ITERATIVE-IMPROVEMENT-BASED
HEURISTICS FOR ADAPTIVE
SCHEDULING OF TASKS SHARING FILES
ON HETEROGENEOUS MASTER-SLAVE
ENVIRONMENTS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Kamer Kaya
August, 2004

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Altay Giivenir

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ozgﬁr Ulusoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

il

ABSTRACT

ITERATIVE-IMPROVEMENT-BASED HEURISTICS
FOR ADAPTIVE SCHEDULING OF TASKS SHARING
FILES ON HETEROGENEOUS MASTER-SLAVE
ENVIRONMENTS

Kamer Kaya
M.S. in Computer Engineering
Supervisor: Prof. Dr. Cevdet Aykanat
August, 2004

The scheduling of independent but file-sharing tasks on heterogeneous master-
slave platforms has recently found important applications in Grid environments.
The scheduling heuristics recently proposed for this problem are all constructive in
nature and based on a common greedy criterion which depends on the momentary
completion time values of the tasks. We show that this greedy decision criterion
has shortcomings in exploiting the file-sharing interaction among tasks since com-
pletion time values are inadequate to extract the global view of this interaction.
We propose a three-phase scheduling approach which involves initial task assign-
ment, refinement and execution ordering phases. For the refinement phase, we
model the target application as a hypergraph and with an elegant hypergraph-
partitioning-like formulation, we propose to use iterative-improvement based
heuristics for refining the task assignments according to two novel objective func-
tions. Unlike the actual scheduling cost, the smoothness of proposed objective
functions enables the use of iterative-improvement-based heuristics successfully,
since their effectiveness and efficiency depend on the smoothness of the objective
function. Experimental results on a wide range of synthetically generated hetero-
geneous master-slave frameworks show that the proposed three-phase scheduling
approach performs much better than the greedy constructive approach.

Keywords: Task scheduling, file-sharing tasks, heterogeneous master-slave plat-

forms, iterative-improvement.

il

OZET

YINELEMELI TYILESTIRME TABANLI BULUSSAL

YONTEMLERIN ORTAK DOSYA KULLANAN
GOREVLERIN TURDES OLMAYAN ISTEMCI
SUNUCU ORTAMLARINDA UYARLAMALI
ZAMANLAMASINDA KULLANIMI

Kamer Kaya
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Cevdet Aykanat
Agustos, 2004

Ortak dosya kullanan bagimsiz gorevlerin tiirdeg olmayan istemci sunucu ortam-

larinda zamanlanmasi son zamanlarda Grid cevrelerinde 6énemli uygulamalarda
kullanilmaktadir. Bu problem icin daha once 6nerilen bulussal yontemlerin hepsi
ardigik zamanlayic1 bir yaklagima ve gorevlerin anlik bitis zamanlarini kullanan
acgozlii bir karar verme mekanizmasina dayanmaktadir. Gozlemlerimize gore,
bu tiir bir karar verme mekanizmasi anlik bitis zamanlarinin ortak dosya kul-
lanimi bilgisinin genel yapisni ¢ikartma yetersizliginden dolay1 bu bilgiyi etkili ve
verimli bir gekilde kullanamamaktadir. Bu tiir gorevlerin zamanlanmasi prob-
leminin ¢oziimlenmesi i¢in baglangic gorev atamasi, atamalarin geligtirilmesi ve
gorev yiiriitme siralamasi safhalarini iceren 3 safhali yeni bir yaklagim onerdik.
Atama geligtirme safhasi i¢in uygulamalar birer hipergizge olarak, gorev atama
problemi ise hipercizge boliimleme benzeri bir problem gibi modellenmigtir.
Onerilen yinelemeli iyilestirme tabanli bulugsal yontemlerin etkin ve verimli bir
bicimde kullanimi geligtirilen hedef fonksiyonlarin diizgiinliik 6zelligine baglidir.
Bu etkin ve verimli kullanim gercek zamanlama maliyeti olan paralel ytriitme
zamaninda bulunmayan diizgiinliik 6zelligine sahip yeni iki hedef fonksiyon
onerilerek saglanmigtir. Yapay olarak yaratilan uygulamalar ve tiirdes olmayan
sunucu istemci ortamlari ile gerceklestirilen deneylerin sonuclari 6nerilen 3 sathali
yaklagimin aggozlii ardigik zamanlayict yaklagima gore daha basgarili oldugunu
gostermistir.

Anahtar sézcikler: Gorev zamanlama, ortak dosya kullanan gorevler, tiirdes ol-

mayan istemci sunucu ortamlari, yinelemeli iyilegtirme.

v

To my family

Acknowledgement

I would like to express my gratitude to my supervisor Prof. Cevdet Aykanat for
his guidance, suggestions and invaluable encouragement throughout the develop-
ment of this thesis. Also, I would like to thank to Prof. Altay Giivenir and Prof.

Ozgiir Ulusoy for reading and commenting on the thesis.

I owe special thanks to Bora Ucar for providing infinite moral support. Also,
I would like to thank for his endless patience when my help requests were intol-

erable.

I would like to express very special thanks to Serkan Bayraktar, Ata Tiirk
and Berkant Barla Cambazoglu for their supporting friendship and instructive

comments.

Finally, I would like to thank my mother and father for their everlasting
support. Without their support, I could not have come so far to express my

gratitude to anyone in this page.

vi

Contents

1 Introduction

2 Framework
2.1 Application Model
2.2 Heterogeneous Computing Model . . .

221 Cost Model

3 Existing Scheduling Heuristics
3.1 Structure

3.2 Flaws

4 Hypergraph Partitioning
4.1 Hypergraph Partitioning Problem . . .

4.2 Iterative-Improvement Based Heuristics

5 Proposed Refinement Approach

vii

10

10

13

16

16

18

19

CONTENTS viii

5.1 Hypergraph Partitioning Models for Task Assignment in Hetero-

geneous Environments Lo 20

5.2 Structure of the Refinement Heuristics 24

6 Implementation Choices 34
6.1 Initial Task Assignment Phase 34
6.2 Refinement Phase oL 35
6.3 Execution Ordering Phase 35
6.4 Overall Complexity Analysis 35

7 Heuristics for the Clustered Framework 37
7.1 Existing Constructive Scheduling Heuristics 37
7.2 Proposed Scheduling Heuristic 38

8 Experimental Results 44
8.1 Heterogeneous master-slave platform creation 45
8.2 Task execution time estimation 45
83 Results. 47

9 Conclusion 58

Bibliography 60

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

4.1

5.1

5.2

5.3

5.4

5.5

Basic master-slave communication network adapted from [17, 18] . 7

Clustered master-slave communication network adapted from [9, 10] 8

Structure of heuristics by Casanova et al. [9, 10] 11
Structure of heuristics by Giersch et al. [17, 18] 12
A flaw of the greedy constructive approach for communication-

intensive tasks Lo 13
Another flaw of the greedy constructive approach 14
A sample partitiono Lo oo 17

Representation of a task-to-processor assignment as a hypergraph

partition 20
Structure of UB-Refinement stage 26
Structure of LB-Refinement stage 27
Global update operations for UB- and LLB-Refinement stages . . . 28
UB-Refinement heuristics: leave gain computation for task ¢; . . . 29

X

LIST OF FIGURES X

5.6 UB-Refinement heuristics: arrival loss computations and best pro-

cessor selection for task ¢; 30
5.7 LB-Refinement heuristics: leave gain computation for task ¢; . . . 31

5.8 LB-Refinement heuristics: arrival loss computations and best pro-

cessor selection for task ¢; L. 32

6.1 Execution ordering phase 36

7.1 Clustered platform: Global update operations for UB- and LB-
Refinement stages 39

7.2 UB-Refinement heuristics for the clustered platform: leave gain

computation for task ¢; Lo 40

7.3 UB-Refinement heuristics for the clustered platform: arrival loss

computations and best processor selection for task ¢; 41

7.4 LB-Refinement heuristics for the clustered platform: leave gain

computation for task ¢; 42
7.5 LB-Refinement heuristics for the clustered platform: arrival loss

computations and best processor selection for task ¢; 43
8.1 Piecewise linear approximation 46

8.2 Execution times of the phases of the IIS heuristic in seconds: (a)

basic master-slave platform, (b) clustered master-slave platform . 56

List of Tables

3.1

3.2

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Definitions for the heuristics proposed by Casanova et al. [9, 10]

Definitions for the heuristics proposed by Giersch et al. [17, 18] . .

Sample ETC Matrix
Effects of the Implementation Choices in the Refinement Phase
Effectiveness of the Proposed Assignment Objective Functions . .

Effects of the Number of Alternating Sequences in a UB- and LB-
Refinement Stage Lo

Effectiveness of the Refinement
Relative Performances of Heuristics: Basic Master-Slave Platform

Relative Performances of Heuristics: Clustered Master-Slave Plat-

xi

11

12

47

47

48

49

50

52

Chapter 1

Introduction

Grid [16, 19] is a distributed computing infrastructure designed for resource shar-
ing and problem solving on a global scale. The existence of such a distributing
infrastructure is important because the excessive need of computing power for
today’s advanced science and engineering problems emerges the need of a de-
centralized system which can be used by dynamic and multi-institutional sets of
individuals or institutions. The sharing of Grid resources must be controlled by
the resource providers and customers to specify what resources are shared, who
can share a resource, who can use a shared resource and how a shared resource is
used. A set of users specified with such rules is called a virtual organization(VO)
in the literature. The aggregated resources like computing power, bandwidth,
storage and memory form a huge environment with enormous potential, however,
efficient use of this potential needs careful planning for resource management to
improve the problem solving phase. This challenge arises the need of advanced
tools for resource monitoring, discovery and selection process as well as advanced

algorithms for assignment /scheduling of the submitted tasks [15].

In this work, we investigate the scheduling of independent but file-sharing
tasks on heterogeneous master-slave environments. This scheduling framework
has been recently studied in [7, 9, 10, 17, 18] for adaptive scheduling of parameter-
sweep-like applications in Grid environments. Such applications arise within the

Application Level Scheduling (AppLeS) project [7]. In this framework, the input

1

CHAPTER 1. INTRODUCTION 2

files for tasks are initially stored in the master processor, and slave processors,
which are responsible for task executions, have different network access band-
widths and different computing powers. Although tasks are independent, i.e.
there are no inter-task communications, they may need same files to start their
computation, so there is still an interaction between them. A file must be trans-
ferred to a slave if one or more of the assigned tasks need this file. If two or more
tasks, which need the same file, are assigned to the same slave, the file will be
transferred only once. Obviously, assigning such two or more tasks to the same
slave may be useful, since this decreases number so the amount of file transfers.
The objective of the scheduling problem is to find a schedule that minimizes
the parallel execution time of the target applications on the given master-slave

platform.

In Grid systems, the environment variables such as the execution times of tasks
on heterogeneous processors and the bandwidth values of the network dynamically
change due, respectively, to the loads of processors and the congestion in the
network. Since creating a good schedule depends on the quality of the information
used, the system state must be monitored by an information agent to enable
the generation of better schedules for the execution of the target application.
Such an agent can estimate the network bandwidths and task-execution times
from previous executions, machine benchmark values or information provided by
users. These estimations can be useful to create an adaptive scheduling tool. In
our model, we assume that task-execution times and network bandwidth values
remain constant during each schedule period, however, the dynamic nature of
the processors and network is assumed to be modeled by using up-to-date values
for these environment variables obtained by an information agent before each

schedule generation period.

Task scheduling in such heterogeneous environments is harder than schedul-
ing in homogeneous environments and it is an important problem for today’s
computational Grid [15] which contains highly heterogeneous environments. In
a heterogeneous environment, highly interacting tasks with lots of shared files
might have different favorite processors so that it may not be feasible to assign

them to the same processor because of appropriate resource utilization. Even

CHAPTER 1. INTRODUCTION 3

if such tasks may have the same favorite processor, that processor might have
relatively low bandwidth so assigning these tasks to that processor can increase

the file transfer time although this decision decreases the file transfer amount.

Several heuristics were recently proposed for the target framework and this
work is a consequence of two previous works by Casanova et al. [9, 10] and Gier-
sch et al. [17, 18]. Casanova et al. [9, 10] extended three heuristics, namely Min-
Min, MazMin and Sufferage, which were initially proposed in [25] for scheduling
independent tasks. They used these extended heuristics in the AppLeS Parameter
Sweep Template (APST) project [7]. They also proposed a new heuristic XSuffer-
age exclusively for APST. After this work, Giersch et al. [17, 18] proposed several
different heuristics. Their heuristics run several hundred times faster than exist-

ing ones and their scheduling performance are nearly equal to the ones in [9].

