = Cap(K)). Now, recall the definition of Widom-Hilbert factors
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from Theorem 4.3.4: the n-th Widom-Hilbert factor for µ is defined as

W 2
n(µ) :=

||Qn(.;µ)||L2(µ)

(Cap(supp(µ)))n
. (4.10)

Then, observe that by Equation 4.9 we have

W 2
n(µK) ≤ Wn(K). (4.11)

Also, by [10] when K ⊂ R is Parreau-Widom, we have lim inf an > 0. It would

be interesting to find (if any exists) a non-Parreau-Widom set on the real line such

that it is regular and sequence of Widom factors is bounded. To see this problem

in a different way observe that Equation (4.11) lead us to a weaker problem: Is

there a non-Parreau-Widom but regular set K ⊂ R such that (W 2
n(µK))∞n=1 is

bounded? Therefore, we will examine the behaviour of (W 2
n(µK(γ)))

∞
n=1 for non-

Parreau-Widom K(γ). For this, first consider that for γk ≤ 1/6 for all k ∈ N
(W 2

n(µK(γ)))
∞
n=1 is unbounded (see [5]). Recall that none of our models satisfy

this, so let us continue with another remark (by [5]) to begin our analysis.

Remark 4.8.2. For any γ we have W 2
n(µK(γ)) ≥

√
2 for all n ∈ N0.

Thus, we have

W 2
2n−1(µK(γ)) = W 2

2n(µK(γ))
Cap(K(γ))

a2n
≥
√

2
Cap(K(γ))

a2n
. (4.12)

Assuming Conjectures 4.6.1 and 4.6.3 are true; for non-Parreau-Widom

K(γ) we have lim infn→∞ a2n = 0. This implies that by (4.12), we have

lim supn→∞W
2
2n−1(µK(γ)) =∞ if lim infn→∞ a2n = 0. Hence, we conjecture:

Conjecture 4.8.3. K(γ) is a Parreau-Widom set if and only if
(
W 2
n

(
µK(γ)

))∞
n=1

is bounded if and only if (Wn(K(γ)))∞n=1 is bounded.

Now, let K be a union of finitely many compact non-degenerate intervals on R
and ω be the Radon-Nikodym derivative of µK with respect to the Lebesgue meea-

sure on the line. Then µK satisfies the Szegő condition:
∫
K
ω(x) logω(x) dx >

−∞. This implies by Corollary 6.7 in [11] that (W 2
n(µK))∞n=1 is asymptotically
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almost periodic. Note that, µK satisfies the Szegő condition if K is a Parreau-

Widom set(see [20]).

In Figure 4.7, we plotted the Widom-Hilbert factors for Model 1 until n = 220

and apparently

lim sup(W 2
n(µKγ)) 6= sup

n
(W 2

n(µKγ)).

Then, we plotted (Figure 4.6) the power spectrum for (W 2
n(µKγ))

214

n=1 where

we normalized |Ŵ 2|2 by dividing it by
∑214

n=1 |Ŵ 2
n(µKγ)|. Again, frequen-

cies run from 0 to 1 and we omitted the big peak at 0. Like the previ-

ous power spectrum there are only a few peaks which is an important indi-

cator of almost periodicity as mentioned before. The highest ten peaks are

at 0.5, 0.00006103515625, 0.25, 0.75, 0.125, 0.875, 0.375, 0.625, 0.0625, 0.9375, how-

ever, they are quite different from the power spectrum for an; which may indicate

that almost periodic limit has a different frequency module.

If Conjecture 4.8.3 is correct, then the sequence of Widom-Hilbert factors(
W 2
n

(
µK(γ)

))∞
n=1

is unbounded and cannot be asymptotically almost periodic if

K(γ) is not Parreau-Widom. Therefore, we conjecture:

Conjecture 4.8.4.
(
W 2
n

(
µK(γ)

))∞
n=1

is asymptotically almost periodic if and only

if K(γ) is Parreau-Widom. If K(γ) is Parreau-Widom then the frequency module

of the almost periodic limit includes the module generated by {m2−n}m,n∈{N0}

modulo 1.

