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ABSTRACT

ANALYSES AND WEB INTERFACES FOR PROTEIN
SUBCELLULAR LOCALIZATION AND GENE

EXPRESSION DATA

Biter Bilen

M.S. in Molecular Biology and Genetics

Supervisor: Assist. Prof. Dr. Rengül Çetin-Atalay

January, 2007

In order to benefit maximally from large scale molecular biology data gener-

ated by recent developments, it is important to proceed in an organized manner

by developing databases, interfaces, data visualization and data interpretation

tools. Protein subcellular localization and microarray gene expression are two

of such fields that require immense computational effort before being used as

a roadmap for the experimental biologist. Protein subcellular localization is im-

portant for elucidating protein function. We developed an automatically updated

searchable and downloadable system called model organisms proteome subcellu-

lar localization database (MEP2SL) that hosts predicted localizations and known

experimental localizations for nine eukaryotes. MEP2SL localizations highly cor-

related with high throughput localization experiments in yeast and were shown

to have superior accuracies when compared with four other localization predic-

tion tools based on two different datasets. Hence, MEP2SL system may serve as

a reference source for protein subcellular localization information with its inter-

face that provides various search and download options together with links and

utilities for further annotations. Microarray gene expression technology enables

monitoring of whole genome simultaneously. We developed an online installable

searchable open source system called differentially expressed genes (DEG) that

includes analysis and retrieval interfaces for Affymetrix HG-U133 Plus 2.0 ar-

rays. DEG provides permanent data storage capabilities with its integration into

a database and being an installable online tool and is valuable for groups who

are not willing to submit their data on public servers.

Keywords: protein subcellular localization prediction, microarray gene expression,

eukaryotic model organisms, web interface and database, proteome.
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ÖZET

PROTEİN HÜCRE İÇİ YERLEŞİM VE GEN İFADESİ
VERİLERİ İÇİN ANALİZLER VE ÖRÜN ARAYÜZLERİ

Biter Bilen

Moleküler Biyoloji ve Genetik, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Rengül Çetin-Atalay

Ocak, 2007

Moleküler biyolojideki son gelişmelerle ortaya çıkan büyük ölçekli verilerden en

yüksek oranda yararlanabilmek için bunlarla organize şekilde ilgilenmek; veri-

tabanları, arayüzler, veri görüntüleme ve yorumlama araçları geliştirmek gerek-

mektedir. Protein hücre içi yerleşimi ve mikrodizi gen anlatım ifadesi deneysel

biyolojici için bir yol haritası olmadan önce yoğun hesaplamalar gerektiren iki

alandır. Protein hücre içi yerleşimi protein işlevini açıklamak açışından önemlidir.

Bu çalışmada, MEP2SL (model organisms proteome subcellular localization

database) adında, model organizmaların tüm proteinleri için kendini güncelleyen

aranabilir ve verileri bilgisayara aktarılabilir bir veritabanı yapılmıştır. Bu verita-

banı, dokuz çokhücreli organizma için bilinen deneysel yerleşim bilgisinin yanısıra

tahmine dayalı yerleşim bilgilerini barındırmaktadır. MEP2SL tahmine dayalı

yerleşim sonuçları yüksek verimli deneysel maya yerleşim bilgileriyle uyumlu-

luk göstermektedir. Ayrıca iki farklı veri kümesinde dört farklı yerleşim tahmin

aracı doğruluk oranlarına göre daha iyi sonuçlar vermektedir. Bu bulgular göz

önüne alındığında MEP2SL sistemi pek çok arama, verileri bilgisayara aktarma

seçeneği yanısıra daha fazla bilgiye yönelik araçları ve bağlantılarıyla beraber

protein hücre içi yerleşim bilgisi için bir referans kaynağı olabilecek niteliktedir.

Mikrodizi teknolojisi tüm genomun aynı anda incelenmesi için uygun bir ortam

hazırlamaktadir. Bu çalışmada Affymetrix HG-U133 Plus 2.0 dizileri için DEG

(differentially expressed genes) adında, analiz ve veri geri aktarımı arayüzlerine

sahip, örün üzerinde kurulabilen ve açık kaynak kodlu ayrımsal gen ifadeleri veri-

tabanı kurulmuştur. DEG, veritabanı ile tamamlanması sonucu sürekli veri depo-

lamaya imkan sağlar. Ayrıca örün üzerine kurulabilme özelliğiyle verilerini ortak

erişime açık sunuculara göndermek istemeyen kullanıcılar için yararlı bir araçtır.

Anahtar sözcükler : protein hücre içi yerleşimi öngörüsü, mikrodizi gen ifadesi,

çok hücreli model organizmalar, örün arayüzü ve veritabanı, proteom.
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Chapter 1

Introduction

Recent developments in molecular biology require in silico analysis of the large

scale genome and proteome data prior to laboratory studies. In order to benefit

maximally from this vast amount of data, one must deal with data in an organized

way: this implies establishing, sustaining and distributing databases, providing

user friendly interfaces, and state-of-the-art visualization and data interpretation

tools [41]. Only by these means experimentalists could get the roadmap they

need to analyze their data. To fulfill this need, we aimed to analyze large scale

biological data and constructed online analysis interfaces for protein subcellular

localization and microarray gene expression data analysis.

1.1 Motivation

We first have chosen protein subcellular localization analysis since functional an-

notation of thousands of gene products produced out of an experiment is a chal-

lenging task for understanding the biological behavior of a system. Investigation

of the subcellular localization of a set of proteins is invaluable in terms of better

representation of cellular machinery with respect to the site of protein action

and the pathways in which these proteins are involved since each compartment

and its vicinity contain functionally linked proteins associated with them [42].

1



CHAPTER 1. INTRODUCTION 2

Eventually, studying proteome wide subcellular localization may have its impli-

cation in recent advances regarding systems biology for better representation of

cellular machinery. Subcellular localization of a protein can be experimentally

determined through in vivo techniques. However, the number of experimentally

obtained data is very limited since all of these experimental methods are time

consuming and costly. In addition, a protein may have more than one site of

localization. Therefore, in silico analysis of protein subcellular localization is

required through computational prediction techniques.

There are various methods with comparable accuracy for subcellular localiza-

tion prediction based on the existence of signal peptide cleavage sites on protein

sequences (TargetP [12], PSORT [29], and SignalP [31]). In addition, machine

learning methods that cover extensive biological knowledge, such as amino acid

composition, protein sequence homology, and protein and literature database

text analysis, have been applied to achieve a better accuracy of prediction (Sort-

Pred [13], pTARGET [17], LOC3D [28], SubLoc [19], PASUB [26], and P2SL [8]).

Based on the accuracy rates of these localization prediction tools, 90% sorting pre-

cision achievement among primary localizations does not seem unlikely. However,

multi-functional proteins with more than one acting-site hinder the development

of near-perfect prediction tools [32]. Hence, the prediction of subcellular localiza-

tion can be considered as a tool that gives the molecular biologist an initial opinion

for the experimental design. Motivated by this fact, we compared the accuracy

of five protein subcellular localization tools with two different protein datasets.

