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Abstract

This paper introduces a solution for enhancing depth perception in a
given 3D computer-generated scene. For this purpose, we propose a
framework that decides on the suitable depth cues for a given scene
and the rendering methods which provide these cues. First, the sys-
tem calculates the importance of each depth cue using a fuzzy logic
based algorithm which considers the target tasks in the applica-
tion and the spatial layout of the scene. Then, a knapsack model
is constructed to keep the balance between the rendering costs of
the graphical methods that provide these cues and their contibution
to depth perception. This cost-profit analysis step selects the proper
rendering methods. In this work, we also present several objective
and subjective experiments which show that our automated depth
enhancement system is statistically (p < 0.05) better than the other
method selection techniques that are tested.

Keywords: computer graphics, depth perception, perceptually-
aware rendering, depth cues, cue combination

1 Introduction

3D rendering methods and display technologies such as head-
mounted displays and autostereoscopic displays have advanced sig-
nificantly in the past few years. This rapid development in the 3D
technology also brings the problem of better visualization of the 3D
content. People desire to see realistic 3D scenes, especially when
they are playing games or watching 3D movies. Therefore, usage
of the third dimension in an effective manner has become essential.

Providing correct depth information during the design of a 3D scene
is very important; however, it is not easy for an application designer
to deal with this additional issue. It requires understanding of real-
life depth cues that are used to perceive the spatial relationships
between the objects by the human visual system. Therefore, an au-
tomated system that aids the 3D application designer in improving
the depth perception of an input 3D scene would be very beneficial.

To develop such a system, an algorithm that combines different
depth cues and rendering methods is needed. Although the first
approach is to provide all possible depth cues, this is not always
the best solution. Providing all the cues may lead to problems such
as high computational cost, unnecessary scene complexity, and cue
conflicts. Hence, a system designed to enhance depth perception
should consider the aspects such as the nature of the task, spatial
layout of the scene and computational costs of the methods. A num-
ber of methods have been proposed to improve depth perception
in 3D computer-generated imagery. However, these methods are
generally limited and insufficient, since they are either proposed to
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operate on specific domains, or they do not provide a solution to
unify different depth enhancement methods appropriately. Hence,
a comprehensive system that combines existing depth enhancement
methods properly according to the given scene is required.

In this work, we present a framework that automatically selects the
proper depth enhancement methods for the given scene, depending
on the task, spatial layout of the scene, and the costs of the rendering
methods. The contributions of this study are as follows:

o A fuzzy logic based algorithm for automatically determining
the proper depth cues for the given scene and task,

e A knapsack model for selecting proper depth enhancement
methods, evaluating the cost and profit of these methods,

e A formal experimental study to evaluate the effectiveness of
the proposed algorithms.

2 Background

In this section, we examine the depth cues and cue combination
models from the perception point of view, and analyze the rendering
methods used for enhancing depth perception in computer graphics.

2.1 Depth Cues and Cue Combination

Depth cues, which help the human visual system to perceive the
spatial relationships between the objects, construct the core part of
depth perception. These visual cues can be categorized as pictorial,
oculomotor, binocular, and motion-related cues as illustrated in Ta-
bles 1, 2, 3, and 4 respectively, based on the studies [Howard and
Rogers 2008], [Shirley 2002], and [Ware 2004].

How the human visual system unifies different sources of depth
cues into a single knowledge is a widely-investigated topic. Many
studies have investigated the interaction of different cues. There
is not a single, accepted cue combination model, however. The
mostly-accepted models of cue interaction are generally the vari-
ations of the following categories: cue averaging, cue domi-
nance, cue specialization, range extension, and probabilistic mod-
els [Howard and Rogers 2008].

Most of the research on cue combination focuses on the cue averag-
ing models, in which each cue is associated with a weight determin-
ing its reliability. The overall perception is obtained by summing up
the individual depth cues multiplied by their weights. The studies
by Maloney and Landy [1989] and Oruc et al. [2003] are example
approaches based on the cue averaging model.