All of the existing heuristics are greedy and constructive, that is, they directly
construct the schedule with consequent scheduling decisions of the unscheduled
tasks one at a time without using any other information other than a greedy
decision criterion which depends on the momentary completion time values of
tasks. We claim that this greedy decision criterion cannot use the file sharing
information effectively because of the scheduling decisions which depend on the
momentary completion time values of unscheduled tasks. The consequences of
this inefficiency may produce lots of file transfers and this can considerably in-
crease the execution time of the schedule especially when file sizes are large. Even
the file transfer times are comparable to task execution times, balancing compu-
tational loads of the processors can be hard since all existing scheduling heuristics
tend to schedule a task on an overloaded processor because the file transfers al-
ready scheduled to a processor make the respective processor more favorable for
next scheduling decisions. Such problems are closely related to the parallel execu-
tion time of a schedule and can decrease the performance of a scheduling heuristic
drastically. These flaws of the existing constructive scheduling approach will be

explained in Chapter 3.

CHAPTER 1. INTRODUCTION 4

Instead of the direct construction of schedules, we propose a three-phase
scheduling approach which involves initial task assignment, refinement and ex-
ecution ordering phases. For the refinement phase, we propose an elegant
hypergraph-partitioning-like formulation with two novel smooth objective func-
tions and use iterative-improvement based heuristics for refining the task assign-
ments according to these objective functions. The effectiveness and efficiency of
the iterative-improvement heuristics, which are widely and successfully used for
hypergraph partitioning, depend on the smoothness of the objective functions
they improve but the actual scheduling cost does not have this property. Fortu-
nately, the smoothness of proposed objective functions enables the use of these
heuristics for refining the task assignments successfully. The first assignment
objective function represents an upper bound while the second one represents a
lower bound for the execution time of a schedule. The former one corresponds
to a pessimistic view while the latter one corresponds an optimistic view for the

execution scheme of a schedule.

Experimental results on a wide range of synthetically generated heteroge-
neous master-slave frameworks show that the proposed three-phase scheduling
approach performs much better than the existing greedy constructive heuristics.
The experiments vary with respect to computation-to-communication ratio of the
applications. When this ratio is big, the tasks of the applications in the experi-
ment can be thought to consume more time for computation when compared to
file transfer times. Obviously when this ratio is small, file transfer times consume
more time than the task executions. The detailed explanation of this ratio can
be found in Chapter 8.

We will use the terms basic and clustered master-slave frameworks for the two
simulated master-slave environments. The basic one contains a master proces-
sor and several slave processors as mentioned before. A clustered master-slave
framework is similar to the basic one. In this framework, multiple slave processors
construct a cluster and a cluster takes the advantage of existence of a file storage
unit which stores all of the transferred files needed by a task, which is scheduled

on a processor in the respective cluster. So, if two or more tasks, which need the

CHAPTER 1. INTRODUCTION 5

same file, are assigned to the processors in the same cluster, this file will be trans-
ferred to the file storage unit of the respective cluster only once. These platforms
will be explained in detail in Chapter 2. For the sake of clarity, we introduce the
proposed scheduling approach for the basic-master slave platform, then we give

the modifications to the proposed approach for the clustered platform.

The rest of the thesis is organized as follows: The details of the scheduling
framework are presented in Chapter 2. Chapter 3 discusses the structure and flaws
of the existing constructive scheduling heuristics. The background material on the
hypergraph partitioning problem and iterative-improvement heuristics is given
in Chapter 4. Chapter 5 presents and discusses the models and methodologies
used in the proposed refinement phase. Our implementation scheme and the
complexity analysis for the proposed three-phase approach are given in Chapter 6.
Chapter 7 briefly mentions the modifications needed for adapting the proposed
approach to the clustered master-slave framework. The experimental evaluation
of the proposed scheduling approach is presented in Chapter 8. And finally
Chapter 9 concludes the thesis.

Chapter 2

Framework

Here, we briefly summarize the target scheduling framework that consists of a

class of applications, a computing platform and a cost model.

2.1 Application Model

The target application is represented as a two tuple A = (7,F). Here T =
{t1,ta,...,t,} denotes the set of n independent tasks which depend on the subsets
of aset F ={f1, f2,..., fm} of m files as inputs. There is no data dependency or
interprocess communication between the tasks. The only reason for an interaction
among the tasks is the existence of files that are inputs to several tasks. Files can
have different sizes; the size of a file fy is denoted as w(fx). The set of files used by
a task t; is denoted as files(t;) and the total size of the files in files(¢;) is denoted
as w(files(t;)), i.e., w(files(t;)) = D cfiresryy W(fr)- Finally, [A| denotes the
total number of file requests in the application A, i.e., |A] = >, . [files(t;)|.

CHAPTER 2. FRAMEWORK 7

Master

=

il

fn

P1 P2 Py

Figure 2.1: Basic master-slave communication network adapted from [17, 18]

2.2 Heterogeneous Computing Model

The target computing platform is a heterogeneous system based on the well-
known master-slave paradigm [5]. In this paradigm, there exist a master server as
a repository for all files and a set P = {py, pa, ..., p,} of p slaves/processors. Each
processor can be any computing system from a single processor workstation to
a high performance parallel architecture. Fig. 2.1 represents the communication

topology of the network as a graph.

The single-port communication model is assumed for the file transfers from
the server to processors. In this model, only one processor can download a file
from the server and only one file can be transferred by a processor at a time.
The network heterogeneity is modeled by assigning different bandwidth values to
the links between the server and processors. In Fig. 2.1, b, value, associated with
the edge between the server and processor py, represents the bandwidth from the
server to processor pp, for £ =1,...,p. Task executions and file transfers can
overlap on a processor. That is, a processor can execute a task while it is down-
loading a file needed for another task that is scheduled on the same processor.
Note that Fig. 2.1 does not contain any communication links between processors
in order to point out that the framework does not encapsulate the possibility of

file exchange between processors instead of downloading from the server.

CHAPTER 2. FRAMEWORK 8

.
.
.
.
4 .
b% / ’
. -

’ ., --

. -

.

bid, mmm bLg
Master
clih clth

Figure 2.2: Clustered master-slave communication network adapted from [9, 10]

A clustered master-slave platform is also considered as the target computing
environment. The clustered platform differs from the above-mentioned basic one
in the following aspects: Each processor node of the basic master-slave platform
effectively becomes a cluster of processors, which is served by a local file storage
unit for that cluster. That is, we have a set CL = {¢cly,cls,...,cl.} of ¢ clusters
and a set FS = {fsy, fSqg,...,[s.} of ¢ local file storage units, where fs; is
the file storage unit of cluster cl;. fs; is responsible for storing transferred files
to cluster ¢l; until the end of the schedule. Fig. 2.2 displays the main features
of this framework. The network heterogeneity is modeled by assigning different
bandwidth values to the links between the server and file storage units of the
clusters. The intra-cluster communication costs and congestion due to the local
file transfers from a file storage unit is not considered, because intra-cluster file

transfers are assumed to be much faster than the file transfers from the server.

For both master-slave platforms, the task and processor heterogeneity are
modeled by incorporating different execution times for each task on different
processors. We use ¢;; to denote the execution time of task ¢; on a processor
pe. The estimated execution-time values of the tasks are stored in an nxp ETC

(Expected Time to Compute) matrix. The ETC matrix can be consistent or

CHAPTER 2. FRAMEWORK 9

inconsistent in terms of the relation between execution times of different tasks [3].
An ETC matrix is said to be consistent if a processor can execute some task ;
faster than another processor then this relation must be true for all other tasks. If
there is no such relation between execution times then the ETC matrix is said to
be inconsistent. A further categorization of ETC matrices is a partially-consistent
ETC matrix [8, 25] which is a special type of inconsistent ETC matrices. In
each partially-consistent ETC matrix there is a consistent sub-matrix with a
structured relation between execution times of tasks and processors. We believe
that an inconsistent ETC matrix is a better model for the Grid system since Grid
contains very heterogeneous computing resources with different task-execution
characteristics [1]. Detailed explanation of execution time estimation process can
be found in Chapter 8.

2.2.1 Cost Model

The cost of a schedule is the parallel execution time of the application in the
computing environment. The schedule can be considered as a time-line which
starts with the first file transfer from the server and ends with the completion
of the last task execution. So the objective of the target scheduling problem
is to assign the tasks of the target application to suitable processors and order
the inter- and intra-processor task executions in such a way that the parallel

execution time of the application is minimized.

For the sake of clarity, we give the important definitions and assumptions only
for the basic master-slave platform. These concepts can be easily modified for the
clustered master-slave platform. The time spent for the transfer of file f; from
the server to processor py is w(fy)/be. A task t; becomes ready for execution on
a processor p; after all its input files are transferred by the processor from the
server. The transferred files are assumed to be stored by the processors until the
end of the schedule, so for a pair of tasks ¢; and ¢; assigned to same processor py,

a file needed by both ¢; and ¢; is transferred to p, only once.

Chapter 3

Existing Scheduling Heuristics

In this chapter, we first summarize the structure of existing constructive schedul-

ing heuristics and then discuss their flaws.

3.1 Structure

Fig. 3.1 shows the structure of the heuristics used by Casanova et al. [9,
10]. In Fig. 3.1, the completion time CT(¢;, ps) of task ¢; on processor p, is
computed by taking the previously scheduled tasks into account. That is, the
file transfers of unscheduled tasks cannot be initialized before the file transfers of
scheduled tasks, and the executions of unscheduled tasks on a candidate processor
cannot be initialized before the completion of the scheduled tasks on the same
processor. The scheduling objective function f and the meaning of the “best”
characterize these heuristics as shown in Table 3.1. As seen in Fig. 3.1, computing
the completion times for all task-processor pairs takes O(pn+p|.A|) time for each
scheduling decision. As this decision is made once for each task, the total time

complexity of these heuristics is O(pn? + pn|AJ).

After Casanova et al. [9, 10], Giersch et al. [17, 18] proposed several different

heuristics. These heuristics have better time complexity and their solution quality

10

CHAPTER 3. EXISTING SCHEDULING HEURISTICS 11

1: while there remains a task to schedule do

2 for each unscheduled task ¢; do

3 for each processor p; do

4 Evaluate completion time CT'(t;,pg) of ¢; on py

5: Evaluate scheduling cost f(CT'(t;,p1),...,CT(ti,pp)) for task t;

6 Choose task t;, with the “best” scheduling cost

7 Pick the best processor py, for ¢;, with minimum completion time

8 Schedule #;, on py, , schedule its file transfers and execution as soon as possible
9 Mark t;, as scheduled

Figure 3.1: Structure of heuristics by Casanova et al. [9, 10]

Heuristics Function f best
MinMin minimum of all CT'(¢;, p¢) values minimum
MaxMin minimum of all CT'(t;, p¢) values maximum

Sufferage difference between 2nd minimum and maximum
minimum of all CT'(¢;,p¢) values

Table 3.1: Definitions for the heuristics proposed by Casanova et al. [9, 10]

is comparable with those of the previous heuristics. Fig. 3.2 shows the structure
of these heuristics. Table 3.1 displays the objective functions proposed by Gier-
sch et al. [17, 18] for a task-processor pair (¢;, p;) based on the computation time
Comp(t;, pr) = ¢y and communication time Comm(t;, p) = w(files(t;))/be val-
ues of t; when it is executed on p,. The additional policies readiness, shared and
locality proposed by Giersch et al. [17, 18] are also explained in Table 3.1. As seen
in Fig. 3.2, the heuristics construct a task list for each processor, which is sorted
with respect to various objective values in step 4. For an efficient implementa-
tion, we compute the total file sizes for all tasks, i.e., w(files(t;)) values, in 0(|.A])
time in a preprocessing step. In this way, the objective value computations for all
task-processor pairs takes 6(pn + |A|) time, so the construction of all sorted lists
takes O(pnlogn + |A|) time. The while loop for scheduling tasks in step 5 takes
O(pn|Al|) time. So the overall time complexity becomes O(pnlogn + pn|Al).

CHAPTER 3. EXISTING SCHEDULING HEURISTICS

1: for each processor p; do
for each task t; do
Evaluate OBJECTIVE((t;, p)
Build the list L(py) of the tasks sorted according
to the value of OBJECTIVE((t;, p¢)

while there remains a task to schedule do

2:

for each processor py do
Let ¢; be the first unscheduled task in L(py)

Evaluate completion time CT'(t;,pg) of t; at py

Pick a task-processor pair (t;,,ps,) with minimum completion time

12

Schedule ¢;, on py, , schedule its file transfers and execution as soon as possible
Mark t;, as scheduled

Figure 3.2: Structure of heuristics by Giersch et al. [17, 18]

Heuristic Objective Function Task Selection Order w.r.t.
Objective Function

Computation Comp(ti, pe) increasing

Communication Comm(t;,p¢) increasing

Duration Comp(t;,p¢) + Comm(t;,p;) increasing

Payoff Comp(t;,p¢) | Comm(t;,p;) decreasing

Advance Comp(ti,pr) — Comm(t;,p;) decreasing

Additional Policy

Explanation

Readiness

Shared

Locality

Selects a ready task for a processor, if one exists. A task
is called ready for processor py, if the transfers of
all input files of the task to p; are previously scheduled.

While calculating w(files(t;)), a scaled version of sizes

are used. The scaled size of a file is calculated by dividing
its original size to the number of tasks that need this file

as an input. This policy is redundant with the Computation
objective function

To reduce the amount of file transfers, locality tries to avoids
assigning a task to a processor if some of the files used by the
task were already scheduled to be transferred to another
processor.