Among these tools, P2SL is a hybrid machine learning based, subcellular localiza-

tion prediction tool founded on implicit motif distribution which employs local

subsequence features together with several amino acid similarity schemes. We

selected P2SL, which gave comparable accuracy results and constructed an auto-

matically updated, downloadable, and searchable web interface called MEP2SL

(http://www.i-cancer.org/mep2sl) for the prediction and representation of multi-

compartmental protein subcellular localizations in nine eukaryotic model organ-

ism proteomes: human, mouse, rat, fruit fly, zebrafish, yeast, frog, slime mold,

and worm.
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Second, we chose microarray gene expression data analysis which enables mon-

itoring the whole genome simultaneously in a single DNA microarray chip. Mi-

croarray technology gives a global view since the genes in a living organism func-

tion collaboratively. The microarray technology has two variants in terms of the

property of arrayed DNA sequence with known identity: In the first technology,

probe cDNA (500-5 000 bases long) is immobilized to a solid surface such as glass

using robot spotting and exposed to a set of targets either separately or in a

mixture [11]. In the second one, an array of oligonucleotide (20-80-mer oligos)

or peptide nucleic acid probes is synthesized either in situ (on-chip) or by con-

ventional synthesis followed by on-chip immobilization. The array is exposed to

labeled sample DNA, hybridized, and complementary sequences are determined.

The analysis and interpretation of the large amount of data produced out

of a microarray experiment is not possible without the integration of statisti-

cal analysis and appropriate visualization and annotation tools. Recently, Bio-

conductor project, which is based on the statistical programming language R,

(http://www.R-project.org) has been a reference tool for the analysis and inter-

pretation of these experiments; however, using R is not an easy task for novice

programmers. This brings the need for a user-friendly graphical array analy-

sis application. However, microarray analysis is not technically performable on a

standard computer due to large memory requirement. Hence, a powerful machine

is required on which to run an analysis. There are numerous analysis pipelines for

both cDNA and oligo array analysis including web-based tools like GEPAS [27],

ArrayPipe [23], MIDAW [10], RACE [35], or CARMAweb [37]. To the best of

our knowledge, there is not an installable integrated web based software and

database which brings a simple and user-friendly analysis pipeline for gene ex-

pression data analysis for microarray research laboratories who need to perform

their analysis on their own without submitting to a generic web site. Therefore,

we constructed a simple but comprehensive web based application that is on-

line installable searchable open source web based analysis suite for Affymetrix

GeneChip arrays.
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1.2 Organization of the Thesis

The thesis is organized as follows. Chapter 2 described the datasets and meth-

ods used to construct the mentioned web interfaces together with multicategory

protein localization analysis method. In Chapter 3, the web-based interfaces to-

gether with multicategory protein localization evaluation results and a case study

for gene expression data analysis have been given. Finally, Chapter 4 presented

conclusions and future perspectives of the study.



Chapter 2

Materials and Methods

2.1 MEP2SL

MEP2SL is an automatically updated downloadable and searchable system for

predicted protein subcellular localization information. MEP2SL runs on a Linux

operating system. It is developed and implemented using the MySQL relational

database system and Perl-CGI for server side scripting language. We use stan-

dalone BLAST [7] and its specific database constructor tool, formatdb, for se-

quence alignments. UNIX utilities, wget and cron are used to implement auto-

matic updating feature.

2.1.1 Dataset

Version releases in UniRef100 database are checked periodically, once a week. If

a new version exists, the eukaryotic protein sequence data is downloaded from

UniRef100 database and the sequences from human, mouse, rat, fruit fly, ze-

brafish, yeast, frog, slime mold, and worm based on the model organism classifi-

cation of National Institutes of Health (NIH) [3] are extracted. After additional

processing as mentioned in Section 2.1.2, the current dataset is composed of

217 102 protein sequences for UniRef100 v.9.2 data.

5



CHAPTER 2. MATERIALS AND METHODS 6

Figure 2.1: Internal structure of MEP2SL. Five modules are represented in boxes.
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2.1.2 MEP2SL Infrastructure

MEP2SL is implemented with five sequential modules: Download, Data Process-

ing, Prediction, Postprocessing, and Web Interface along with MEP2SL database

as shown in Figure 2.1. These modules are controlled by a main process, sched-

uled to work once a week by a system scheduling event (cron). Hence, cyclic

execution of the modules fulfills the automatic update feature of the system.

2.1.2.1 Download

Comparing the previously used UniRef100 Database release file with the current

UniRef100 release file, if the current release number of the UniRef100 is greater

than the one used in MEP2SL system, this module downloads the eukaryotic

proteome data from UniRef100 Database as xml and fasta formatted files along

with the UniRef100 release information file from UniRef100 site with a network

downloader (wget).

2.1.2.2 Data Processing

Data processing module is responsible for filtering and formatting of the pro-

teome data to be processed by the prediction module. It extracts the sequences

of selected model organisms. Protein sequences containing less than 50 amino

acid residues or containing one of X, Z, U, and B amino acid codes are excluded

from above mentioned nine model organism sequences due to the prediction tool

restrictions. The organism sequence files are formatted for the usage of the pre-

diction module as one-line protein sequence files.

2.1.2.3 Prediction

P2SL tool is used in the prediction module which determines the frequency distri-

bution of protein subsequences over nuclear, cytosolic, mitochondrial and endo-

plasmic reticulum (ER) targeted subcellular localization classes and then uses this
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Table 2.1: MEP2SL localization types. i.e. 3/3 Nuclear & 2/3 Cytosolic

represents a protein that localizes to the nucleus with 3/3 possibility and to the
cytosol with 2/3 possibility.

Localization Type
3/3 Nuclear
3/3 Cytosolic
3/3 ER Targeted
3/3 Mitochondrial
3/3 Nuclear & 2/3 Cytosolic
3/3 Nuclear & 2/3 ER Targeted
3/3 Nuclear & 2/3 Mitochondrial
3/3 Cytosolic & 2/3 Nuclear
3/3 Cytosolic & 2/3 Mitochondrial
3/3 Cytosolic & 2/3 ER Targeted
3/3 Mitochondrial & 2/3 Nuclear
3/3 Mitochondrial & 2/3 Cytosolic
3/3 Mitochondrial & 2/3 ER Targeted
3/3 ER Targeted & 2/3 Nuclear
3/3 ER Targeted & 2/3 Mitochondrial
3/3 ER Targeted & 2/3 Cytosolic
2/3 Cytosolic & 2/3 Nuclear
2/3 Cytosolic & 2/3 Mitochondrial
2/3 ER Targeted & 2/3 Cytosolic
2/3 ER Targeted & 2/3 Nuclear
2/3 ER Targeted 2/3 Mitochondrial
2/3 Mitochondrial & 2/3 Nuclear
2/3 Cytosolic & 2/3 Mitochondrial & 2/3 Nuclear
2/3 ER Targeted & 2/3 Mitochondrial & 2/3 Nuclear
2/3 ER Targeted & 2/3 Cytosolic & 2/3 Nuclear
2/3 ER Targeted & 2/3 Cytosolic & 2/3 Mitochondrial
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Table 2.2: MEP2SL database table field names.