Cue dominance is a model proposed to consider cue conflicts. Ac-
cording to this model, if two depth cues provide conflicting infor-
mation, one of them may be suppressed and the final percept may
be based on the other cue [Howard and Rogers 2008].

Cue specialization models are based on the idea that different cues
may be used for interpreting different components of a stimulus.
Several researchers consider the target task as an important factor
on determining the cues that enhance the depth perception [Brad-
shaw et al. 2000], [Schrater and Kersten 2000]. Ware presents a
comprehensive list of the tasks and a survey of the depth cues ac-
cording to their effectiveness under these tasks [Ware 2004]. For



Table 1: Pictorial Depth Cues

Depth Cue

Details

Occlusion

If an object overlaps some part of the other, it is
known that the blocked object is further. It only gives
information about the order of the objects.

Linear Perspective

In real life, parallel lines seem converging,
as they move away, towards the horizon.

Size Gradient

The size of an object is inversely proportional
to the distance from the viewer. Hence, larger
objects seem closer to the viewer.

Relative Heigh

B "1

When the world is divided by a horizon; the objects
closer to the horizon seem further under the horizon,
and seem closer above the horizon. (Painting: “The
Coast of Protrieux” by Eugene Boudin.)

Texture Gradient

==

In textured surfaces, when the surface gets further
away, the texture becomes smoother and finer.

[ =

~

Relative Brightness

Aerial Perspective
— ————

[

Depth-of-focus

The intensity level of an object varies with depth.
Brighter objects are prone to be seen closer.

Further objects seem hazy and bluish due to the
scattering of the light in the atmosphere. Hence,
aerial perspective increases the perceived distance.
(Painting: “Near Salt Lake City” by Albert Bierstadt.)

Our eyes fixate on different objects in the world to
bring them to sharp focus. The objects other than the
object in the sharp focus seem blurry.

Shadow If the object is in shadow, it is further from the light
. source. Shadows of the objects on the ground facili-
tate the perception of the objects’ relative positions by
— connecting them to the ground plane.
Shading Shading provides important information about the

surface shape by enabling the observer to distinguish
between convexities and concavities.

o0®

Table 2: Oculomotor Depth Cues

Depth Cue Details
Accommodation The process of the distortion in the eye lens to
fixate on a point is called accommodation. The
@ @ amount accommodation that the eye lens performs
to focus on an object varies with depth.
Convergence It is the fixation of the eyes towards a single
location in order to maintain a single binocular vi-
T3 17-=s  sion. The increase in the convergence angle indi-
) cates that the fixation point comes closer (a >
— 0,y < x).

Table 3: Binocular Depth Cues
Depth Cue Details
Binocular Disparity Left and right eyes look at the world
from slightly different angles, which re-
sults in slightly different retinal images.
This provides binocular vision.

left eye
right eye image
right eye

30 object left eye image

2D projection

instance, according to his investigations, perspective is a strong cue
when the task is “judging the relative positions”; while it becomes
ineffective for the task “tracing data paths in 3D graphs”. As an
another example, stereoscopic viewing and kinetic depth together
significantly increased the accuracy when the task is “tracing data
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Table 4: Motion Related Depth Cues

Depth Cue Details
Motion Parallax As the user moves his eyes side to side,
2e. ! the images of the closer objects move
: AN | more in the visual field than those of fur-
1@ a ther objects. This is because the angular

speed of an object is inversely related to
the distance from the viewer (21 < z2,
a > 0).

Kinetic Depth

20 projection object

— rotation around
- local axis

arbiirary shaped

The overall shape of an arbitrary object
can be perceived better when it rotates
around its local axis, since the ambigu-
ities due to the projection from 3D to 2D
are resolved with the rotation.

paths in 3D graphs” [Ware and Mitchell 2008].

According to the range extension model, different cues may be ef-
fective in different ranges. For example, binocular disparity is a
strong cue in the near distances, while perspective becomes more
effective at far distances [Howard and Rogers 2008]. In this sense,
Cutting and Vishton [1995] provide a distance-based classification
of depth cues by dividing the space into three ranges and investi-
gating the visual sensitivity of the human visual system to different
depth cues in each range.