Table 3.2: Definitions for the heuristics proposed by Giersch et al. [17, 18]

CHAPTER 3. EXISTING SCHEDULING HEURISTICS 13

File P
Transfers J? 2
1 Task
Executions
File BEssiasissicic
p Transfers 6 (1(:
Task
Executions 5 —10—

Schedule created by MinMin: {<t 1P > <ty p,><t,p, >} Cost:48.5

4

File A
Transfers et 20
1 Task

5

o]

3

p 6 |10 5| 1 Executions
File

P Transfers

Task
Executions

Better Schedule: {<t, p ><t,p,><t

3P >} Cost:39.5

Figure 3.3: A flaw of the greedy constructive approach for communication-
intensive tasks

3.2 Flaws

The task-processor pair selection according to the momentary completion time
values is the greedy decision criterion commonly used in all existing constructive
heuristics. This criterion suffers from ineffective use of information about file
sharing among the tasks. This flaw is likely to increase with increasing amount
of file sharing and can incur extra file transfers in the resulting schedule. Since
total file transfer amount from the server is a bottleneck under the single-port
model, extra file transfers can deteriorate the quality of the schedule, especially
for communication-intensive tasks. We say a task is communication-intensive, if
file transfer time for the task dominates its execution time. A similar problem

can be seen in Fig. 3.3 for the MinMin heuristic.

Fig. 3.3 displays a sample communication-intensive application with three
tasks and two large files. As seen in the figure, MinMin schedules t3 on p, after
scheduling #; on p; ignoring the fact that ¢ needs both files. This greedy choice
guarantees an extra transfer of file f; since an extra transfer of file f; or file f,
for the processor ps or p; will be needed, respectively. The completion time of

to is smaller when it is scheduled on py so MinMin creates a schedule with 48.5

CHAPTER 3. EXISTING SCHEDULING HEURISTICS 14

File HHPHHH
Transfers (7 2

1 Task B \\
Executions 12 l 10
File
p Transfers
Task
Executions
Schedule created by MinMin: {<t;p,><t,p,><t p, >} Cost:35
File HH=
1 Transfers BH 7 H
1 Task ,<
p 4 7 | 17| 1 Executions 12
File jasesianes
D, Transfers 222@:)
Task
Executions 7

Better Schedule: {<t,p;><t,p,><t,p,>} Cost:26

Figure 3.4: Another flaw of the greedy constructive approach

time units of execution and an extra file transfer of f;. However, there is another
schedule without this extra file transfer and with better execution time as shown
in Fig. 3.3. The scheduling performance of heuristic MinMin considerably worsen
because of the extra file transfer it contains since file transfer times dominate task

execution times of tasks due to the large file sizes.

Although extra file transfers constitute crucial bottleneck because of the
single-port assumption and single master model, they can also be necessary for
efficient utilization of computational resources, especially when tasks have com-
parable computation and communication times. However, if initial scheduling
decisions create a computational imbalance, the following greedy decisions may
not be able to resolve this problem. Although computational balance can be
obtained by assigning the unscheduled tasks to the processors with lower com-
putational loads, the processors that are computationally overloaded due to the
previous scheduling decisions are likely to be more favorable for future task assign-
ments since in addition to being already favorable they have lots of file transfers
already scheduled. Because of these effects, if former scheduling decisions lead
the greedy heuristic to a schedule with a computational imbalance, it is not trivial
to resolve this problem as expected. A similar problem can be seen in Fig. 3.4
for the MinMin heuristic.

CHAPTER 3. EXISTING SCHEDULING HEURISTICS 15

Fig. 3.4 illustrates a sample application with three tasks and three small files.
As seen in the figure, MinMin schedules t5 on p; after scheduling ¢; on p; because
of the cost of the extra transfer of file f; in case of scheduling ¢, on p,. However,
MinMin ignores the fact that scheduling ¢3 on p; does not require any extra file
transfer. After faster processor p; is overloaded by these two scheduling decisions,
it becomes more favorable since both f; and f, are already transferred to p;. So,
when MinMin tries to schedule t3 on the empty processor po, an extra transfer of
f1 is required and this cannot be accomplished before the 19¢h time unit due to the
previous file transfers. Since py is also slightly slower than pq, if 3 is scheduled
to p2, the execution time of the schedule increases considerably. So MinMin
avoids extra file transfers and generates a schedule with 35 time units because
of scheduling all tasks onto the fastest processor. At last, MinMin schedules t3
on the overloaded processor p;, however, there is a much better schedule that
utilizes both processors and has a lower parallel execution time of 26 units as
shown in Fig. 3.4. This schedule is optimal but another optimal schedule can

also be achieved by scheduling t3 on py, t5 on py and t; on p;, respectively.

Having such problems like the ones in examples given above may be reasonable
for a greedy constructive approach in the sense of optimality since the target task
scheduling problem is NP-Hard [17, 18]. Neither the minimum total file transfer
time, nor the perfect computational load balance are necessary and sufficient for
the optimality of a schedule. However, it is obvious that these costs usually tend
to be bottleneck for schedules. especially at the extreme values of computation-
communication ratio. We claim that a greedy constructive scheduling heuristic
cannot minimize these conflicting costs easily because of the local information

usage and we propose a refinement heuristic to resolve these flaws.

Chapter 4

Hypergraph Partitioning

In this chapter, we present the background material on hypergraph partitioning
and iterative-improvement heuristics which are exploited in our proposed schedul-

ing approach.

4.1 Hypergraph Partitioning Problem

A hypergraph H = (V, N) is defined as a set of vertices V and a set of nets
(hyperedges) N among these vertices [6]. Every net n; in N is a subset of
vertices, i.e. ny C V. The vertices in a net n, are called its pins. The set of nets
that contain vertex v; is denoted as nets(v;). The total number of pins denotes
the size of the hypergraph. Weights can be associated with vertices and nets.
Graph is a special instance of hypergraph such that each net has exactly two

pins.

I = {V,Vs,...,Vk} is a K-way vertex partition of H if each part Vj is
nonempty, parts are pairwise disjoint and the union of parts give V. In II, a net
is said to connect a part if it has at least one pin in that part. The connectivity set
Ay of a net ny is the set of parts that nj connects and the connectivity Ay = |Ag|

of ny is the number of parts it connects. If \; is equal to one, i.e., Ay =V then

16

CHAPTER 4. HYPERGRAPH PARTITIONING 17

ny is said to be internal to the part V. In II, the weight of a part is the sum of

the weights of the vertices in that part.

The K-way hypergraph partitioning problem is defined as finding a K-way
vertex partition that optimizes a given objective function while preserving a given
partitioning constraint. The weighted connectivity—1 metric is frequently used in
VLSI circuit partitioning [23] and scientific computing [4, 11, 27]. In this metric,
the contribution of each net ny to the objective function is w(ng)(Ax — 1), where
w(nyg) denotes the weight of net ny. So, the contribution of the internal nets to
the objective function is zero. The partitioning objective in this metric is the

minimization of CutSize(II) which is given as:

CutSize(Il) = Y w(mg)(A — 1) (4.1)
nkGN

The partitioning constraint is to maintain a balance on the part weights, i.e.,

(Wmax - Wavg)/Wtwg S €, (42)

where W,,,, is the weight of the part with the maximum weight, W,,, is the

average part weight and e is a predetermined imbalance ratio.

Figure 4.1: A sample partition

Fig. 4.1 illustrates a partition of an hypergraph with five vertices and three

nets. Nets nq; and n, are internal to the parts V; and Vs, respectively so their

CHAPTER 4. HYPERGRAPH PARTITIONING 18

contributions to the objective function, i.e., CutSize(Il), are zero. The con-
nectivity of net ns, A3, is two, so its contribution to the objective function is
10 x (2 — 1) = 10. The part weights are 8 and 19 for parts V; and Vs, respec-
tively.

4.2 TIterative-Improvement Based Heuristics

The refinement heuristics proposed in this work are based on the iterative-
improvement heuristics introduced by Kernighan-Lin (KL) [22] and Fidducia-
Mattheyses (FM) [14]. Both KL and FM heuristics are move-based approaches
with the neighborhood operator of swapping a pair of vertices between parts or
shifting a vertex from one part to another, respectively. These heuristics have
been widely used for graph/hypergraph partitioning by VLSI [23, 2, 20, 21] and
scientific computing [4, 11, 27, 12] communities because of their effectiveness with

good-quality results and efficiency with short run times.

The FM algorithm, starting from an initial bipartition, performs a number
of passes until it finds a locally-optimal partition, where each pass contains a
sequence of vertex moves. The fundamental idea is the notion of gain, which is
the decrease in the cost of a bipartition by moving a vertex to the other part.
Several FM variants were proposed for the generalization of the approach to K-

way refinement [26].

Chapter 5

Proposed Refinement Approach

Both effectiveness and efficiency of FM-based heuristics depend on “the smooth-
ness” of the objective functions over the neighborhood structure [2], i.e., the
neighborhood operator should be small and local. However, a direct generaliza-
tion of FM-based heuristics to the task scheduling problem suffers from disturbing
this smoothness criterion. Removing a task from a processor and scheduling it
among previously scheduled tasks of another processor incurs a global perturba-
tion in the schedule, because previously scheduled tasks affect the initialization
and completion times of executions of the waiting tasks. Due to this global ef-
fect of a task move operation, computing the gain, which is the change in the
execution time, is a time consuming work and its time complexity is as high as

computing the parallel execution time of a given schedule.

In order to alleviate the above problem, we consider the task scheduling prob-
lem as involving two consecutive processes: task assignment process which deter-
mines the task-to-processor assignments, and execution-ordering process which
determines the order of inter- and intra-processor task executions. This view
enables the use of FM-based heuristics effectively and efficiently in the task-
assignment process by proposing smooth assignment objective functions that are
closely related to the parallel execution time of a schedule. This refined task-
to-processor assignment can then be used to generate better schedules during

execution-ordering process.

19

CHAPTER 5. PROPOSED REFINEMENT APPROACH 20

5.1 Hypergraph Partitioning Models for Task
Assignment in Heterogeneous Environ-

ments

We propose to use a hypergraph H 4 = (7, F) to represent the interaction among
tasks in the target application A = (7,F). In this model, the vertices of the
hypergraph represent the tasks and the nets represent the files. The pins of a
net correspond to the tasks that use the respective file. Because of this natural
correspondence between a target application and a hypergraph, we describe our
algorithms using the problem-specific notation of Chapter 2 instead ofspecific
notation, as much as possible, for clarity of presentation. For example, we will use
files(t;) instead of nets(t;). The size of a file is the weight of the corresponding
net. A p-way vertex partition II = {7;,75,...,7,} of H4 can be decoded as
inducing a task-to-processor assignment for a target schedule. That is, all tasks
in a part 7, will be executed by processor p, in the target schedule. For a task-

to-processor assignment I, Map(t;) denotes the processor p, where t; € T,.

P1 P2

ty
O4 f, f t
t, —® I 2.{—{);51

Figure 5.1: Representation of a task-to-processor assignment as a hypergraph
partition

As proposed in [4, 11, 27], the general task-to-processor assignment problem
can be effectively formulated as a hypergraph partitioning problem for homo-
geneous parallel environments. Fig. 5.1 illustrates a simple task assignment of
five tasks to two processors as a 2-way partition of corresponding hypergraph.
If the master-slave platform is homogeneous, i.e., processors are identical and

server-to-processor bandwidth values are equal, the partitioning objective given

CHAPTER 5. PROPOSED REFINEMENT APPROACH 21

in Eq. 4.1 and the load balancing constraint given in Eq. 4.2 can be used ef-
fectively and efficiently for the refinement after modeling tasks and files as a
hypergraph. However, the heterogeneity of the environment brings difficulties to
the formulation of the task assignment problem. For this purpose, we propose
new assignment objectives, which can be generalized as partitioning objectives of

the hypergraph partitioning problem for heterogeneous environments.

In a given task-to-processor assignment I, each file will be transferred at least
once since it is used by at least one task. Consider a cut net n; with connectivity
Ap In II. It is clear that A\, — 1 denotes the number of additional transfers of
file fy incurred by II. Hence w(fy)(Ax — 1) represents the additional transfer
volume, whereas w(fx)A\r denotes the total transfer volume for file fi. That is,
the weighted connectivity metric is the correct metric, rather than the weighted
connectivity—1 metric, for encoding the total file transfer volume in a given task-

to-processor assignment as shown below:

CommVol(Il) = Z w(fr) k- (5.1)
fr€F

As an example, in Fig. 5.1, files f; and f, will be transferred to processors p; and
P2, respectively. So, they contribute to the communication cost of this task-to-
processor assignment, however, they do not contribute to the objective function
of the hypergraph partitioning problem if weighted connectivity—1 metric is used
because they are internal nets. It is obvious that minimizing CommVol(II) is
equal to minimizing CutSize(Il) since CommVol(Il) =CutSize(l1)+)_; c» w(fi)

and the second term is only a constant factor.