Field Type Key Default
id varchar(30) PRI
loc varchar(8)
des varchar(255)
seq text
exp text
met varchar(10) p2sl

distribution as a feature for classification. Localization class probability distribu-

tions are represented by samples of subsequence distributions over self-organizing

maps. The following binary support vector machine (SVM) classifiers are then

used for the classification:

• ER versus Cytosolic,

• ER versus Mitochondrial,

• ER versus Nuclear,

• Mitochondrial versus Cytosolic,

• Mitochondrial versus Nuclear,

• Nuclear versus Cytosolic.

Each class is voted over three classifiers. Then, majority voting gives the predicted

localization class(es). Compartments gaining more than one vote are considered

as significant and others are treated as insignificant. Hence, there exists twenty

six significant localization types for the predictions as given in Table 2.1. These

results were also presented in a color-coded Venn diagram as shown in Figure 3.2.

2.1.2.4 Post Processing

In postprocessing module, localization results and the sequences were stored in

a relational database and in a local BLAST database. The relational database
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is for standard queries and contains nine database tables for each of the model

organism. These tables have the same six fields; including UniRef100 database id

(id), predicted localization (loc), sequence description (des), the protein sequence

(seq), UniProt Knowledgebase protein subcellular localization annotation (exp)

and prediction method (met) as given in Table 2.2. The local BLAST database is

for sequence queries to perform pairwise sequence alignment and it contains the

same information as the relational database tables but it is structured differently

by the built-in BLAST database construction tool, formatdb. In addition, this

module is responsible for reflecting the changes to web site interface including

the generation of the protein subcellular localization distribution table as given

in Table 3.1 in download interface and the color-coded Venn diagram images for

each model organism as shown in Figure 3.2, Figure 3.3, Figure 3.4, Figure 3.5,

Figure 3.6, Figure 3.7, Figure 3.8, Figure 3.9, and Figure 3.10. Venn Diagram

images are generated with offscreen rendering library of MESA (libOSMesa).

Furthermore, partial and whole downloadable files of prediction results are made

into archive in this module. These files have tabularly separated plain text format

composed of five columns:

1. UniRef100 id,

2. Predicted subcellular localization distribution of the sequence,

3. Sequence description,

4. Sequence,

5. Annotated subcellular localization from UniProt Knowledgebase.

2.1.2.5 Web Interface

We supply information through web interface module when a user requests it

through download and search interfaces. Users may download the prediction re-

sults either as complete or as partial data for each organism and localization

class. Protein localization distributions for each organism are observable via the

color-coded Venn diagrams. The search interface consists of standard queries

and sequence query in the MEP2SL database. Keyword standard query matches
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Table 2.3: MEP2SL database table field names.

Query Database Database Field
Keyword mySQL database des
Localization mySQL database loc
Localization Compartment mySQL database loc
Database Id mySQL database id
Sequence BLAST database seq

to descriptions of sequences using logical operators AND and OR. Database Id

standard query matches to UniRef100 sequence ids. Localization standard query

exact matches to localization distributions. Localization Compartment standard

query partial matches to localizations. Finally, Sequence query matches to se-

quences by BLASTp with the chosen expectation value (E-Value) as given in

Table 2.3.

2.1.3 Protein Localization Predictor Evaluation

We used five protein subcellular localization tools:

• PA-SUB [26],

• P2SL [8],

• PSORT2 [29],

• pTARGET [17],

• TargetP [12]

for comparison of the subcellular localization prediction on two annotated

datasets from HPRD [33] (Human Protein Reference Database) from [2] and

CYGD [18] (Comprehensive Yeast Genome Database) from [1], Initially, CYGD

(updated on 14-11-2005) and HPRD v.6 datasets consisted of 18 841 and 6 736

protein sequences, respectively. After extraction of proteins having subcellular

localization information, we ended up with 4 692 proteins in CYGD and 11 557
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proteins in HPRD before using these with the mentioned predictors. Predictions

are done on web servers of pTARGET (last updated on 03-02-2006) at [5], Tar-

getP v.1.1 at [6], and PA-SUB v.2.5 at [4]. However, PSORT (last revised on

01-12-1998) and P2SL v.0.1 predictions are done in house. Prediction evaluation

are done with our multi-category accuracy evaluation criteria that is explained

in Section 2.1.3.2.

2.1.3.1 Category Mapping in Actual and Predicted Sets

Every predictor we used predicts over varying number of categories and assigns

different reliability scores, probabilities, etc. for the categories they predict over.

However, we did not consider the prediction scores of categories and considered

only the existence of a category in predicted set and labeled each category with a

unified scheme as given in Table A.3. By labeling the actual set categories with

the same labels we chose to label subcellular localization tools as indicated in

Table A.1 and Table A.2, we had a universal label set. Over this universal set, we

provided set intersection and coverage operations to assign prediction accuracy

as mentioned in Section 2.1.3.2.

2.1.3.2 Multi-category Accuracy Evaluation Criteria

For every protein sequence, we have an actual set of compartments set by the

dataset and a predicted set of compartments predicted by a multi-category local-

ization predictor. Handling these two sets, we should give an accuracy score for

the performance of the mentioned five prediction tools in a test dataset. How-

ever, assigning a generalized accuracy criterion in multi-category predictions is

not a straightforward task especially when the predictors produce a range of out-

puts [32]. We produce a one-to-one mapping between actual set as and predicted

set as mentioned in Section 2.1.3.1. Using these mappings, we defined a rough

accuracy range with worst and best case criteria which we consider the precise

accuracy of a multi-category prediction tool should be in between. The best case

accuracy criterion assigns a prediction true whenever an intersection set between

actual and predicted sets exists. However, the worst case accuracy assigns true
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whenever predicted set covers actual set. Otherwise, a prediction is considered

as false both in worst and best case criteria. For evaluating the accuracy of a

tool on a test set, we sum the number of true predictions for worst and best case

criteria separately and present altogether.

2.2 DEG

Differentially Expressed Genes (DEG) is an installable, downloadable, and open

source analysis suite for Affymetrix HG-U133 Plus 2.0 array. DEG runs on a

Linux operating system. It is developed and implemented using the MySQL rela-

tional database system, Perl-CGI for server side scripting language and R statisti-

cal programming language [36] and R Bioconductor packages RColorBrewer [30],

affyPLM [9], affy [21], gcrma [43], multtest [34], siggenes [38], genefilter [14],

annaffy [40], hgu133plus2 [25] for calculations, visualizations and annotations.

2.2.1 Dataset

Archive of Affymetrix HG-U133 Plus 2.0 array CEL files together with user spec-

ified phenodata file is required as shown in Figure 2.2. The phenodata file has

a tabular plain text format. It is composed of two columns where first column

includes the name of the CEL file, and the second contains the phenotype of

that CEL file. The phenotype of a CEL file should be a 1-2 digit integer number

and the maximum number of CEL files in an archive is not restricted; however

it should be considered according to the server machine memory and processor

capabilities.