Lastly, Bulthoff and Yuille [1996] present a probabilistic approach
to estimate the cue interactions by considering various prior as-
sumptions of the human visual system on the scene and material
attributes, using a Bayesian framework. An example prior assump-
tion is that human visual system assumes that light is stationary and
comes from left-above [Howard and Rogers 2008].

2.2 Rendering Methods for Depth Enhancement

Based on the depth cues and principles discussed in the previous
subsection, different rendering methods have been developed for
enhancing depth perception in 3D rendered scenes. It is appropriate
to examine these methods according to the cues they provide.

Perspective-based cues: It is possible to obtain the cues occlusion,
size gradient, and relative height by transforming the objects in the
scene or changing the camera position. For the relative height cue,
drawing lines from the objects to the ground plane is a commonly-
used method to make the height between the object and the ground
more visible [Ware 2004]. A ground plane or a room facilitates
the interpretation of the cues relative height and size gradient. In
addition, placing objects of known sizes is a technique for enabling
the user to judge the sizes of unknown objects easier [Ware 2004].

Focus related cues: Depth-of-field method is used to simulate the
depth-of-focus cue. According to this method, objects in the range
of focus are rendered sharp, while the objects outside of this range
are rendered blurry and the blurriness level increases as the ob-
jects get further away from the range of focus [Haeberli and Akeley
1990]. Fog is commonly used to provide aerial perspective and
relative brightness cues on the graphical contents and obtained by
interpolating the color of a pixel between the surface color and the
fog color with respect to the distance of the object. To make the
relative brightness more obvious, Dosher et al. have proposed an-
other method called proximity luminance covariance, which alters
the contrast of the objects in the direction of the background color
as the distance increases [Ware 2004].

Shading and shadows: Several techniques have been proposed to
approximate the global illumination calculation for real-time ren-
dering. The ambient occlusion technique aims to increase the re-



alism of 3D graphics in real time without a complete global illu-
mination calculation. For instance in Bunnel’s [2004] work, an ac-
cessibility value, which represents the amount of hemisphere above
the surface element not occluded by the geometry, is calculated by
approximation for each surface element. The surfaces are darkened
according to these accessibility values.

Gooch shading is a non-photorealistic (NPR) shading model which
is performed by interpolating between cool colors (blue tones) to
warm colors (yellow tones) according to the distance from the light
source [Gooch et al. 1998], [Rheingans and Ebert 2001]. This kind
of shading also provides atmospheric effect on the scene.

Boundary enhancement using silhouette and feature edges is
a commonly-used tool in NPR [Nienhaus and Doellner 2003],
[Markosian et al. 1997]. An image-space approach is proposed by
Luft et al. [2006] to enhance images that contain depth information.
In this method, the difference between the original and the low-pass
filtered depth buffer is computed to find spatially important areas.
Then, color contrast on these areas is increased.

Binocular and oculomotor cues: To obtain binocular and ocu-
lomotor cues, there is a need for apparatus that provides multiple
views of a 3D scene. There are several 3D display technologies
such as shutter glasses, parallax barrier, lenticular, holographic, and
head-tracked displays [Dodgson 2005]. Rendering on 3D displays
is an active topic in itself [Bulbul et al. 2010b].

Motion related cues: Tracking the user’s position and controlling
the motion of the scene elements according to the position of the
user can be a tool for motion parallax. For instance, Bulbul et al.
[2010a] propose a face tracking algorithm in which the user’s head
movements control the position of the camera and enables the user
to see the scene from different viewpoints.

Other: There are also studies that combine multiple depth enhance-
ment methods. Tarini et al. [2006] propose a system for enhanced
visualization of molecular data. In this work, ambient occlusion
and edge cueing schemes are applied for molecular visualization.
Weiskopf and Ertl [2002] developed a more comprehensive depth
cueing framework based on the principles of color vision. In this
study, only color properties such as intensity and saturation are em-
ployed for providing depth cues by transforming the color values
according to the distance. The literature survey indicates that there
is a lack of comprehensive framework for uniting different methods
of depth enhancement.