Eq. 5.1 can also be used to represent total file transfer time if the network is
homogeneous by normalizing file sizes with respect to the bandwidth value. In
that case, minimization of total file transfer volume or total file transfer time are
equivalent. However, master-slave platforms contain heterogeneous networks with
different server-to-processor bandwidths. This forces us to modify the conven-
tional definition of the connectivity of a net n; in which different parts connected

by n; make equal contribution to the connectivity of ny. Since we want total file

CHAPTER 5. PROPOSED REFINEMENT APPROACH 22

transfer time as the real communication cost and bandwidth values of the links
are different, we define a heterogeneous connectivity for files in the task assign-

ment problem for heterogeneous environments. The heterogeneous connectivity
A, of a file f; as:

(5.2)

where A, denotes the set of processors that has at least one task needing f%
as input to start its execution. Then total communication time, i.e., total file

transfer time, can be defined as:

CommTime(IT) = Z w(fr) - (5.3)
JREF

The computational cost of a task-to-processor assignment Il to the environ-
ment is the load of the maximally loaded processor since computations are done

in parallel. That is,

CompTime(Il) = max (Z Cig). (5.4)

The processor heterogeneity creates difficulties in modeling the computational
cost of a task-to-processor assignment II. The balancing constraint in hyper-
graph partitioning problem correctly encodes the computational load balance of
a parallel system with homogeneous processors. In homogeneous environments,
the average part weight (Ws,, in Eq. 4.2) can be considered as a lower bound
for CompTime(II) if a vertex weight represents a computational cost to its part.
Similarly, W, can be considered as CompTime(I1) which is the exact parallel
computational cost of the partition. So in homogeneous environments, the load

balancing constraint given in Eq. 4.2 can be used for minimizing CompTime(II).

CHAPTER 5. PROPOSED REFINEMENT APPROACH 23

However, in heterogeneous environments, since the same task incurs different
computational costs to different processors, a lower bound for parallel compu-
tational cost of Il cannot be treated as a constant as in the hypergraph par-
titioning formulation for homogeneous environments. So we should rather in-
clude CompTime(IT) explicitly in the assignment objective function as well as
CommTime(II).

Here, we propose two novel assignment objective functions. The first one rep-
resents an upper bound for the parallel execution time of a schedule with a pes-
simistic view that assumes no overlap between communication and computation.
We call it a pessimistic view since it excludes the possibility of communication-
computation overlap between different processors as well as on the same proces-
sor. For example, a schedule, in which all task executions commence only after
the completion of all file transfers from the server, constitutes a typical schedule
for this pessimistic view. Under this pessimistic view, the execution times of all
possible schedules that can be derived from a given task-to-processor assignment

IT are bounded above by

UBTime(IT) = CommTime(I1) + CompTime(IT). (5.5)

Note that this upper bound is independent of the order of task executions for a

given task-to-processor assignment II.

The second assignment objective function represents a lower bound for the
execution time of a schedule. As mentioned in Chapter 2, a processor can ex-
ecute a task while that or other processor is transferring a file from the server,
so computation and communication can overlap. Even with an optimistic view
that assumes complete overlap between communication and computation, the
execution times of all possible schedules that can be derived from a given task-

to-processor assignment I are bounded below by

LBTime(IT) = maz{CommTime(II), CompTime(II)}. (5.6)

CHAPTER 5. PROPOSED REFINEMENT APPROACH 24

Note that this lower bound is also independent of the order of task executions
for a given task-to-processor assignment I1. This bound is unreachable because
of the nonoverlapping cases at the very beginning and end of a schedule. A
schedule must begin with a file transfer and the respective task execution cannot
be initialized until the completion of this file transfer. A schedule must also end
with a task execution on its bottleneck processor. All file transfers from the server
to all processors should be completed before the completion of the execution of
this task. It is clear that these are the only time intervals that excludes the
possibility of an overlap between computation and communication. The length
of these nonoverlapping intervals are negligible with respect to the total execution

time of a schedule due to the large number of tasks.

These two assignment objectives are closely related to the execution time of a
schedule and their minimization can generate good task-to-processor assignments
which can be used to obtain schedules with better execution times. Instead of
one objective as in hypergraph partitioning problem, we have two assignment
objectives and there are various options to improve them. The details of our

approach are given in the following section.

5.2 Structure of the Refinement Heuristics

It is clear that the effectiveness of the refinement phase depends on considering
both objective functions simultaneously. Since the objective functions represent
upper and lower bounds for the parallel execution time, the aggregate objective
should be closing the gap between these two objective functions while minimiz-
ing both of them. For this purpose, we propose to use an alternating refinement
scheme in which refinement according to one objective function follows the re-
finement according to the other one in a repeated pattern. The refinement of
a task-to-processor assignment II according to UBTime(II) or LBTime(II) is

referred to here as UB-Refinement or LB-Refinement stage, respectively.

CHAPTER 5. PROPOSED REFINEMENT APPROACH 25

In the alternating scheme, using FM-based heuristics separately and indepen-
dently for the minimization of the respective objective function is only a partial
remedy for satisfying the aggregate objective. While choosing the best move ac-
cording to one objective function, the effect of the move according to the other
one should also be considered indirectly since the minimization of one objective
function may degrade the value of the other one. For this purpose, we propose
to modify the move selection policy of FM-based approach accordingly in the
LB-Refinement stage and/or in the UB-Refinement stage. We do not recommend
to apply this modification to both LB- and UB-Refinement stages as this scheme

is expected to restrict the effectiveness of the overall scheme.

In the general FM-based approach, the best move associated with a task corre-
sponds to reassigning the task to another processor that incurs maximum decrease
in the respective objective function. In the proposed modification, a two-level gain
scheme is applied to determine the best move associated with a task through con-
sidering the respective objective function as the primary one while considering
the other objective function as the secondary one. For the first level, a good
move concept is introduced, which selects the moves that decrease the primary
objective function. In the second level, the best move associated with that ver-
tex is selected among these good moves that incurs the minimum increase to the

secondary objective function.

In this work, we recommend to apply the proposed two-level gain computation
scheme either to the both refinement stages or only to the LB-Refinement stage.
The reasons for the latter choice are as follows: First, the variations in the task-
move gains are expected to be larger in UBTime(II) compared to LBTime(II).
Second, UBTime(II) is a relatively loose bound compared to LBTime(II). So,
providing more freedom in the minimization of the loose upper bound while in-
corporating the constraint to the minimization of the relatively tight lower bound
is expected to be more effective for reducing the gap between these two bounds.
Based on these two reasons, we also recommend to start the alternating refine-
ment sequence with UB-Refinement stage. Our experimental results given in

Chapter 8 verify our expectations.

CHAPTER 5. PROPOSED REFINEMENT APPROACH 26

Here, we describe the implementation scheme which adopts the two-level gain
computation scheme in only LB-Refinement stage for the sake of presenting the
use of both the conventional and proposed gain computation schemes. Both UB-
and LB-Refinement stages contain multiple FM-like passes. In each pass, all tasks
are visited in random order. The best move associated with each visited task is
selected according to the adopted gain computation scheme, and this move is
realized if it incurs a positive gain according to the respective objective function.
Note that each task is visited exactly once in a pass and these passes are repeated
until a stopping criterion is met. Figs. 5.2 and 5.3 show the general structures

of UB- and LB-Refinement stages, respectively.

UB-Refinement(II)

while a stopping criterion is met do
Create a random visit order of tasks
for each task ¢; in this random order do

leaveGain + UB-ComputeLeaveGain(t;)

pr, < UB-SelectBestMove(t;, leaveGain)
if py, is not equal to Map(t;) then
UpdateGlobalData(t;, py,)

1:
2
3
4
5: if leaveGain > 0 then
6
7
8
9 Map(t;) < pe,

Figure 5.2: Structure of UB-Refinement stage

For the sake of run-time efficiency of move gain computations, a task move is
considered as a two-step process: task leaves the source processor, which the task
is assigned to, and arrives at the destination processor as a reassignment. So, the
move gain can be considered as the leave gain minus arrival loss. The leave gain
of a task ¢; may include two sub gains. The first sub gain can be obtained in case
of a decrease in CompTime(II) due to a leave from a processor with maximum
computational load. The second sub gain can be obtained in case of a decrease
in CommTime(II) due to the existence of some files that are needed by ¢; and
critical to the source processor. We say a file is critical to a processor if it is an
input to a single task assigned to that processor. This critical file concept is the

counterpart of the critical net concept used in hypergraph partitioning.

CHAPTER 5. PROPOSED REFINEMENT APPROACH 27

LB-Refinement(II)

while a stopping criterion is not met do

Create a random visit order of tasks

1:

2

3: for each task ¢; in this random order do

4 {comm LeaveGain,compLeaveGain} +LB-ComputeLeaveGain(t;)
5

if (CommCost(Il) > CompCost(1l) and commLeaveGain > 0) or
(CompCost(Il) > CommCost(Il) and compLeaveGain > 0) then

6: {pe,, bestCommGain, bestCompGain} <
LB-SelectBestMove(t;, comm LeaveGain, compLeaveGain)
T if py, is not equal to Map(t;) then
8: UpdateGlobalData(t;, py,)
9: CommCost(IT) + CommCost(IT1) — bestCommGain
10: CompCost(IT) + CompCost(I1) — bestCompGain
11: Map(t;) < py,

Figure 5.3: Structure of LB-Refinement stage

After computing the leave gain of task ¢;, an arrival loss value is computed for
each destination processor py,. This value represents the increase in the objective
function in case of the assignment of ¢; to p,. Such a loss can occur due to the
increase in CommTime(IT) and/or CompTime(II). Clearly, if the leave gain of
t; with respect to the primary objective function is negative, it is impossible to
obtain a positive gain in total since an arrival can add only a loss to the total
move gain. In Figs. 5.2 and 5.3, ¢, denotes the index of the best destination

processor selected for the move of the visited task.

The main data structures needed for the implementations are as follows: 0 is
a 2D file-to-processor counter array, where 0(f, p¢) denotes the number of tasks
that need file f; and are assigned to processor p,. Note that if 0(fi,pe) = 1,
then fj is critical to py. Load is a 1D array used to maintain the computational
loads, i.e., times, of processors. Map is a 1D array used to represent task-to-
processor assignment. A linked-list A; is used for each file f; to maintain the
set, of processors that need f;. ¢; and /¢, are used to maintain the indices of
the processors with the maximum and second maximum computational loads,
respectively. Fig. 5.4 displays the pseudocode for the global update operations
common to both UB- and LB-Refinement stages.

CHAPTER 5. PROPOSED REFINEMENT APPROACH 28

UpdateGlobalData(t;, py,)

1: pp Map(ti)

2: for all fi € files(t;) do
0(fr,pe) < 0(frspe) — 1
4: if §(fk,pe) = 0 then

5 Ag < Ap —{pe}

6: 0(fk,pe,) < O(frspe,) +1
7 if 6(fx,pe,) =1 then

8: A +— AL U {pgb}

9: Load(pg,) < Load(pg,) + cie,
10: Load(pg) < Load(ps) — cig
11: Update ¢; and /5

w

Figure 5.4: Global update operations for UB- and LLB-Refinement stages

Figs. 5.5 and 5.6 displays the algorithms used for leave gain and arrival loss
computations in UB-Refinement stage. Recall that, conventional gain computa-
tion scheme is adopted in this stage. The conventional scheme can be considered
as the proposed two-level gain computation scheme with U BTime(II) is both the
primary and secondary objective function. So the good moves are defined the
ones with positive gain, in which both the gain from total file transfer amount
and maximum computational load are included. The best move is the one with
maximum gain among good moves. A positive leave gain can be obtained if
t; needs at least one critical file for its processor, or t; was previously assigned
to processor py,. Otherwise, the move gain computations are unnecessary since
the results are guaranteed to be negative or zero and because of the definition of
good moves, UB-Refinement stage omits these computations as mentioned before.
While computing the gain due to the decrease in CompTime(IT), the maximum
computational load in case of removal of ¢; from processor Map(t;) is calculated
and saved in a variable called leave MaxLoad. This information will be used in

Fig. 5.6 for computing arrival losses for ¢;.