2.2.2 DEG Infrastructure

DEG has two main interfaces. The first interface is used for CEL file analysis

which needs to be performed once and consists of CEL file upload, normaliza-

tion, significance analysis, annotation and loading of data into DEG Database.
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Figure 2.2: Phenodata file and CEL archive file for DEG upload.
typeFileTemplate.txt is the phenodata file and ab.zip is the compressed CEL
file.

The second interface is for the retrieval and merging together of the previously

performed analyses as shown in Figure 2.3.

2.2.2.1 CEL File Analysis

The evaluation of this part consists of four modules and takes long execution

times.

2.2.2.1.1 Upload and Quality Control File uploading is the initial step of

the CEL File Analysis interface. The user specified phenodata and compressed

CEL files are downloaded to the server. In addition, user specified quality control

images are produced by using R Bioconductor packages RColorBrewer, affy, and

affyPLM which are as below:

• Boxplot,
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Figure 2.3: Internal structure of DEG. CEL file Analysis and Retrieval interfaces
are represented with dashed blue and continuous red lines, respectively.
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• Histogram,

• MAplot,

• RNA Degradation,

• PLM Residuals Image,

• PLM RLE (Relative Log Expression),

• PLM NUSE (Normalized Unscaled Satandard Error).

2.2.2.1.2 Normalize The files in the CEL file archive that also exist in the

first column of the phenodata file are renamed with their phenotype information.

These files are normalized according to the user selected normalization method of

either gcrma or rma with R Bioconductor affy and gcrma packages. In addition,

post normalization boxplots are produced.

2.2.2.1.3 t-test Analysis The user is fronted with all pair combinations of

CEL file phenotypes that exist in the normalized file. Upon selecting some of

these pairs, the specified t-test analysis (equal/unequal variance, paired/unpaired

samples, two/one tailed) for obtaining the differentially expressed genes is per-

formed. Here, the user may restrict the expression values that are included in

the t-test analysis with expression value limit and select multiple hypoth-

esis correction methods among BH, BY, Bonferroni, Hochberg, Holm, SidakSD,

and SidakSS. These calculations are performed with R Bioconductor multtest,

siggenes, genefilter packages. Upon finding the differentially expressed genes, they

are annotated with raw and adjusted p-values, up/down regulation information,

Gene Symbol, GenBank Accession Number, Chromosomal Location, Chromo-

some, Entrez Gene Id, Enzyme Commission (EC) Id, Gene Gene Ontology (GO),

Cytogenetic Maps, OMIM Id, KEGG Pathway, PubMed Id, RefSeq Id, UniGene

Cluster Id. The annotations are performed with R Bioconductor affy, annaffy,

and hgu133plus2 packages. At the end, an analysis Id is supplied to the user to

be used in the retrieval and merge interfaces as mentioned in Section 2.2.2.2.

1User selected multiple hypothesis selection procedures (ADJP) among BH, BY, Bonferroni,
Hochberg, Holm, SidakSD, and SidakSS for keeping adjusted p-values.

2Phenodata-CEL file names (CELFILENAME) for keeping probe intensity values.
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Table 2.4: DEG data table field names.

Field Type Key Default
TYPE varchar(30) PRI
ID varchar(30) PRI
REG char(2)
SYMBOL varchar(60)
ACCNUM varchar(60)
CHRLOC text 0
CHR int(2)
ENTREZID varchar(60)
ENZYME text
GENENAME text
GO text
MAP text
OMIM text
PATH text
PMID text
REFSEQ text
UNIGENE text
RAWP decimal(11,10) 0
ADJP1 decimal(11,10) 0
ADJP2 decimal(11,10) 0
..1 decimal(11,10) 0
ADJP7 decimal(11,10) 0
CELFILENAME1 decimal(11,10) 0
CELFILENAME2 decimal(11,10) 0
..2 decimal(11,10) 0
CELFILENAMEn decimal(11,10) 0

2.2.2.1.4 Load Database The annotation fields together with the expression

values of a particular probe is stored in a database table as given in Table 2.4

In order to maintain the dynamic content of the web interface for CEL File

Analysis Retrieval Interface and Merging Interface as mentioned in Sec-

tion 2.2.2.2, the analysis parameters are stored in three meta tables as given in

Table 2.5, Table 2.6, and Table 2.7.
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Table 2.5: DEG HGUmetaData table field names.

Field Type Key Default
aid int(5) PRI
time timestamp
norMet varchar(255)
expLim text
ttest varchar(10) p2sl

Table 2.6: DEG HGUmetaDataPair table field names.

Field Type Key Default
aid int(5) 0
proc varchar(15)

Table 2.7: DEG HGUmetaDataProc table field names.

Field Type Key Default
aid int(5) PRI 0
pairvalue varchar(30) PRI
pairlabel text
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2.2.2.2 CEL File Analysis Retrieval and Merging

This part is for the quick retrieval of a previously performed microarray analysis.

It has two functionalities; one is for retrieval of single t-test analysis, and the

other is the merging of the two t-test analyses. User specifies either gene symbol

or probe id based retrieval or merging. User specifies FDR, gene regulation, an-

notation fields among Gene Symbol, GenBank Accession Number, Chromosomal

Location, Chromosome, Entrez Gene Id, EC Id, GO, Cytogenetic Maps, OMIM

Id, KEGG Pathway, PubMed Id, RefSeq Id, UniGene Cluster Id.



Chapter 3

Results

After recent advances in the information technology, individual groups developed

applications for their own use. However, there is a great need for integration

of information. Here, we present two such information integration approaches.

One is for protein subcellular localization information and the other is for the

determination and annotation of differentially expressed genes. For the global

interpretation of protein subcellular localization information across proteomes,

we constructed an database called MEP2SL and additionally confirmed our pre-

diction method by yeast high throughput experimental localization information

and prediction results of other tools. In expression data analysis, we constructed

an online analysis suite called DEG and presented a case study for the usage and

interpretation of it.

3.1 MEP2SL

MEP2SL is an automatically updated downloadable and searchable system hous-

ing predicted and existing existing experimental subcellular localization informa-

tion of nine model organisms: human (H. sapiens), mouse (M. musculus), rat

(R. norvegicus), fruit fly (D. melanogaster), zebrafish (D. rerio), yeast (S. cere-

visiae), frog (X. tropicalis), slime mold (D. discoideum), and worm (C. elegans).

20



CHAPTER 3. RESULTS 21

The predictions are made with a machine learning tool, P2SL. P2SL is a multi-

class subcellular localization tool and gives protein localization probabilities over

ER targeted, cytosolic, nuclear and mitochondrial cellular compartments. Con-

sidering some votes as insignificant, we come up with twenty-six different protein

localization distribution types. This data is downloadable through a web inter-

face as whole or single download of protein localization distribution files. The

possible queries are presented in the next section.