3 Approach

We propose a framework for automatically selecting the proper
depth cues for the given scene and the rendering methods that pro-
vide these depth cues. While automatically selecting the suitable
cues and rendering methods for the given scene, we consider the
following factors: the distance of the objects in the scene, the user’s
tasks in the application, the spatial layout of the scene, and the costs
of the rendering methods. Hence, our algorithm can be considered
as a hybrid of the cue averaging, cue specialization, and range ex-
tension models of cue combination described in Section 2.1.

The general architecture of the automatic depth enhancement pro-
cess can be seen in Figure 1. Our approach first determines the
priority of each depth cue based on the task, distance of the objects,
and scene attributes using fuzzy logic. The next stage is to select
the suitable rendering methods that provide the cues which are de-
termined as high priority in the previous stage. In this stage, we
consider the costs of the methods and try to solve the cost and cue
priority trade-off. After selecting the proper rendering methods, we
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Figure 1: General Architecture of the System.

apply these methods to the given scene and produce a refined scene
with a better depth perception.

3.1 Cue Prioritization

The aim of this stage is to determine the important depth cues for
the given scene. This stage analyzes the user’s task and the spatial
layout of the scene; and a priority value, which represents the ef-
fectiveness of that cue for the given scene, is assigned to each depth
cue. The general architecture of this stage is shown in Figure 2.

Task

weights 3D Slcene

Distance Scene

identification|| analysis m
Distance Scene
range suitability
Depth Cue
CUZS A Defuzzifier priorities
Inference

fuzzy input set fuzzy output set

Figure 2: Fuzzy Cue Prioritization Stage.

The system maintains a cue priority vector which stores a priority
value, in the range of (0, 1), for each depth cue. At the end of this
stage, cue priority values are calculated which show the strength of
the corresponding cue for the given scene.

To calculate the cue priorities, we have selected fuzzy logic as the
decision making method due to a number of reasons. Firstly, fuzzy
logic has been used successfully to model complex systems such as
human intelligence, perception, and cognition [Brackstone 2000],
[Russell 1997]. Secondly, the problem of combining different depth
cues depends on many factors such as task, distance, and etc. Fuzzy
logic systems provide a robust solution for this kind of multi-input
systems whose mathematical modeling is difficult.

Fuzzification

In fuzzy logic, linguistic variables such as age, temperature are
used, instead of numerical values. The goal of this step is to repre-
sent the variables linguistically to activate the rules defined in terms
of linguistic variables. In this step, numerical variables are con-
verted to fuzzy set of variables.

Task weights are the first input to this stage, based on the cue spe-
cialization model. These weights represent the user’s task while
interacting with the application. Following Ware’s user task classi-
fication [Ware 2004], we define the basic building blocks for user’s
tasks as follows:

Judging the relative positions of objects in space
Reaching for objects

Surface target detection

Tracing data paths in 3D graphs



e Finding patterns of points in 3D space
e Judging the “up” direction
e The aesthetic impression of 3D space (Presence)

For example, in a graph visualization tool, the user’s main task is
tracing data paths in 3D graphs; whereas, in a CAD application,
Jjudging the relative positions and surface target detection are more
important tasks. In our algorithm, a fuzzy linguistic variable be-
tween 0 and 1 is kept for each task. These values correspond to the
weights of the tasks in the application and initially assigned by the
application developer using any heuristics he desires.

Fuzzification of the task related input variables is obtained by piece-
wise linear membership functions which divide the region into
three (Figure 3). Using these membership functions and the task
weights, each task is labeled as “low_priority”, “medium_priority”,

or “high_priority” to be used in the rule base.

task distance
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Figure 3: Membership functions.

Distance of the objects to the user is another input to the system, as
range extension is a cue combination model that constructs our hy-
brid model. To represent the distance range of the objects, two input
linguistic variables “minDistance” and “maxDistance” are defined.
These values are calculated as the minimum and maximum dis-
tances between the scene elements and the viewpoint, and mapped
to the range 0-100.