CHAPTER 5. PROPOSED REFINEMENT APPROACH

UB-ComputeLeaveGain(t;)
: pe < Map(t;)
: leaveGain < 0
: for all fi € files(t;) do

if 0(fx,pe) =1 then

leaveGain + leaveGain + (w(fx)/be)

if py = py, then

if (Load(p¢) — cie) > Load(py,) then

leaveGain < leaveGain + cy

© P2 D Q@

leaveM axLoad < Load(pg) — ciy

else

_ =
—= O

leaveGain <+ leaveGain + (Load(p¢) — Load(py,))

—
N

leaveMazLoad + Load(py,)

: else

— =
= w

leaveMazLoad + Load(py,)

: return leaveGain

—
ot

Figure 5.5: UB-Refinement heuristics: leave gain computation for task ¢;

29

CHAPTER 5. PROPOSED REFINEMENT APPROACH 30

UB-SelectBestMove(t;, leaveGain)
1: pg, < Map(t;)
2: for each candidate processor py do
3 arrivalLoss(pg) < w(files(t;))/be
4: for all files fi € files(t;) do
5: for each candidate processor py in A do
6 arrival Loss(pg) < arrival Loss(pg) — (w(fx)/be)
7: bestMoveGain < 0
8: for each candidate processor py do
9: if (Load(pe) + ci¢) > leaveMaxLoad then
10: arrival Loss(pg) < arrival Loss(pg) + Load(pg) + cio — leaveMax Load
11: moveGain + leaveGain — arrival Loss(py)
12: if moveGain > bestMoveGain then
13: best MoveGain < moveGain
14: Doy, < Do
15: return Doy,

Figure 5.6: UB-Refinement heuristics: arrival loss computations and best proces-
sor selection for task ¢;

CHAPTER 5. PROPOSED REFINEMENT APPROACH

LB-ComputeLeaveGain(t;)
: pe + Map(t;)
commLeaveGain < 0
compLeaveGain < 0
: for all fi, € files(t;) do

if 6(fx,pe) =1 then

commLeaveGain + commLeaveGain + (w(f)/be)

if py = py, then

if (Load(p¢) — ci¢) > Load(py,) then

compLeaveGain < cjp

[y
<

leaveM ax Load <+ Load(pg) — ciy

—_
—_

else

—
[\

compLeaveGain < Load(pg) — Load(py,)

[y
g

leaveMazLoad + Load(py,)

—_
.

: else

—
ot

leaveMax Load <+ Load(py,)

—_
[=2]

: return {commLeaveGain,compLeaveGain}

Figure 5.7: LB-Refinement heuristics: leave gain computation for task ¢;

31

CHAPTER 5. PROPOSED REFINEMENT APPROACH 32

LB-SelectBestMove(t;, comm LeaveGain, compLeaveGain)
1: pg, < Map(t;)
2: for each candidate processor p; do
3: arrivalCommLoss(pg) < w(files(t;))/be
4: for all files f; € files(t;) do
5 for each candidate processor py in Ay do
6 arrivalCommULoss(py) < arrival CommLoss(pg) — (w(fx)/be)
7: bestU BDamage < —00
8: for each candidate processor p, do
9: arrivalCompLoss < 0
10: if (Load(ps) + cie) > leaveMaz: Load then
11: arrivalCompLoss < (Load(py) + ci¢ — leave M ax Load)
12: commGain < commLeaveGain — arrivalCommLoss(py)
13: compGain < compLeaveGain — arrivalCompLoss
14: if CommTime(I1) > CompTime(II) then
15: moveGain < commGain
16: else if CommTime(II) < CompTime(II) then
17: moveGain <+ compGain

18: if moveGain > 0 then

19: if commGain + compGain > bestU BDamage then
20: bestU BDamage < commGain + compGain

21: Do, < Do

22: bestCommGain < commGain

23: bestCompGain < compGain

24: return {py,, bestCommGain,bestCompGain}

Figure 5.8: LLB-Refinement heuristics: arrival loss computations and best proces-
sor selection for task ¢;

CHAPTER 5. PROPOSED REFINEMENT APPROACH 33

Figs. 5.7 and 5.8 displays the algorithms used for leave gain and arrival
loss computations in LB-Refinement stage. Recall that the proposed two-
level gain computation scheme is adopted in this stage. If CommTime(II) >
CompTime(IT), then LB-Refinement tries to minimize total file transfer time,
otherwise it tries to minimize maximum computational load. So, the task-to-
processor assignment is adaptively refined with respect to the primary assignment
objective function in which the relation between the values of CompTime(II) and
CommTime(II) is important. In this stage, the good moves are the ones with a
positive gain for the primary objective function LBTime(IT) and the best move
is the one which gives minimum degradation to the secondary objective function
UBTime(II).

Chapter 6

Implementation Choices

The proposed scheduling heuristic involves three phases: initial task assignment,
refinement and execution ordering. In this chapter, we briefly describe each phase

and give a complexity analysis for the overall approach.

6.1 Initial Task Assignment Phase

In this phase, initial task-to-processor assignments are derived from the schedules
created by some of the existing constructive scheduling heuristics. We prefer
this approach instead of using a heuristic which directly gives an initial task-to-
processor assignment, because the proposed refinement heuristics are developed
by taking the flaws of existing constructive scheduling heuristics into account.
For this purpose, we use heuristics proposed by Giersch et al. [17, 18] because
of their short runtimes. The additional policies are not used, but all of the
five heuristics, each having a different objective function, are used since their
relative performances vary with respect to the computation-to-communication
ratio characteristics of applications. Each one of the five initial task-to-processor
assignments obtained in this way is fed to the next two phases to obtain five
schedules. At last, the best schedule in terms of the parallel execution time is

taken as the schedule for the target application.

34

CHAPTER 6. IMPLEMENTATION CHOICES 35

6.2 Refinement Phase

Experiments show that the main improvement in the parallel execution time of a
schedule can be obtained within only a few passes, whereas the following passes
incur negligible improvement. Because of this reason, we allow at most 5 passes
in the UB- and LB-Refinement stages. Likewise, the main improvement in the
execution time of a schedule can be obtained within the first two alternating
sequences of UB- and LB-Refinement stages, whereas the following alternating
sequences incur negligible improvement. For this reason, we allow at most 3

alternating sequences of UB- and LB-Refinement stages.

6.3 Execution Ordering Phase

Each task-to-processor assignment II obtained in the second phase is preserved
while determining the inter- and intra-processor ordering of the task executions
in this phase. Note that CommTime(Il), CompTime(II) and hence the improved
values of the objective functions remain the same as determined in the second
phase. Fig. 6.1 shows the structure of the execution ordering heuristic used in this
phase. As seen in the figure, the structure of the execution ordering heuristic is
similar to the scheduling heuristics proposed by Giersch et al. [17, 18]. However,
the proposed execution ordering heuristic is asymptotically faster since the same
task-to-processor assignment II is used during the course of the heuristic. For
each II, the execution ordering heuristic in Fig. 6.1 is run five times by using each
one of the five objective functions proposed by Giersch et al. [17, 18] and the best
schedule is selected for this II.

6.4 Overall Complexity Analysis

As the heuristics proposed by Giersch et al. [18] are used in the initial task
assignment phase, the time complexity of the first phase is O(pnlogn + pn|A|).

CHAPTER 6. IMPLEMENTATION CHOICES 36

ExecutionOrdering(II)

1: for each processor p; do
2: for each task t; assigned to py in IT do
3: Evaluate OBJECTIVE (t;, pe)
4: Build the list L(py) of the tasks that are assigned to py
sorted according to the value of OBJECTIVE (t;,pe)
5: while there remain a task to schedule do
6 Select the processor py with maximum load
7: Let t; be the first unscheduled task in L(py)
8 Schedule ¢; on py, schedule its file transfers and execution as soon as possible
9 Mark t; as scheduled

Figure 6.1: Execution ordering phase

In the refinement phase, each task is visited exactly once in each pass of the UB-
and LB-Refinement stages. Each vertex visit involves a leave gain and p arrival
loss computations. The leave gain computations in each pass take 0(|.A|) time
since each file request of all tasks must be checked for being a critical file request or
not. The arrival loss computations in each pass take O(p|.A|) time because of the
doubly-nested for loop at steps 4-6 of best move selection heuristics in Figs. 5.6
and 5.8. The update operations within a pass take O(p|.A4|) time because of the
O(p)-time cost of removing processor ids from the connectivity sets (i.e., A linked
lists) of files. As constant number of passes are involved in the refinement phase,

the overall complexity of the second phase is O(p|.A|).

In the execution ordering phase, computing all objective values takes 6(n+|.A|)
time, constructing sorted processor lists takes O(nlogn) time, and finally ordering
task executions takes O(pn + | A|) time. So the overall time complexity of the
third phase is O(nlogn + |A| + pn).

The time complexity of the initial task assignment phase dominates the
overall time complexity, so the proposed three-phase scheduling approach takes

O(pnlogn + pn|Al).

Chapter 7

Heuristics for the Clustered

Framework

The topology of the clustered master-slave platform is similar to the topology of
a basic master-slave platform as explained in Chapter 2. We modified existing
constructive scheduling heuristics we used and proposed a three-phase heuristic
for the clustered platform while preserving the main ideas of heuristics. This
chapter explains the modifications needed for both the existing and the proposed

scheduling heuristics.

7.1 Existing Constructive Scheduling Heuristics

In addition to the heuristics given in Table 3.1, Casanova et al. [9] also proposed a
new heuristic called XSufferage for the clustered master-slave platforms. Unlike
other three scheduling heuristics, XSufferage computes cluster-based minimum
completion times for each task t; from CT(t;,p;) values. f is the difference
between the second minimum and the minimum of these minimum completion

times and “best” is defined as maximum.

37

CHAPTER 7. HEURISTICS FOR THE CLUSTERED FRAMEWORK 38

The communication related calculations for a task, such as objective values
and file transfer completion times, need not to be performed for all processors,
because these values are the same for all processors in a cluster. It is sufficient to
perform these calculations for each cluster and this reduces the time complexity of
the existing scheduling heuristics by replacing the term pn|A| with cn|A|. Thus
the overall complexities of the heuristics proposed by Casanova et al. [9] and

Giersch et al. [18] become O(pn? + cn|A|) and O(pnlogn + cn|A|), respectively.

For adapting the readiness policy [18] to the clustered platform, a task is called
ready for a cluster if all of the input files of the task are available at that cluster.
Similarly for adapting the locality policy, assignment of a task to a processor of
a cluster is avoided if some of the input files of that task were already transferred

to another cluster.

7.2 Proposed Scheduling Heuristic

The existence of local file storage units changes the hypergraph model slightly.
Instead of processors, clusters are defined as parts in the original hypergraph
partitioning problem so the connectivity set, i.e., Ag, of each file f, contains
clusters instead of processors. So the definition of the heterogeneous connectivity

of a net f; changes to

A=Y 1/b; (7.1)

Cli EAk

which can be used in Eq. 5.3 to compute the total communication time.

There are also some modifications needed in the definitions and global data
used. We say a file is critical to a cluster if it is an input to a single task assigned
to a processor in that cluster. As global data, we use §(fx, cl;) to keep the number

of tasks that use file f; and are assigned to a processor in cluster cl;.

CHAPTER 7. HEURISTICS FOR THE CLUSTERED FRAMEWORK 39

UpdateGlobalDataCL(t;, py,)
1: pg + Map(t;)
2: clj < cluster of py
3: clj, < cluster of p,
4: for all fj € files(t;) do
5. O0(fk,cly) < 6(fr,clj) —1
6: if 0(fk,clj) =0 then
7 A — A —{cl;}
8 0(fr.clj,) < 0(fr,cly,) + 1
9: if 0(fk,clj,) =1 then
10: Ag ApU{ct;,}
11: Load(pe,) < Load(pe,) + cie,
12: Load(pg) < Load(ps) — ci
13: Update ¢; and /5

Figure 7.1: Clustered platform: Global update operations for UB- and LB-
Refinement stages

The time complexity of the initial task assignment phase becomes O(pnlogn+
cn|A|). In the refinement phase, the cost of leave gain computations remains
the same, but the time complexity of the arrival loss computations and update
operations become O(c|A|). So, the time complexity of the refinement phase
reduces from O(p|A|) to O(c|A|). The complexity of the execution ordering phase
remains the same, so the total complexity of the proposed scheduling heuristic is

O(pnlogn + cn|A|) for clustered master-slave platform.

Fig. 7.1 shows the pseudocode of the global update operations modified for
the clustered platform. Figs. 7.2 and 7.3 display the modified algorithms used for
leave gain and arrival loss computations in UB-Refinement stage, respectively.
Similarly, Figs. 7.4 and 7.5 display the modified algorithms used for leave gain

and arrival loss computations in LB-Refinement stage, respectively.

CHAPTER 7. HEURISTICS FOR THE CLUSTERED FRAMEWORK 40

UB-ComputeLeaveGainCL(t;)
: pe + Map(t;)
clj < cluster of py
: leaveGain <+ 0
: for all fi, € files(t;) do

if §(fr,cl;) =1 then

leaveGain « leaveGain + (w(f;)/bj)

if py = py, then

if (Load(p¢) — ci¢) > Load(py,) then

leaveGain < leaveGain + cy

© P D Q@ e

[y
<

leaveM ax Load < Load(pg) — cis

else

—
N =

leaveGain <+ leaveGain + (Load(py) — Load(py,))

[y
g

leaveMazLoad + Load(py,)

—_
.