3.1.1 Query Specification Interface of MEP2SL

Four standard searches (keyword, database id, localization, and localization

compartment) can be performed which extract information from the relational

database. Matched sequences are represented in a table from which users may

access to a detailed page for the specific sequence. The detail page represents

subcellular localization distribution possibility, and UniProt Knowledgebase sub-

cellular localization along with a UniProt link to get additional biological features,

and an NCBI BLAST link to find homologous sequences.

In addition to the standard search results, users may have the pairwise align-

ment of the matched sequence to the queried sequence using the sequence search

which is supported by a local BLAST in the local BLAST database. The sequence

search option may be used for experimentally designed peptide localization pre-

diction. A user may construct an arbitrary peptide and test its localization by

the MEP2SL sequence search option on local BLAST.
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3.2 Protein Subcellular Localization Analysis

MEP2SL contained a total of 217 102 protein sequences from the nine model

organisms from UniRef100 v.9.2. The human proteome constituted the largest

set with 65 529 sequences while slime mold proteome was the smallest with 3 393

sequences as given in Table 3.1. Subcellular localization distributions for all

organisms were visualized in detail in a color-coded Venn diagram where similar

distribution patterns can be observed as shown in Figure 3.1. Venn diagram

representation of subcellular localizations clearly demonstrates that proteins are

not single site acting molecules. For instance, in human proteome, only 3 154

over 65 529 protein sequences (4.81%) were predicted to be located or acting in

a single compartment; yet more than half of the human proteins (52.15%) were

predicted to localize both in nucleus and cytosol.

Similar percentile distributions were also observed in other organisms. From

each organism analyzed in this study, between 28 to 44% of the protein sequences

from different proteomes were predicted to be 3/3 Cytosolic & 2/3 Nuclear, mean-

ing that proteins localize to the cytosol with 3/3 possibility and to the nucleus

with 2/3 possibility. Between 14 to 27% of all proteins were in 3/3 Nuclear & 2/3

Cytosolic distribution type. Therefore in general, the majority of proteins are

distributed between cytosol and nucleus indicating that these proteins may have

roles in both or either compartment. This phenomenon is a good demonstration

of how cell signaling system works such that 3/3 Cytosolic & 2/3 Nuclear or 3/3

Nuclear & 2/3 Cytosolic proteins interact with signaling proteins in the cytosol

in order to be localized to the nucleus upon simulation by an external signal or

when they are done with their duty in the nucleus they are shuttled back to the

cytosol [16].

3.3 Protein Subcellular Localization Predictor

Comparison

We compared the accuracy of five protein subcellular localization tools on one

human dataset and one yeast dataset. We calculated the accuracy of five protein
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Figure 3.1: Scaled color-coded Venn diagram for protein subcellular localization
distribution in nine model organisms. Protein subcellular localization distribu-
tion is represented with twenty-six columns over nuclear (red), cytosolic (blue),
mitochondrial (green), and ER targeted (yellow) subcellular localizations. Thick-
ness of the colored bands indicates the prediction votes such that thinner band is
for two votes and thicker one is for three votes. In each organism, the distribution
pattern of the localizations are similar others.
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Figure 3.2: Color-coded Venn diagram for human proteome subcellular localiza-
tion distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.

Table 3.2: Evaluation of subcellular localization tools on CYGD dataset with
4 692 yeast proteins.

Tool Coverage Best Case Accuracy
(Number-Percent)

Worst Case Accuracy
(Number-percent)

P2SL 4690 3904 - 83.24 3052 - 65.07
PA-SUB 3366 2863 - 85.06 1625 - 48.28
PSORTII 4692 4236 - 90.28 3445 - 73.42
pTARGET 4692 2729 - 58.16 1263 - 26.92
TargetP 4690 3711 - 79.13 2929 - 62.45
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Figure 3.3: Color-coded Venn diagram for mouse proteome subcellular localiza-
tion distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.

Table 3.3: Evaluation of subcellular localization tools on HPRD dataset with
11 557 yeast proteins.

Tool Coverage Best Case Accuracy
(Number-Percent)

Worst Case Accuracy
(Number-percent)

P2SL 11550 9429 - 81.64 7755 - 67.14
PA-SUB 9327 7286 -78.12 4919 - 52.74
PSORTII 11557 8539 - 73.89 6873 - 59.47
pTARGET 11557 7447 - 64.44 4993 - 43.20
TargetP 10732 8389 - 78.17 6938 - 64.65
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Figure 3.4: Color-coded Venn diagram for rat proteome subcellular localization
distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.
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Figure 3.5: Color-coded Venn diagram for fruit fly proteome subcellular localiza-
tion distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.
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Figure 3.6: Color-coded Venn diagram for zebrafish proteome subcellular localiza-
tion distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.
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Figure 3.7: Color-coded Venn diagram for yeast proteome subcellular localiza-
tion distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.
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Figure 3.8: Color-coded Venn diagram for frog proteome subcellular localiza-
tion distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.
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Figure 3.9: Color-coded Venn diagram for slime mold proteome subcellular lo-
calization distribution. Protein subcellular localization distribution is repre-
sented with twenty-six columns over nuclear (red), cytosolic (blue), mitochon-
drial (green), and ER targeted (yellow) subcellular localizations. Thickness of
the colored bands indicates the prediction votes such that thinner band is for two
votes and thicker one is for three votes. The number of sequences is indicated for
each column.
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Figure 3.10: Color-coded Venn diagram for worm proteome subcellular localiza-
tion distribution. Protein subcellular localization distribution is represented with
twenty-six columns over nuclear (red), cytosolic (blue), mitochondrial (green),
and ER targeted (yellow) subcellular localizations. Thickness of the colored bands
indicates the prediction votes such that thinner band is for two votes and thicker
one is for three votes. The number of sequences is indicated for each column.
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subcellular localization prediction tools on two different test sets. P2SL, among

PA-SUB, PSORTII, TargetP, and pTARGET, gave the most accurate predictions

67.14% for the worst case and 81.64% for the best case in HPRD dataset com-

prised of 11 557 sequences. CYGD dataset consisted of 4 692 sequences yeast

S. cerevisiae for which PSORTII gave the most accurate results (73.42% for the

worst case and 90.28% for the best case). These results may be related with

the training sets of the predictors; since PSORTII is trained with a set of yeast

sequences and the dominating organism in P2SL training set is is human. The

pTARGET tool gave the worst performance on both datasets. This may be due

to the multi-categorial nature of the tested data and single category prediction

method of the tool. In addition, coverage of PA-SUB is least in both datasets as

given in Table 3.2 and Table 3.3.

3.4 DEG

DEG is an online installable searchable and open source analysis suite for

Affymetrix HG-U133 Plus 2.0 array. It has two main interfaces, one is for CEL file

significantly modulated gene analysis, and other is for the retrieval and merging

of previously performed analyses.