To fuzzify these variables, we use the trapezoidal membership func-
tions (Figure 3), which are constructed based on the distance range
classification in [Cutting and Vishton 1995]. Based on these func-

tions, input variables for distance are labeled as “close”, “near”,
“middle”, or “far” (Eq. 1).
,U/clo.se(x) - _33/2 + 17 S [07 2)
x/2, z €[0,2)
/Jnea'r(x) = 5 x e [2, 10)
—x/24+6, x€[10,12]
x/2 —4, x € [8,10)
Hmedium(x) = 1, HAS [10, 50) (1)
—z/504+2, =z € [50,100]
x/50 — 1, =z € [50,100)
I'Lfar(w) { 1, T € [100,00)

where x is the crisp input value which corresponds to the absolute
distance from the viewer and ficiose, fnears fmedium, and ffar
are the functions for close, near, medium, and far respectively.

The spatial layout of the scene may affect the behaviors of differ-
ent cues in different ways. For instance, if there are a large number
of points in a 3D scatter plot, cast shadows do not contribute to the
depth perception [Ware 2004].

To handle these scene specific parameters in our system, we define
another input linguistic variable “scene”, for each depth cue. Ini-
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tially, the scene is assumed to be suitable for each depth cue. Then,
the scene is analyzed separately for each depth cue and if there
is an inhibitive situation similar to the cases described above, the
“scene” value for that cue is penalized. For instance, according to
Madison et al., cast shadows give the best results when the objects
are slightly above the ground plane [Ware 2004]. To handle this
situation, we count the number of objects which are slightly above
the ground plane in the scene, and we calculate the scenespadow as
the ratio of the number of objects that are slightly above the ground
plane to the total number of objects in the scene. The “scene” val-
ues are fuzzified as “poor”, “fair”, or “suitable” using the piecewise
linear membership function (Figure 3).

Inference

The inference engine of the fuzzy logic system maps the fuzzy input
values to fuzzy output values using a set of IF-THEN rules. Our
rule base is constructed based on a literature survey of experimental
studies on depth perception. For each depth cue, there is a different
set of rules. According to the values of the fuzzified input variables,
the rules are evaluated using the fuzzy operators shown in Table 5.
Table 6 contains sample rules used to evaluate the priority values of
different depth cues. Current rule base consists of 106 rules in total.

Table 5: Fuzzy logic operators used in the evaluation of the rules

Operator  Operation Fuzzy Correspondance
AND pA® & pp®  min{ pa®), ppx) }
OR pa(@) lpp(x)  max{pa(z), pp(z)}
NOT ~pa(z) 1 pa(x)

Table 6: Sample fuzzy rules
IF scene is suitable AND tracing_data_path_in_3d_graph is high_priority THEN
shadow is weak
IF scene is suitable AND (minDistance is far OR maxDistance is far) THEN
aerial_perspective is strong
IF scene is suitable AND (minDistance is NOT far OR maxDistance is NOT far)
AND asthetic_impression is low_priority THEN binocular_disparity is strong

Defuzzification

The inference engine produces fuzzy output variables with values
“strong”, “fair”, “weak”, or “unsuitable” for each depth cue. These
fuzzy values should be converted to non-fuzzy correspondences.
This defuzzification is performed by the triangular and trapezoidal
membership functions (Figure 3). As the defuzzification algorithm,

we use the “center of gravity” (COG) function in Eq. 2.

_ szxu w(u) du

m w(u) du @

max

min

where U is the result of defuzzification, u is the output variable, p is
the membership function after inference, min and max are the lower
and upper limits for defuzzification, respectively [fcl 1997].

In Figure 4, a sample demonstration of the overall fuzzy cue prior-
itization stage for the shadow depth cue is illustrated. At the end of
this stage, priority values for each depth cue are produced.

3.2 Method Selection

After the cue prioritization, the next stage is to support the cues with
high priority, using proper rendering methods. However, there are
different depth enhancement methods that provide the same cue, as
well as methods that can provide multiple cues at the same time.