: else

—
ot

leaveMax Load <+ Load(py,)

16: return leaveGain

Figure 7.2: UB-Refinement heuristics for the clustered platform: leave gain com-
putation for task ¢;

CHAPTER 7. HEURISTICS FOR THE CLUSTERED FRAMEWORK 41

UB-SelectBestMoveCL(t;, leaveGain)

1: pg, < Map(t;)
2: clj, < cluster of py,
3: for each cluster c/; do
4: clusterLoss(cl;) < w(files(t;))/b;
5: for all files fi € files(t;) do
6: for each cluster ¢/; in A; do
7 clusterLoss(clj) < cluster Loss(cl;) — (w(fr)/bj)
8: for each cluster c/; do
9: for each candidate processor py in c¢/; do
10: arrival Loss(pg) < cluster Loss(ct;)
11: bestMoveGain < 0
12: for each candidate processor p, do
13: if (Load(ps) + cip) > leaveMaz: Load then
14: arrival Loss(pg) < arrival Loss(pg) + Load(pg) + ¢io — leave M ax Load
15: moveGain + leaveGain — arrival Loss(py)
16: if moveGain > bestMoveGain then
17: bestMoveGain < moveGain
18: Doy, < Pr

19: return py,

Figure 7.3: UB-Refinement heuristics for the clustered platform: arrival loss
computations and best processor selection for task t¢;

CHAPTER 7. HEURISTICS FOR THE CLUSTERED FRAMEWORK

LB-ComputeLeaveGainCL(t;)

10:
11:
12:
13:
14:
15:
16:
17:

: pe < Map(t;)

: clj < cluster of py

: commLeaveGain + 0
: compLeaveGain < 0

1
2
3
4
5t
6
7
8
9

for all fi, € files(t;) do
if 5(fk,C£j) =1 then

commULeaveGain < commLeaveGain + (w(fy)/b;)

. if De = Dey then

if (Load(ps) — cie) > Load(py,) then
compLeaveGain < cjy
leaveM ax Load <+ Load(pg) — ciy

else
compLeaveGain < Load(pg) — Load(py,)
leaveMax Load < Load(py,)

else
leaveM ax Load < Load(py,)

return {commLeaveGain,compLeaveGain}

42

Figure 7.4: LB-Refinement heuristics for the clustered platform: leave gain com-
putation for task ¢;

CHAPTER 7. HEURISTICS FOR THE CLUSTERED FRAMEWORK 43

LB-SelectBestMoveCL(t;, commLeaveGain, compLeaveGain)

1: pg, < Map(t;)
2: clj, < cluster of py,
3: for each cluster c/; do
4: clusterLoss(cl;) < w(files(t;))/b;
5: for all files fi € files(t;) do
6: for each cluster c¢/; in A} do
7 clusterLoss(clj) <« cluster Loss(cl;) — (w(fx)/bj)
8: for each cluster c/; do
9: for each candidate processor py in c¢/; do
10: arrivalCommULoss(py) < cluster Loss(cl;)
11: bestU BDamage < —00
12: for each candidate processor p, do
13: arrivalCompLoss < 0
14: if (Load(ps) + ci) > leaveMaz Load then
15: arrivalCompLoss < (Load(py) + ci¢ — leave M ax Load)
16: commGain < commLeaveGain — arrival CommLoss(py)
17: compGain < compLeaveGain — arrival CompLoss
18: if CommTime(Il) > CompTime(Il) then
19: moveGain < commGain
20: else if CommTime(IT) < CompTime(Il) then
21: moveGain < compGain
22: if moveGain > 0 then
23: if commGain + compGain > bestU BDamage then
24: bestU BDamage < commGain + compGain
25: Do, < Do
26: bestCommGain < commGain
27: bestCompGain < compGain

28: return {py,, bestCommGain,bestCompGain}

Figure 7.5: LB-Refinement heuristics for the clustered platform: arrival loss com-
putations and best processor selection for task t;

Chapter 8

Experimental Results

We tested the performance of the proposed scheduling heuristic in comparison
with the existing constructive heuristics by running large number of experiments
on synthetically generated heterogeneous master-slave platforms. The proposed
and existing heuristics were implemented in C language on a Linux platform. All
experiments were performed on a PC equipped with a 2.4 GHz Intel Pentium-
IV processor and 2 Gbytes RAM. A total of 250 applications were created each
consisting of n=2000 tasks and m=2000 files. Each task in an application uses a
random number of files between 1 and 10. The file sizes are randomly selected to
vary between 100 Mbytes and 200 Gbytes.

The experiments vary with the computation-to-communication ratio r of an
application, where r=AvgCompTime/AvgCommTime. Here AvgCompTime =
(1/p) >y >, cie and AvgCommTime=(1/bayg) Y iy w(files(t;)). Note that
bavg=(1/p) > _7_, be and bsg=(1/c) >";_, by denote the average server-to-processor
or server-to-cluster bandwidth in the basic and clustered master-slave platforms,
respectively. The r value represents the ratio of the processor usage and net-
work usage requirements of an application on a master-slave environment. We
experimented the heuristics with 5 different r values from 10 to 0.1 as r=10, 5,
1, 0.2, 0.1. For each r value, 50 randomly created applications were scheduled
by all heuristics. For each scheduling instance, the relative performance of every

heuristic was calculated by dividing the parallel execution time of the schedule

44

CHAPTER 8. EXPERIMENTAL RESULTS 45

it generates to that of the best schedule. Then the average of these relative
performances for all 50 applications was displayed in the following tables as the

performance of the respective heuristic for a specific r ratio.

8.1 Heterogeneous master-slave platform cre-

ation

We used the GridG topology generator [24] for creating a heterogeneous master-
slave platform with p=32 processors as follows: We created a Grid topology with
32 hosts and 9 routers. One of the routers was randomly selected as the server.
The resulting topology contains 82 communication links with bandwidth values
varying between 20 Mbit/s and 1 Gbit/s. Each server-to-processor bandwidth
value is selected as the bandwidth value of the fastest path from the server,
where the slowest link along a path determines the bandwidth value of that path.
The clustered master-slave platform is created in a similar way. It contains a
total of 48 processors in 5 clusters, where 4 clusters contain 8 processors each and
the remaining cluster contains 16 processors. The bandwidth value of a cluster

is computed as the average of the bandwidth values of the processors it contains.

8.2 Task execution time estimation

As we mentioned before the quality of a schedule depends on the information
used, so task execution times are important for the schedule generation process.
This information can be estimated from machine benchmarks, users or previous
executions. Modeling such information is also an important issue for simulating
realistic heterogeneous environments. With a realistic modeling, the relative per-
formances of various scheduling/mapping heuristics for different levels of task and
processor heterogeneity can be efficiently computed. A related work by Ali et al.
about modeling task execution times in heterogeneous computing environments

can be found in [1].

CHAPTER 8. EXPERIMENTAL RESULTS 46

In this work, we used machine benchmark values to generate realistic hetero-
geneous ETC matrices. We used the Top500 supercomputer list, maintained by
Dongarra et al. [13], to estimate the task execution times as follows: We randomly
chose our processors from mid-rank supercomputers, i.e., the ones ranked between
the first and second hundred, with sufficient mutual performance variation. As
the Topb00 list depends on the LINPACK benchmark, we assumed that the indi-
vidual tasks are instances of the same problem approximately incurring (2/3) N3
floating point operations for an instance size N as in [13]. The benchmark values
Rmmaz, Nmaez and Ny o, provided in [13] for each supercomputer, were exploited to
make realistic approximations for task execution times in a heterogeneous Grid
system. Here, R,,,, denotes the maximum processor performance, in terms of
FLOPS, that can be achieved for a task with an instance size >Ny,q,. Nij2 rep-
resents the instance size for which half of the R,,,, is achieved. Each task has
a problem size selected from a uniformly distributed interval. This interval was
selected judiciously to achieve a specific computation-to-communication ratio. So
the performance variation of a task with instance size N can be represented ap-
proximately with a piecewise linear function R(N) as shown in Fig. 8.1. The
execution time of a task ¢; with instance size N on a processor p, was estimated
as cy=(2/3)N3/Ry(N). A sample ETC matrix created by this method is given
in Table 8.1.

RN
A

Rifac |77 ==

NU

Y

N@ID Nmaxlj

Figure 8.1: Piecewise linear approximation

CHAPTER 8. EXPERIMENTAL RESULTS

8.3 Results

Tasks Processors

b1 D2 D3 P4 Ps De pr
t 1214 1084 1435 1353 1280 745 818
ta 376 335 445 419 397 456 500
t3 543 485 643 605 573 659 722
t4 139 124 164 160 146 168 185
ts 1382 1233 828 1540 1456 849 932
te 5820 10262 6912 12795 6144 7084 7776
tr 716 638 846 797 754 867 950
tg 13 14 12 24 10 14 13
ty 5581 9841 6627 12271 5891 6793 7456

Table 8.1: Sample ETC Matrix

Basic master-slave framework

Parameters

2-level gain Order r: Computation-to-communication ratio

UB LB 10 5 1 0.2 0.1 AVG
No No UB-LB 1.113 1.039 1.016 1.004 1.002 1.035
No No LB-UB 1.116 1.065 1.020 1.153 1.033 1.077
No Yes UB-LB 1.002 1.003 1.005 1.004 1.001 1.003
No Yes LB-UB 1.020 1.013 1.012 1.152 1.034 1.046
Yes No UB-LB 1.107 1.039 1.016 1.003 1.001 1.033
Yes No LB-UB 1.106 1.058 1.021 1.154 1.033 1.074
Yes Yes UB-LB 1.005 1.003 1.005 1.002 1.001 1.003
Yes Yes LB-UB 1.022 1.013 1.012 1.153 1.033 1.047

Table 8.2: Effects of the Implementation Choices in the Refinement Phase

47

Table 8.2 shows the effects of the proposed two-level gain computation scheme

and the refinement order of the alternating scheme on the overall scheduling

performance. As seen in the table, the two-level gain computation scheme leads to

better scheduling performance with the same ordering in the alternating scheme.

As expected, the UB-LB ordering leads to better scheduling performance than

the LB-UB ordering in the alternating scheme. Comparison of the 3rd and 7th

rows, as well as the 4th and 8th rows, shows that adopting the two-level gain

computation scheme only in the LB-Refinement stage suffices to achieve the same
Note that the 3rd row

performance with that of adopting it in both stages.

corresponds to the proposed scheme which uses the UB-LB ordering scheme with

CHAPTER 8. EXPERIMENTAL RESULTS 48

the two-level gain computation scheme adopted only in the LB-Refinement stage.

The proposed iterative-improvement scheduling heuristic will be referred to as

IIS here and hereafter.

Basic master-slave framework

Heuristic in

first phase r: Computation-to-communication ratio

10) 1 0.2 0.1

UB LB UB LB UB LB UB LB UB LB
Communication 1.879 0.967 1.865 0.956 0.955 0.989 1.001 0.996 0.703 0.996
Computation 1.718 0.928 1.606 0.946 0.852 00972 0.331 0.992 0.441 0.993
Duration 1.647 0.905 1.503 0.941 0.570 0.983 0.657 0.996 0.868 0.997
Payoff 1.790 0.988 1.728 0.990 1.124 0.995 1.066 1.000 0.746 0.999
Advance 1.470 0.994 1.449 0.996 1.378 0.999 1.460 0.994 0.747 0.975
MinMin 1.759 0.923 1.697 0.947 0.349 0.950 0.266 0.986 0.545 0.985
Sufferage 1.945 0.993 1951 0.993 1.274 0.993 0.160 0.998 0.309 0.999
MaxMin 1.794 0.999 1.645 0.998 0.976 0.999 1.458 1.000 1.033 1.000

Table 8.3: Effectiveness of the Proposed Assignment Objective Functions

Table 8.3 summarizes the results of the experiments conducted to validate
the relation between the proposed assignment objective functions and the actual
scheduling cost which is the parallel execution time of a schedule. The values
in the table are derived by using scheduling heuristics individually in the initial
task assignment phase as follows: For each heuristic used, the amount of decrease
achieved in both UBTime and LBTime during the refinement phase are normal-
ized with respect to the amount of the resulting decrease in the actual scheduling
cost. That is, these values display the amount of improvements needed in UB-
Time and LBTime simultaneously to attain one time unit of improvement in the
actual scheduling cost. Note that performance results are also given for MinMin
and Sufferage, which are not adopted in IIS, in the last two rows of the table. As
seen in Table 8.3, close to one time-unit (between 0.92 and 1.00) of improvements
are needed in LBTime which is a rather tight bound, whereas a large variation
(between 0.16 and 1.95) can be seen for the improvements needed in UBTime

which is a loose bound.