3.4.1 Interface

User supplies a .zip achieve of CEL files and a phenodata file. The phenodata

is a two column file where the first column is the name of the CEL files and

the second column is the sample type of the CEL files. User may specify ar-

ray quality control plots among RNA degradation plot, pre-normalization

boxplot, histogram, MAplot, and PLM quality control plots such as residuals

image, RLE plot, NUSE plot. After uploading these files, user selects a nor-

malization method among gcrma (gcrma function of R gcrma package) and rma

(justrma function of R affy package) and the files specified in the phenodata

first column and existing in the CEL archive are normalized with the selected

method. User may download the normalized comma separated values file and
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post-normalization boxplot. After normalization, the user is fronted with a set of

t-test analysis options interface where one can specify equal/unequal variance,

unpaired, two-tailed t-test parameters along with all possible t-test pair com-

binations. The user may also filter the expression values that are all below the

specified expression value limit value. Methods among BH, BY, Bonferroni,

Hochberg, Holm, SidakSD, and SidakSS are selectable for multiple hypothesis

correction procedure. After the analysis, the annotated files are downloadable;

thus selected ones are loaded into the database. Once loaded into the database,

the user is fronted with an analysis number for future retrieving and merging of

the information. The information retrieval and merging interfaces refers to the

already existing data in the database. The user may then select among Gene Sym-

bol, GenBank Accession Number, Chromosomal Location, Chromosome, Entrez

Gene Id, EC Id, GO, Cytogenetic Maps, OMIM Id, KEGG Pathway, PubMed Id,

RefSeq Id, and UniGene Cluster Id annotation fields. Gene Symbol or probe id

based, FDR restricted analysis results are fronted within a table like structure.

3.4.2 Case Study Using DEG Interface

We applied our tool on an experimental data obtained from Selenium defi-

ciency induced oxidative stress on HCC derived parental HepG2 cells and HBV-

transfected 2.2.15 clone of HepG2 cells, designated as HepG2-2.2.15. HepG2-

2.2.15 cell line has been produced by stably transfected HepG2 cells with four

tandem copies of the HBV genome. HepG2 and HepG2-2.2.15 cells were culti-

vated in selenium adequate and selenium deficient medium for 3 days in plates

and as duplicates in different times. Under selenium deficient conditions the re-

sponses of the two isogenic cell lines were completely different. Parental HepG2

cells were dying due to oxidative stress, while HBV-positive HepG2-2.2.15 cells

were still alive under selenium deficient conditions. Cells were collected from 5

plates and RNA extracted and pooled in order to analyze differential gene ex-

pression on Affymetrix platform in day 1-2-3.

We constructed an analysis approach considering selenium treatment existence

without considering it as time course data. Hence, the phenotype of selenium ad-

equate HepG2-2.2.15 cell lines is HP and selenium deficient ones are HN. Similarly,
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phenotype of selenium adequate HBV-transfected 2.2.15 clone of HepG2 cell lines

is 2P and selenium deficient ones are 2N. We sequentially applied quality control,

normalization, t-test analysis on this data. Finally, we uploaded the data in the

database for further analysis in a later time.

3.4.2.1 Quality Control Plots

We plotted and analyzed pre-normalization boxplot, histogram, MAplot, RNA

degradation plot, PLM residuals image, PLM RLE plot, and PLM NUSE plot.

Boxplot is shown in Figure 3.13, histogram is shown in Figure 3.12, MAplot

is shown in Figure 3.14, RNA degradation plot is shown in Figure 3.11, PLM

residuals image is shown in Figure 3.15, PLM RLE plot is shown in Figure 3.16,

and PLM NUSE plot is shown in Figure 3.17.
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Figure 3.11: RNA degradation plot. Individual probes in each probe set are
ordered by location relative to the 5’ end of the targeted mRNA molecule. We
also know that RNA degradation typically starts at the 5’ end, so we would expect
probe intensities to be lower near the 5’ end than near the 3’ end. The ratios
should differ for each chip type; we should suspect RNA degradation if slopes are
greater than three for HG-U133 Plus 2.0 arrays [15].
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Figure 3.12: Histogram plot. Histograms is a good visualization tool for the
identification of saturation, which can be seen as an additional peak at the highest
log intensity in the plot.
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Figure 3.13: Pre-normalization boxplot. Box plot is also a good visualization
tool for analyzing the overall intensities of all probes across the array. The box is
drawn from the 25th and 75th percentiles in the distribution of intensities. The
median, or 50th percentile, is drawn inside the box. The whiskers describe the
spread of the data.
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Figure 3.14: M versus A plot (MAplot). An MAplot is a scatter plot used to com-
pare two arrays. The y-axis is the log-fold change and the x-axis is the average log
intensity between the two arrays. Each array is compared to a pseudo-reference
array. The reference array in the following graphs is the median intensities across
all arrays. Again, the expectation is a random scatter plot, centered about the
zero horizontal line. Loess curve fitted to the scatter plot, indicated with red,
summarizes the nonlinearities. Oscillating loess smoothers indicate quality prob-
lems.
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Figure 3.15: PLM residuals image. Negative residuals are colored blue and posi-
tive residuals are colored red. Intensities indicated the strength of the signal.
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Figure 3.16: PLM RLE plot. RLEs for each probe represent deviation of the
probe from the median value of that probe across arrays. This quality assess-
ment is dependent on the assumption that measured intensities are expressed
at similar levels across the arrays. The relative logs are displayed as box plots.
The expectation is that the relative log expressions should be evenly distributed
around zero within each array. In addition, if one or more arrays have box plots
that are much larger than the other arrays, then these arrays tend to have more
outliers than the other arrays.
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Figure 3.17: PLM NUSE plot. NUSEs represent the standard error between probe
intensities within a probe set on a specific array. These errors are normalized by
dividing all values of a particular probe set by the median standard error for that
probe set across arrays. The expected distribution of NUSEs within an array is
centered around one. A higher value indicates that the array has more variance
for that probe set than the other arrays.



CHAPTER 3. RESULTS 44

3.4.2.2 Normalization

Normalized probe values are downloadable for selected normalization method

of either rma or gcrma in the web interface. Additionally, post-normalization

boxplots as shown in Figure 3.18 are also provided.
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Figure 3.18: Post-normalization boxplots. gcrma gives slightly decreased normal-
ization values; the median of rma is 4.2 and the median of gcrma is 2.8.
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Table 3.4: Significant probe numbers of rma & gcrma normalization methods
after t-test analysis, respectively.