Table 7 shows the depth cues and the rendering methods we have
implemented to provide these cues. In the table, some of the meth-
ods are labeled as “helper”. This means that these methods do not
provide the corresponding depth cue directly, however they either
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Figure 4: Demonstration of the fuzzy cue prioritization stage on shadow depth cue.

increase the effect of the cue or there is a dependency between the
rendering methods that provide this cue. For instance, perspective
projection does not provide fexture gradient itself; however, when
the surface is textured, it increases the effect of rexture gradient cue.

Table 7: Rendering methods corresponding to the depth cues
Depth Cues Depth Enhancement Methods

Size gradient Perspective projection

Relative height Perspective projection, dropping lines to ground
Helper: ground plane

Proximity luminance, fog

Fog, proximity luminance, Gooch shading

Texture mapping, bump mapping

Helper: perspective projection, ground plane, room

Relative brightness
Aerial perspective
Texture gradient

Shading Gooch shading, boundary enhancement,
ambient occlusion, texture mapping
Shadow Shadow map, ambient occlusion

Helper: ground plane, room
Perspective projection
Helper: ground plane, room, texture mapping

Linear perspective

Depth of focus Depth-of-field, multi-view rendering
Accommodation Multi-view rendering
Convergence Multi-view rendering

Binocular disparity Multi-view rendering

Motion parallax
Motion perspective

Face tracking, multi-view rendering
Mouse/keyboard controlled motion

The architecture for method selection stage is shown in Figure 5.
The inputs to the system are the cue priority vector from the previ-
ous stage, current frame rate in frames per second (FPS) from the
application, and a target FPS set by the user. The FPS values are
used to calculate the maximum cost (Eq. 3).

maxCost = currentF'PS — targetF' PS 3)

The core part of this stage is modeling the trade-off between the
cost and profit of a depth enhancement method as a Knapsack prob-
lem. According to this approach, a “profit” and a “cost” value are
assigned to each depth enhancement method. “Profit” is used to
quantify the contribution of a method to the enhancement of depth
perception in the given scene and calculated as a weighted sum of
the priorities of the depth cues provided by this method (Eq. 4),
based on the “cue averaging” model:

profit, = Z cj X pj

JEC;

“

where C; is the set of all depth cues provided by method i, p; is
the priority value of cue j, and c; is a constant that represents how
much method i contributes to the cue j.

We calculate the “cost” of a rendering method as the reduction in
the current FPS caused by this method. We define a cost reduction
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Figure 5: Method Selection Stage.

table which keeps a FPS reduction value (R;) in percentages for
each method. These values are obtained empirically, as the average
reduction in FPS due to the corresponding method, through differ-
ent scenes. Then, the cost of each rendering method is calculated
using this table and the current FPS at run time (Eq. 5).

cost; = R; X currentFPS/100 5)

The Knapsack problem in Eq. 6, which maximizes the total “gain”
while keeping the total cost under the “maxCost”, is solved using
the dynamic programming approach:

Z profit; X x;

€M

Gain



Cost (Z cost; X x;) < maxCost

€M

(6)

where M is the set of all methods, maxCost limits the total cost,
cost; is the cost of method i, z; € {0, 1} is the solution for method
i and indicates whether method i will be applied.

At the end of the cost-profit analysis step, we obtain the decision
values of each depth enhancement method. It is possible to use
these values directly as the final decisions; however, we apply two
more steps to improve the quality of the system.

The purpose of the elimination step is to eliminate additional cost
by unselecting some of the methods that provide only the cues that
are already provided by other methods. For example, although the
main purpose of multi-view rendering is providing binocular dis-
parity, it also creates the depth-of-focus effect. Hence, there is
no need to increase the rendering cost with depth-of-field method
which only provides depth-of-focus cue, if a more “profitable”
method is already selected. For such kind of methods, see Table 7.

Another post-processing step is checking the use of helpers, in
which the methods that are labeled as “helper” for the correspond-
ing method in Table 7 are checked and selected if they are not al-
ready selected. For instance, if shadow mapping method is selected
but ground plane is not enabled, this step selects ground plane and
updates the total cost and profit accordingly.