Table 8.4 summarizes the results of the experiments conducted to validate the

restriction on the number of alternating sequences of UB- and LB-Refinement

CHAPTER 8. EXPERIMENTAL RESULTS

Basic master-slave platform

Refinmenent Count

r: Computation-to-communication ratio

10 5 1 02 01 Avg
Ref. 0 1.375 1.374 1.336 1.300 1.150 1.307
Ref. 1 1.083 1.035 1.054 1.012 1.000 1.037
Ref. 2 1.038 1.021 1.030 1.004 1.000 1.019
Ref. 3 1.023 1.016 1.022 1.002 1.000 1.012
Ref. 4 1.016 1.011 1.016 1.002 1.000 1.009
Ref. 5 1.011 1.009 1.011 1.001 1.000 1.006
Ref. 6 1.009 1.006 1.008 1.002 1.000 1.005
Ref. 7 1.006 1.004 1.005 1.001 1.000 1.003
Ref. 8 1.003 1.002 1.003 1.001 1.000 1.002
Ref. 9 1.002 1.000 1.001 1.001 1.000 1.001
Ref. 10 1.000 1.000 1.000 1.000 1.000 1.000

Clustered master-slave platform

Refinement Count

r: Computation-to-communication ratio

10 5 1 02 01 Avg
Ref. 0 1.327 1425 1.358 1.040 1.013 1.233
Ref. 1 1.038 1.032 1.000 1.000 1.000 1.014
Ref. 2 1.023 1.012 1.000 1.000 1.000 1.007
Ref. 3 1.011 1.008 1.000 1.000 1.000 1.004
Ref. 4 1.006 1.006 1.000 1.000 1.000 1.002
Ref. 5 1.004 1.005 1.000 1.000 1.000 1.002
Ref. 6 1.003 1.003 1.000 1.000 1.000 1.001
Ref. 7 1.002 1.004 1.000 1.000 1.000 1.001
Ref. 8 1.000 1.002 1.000 1.000 1.000 1.000
Ref. 9 1.000 1.002 1.000 1.000 1.000 1.000
Ref. 10 1.000 1.000 1.000 1.000 1.000 1.000

49

Table 8.4: Effects of the Number of Alternating Sequences in a UB- and LB-

Refinement Stage

CHAPTER 8. EXPERIMENTAL RESULTS 50

stages. For this experiment, the number of alternating sequences is restricted to
10 and the values in the table are derived by computing the relative performances
of the proposed heuristic when it is used with different number of alternating
sequences. For computing relative performances, the best version of the proposed
heuristic is selected as 1 for each application. Then the average of 50 relative
performance values for 50 applications is computed for each r value. As seen in
Table 8.4, the most significant part of the improvement on the execution time can
be obtained with only one execution of UB- and LB-Refinement phases. Although
the last ones may still improve the execution time, the effect of them is negligible

compared to the effect of first few alternating sequences.

Basic master-slave platform
Heuristic in
first phase r: Computation-to-communication ratio

5 1 0.2

Refinement Refinement Refinement

No Yes Ratio No Yes Ratio No Yes Ratio
MinMin 1.109 1.011 0.324 1.033 1.037 0.125 1.026 1.049 0.167

Sufferage 1.000 1.009 0.252 1.006 1.046 0.095 1.016 1.080 0.133
MaxMin 1.215 1.031 0.370 1.252 1.025 0.287 1.325 1.237 0.237
I1S 1.106 1.002 0.328 1.168 1.000 0.254 1.052 1.000 0.224

Clustered master-slave platform
Heuristic in
first phase r: Computation-to-communication ratio

5 1 0.2

Refinement Refinement Refinement

No Yes Ratio No Yes Ratio No Yes Ratio
MinMin 1.051 1.109 0.174 1.078 1.176 0.008 1.063 1.065 0.001

Sufferage 1.135 1.144 0.204 1.138 1.249 0.004 1.069 1.073 0.000
XSufferage 1.057 1.124 0.166 1.015 1.109 0.007 1.001 1.004 0.000
MaxMin 1.439 1389 0.241 1.447 1.590 0.000 1.153 1.158 0.000
I1S 1.135 1.007 0.304 1.243 1.000 0.264 1.041 1.000 0.040

Table 8.5: Effectiveness of the Refinement

Table 8.5 displays the results of the experiments conducted to justify the use
of cheap scheduling heuristics (Communication, Computation, Advance, Duration
and Payoff) in the initial task assignment phase instead of the expensive but more
successful heuristics MinMin, Sufferage and XSufferage. In the table, the “No”

column represents the relative performances of MinMin, Sufferage, XSufferage

CHAPTER 8. EXPERIMENTAL RESULTS 51

and IIS without refinement. In this case, IIS reduces to selecting the best schedule
out of the five schedules generated by the cheap heuristics. The “Yes” column
represents the relative performances of these heuristics when they are used in the
initial task assignment phase of the proposed three-phase scheduling approach.
In the table, the refinement ratio is the ratio of the improvement obtained by
applying the refinement and execution ordering phases to the initial schedule
generated by each heuristic. Note that IIS corresponds to the actual proposed

heuristic in this case.

As seen in Table 8.5, choosing the best result of the cheap heuristics does
not suffice to obtain a better performance than a single run of the expensive
MinMin and Sufferage heuristics. However, as also seen in the table, much higher
improvement ratios are obtained in the refinement of the cheap heuristics in
IIS compared to those of the expensive heuristics. As a result, IIS outperforms
the refined version of MinMin, Sufferage and XSufferage as seen in the “Yes”
columns. These experimental findings confirm our rationale behind using the

cheap scheduling heuristics in the initial task assignment phase.

Tables 8.6 and 8.7 summarize the results of the experiments conducted to
compare the performance of the proposed IIS heuristic with the existing con-
structive heuristics. Besides IS, 36 heuristics given in [18] and all 4 heuristics
given in [9] were implemented. Tables 8.6 and 8.7 displays the relative scheduling
performances of the heuristics ranked according to the their average performances.
The last column of the tables also shows the the relative runtime performances
of these 10 heuristics. For each scheduling instance, the relative runtime per-
formance of every heuristic was calculated by dividing the execution time of the

heuristic to that of the fastest heuristic.

As seen in Tables 8.6 and 8.7, the proposed IIS heuristic performs signif-
icantly better than all existing heuristics on the average. For example, Suf-
ferage and XSufferage, which are the second best heuristics for the basic and
clustered master-slave platforms, produce 25.1% and 16.4% worse schedules than
IIS on the average, respectively. This relative performance gap is much higher

for computation-intensive applications so that IIS produces at least 30% better

CHAPTER 8. EXPERIMENTAL RESULTS 52

Basic master-slave platform

Heuristic r: Computation-to-communication ratio Exec.
10 5 1 0.2 0.1 Avg time

1S 1.000 1.000 1.000 1.000 1.000 1.000 45.692
Sufferage 1.313 1.350 1.156 1.247 1.191 1.251 608.751
MinMin 1.433 1.496 1.186 1.259 1.140 1.303 647.672
Computation Readiness 1.457 1.566 1.399 1454 1.197 1.415 3.920
Communication Shared Readiness 1.402 1.467 1.384 1489 1.346 1.418 1.272
Communication Shared 1.402 1.507 1.389 1483 1.347 1.426 1.014
Computation 1.490 1.590 1.349 1.427 1.319 1435 3.596
Advance Shared Readiness 1.666 1.781 1.346 1.281 1.120 1.439 4.576
Communication Readiness 1.396 1.464 1.397 1.559 1.460 1.455 1.268
Communication 1.402 1.502 1.403 1.562 1.472 1.468 1.006
Advance Shared 1.713 1.852 1.480 1.331 1.141 1.503 4.340
Payoff Readiness 1.876 1.887 1.363 1.331 1.189 1.529 4.483
Payoff Shared Readiness 1.908 1.916 1.390 1.314 1.185 1.542 4.645
Duration Shared Readiness 1.442 1.599 1.498 1.626 1.565 1.546 4.594
Advance Shared Readiness Locality 1.756 1.833 1.404 1463 1.395 1.570 4.734
Communication Shared Readiness Locality 1.497 1.569 1.418 1.665 1.719 1.574 1.440
Communication Shared Locality 1496 1.582 1.424 1.660 1.720 1.576 1.183
MaxMin 1.601 1.638 1.437 1.626 1.635 1.587 607.605
Advance Shared Locality 1.775 1.856 1.448 1.469 1.395 1.589 4.498
Duration Shared 1.529 1.658 1.465 1.729 1.692 1.615 4.316
Duration Readiness 1.379 1543 1.564 1864 1.724 1.615 4.353
Payoff 1.962 1.951 1.445 1.415 1.305 1.616 4.254
Communication Readiness Locality 1487 1.573 1.427 1.770 1.863 1.624 1.423
Communication Locality 1.488 1.589 1.437 1.772 1.866 1.630 1.171
Payoff Readiness Locality 1.889 1.925 1.408 1.507 1.490 1.644 4.642
Payoff Shared 2.0056 1970 1.498 1.430 1.318 1.644 4.429
Duration 1.439 1.567 1.545 1.888 1.798 1.647 4.170
Computation Readiness Locality 1.530 1.650 1.561 1.816 1.746 1.661 4.097
Computation Locality 1.512 1.660 1.534 1.825 1.800 1.666 3.788
Payoff Shared Readiness Locality 1.932 1946 1.442 1511 1.510 1.668 4.854
Payoff Locality 1.919 1.941 1.463 1.556 1.566 1.689 4.387
Duration Readiness Locality 1440 1.610 1.674 1.953 1.908 1.717 4.556
Duration Shared Readiness Locality 1.508 1.662 1.627 1.930 1.894 1.724 4.778
Payoff Shared Locality 1.972 1.957 1.520 1.589 1.593 1.726 4.603
Duration Locality 1.464 1.627 1.610 1.973 1.977 1.730 4.291
Duration Shared Locality 1.542 1.681 1.587 1.989 1.969 1.753 4.491
Advance Readiness 2.537 2744 2.067 1.264 1.087 1.940 4.391
Advance Readiness Locality 2453 2.662 1.939 1453 1.429 1.987 4.551
Advance Locality 2529 2.716 2.028 1.460 1.438 2.034 4.319
Advance 2.785 2944 2314 1.296 1.116 2.091 4.185

Table 8.6: Relative Performances of Heuristics: Basic Master-Slave Platform

CHAPTER 8. EXPERIMENTAL RESULTS 53

Clustered master-slave platform

Heuristic r: Computation-to-communication ratio Exec.
10 5 1 0.2 0.1 Avg time

1S 1.000 1.000 1.000 1.000 1.000 1.000 22.445
XSufferage 1.347 1.348 1.117 1.004 1.002 1.163 280.840
MinMin 1.331 1.333 1.187 1.067 1.048 1.193 263.044
Sufferage 1.357 1.458 1.254 1.072 1.049 1.238 263.561
Computation Readiness 1.531 1.550 1.252 1.010 1.008 1.270 3.607
Computation 1433 1479 1.398 1.047 1.018 1.275 3.545
Duration Readiness 1.480 1.523 1.421 1.219 1.151 1.359 3.734
Duration 1.387 1.484 1.566 1.252 1.160 1.370 3.755
Communication Shared 1.586 1.661 1.567 1.253 1.163 1.446 1.033
Communication Shared Readiness 1.589 1.666 1.563 1.253 1.163 1.447 1.069
Communication Readiness 1.578 1.655 1.580 1.271 1.174 1.452 1.033
Communication 1.577 1.653 1.590 1.271 1.174 1.453 1.018
MaxMin 1.706 1.830 1.584 1.158 1.018 1.459 244.850
Duration Shared Readiness 1.561 1.641 1.711 1.678 1.665 1.651 3.875
Duration Readiness Locality 1.712 2.025 1.945 1403 1.313 1.680 3.874
Communication Shared Locality 1.776 1935 1.766 1.546 1.434 1.692 1.145
Communication Shared Readiness Locality 1.773 1.949 1.774 1.543 1.427 1.693 1.198
Payoff Readiness 1.779 2.060 1.912 1.391 1.371 1.703 3.876
Communication Readiness Locality 1.786 2.015 1.806 1.518 1.446 1.714 1.138
Communication Locality 1.794 2.026 1.821 1.521 1.449 1.722 1.105
Duration Shared 1.511 1.674 1.964 1.766 1.703 1.723 3.855
Payoff Shared Readiness 1.812 2108 1.941 1414 1.352 1.726 3.927
Duration Locality 1.791 2.185 2.076 1427 1.319 1.760 3.824
Payoff 1.825 2.132 2.026 1.465 1.439 1.777 3.895
Payoff Shared 1.858 2.182 2.074 1.493 1.417 1.805 3.908
Computation Readiness Locality 1.943 2.248 2.046 1.558 1.567 1.873 3.733
Advance Shared Readiness 1.654 1908 2.220 1.949 1.694 1.885 3.921
Duration Shared Readiness Locality 1.886 2.170 2.182 1.702 1.628 1.914 3.951
Computation Locality 1.966 2.342 2.155 1.568 1.573 1.921 3.679
Payoff Readiness Locality 1.990 2.627 2.289 1.580 1.571 2.011 3.995
Duration Shared Locality 1.936 2.315 2.417 1.755 1.646 2.014 3.911
Payoff Shared Readiness Locality 2.021 2.658 2.324 1.590 1.573 2.033 4.011
Advance Shared 1.735 2.066 2.542 2.091 1.744 2.036 3.908
Payoff Locality 2.041 2.704 2360 1.590 1.581 2.055 3.965
Payoff Shared Locality 2.083 2.730 2.394 1.596 1.582 2.077 3.982
Advance Readiness 1.883 2436 3.491 1.506 1.327 2.129 3.859
Advance Shared Readiness Locality 1.975 2578 2.602 1876 1.849 2.176 4.038
Advance Readiness Locality 2.018 2.646 3.101 1.719 1.591 2.215 3.942
Advance 2.008 2.639 3.625 1.522 1.332 2.225 3.860
Advance Shared Locality 2.030 2.676 2.754 1914 1.860 2.247 3.991
Advance Locality 2.092 2812 3.457 1.728 1.587 2.335 3.915

Table 8.7: Relative Performances of Heuristics: Clustered Master-Slave Platform

CHAPTER 8. EXPERIMENTAL RESULTS 54

schedules than all other heuristics for r = 10 and 5. In fact, IIS is always the best
heuristic for all scheduling instances except the communication-intensive ones in
the clustered master-slave platform with » = 0.2 and 0.1. That is, IIS achieves
the actual relative performance exactly equal to 1 except for these scheduling

instances.