p-value rawp BH BY Bonferroni Hochberg Holm SidakSD SidakSS

0.01 3422 - 3054 665 - 575 169 - 161 65 - 61 65 - 61 65 - 61 65 - 62 65 - 62
0.02 4610 - 4179 1124 - 941 256 - 229 79 - 81 79 - 81 79 - 81 79 - 81 79 - 81
0.03 5504 - 5022 1511 - 1250 317 - 271 91 - 94 91 - 95 91 - 95 91 - 95 91 - 95
0.04 6263 - 5719 1843 - 1548 356 - 310 105 - 105 106 - 105 106 - 105 106 - 108 106 - 108
0.05 6895 - 6346 2140 - 1770 420 - 356 113 - 116 113 - 116 113 - 116 114 - 118 114 - 117
0.06 7477 - 6925 2394 - 1998 467 - 386 121 - 123 121 - 123 121 - 123 124 - 124 124 - 123
0.07 8017 - 7417 2684 - 2196 497 - 433 131 - 128 131 - 128 131 - 128 133 - 130 133 - 130
0.08 8535 - 7926 2967 - 2527 536 - 484 138 - 134 138 - 134 138 - 134 138 - 137 138 - 136
0.09 8999 - 8478 3226 - 2766 588 - 519 143 - 139 143 - 140 143 - 140 144 - 140 144 - 140
0.1 9395 - 8946 3514 - 2982 605 - 552 145 - 142 145 - 142 145 - 142 147 - 145 147 - 144
0.11 9789 - 9414 3781 - 3196 665 - 577 148 - 150 148 - 150 148 - 150 154 - 153 153 - 153
0.12 10200 - 9898 4072 - 3465 735 - 611 157 - 154 157 - 155 157 - 155 161 - 156 160 - 155
0.13 10593 - 10338 4289 - 3678 770 - 654 161 - 156 161 - 156 161 - 156 163 - 157 163 - 157
0.14 10989 - 10785 4525 - 3913 819 - 679 163 - 157 163 - 158 163 - 158 169 - 161 169 - 161
0.15 11366 - 11256 4822 - 4136 844 - 704 169 - 161 169 - 161 169 - 161 173 - 166 173 - 165
0.16 11716 - 11686 5042 - 4325 891 - 751 172 - 164 172 - 165 172 - 165 178 - 169 177 - 169
0.17 12056 - 12173 5263 - 4597 933 - 788 173 - 169 174 - 169 174 - 169 181 - 170 181 - 170
0.18 12397 - 12609 5518 - 4792 960 - 824 180 - 170 180 - 170 180 - 170 183 - 172 182 - 171
0.19 12730 - 13071 5737 - 5026 1010 - 858 181 - 171 181 - 171 181 - 171 185 - 178 185 - 178
0.2 13045 - 13521 6014 - 5274 1046 - 897 183 - 172 183 - 172 183 - 172 190 - 184 189 - 182
0.21 13338 - 13933 6252 - 5478 1099 - 922 184 - 177 185 - 178 185 - 178 195 - 186 194 - 186
0.22 13652 - 14375 6446 - 5658 1126 - 945 188 - 180 188 - 181 188 - 181 199 - 188 198 - 188
0.23 13956 - 14768 6670 - 5889 1161 - 962 192 - 185 192 - 186 192 - 186 205 - 191 204 - 191
0.24 14292 - 15175 6912 - 6134 1194 - 1008 196 - 187 196 - 187 196 - 187 208 - 195 206 - 194
0.25 14576 - 15635 7132 - 6350 1219 - 1038 199 - 188 199 - 188 199 - 188 214 - 201 214 - 200

3.4.2.3 Significant Genes Extraction

We filtered probes by setting the Expression Value Limit to the median values

of normalized intensities from post-normalization boxplots. Afterwards, we ex-

tracted significant probes by unpaired, unequal variance, two tailed t-test method.
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3.4.2.4 Data Retrieval and Merging

If significant probes lists are selected for loading in the database, users may

extract the significantly regulated probes/gene symbols via Retrieve Interface

as shown in Figure 3.19 and Merge Interface as shown in Figure 3.20. The

number of significant probes for rawp and multiple hypothesis correction methods

could also be observed from the interface and as given in Table 3.4.

Figure 3.19: DEG retrieve interface for significant probes/genes upon statistical
analysis.
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Figure 3.20: DEG merge interface for significant probes/genes.



Chapter 4

Conclusions and Future Work

As a result of accumulating genome and proteome data, computational analysis

is irreplaceable in molecular biology today. In this study, we analyzed proteome-

wide protein subcellular localization and also developed an integrated microarray

gene expression data analysis, visualization, and retrieval tool. Protein subcellu-

lar localization is important for elucidating protein function and microarray gene

expression data enables monitoring of the whole transcripteome simultaneously.

Both are important since eukaryotic cells are divided into distinct compartments;

for proper functioning of the cell, cellular components should reside in their ap-

propriate locations together with their appropriate partners simultaneously.

This research is initially focused on representation and analysis of proteome

wide subcellular localization information with a system called MEP2SL. In the

MEP2SL system, using a hybrid machine learning tool called P2SL, we predicted

proteome-wide subcellular localizations of nine eukaryotic model organisms in-

cluding human, mouse, rat, fruit fly, zebrafish, yeast, frog, slime mold, and worm

and represented them with their known experimental subcellular localizations

from UniProt Knowledgebase.

The online interface of the MEP2SL system enables partial or full downloading

of the predicted localization data for further computational analysis. It also

provides various query options including keyword, id, localization type and

localization compartment, and sequence queries. The resulting matches for

49
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each of these queries are represented with a table structure providing UniRef100

Id, predicted localization, and description (significance and bit score together with

the pairwise alignment results in the case of sequence query). Each table entry

is enabled to give a details page which presents a BLASTp utility for finding

homologous sequences in the NCBI database and UniRef100 database link for

further annotations together with predicted localization distribution possibilities

and known experimental localizations from UniProt Knowledgebase.

To validate the prediction method used in the MEP2SL system, we analyzed

our prediction in two different datasets from yeast and human and compared the

accuracy of three more multi-compartmental prediction tools including PA-SUB,

PSORTII, and TargetP and single-compartment tool, pTARGET with P2SL. Our

accuracy criteria of best case accuracy and worst case accuracy serve as an

upper and lower bound for the actual accuracy of a prediction tool. For ranking

the accuracy of the tools, we use the mean of the worst and best case accuracies.

In the yeast dataset from CYGD, PSORTII gave apparently the most accurate

results. This result is not surprising since the training set of the PSORTII system

is consisted of only yeast sequences. On the same dataset, P2SL gave the second

higher odds without using any yeast sequences in its training set. In the HPRD

dataset, P2SL had the most accurate predictions. TargetP followed the P2SL

prediction accuracy with 3-4 percent decrease and the predictions of P2SL and

TargetP systems often correlated. PA-SUB had a significantly decreased coverage

compared with the other tools. pTARGET had apparently the worst results

which may be due to the multi-compartmental nature of the datasets and single

localization predictions of itself. As conclusion, the evaluation of the accuracy of

prediction tools is not an easy work since there are many factors that may affect

the results such as the prediction method of the systems, number of compartments

predicted on, and the training sets used. In our evaluation criterion, category

mapping used to label compartments of the datasets and prediction results of the

systems may significantly change the results. However, we think the approach we

used can give a rough estimate about the characteristics of the tools and P2SL

has not failed this process.