4.9 Spacing Propeties of Orthogonal Polynomi-

als

In this section we give some spacing properties of orthogonal polynomials. For

a given γ, define Zn(µ) := {x : qn(x;µ) = 0} for all n ∈ N and enumerate its

elements xni in ascending order for i = 1, . . . , n. And also define

Mn(µ) := inf{|x− y| : x, y ∈ Zn(µ) and x 6= y}.
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In [2], G. Alpan studied the behaviour of (Mn(µK(γ)))
∞
n=1, that is, the global

behaviour of the spacing of zeros. We will give our numerical study (from [1]) on

the local behaviour of the zeros.

Here, we will only discuss Model 1 since for other cases the results are similar.

Let us define

SNn := |xN2n − xN2n−1|

for N = 23, 24, . . . , 214, where n = 1, . . . , N . Then, we computed

RN := max{S
N
n

SNm
: n,m = 1, . . . , N/2}

for N = 23, 24, . . . , 214. As also can be seen from Figure 4.8 these ratios (R2k)
14
k=3

increase fast which indicates that (R2k)
∞
k=1 is unbounded.

We also plotted
SNt
SN1

(see Figure 4.9) where N = 214 and t = 2, t = 26. And

these ratios seem to converge fast.

Now, we will give our last conjecture but it won’t contain the case when γk <
1
32

for all k ∈ N, i.e., the case when γ is small. The reason is that for a γ with γk <
1
32

for all k ∈ N and
∑∞

k=1 γk = M <∞ we have, by Lemma 6 in [16],

S2k

i ≤ exp(16M)γ1 · · · γk−1

for all k > 1. Also, by Lemmas 4 and 6 in [16], we have

S2k

i ≥
7

8
γ1 · · · γk−1,

hence, we get R2k ≤ 8
7

exp(16M), i.e., (R2n)∞n=2 is bounded.

Conjecture 4.9.1. For each γ = (γk)
∞
k=1 with infk γk > 0, (R2k)

∞
k=1 is an un-

bounded sequence. If t = 2k for some k ∈ N, there is a c0 ∈ R depending on k

such that

lim
n→∞

S2n

t

S2n
1

= c0.
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4.10 Figures
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Figure 4.1: Errors associated with eigenvalues.
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Figure 4.2: Errors associated with eigenvectors.
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Figure 4.3: The values of outdiagonal elements of Jacobi matrices at the indices
of the form 2s.
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Figure 4.4: The ratios of outdiagonal elements of Jacobi matrices at the indices
of the form 2s.
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Figure 4.5: Normalized power spectrum of the an’s for Model 1.

36



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

n

lo
g
1
0
(m

ax
(2

−
1
4
,|Ŵ
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Figure 4.7: Widom-Hilbert factors for Model 1
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Appendix A

Codes

We used following code to do our numerical experiments via MATLAB.

format longEng

%Constants

N = 2ˆ14; %The N

GL = 100; %length of the gamma(G) vector(sequence)

RL = 30; %%length of the recurrence(R) vector(sequence)

Z=2ˆ14;

%Gamma

G = zeros(0,GL);

for i=1:GL

G(i)= 1/4 − 1/50;

end

%Recurrence Relation

R = zeros(0,RL);

R(1) = 1;

for i=2:RL

R(i) = G(i−1)*(R(i−1))ˆ2;
end

B = zeros(0,RL);
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for i=1:RL

B(i) = (1−2*G(i))*((R(i))ˆ2)/4;
end

%Capacity

CSum = (log(G(1)))/2;

for i=2:30

CSum = CSum+(log(G(i)))/(2ˆi);

end

C = exp(CSum);

A = zeros(0,N); %a n

A(1) = sqrt(B(1));