The above findings are in concordance with the experimental results given
in [18], which state that the scheduling performances of the existing heuristics
become far from optimal when the r value increases. Although the experimental
framework in this work differs in the generation of the experimental data and
calculation of the r value, experimental results in both works can be interpreted
as to point out the sensitivity of the computation-intensive applications to the

greedy constructive structure of the existing scheduling heuristics.

As seen in Tables 8.6 and 8.7, the performance gap between IIS and existing
heuristics decreases in scheduling communication-intensive applications (r = 0.2
and 0.1) on the clustered master-slave platform. Although not seen in the tables, a
similar pattern is also observed in the basic platform for much smaller r values (r=
0.01). This common behavior can be attributed to the fact that communication
from the master becomes a serious bottleneck for all scheduling heuristics. This
bottleneck incurs earlier in the clustered platform since the number of file storage
units, which can be considered as p in the basic platform, is much smaller in the
clustered platform. In fact, the performance of all existing heuristics become very

close to each other for these scheduling instances as also stated in [18].

As seen in the last columns of Tables 8.6 and 8.7, IIS is an order of mag-
nitude faster than the successful but slow heuristics [9], whereas it is an order
of magnitude slower than the fast heuristics [18]. IIS produces approximately
25-30% better schedules while being 13-14 times faster than MinMin and Suf-
ferage in the basic master-slave platform. Similarly, IIS produces approximately
16-24% better schedules while being 11-12 times faster than MinMin, Sufferage

and XSufferage in the clustered master-slave platform.

CHAPTER 8. EXPERIMENTAL RESULTS %)

Fig. 8.2 displays the dissection of the execution time of the IIS heuristic into
phases. For the basic master-slave framework, all phases take comparable time
while the refinement phase is taking more time than the others. On the other
hand, the initial task assignment phase dominates the total execution time for the
clustered master-slave framework. These experimental findings are in accordance
with the complexity analysis given in Chapters 6.4 and 7. Comparing Fig. 8.2 and
Tables 8.6 and 8.7 show that while r is changing from 10 to 0.1, the refinement
time is correlated with the amount of the performance improvement of IIS with
respect to the second best scheduling heuristic. This correlation indicates that the
time spent for the improvement of the objective functions is directly proportional
to the improvement in the actual scheduling cost, the parallel execution time of a
schedule. This experimental finding also strengthens our claim about the direct
relation between the proposed objective functions and the actual scheduling cost.

Table 8.8 shows the execution times of the phases in detail.

As mentioned before, when the r value is decreasing the time spent for trans-
ferring files from the server becomes a serious bottleneck for the execution time
of the schedule. This bottleneck makes the task scheduling problem more trivial.
As an example, if task execution times are negligible compared to file transfer
times, the trivial solution will be the assignment of all tasks to the processor with
the highest bandwidth. Even the the hypergraph created from the application
has a disconnected structure and network is homogeneous, the quality of such a
solution will still be sufficient because of the single port assumption (A better so-
lution in that case will incur the assignment of the components of the hypergraph
to different processors). Because of the same reason, obtaining near optimal solu-
tions in the clustered master-slave platform is easier than obtaining them in the
basic one. The clustered structure of this platform makes possible the assignment
of the tasks to different processors by transferring each file for these tasks only
once. If the task scheduling problem become more trivial because of the reasons
given above, the improvement by the refinement process also decreases as seen in
the tables. In that case the solutions created by the existing heuristics would be
expected to be better so the refinement process can be easily saturated by less

vertex moves as seen in Fig. 8.2 and Table 8.8.

CHAPTER 8. EXPERIMENTAL RESULTS 56

Table 8.8 also shows times spent for the UB- and LB-Refinement stages. As
seen in the table, the time spent for the UB-Refinement is greater than the time
spent for the LB-Refinement. This result validates our expectation about the
variations in the task-move gains for the UBTime(II) and LBTime(II). Since the
variations are larger in UBTime(II) the number of possible vertex moves is also
larger. In our experiments, we realized that UB-Refinement usually stops because
of the 5-pass restriction, whereas LB-Refinement because of the nonexistence of

a task move with a positive gain.

[@ Initial Task Assignment = Refinement Execution Ordering |

0,7 0.7 4
08
05
ot P
03 H
0.2 4 t::

Seconds
Seconds

R R

s ee e e

(LR = o

00 4 po
02 04 10 5 1 02 01

Computation-to-comimunication ratio Computation-to-communication ratio

(a) (b)

Figure 8.2: Execution times of the phases of the IIS heuristic in seconds: (a)
basic master-slave platform, (b) clustered master-slave platform

:!-:!:;HEE:;.. b e e]
‘!;iﬂ?g;ﬁlﬂ"-.32;:;-.-35;55-.-;;;&:.-&

CHAPTER 8. EXPERIMENTAL RESULTS

Basic master-slave platform

Phase r: Computation-to-communication ratio
10 5 1 0.2 0.1
Initial Task Assignment 0.387 0.401 0.381 0.379 0.376
UB-Refinement 0.534 0.576 0.380 0.383 0.367
LB-Refinement 0.053 0.036 0.061 0.171 0.160
Total Refinement 0.587 0.612 0.441 0.553 0.527
Execution Ordering 0.298 0.307 0.265 0.238 0.230
Total Time 1.272 1.320 1.087 1.170 1.133

Clustered master-slave platform

Phase r: Computation-to-communication ratio
10 5 1 0.2 0.1
Initial Task Assignment 0.533 0.532 0.527 0.524 0.524
UB-Refinement 0.181 0.132 0.055 0.046 0.044
LB-Refinement 0.032 0.023 0.014 0.009 0.007
Refinement 0.213 0.155 0.069 0.054 0.051
Execution Ordering 0.113 0.108 0.097 0.097 0.097
Total Time 0.859 0.795 0.693 0.676 0673

Table 8.8: Execution Times of Phases in Seconds

Chapter 9

Conclusion

We investigated the problem of scheduling independent but file-sharing tasks onto
heterogeneous master-slave platforms. All existing heuristics are constructive in
nature and based on a common greedy criterion which decides according to com-
pletion time values of the tasks. We showed that this greedy decision criterion
has a shortcoming in using the file-sharing interaction among tasks since mo-
mentary completion time values are inadequate to obtain an overall view of this
interaction. In order to alleviate this problem, we investigated the feasibility of
using iterative-improvement heuristics. However, the actual cost of a schedule
does not satisfy the smoothness property required for the effective and efficient
use of these heuristics. For this reason, we considered the task scheduling prob-
lem as involving two consecutive processes: task assignment which determines
the task-to-processor assignments, and execution ordering which determines the
order of inter- and intra-processor task executions. This approach enabled the use
of iterative-improvement heuristics effectively and efficiently in the task assign-
ment process by proposing smooth assignment objective functions that are closely
related to the cost of a schedule. This refined task-to-processor assignment was
then used to generate a better schedule during execution ordering process. We
implemented a scheduling heuristic based on the proposed approach and tested its

performance in comparison with the existing constructive heuristics by running

58

CHAPTER 9. CONCLUSION 59

large number of experiments on synthetically generated heterogeneous master-
slave platforms. Our scheduling heuristic outperformed the existing constructive
heuristics in all of the experiments, thus verifying the validity of the proposed

approach.

There are various applications with different task types and task interactions.
Besides, there are various computing platforms in Grid. In this work, parameter
sweep applications and master-slave platforms were considered for the scheduling
problem. Another heuristic designed for another type of the task scheduling
problem may still suffer because of the structure of its solution procedure like
the existing greedy constructive heuristics designed for scheduling tasks sharing
files. Even this is not the case, iterative-improvement heuristics can still be
used to improve the scheduling performance of various heuristics. Adaptation
of the iterative-improvement heuristics to the task scheduling problem will be
different for different applications and computing platforms since each application
structure or computing platform has its own characteristics. Future work may
explore the adaptation strategies of these heuristics and their ideas to the task

scheduling problem.

Bibliography

1]

3]

S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen. Task execution time
modeling for heterogeneous computing systems. In 9.th Heterogeneous Com-
puting Workshop, May 2000.

C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel circuit partition-
ing. In Proceedings of the 34th annual conference on Design automation
conference, pages 530-533. ACM Press, 1997.

R. Armstrong. Investigation of effect of different run time distributions on
smartnet performance. Master’s thesis, Department Of Computer Science,
Naval Postgraduate School, 1997.

C. Aykanat, A. Pinar, and U. V. Catalyiirek. Permuting sparse rectangular
matrices into block-diagonal form. STAM Journal of Scientific Computing,
25(6):1860-1879, 2004.

O. Beaumont, A. Legrand, and Y. Robert. The master-slave paradigm with
heterogeneous processors. IEEE Transactions on Parallel and Distributed
Systems, 14(9):897-908, 2003.

C. Berge. Hypergraphs. North Holland, Amsterdam, 1989.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. M.
Figueira, J. Hayes, G. Obertelli, J. M. Schopf, G. Shao, S. Smallen, N. T.
Spring, A. Su, and D. Zagorodnov. Adaptive computing on the grid using
apples. IEEE Transactions on Parallel and Distributed Systems, 14(4):369—
382, 2003.

60

BIBLIOGRAPHY 61

8]

[10]

[11]

[12]

[13]

[14]

[15]

T. D. Braun, H. J. Siegel, N. Beck, L. Blni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, R. F. Freund, and D. Hensgen. A
comparison study of static mapping heuristics for a class of meta-tasks on

heterogeneous computing systems. In 8.th Heterogeneous Computing Work-
shop, May 1999.

H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for
parameter sweep applications in grid environments. In Proc. Ninth Het-
erogeneous Computing Workshop, pages 349-363. IEEE Computer Society
Press, 2000.

H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The apples parameter
sweep template: User-level middleware for the grid. In Proceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROM), page 60. IEEE
Computer Society, 2000.

U. V. Qatalyiirek and C. Aykanat. Hypergraph-partitioning based decom-
position for parallel sparse-matrix vector multiplication. IEEE Transactions
Parallel and Distributed Systems, 10(7):673-693, 1999.

U. V. Catalyiirek and C. Aykanat. PaToH: A Multilevel Hypergraph Par-
titioning Tool, Version 3.0. Bilkent University, Department of Computer
Engineering, Ankara, 06533 Turkey, 1999.

J. Dongarra, H. Meuer, and E. Strohmaier. TOP500 Supercomputer Sites,
22nd edition. In Proceedings of the Supercomputing Conference (SC2003),
Phoeniz, Arizona, USA, 2003.

C. M. Fidducia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In 19.th ACM/IEEE Design Automation Conference,
pages 175-181, 1982.

I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Comput-
ing Infrastructure, chapter F. Berman. High Performance Schedulers, pages
279-309. Morgan-Kaufmann, 1999.

BIBLIOGRAPHY 62

[16] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of Supercomputer Ap-
plications, 15(3), 2001.

[17] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks sharing files on het-
erogeneous clusters. Technical Report RR-2003-28, LIP, ENS Lyon, France,
May 2003.

[18] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks sharing files on
heterogeneous master-slave platforms. In PDP’200/4, 12th Furomico Work-
shop on Parallel Distributed and Network-based Processing. IEEE Computer
Society Press, 2004.

[19] I.Foster and C. Kesselman, editors. The Grid: Blueprint for a New Com-

puting Infrastructure. Morgan-Kaufmann, 1999.

[20] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 1998.

[21] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In
Proceedings of the 36th ACM/IEEE conference on Design automation, pages
343-348. ACM Press, 1999.

[22] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2):291-307, 1970.

[23] T. Lengauer. Combinatorial Algorithms for Integrated Clircuit Layout.
Wiley—Teubner, Chichester, UK, 1990.

[24] D. Lu and P. A. Dinda. Gridg: Generating realistic computational grids.
SIGMETRICS Perform. Eval. Rev., 30(4):33-40, 2003.

[25] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dy-
namic matching and scheduling of a class of independent tasks onto hetero-

geneous computing systems. Journal of Parallel and Distributed Computing,
59(2):107-131, 1999.

[26] L. A. Sanchis. Multiple-way network parititoning. IEEE Transactions on
Computers, 38(1):62-81, 1989.

BIBLIOGRAPHY 63

[27] B. Ugar and C. Aykanat. Encapsulating multiple communication-cost met-
rics in partitioning sparse rectangular matrices for parallel matrix-vector
multiplies. STAM Journal of Scientific Computing, 25(6):1837-1859, 2004.