We also compared the proteome wide subcellular localizations with high

throughput localization experiments conducted in yeast [39], [24], [20]. In these
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experiments, the dominating compartments are cytosol, nucleus, and ER respec-

tively [22]. We have these three compartments as the dominating ones in our

prediction systems too. These results may be observed more clearly from Fig-

ure 3.1. From the same figure we can propose a likely conservation of subcellular

localization among organisms. In addition, we confirmed that proteins are not

single site acting molecules. Hence, with the affirmed performance of the MEP2SL

system with experimental data and comparison with other prediction tools, and

the comprehensive web interface it provides, we propose MEP2SL as a reference

source for proteome wide subcellular localization prediction.

As future directions, the MEP2SL system can be extended to include fur-

ther subcellular compartments such as Golgi apparatus, plasma membrane, per-

oxisome, and vacuole. Additionally, we can expand the system and add more

prediction tools to construct a meta-database system for proteome wide subcel-

lular localization information. This is crucial since different tools have different

strengths and weaknesses for different data types. For example, we can trust

prediction results of PSORTII system than the other tools for yeast proteins;

and P2SL may be a more reliable source for human proteins. Furthermore, pro-

teome wide conservation of protein subcellular localization signals should also

be investigated via statistical analysis. This may further add to the exploration

exploration of the protein subcellular localization phenomenon.

Second, we focused on enhancing the existing microarray gene expression data

analysis tools. We constructed a web installable open source system called DEG

for microarray gene expression data analysis and integrated it with a database.

In DEG, the user sequentially uploads the CEL files, performs a series of quality

control steps before s/he proceeds with the array normalization procedure. After

selection of filtering and t-test parameters and multiple hypothesis correction

procedures among BH, BY, Bonferroni, Hochberg, Holm, SidakSD, and SidakSS

are available to choose from. Afterwards, the significantly modulated genes are

extracted and they are integrated into database. The user is then fronted with an

analysis id to extract further information from the system at a later time. This

analysis id is also used in data merging and retrieval interfaces.

By means of DEG, we provide expression array quality control plots, normal-

ization and significant gene extraction interfaces as well as the dynamic interfaces,
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developed by keeping the data together with data properties in a database. Dy-

namic interfaces of retrieval and merging refers to existing data in the database.

The ability of the user to annotate the differentially expressed probes/gene sym-

bols from multiple sources is an integrated feature of DEG and helps the user

summarize the results of a microarray experiment. User may select among Gene

Symbol, GenBank Accession Number, Chromosomal Location, Chromosome, En-

trez Gene Id, EC Id, GO, Cytogenetic Maps, OMIM Id, KEGG Pathway, PubMed

Id, RefSeq Id, and UniGene Cluster Id annotation fields. We aim to expand this

list of selections as new identifiers and classifiers emerge. The DEG also is in-

novative in its structure that Gene Symbol or probe id based queries results in

tables in which pre-processed expression data and statistical analysis results are

combined and presented to the user for future filtering/sorting. This table can

also be downloaded as a plain text file in tabular format. One of the most impor-

tant features of the DEG is that the user can merge two differentially expressed

gene lists originating from two different t-tests to extract the intersecting gene

set. This feature may help users to refine their data further and to test the extent

multiple experimental gene lists have in common.

An online yet installable tool is beneficial for the research groups who are

not willing to submit their data on public analysis servers. Having a permanent

data storage capability with data integration into a modular and highly scalable

database presented with a comprehensive yet simple user-friendly interface, DEG

provides a good starting point for generation of an expandable microarray gene

expression data analysis, visualization, and retrieval suite. The integration of

a database into an online installable gene expression analysis tool is a unique

feature of DEG among other comparable tools in the field.

As future directions, the data merging and retrieval capabilities of DEG may

be expanded to allow the processing of more than one analysis, e.g., t-tests. This

may allow the interface to analyze time series data as well. Additionally, for

graphical comparison of functional groups, GoTools Bioconductor package can

be added to the interface.
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Appendix A

Localization Labeling for

Predictor Evaluation

A.1 Localization Labels of CYGD Dataset

Table A.1: CYGD dataset protein subcellular localization labeling.

Subcellular Location Description Label
701 extracellular X
710 cell wall X
715 cell periphery X
720 plasma membrane A
722 integral membrane / endomembranes A
725 cytoplasm C
730 cytoskeleton Y
735 endoplasmic reticulum E
740 Golgi G
745 transport vesicles E
750 nucleus N
755 mitochondria M
760 peroxisome P
765 endosome A
770 vacuole L
775 microsomes A
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A.2 Localization Labels of HPRD Dataset

Table A.2: HPRD dataset protein subcellular localization labeling.

Subcellular Location Label Subcellular Location Label
Acrosome E Integral to membrane A
Actin cytoskeleton Y Integral to plasma membrane A
Actin filament Y Intermediate filament Y
Apical membrane A Intracellular vesicle S
Basolateral membrane A Kinetochore C
Caveola A Late endosome A
Cell junction A Lysosome L
Cell surface X Microsome E
Centriole C Microtubule C
Centrosome C Mitochondrial intermembrane space M
Chromosome N Mitochondrial matrix M
Cilium X Mitochondrial membrane M
Clathrin-coated vesicle A Mitochondrion M
Cytoplasm C Nuclear matrix N
Cytoplasmic vesicle S Nuclear membrane A
Cytoskeleton Y Nucleolus N
Cytosol C Nucleoplasm N
Desmosome A Nucleus N
Early endosome A Perinuclear region C
Endoplasmic reticulum A Perinuclear vesicle E
Endoplasmic reticulum lumen E Peroxisomal matrix P
Endoplasmic reticulum membrane E Peroxisomal membrane P
Endosome A Peroxisome P
Extracellular X Plasma membrane A
Extracellular matrix X Ribosome C
Extracellular space X Sarcoplasm E
Golgi apparatus G Sarcoplasmic reticulum E
Golgi lumen G Secreted X
Golgi membrane G Secretory vesicle S
Golgi vesicle G Tubulin C
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A.3 Localization Labels of Prediction Tools

Table A.3: Protein subcellular localization labeling of prediction tools.

System Subcellular Location Label Prediction Technique
PSORTII cytoskeletal Y k-nearest neighborhood

cytoplasmic C
nuclear N
vacuolar L
peroxisomal P
plasma membrane A
mitochondrial M
endoplasmic reticulum E
vesicles of secretory system S
extracellular including cell wall X
Golgi G

P2SL ER-targeted E SOM and SVM
cytosolic C
nuclear N
mitochondrial M

PA-SUB mitochondrion M Näıve Bayes classifier
nucleus N
endoplasmic reticulum E
extracellular X
cytoplasm C
plasma membrane A
golgi G
lysosome L
peroxisome P

TargetP Mitochondrion M Neural networks based on
Secretory pathway S N-terminal amino acid sequence
Other O

pTARGET Mitochondria M Score based on protein
Nucleus N functional domains
Endoplasmic Reticulum E
Extracellular/Secretory X
cytoplasm C
Plasma Membrane A
Golgi G
Lysosomes L
Peroxysomes P