A(2) = sqrt(B(2)/B(1));

Io2 = zeros(0,24); %Index keeper vector for 2ˆn's

Io2(1) = 2;

for i=3:N

s=0;

while mod(i/(2ˆs),2)==0

s = s + 1;

end

A(i)=1;

%exp 2 case

if i/(2ˆs)==1

Io2(s)= i;

for j=1:s

for k=1:(2ˆ(j−1))
A(i) = ((A(i))/A(i−2ˆ(j−1)+1−k))*((G(s−j+1))ˆ2)/A(i−2ˆ(j−1)+1−k);

end

end

A(i) = sqrt((A(i))*(1−2*G(s+1))/4);
%odd number case

elseif mod(i,2)==1

A(i) = sqrt(B(1)−(A(i−1))ˆ2);
%otherwise

else

%first part

O1 = 1;

for j=1:s
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for k=1:(2ˆ(j−1))
t = 1;

t = t*(A(i−2ˆ(j−1)+1−k));
O1 = O1*((G(s−j+1))ˆ2)/(tˆ2);

end

end

O1 = O1*(1−2*G(s+1))/4;
%second part

O2 = (A(i−2ˆs));
for j=1:(2ˆs−1)

O2 = O2*A(i−(2ˆs)−j)/A(i−j);
end

%Finishing touches

A(i) = sqrt(O1−(O2)ˆ2);
end

end

%GAUSS.m Gauss−Jacobi quadrature

J=zeros(Z);

for n=1:Z

J(n,n)=0;

end

for n=2:Z

J(n,n−1)=A(n−1);
J(n−1,n)=J(n,n−1);

end

[V,D]=eig(J); %Columns of V is the right eigenvectors

%D is the eigenvalues(diagonal matrix)

[D,I]=sort(diag(D));

V=V(:,I);

xw=[D A(1,2)*V(1,:)'.ˆ2];

Q=0;

for i=1:Z

Q = Q+xw(i,2);

end

Q=1/Q;

E=xw*Q;

%Error calculations

Y=zeros(Z,1);

45



for i=1:Z

Y(i)=1/Z;

end

ERROR1=0;

for i=1:Z

ERROR1 = ERROR1+abs(Y(i)−E(i,2));
end

ERROR1=ERROR1*1/Z;

o6=[sqrt(1−2*G(log2(Z))),1−sqrt(1−2*G(log2(Z)))];
o5=zeros(1,4);

for i=1:log2(Z)−2;
o5=[sqrt(1−2*G(log2(Z)−i)+2*G(log2(Z)−1)*o6),1−sqrt(1−2*G(log2(Z)−i)

+2*G(log2(Z)−1)*o6)];
o6=o5;

o5=zeros(1,2ˆ(i+2));

o5=o5−0.5;
end

o5=sort([1/2−((1/2)*sqrt(1−2*G(1)+2*G(1)*o6)) ,1/2+((1/2)*sqrt(1−2*G(1)
+2*G(1)*o6))]);

ERROR2=0;

for i=1:Z

ERROR2=ERROR2+abs(o5(i)−D(i));
end

ERROR2=ERROR2*(1/Z);

%WIDOM

W = zeros(0,N*2);

W(1) = A(1)/C;

for i=2:N

W(i) = W(i−1)*(A(i)/C);
end

W2 = zeros(0,20);

for i=1:13

W2(i) = W((2ˆi)−1);
end

%Finding places of Mins&Maxs of Widom factors

[k1,Wn max] = find(W==max(W(:)));

[k2,Wn min] = find(W==min(W(:)));
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%Finding places of Mins&Maxs of a n's

[l1,n max] = find(A==max(A(:)));

[l2,n min] = find(A==min(A(:)));

%Ratios of a n for n of power 2

T = zeros(0,23);

for i=1:12

T(i) = A(Io2(i+1))/A(Io2(i));

end
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