The above procedure is repeated multiple times to obtain a more ac-
curate estimation in the final FPS. The number of passes is bounded
by a threshold value. Three passes generally result in accurate es-
timations. Note that other cost limitations can also be taken into
account, such as memory requirements. It is also possible to extend
the system to consider multiple limitations at the same time, using
multiply constrained knapsack problem.

3.3 Methods for Enhancing Depth Perception

After receiving the decision values of the rendering methods, the
last step is to apply these methods to the given scene. Our current
implementation supports the rendering methods shown in Table 7;
only the important ones are explained in this section.

Shadow Map: In our framework, shadow is obtained by using
shadow maps. In this method, a depth test is performed from the
light’s point of view and the points that cannot pass the depth test
should be in shadow.

Fog: We implemented a fog rendering method to provide the aerial
perspective cue, in which the final color of each pixel (cfinat) is
interpolated between the surface color (Csur face) and the fog color
(cfog) according to the fog factor (f) which depends on the distance
from the viewpoint (Eq. 7).

f X Csu'r‘face + (]- - f) X CfOQ (7)

Cfinal

Proximity Luminance: This method changes the luminance of the
objects according to their distance from the viewpoint to provide
relative brightness and aerial perspective cues. We first convert the
color value from RGB space to HSL space, modify the luminance
value according to the pixel’s distance using Eq. 8, and convert the
modified color back to RGB space.

Vp€ P, L, =\XxeyeDist) x Ly 8)
where P is the set of all pixels, L, is the current luminance value of
pixel p, L, is the modified luminance value of pixel p, eyeDist,
is the distance of pixel p to the viewpoint, and A is a constant that
determines the strength of the method.
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Boundary Enhancement: We enhance the important edges using
the depth buffer based method [Luft et al. 2006]. According to this
method, the derivative of the depth values is used to calculate the
“spatial importance” function which indicates the spatially impor-
tant areas in the scene. This function (A D) is calculated as the
difference between the original (D) and the Gaussian filtered (G)
depth buffer (Eq. 9).

AD=G+«D—-D )
Here, the * operator stands for convolution. After calculating the
spatial importance function, the color contrast of the whole image is
modified by adding the spatial importance value (A D)) multiplied
by a constant (A) to each color channel (R,, G, Bp) (Eq. 10).

Vpe P, Ry, Gy, By Ry, Gp,Bp +AD, - X (10)

Face Tracking: We use the face tracking system by Bulbul et al.
[Bulbul et al. 2010a] to provide motion parallax. The face position
is used in the application to determine the viewpoint.

Multi-view Rendering: We provide binocular and oculomotor
cues using multi-view rendering which is obtained by a 9-view 3D
lenticular display. The scenes rendered from different viewpoints
are combined using the interlacing operations for the display.

4 Experimental Study

The success of the proposed system was evaluated by several ex-
periments. In this paper, we selected two important and common
tasks: “judging relative positions” and “surface target detection
(shape perception)” from those listed in Section 3.1. For the first
task, we performed both an objective and a subjective experiment,
while we tested the second task based on a subjective study.

4.1 Objective Experiment

Subjects: We performed the objective experiment on 14 subjects: 9
males and 5 females with a mean age of 24.4. All the subjects have
self-reported normal or corrected vision. They were voluntary grad-
uate or undergraduate students with computer science background.
They were not informed about the purpose of the experiment.

Procedure: An experimental setup similar to the one in Wanger’s
study [Wanger 1992] was used. Subjects were given a scene with a
randomly positioned test object in a region whose boundaries were
indicated visually and asked to estimate the z position (between 0-
50) of the given object (Figure 6). There was no time limit and they
entered their estimations using a slider-like widget (Figure 6).

Figure 6: Left: The scene used in the objective experiment. (Red
bars and blue bars show the boundaries in z and y, respectively.)
Right: Submission of the results.

The above procedure was repeated for five different conditions. In
the first case there were no depth cues in the scene other than the
perspective projection which is indicated by the lengths of the limit
indicator bars shown in Figure 6. In the second test case, which
rendering methods will be used were decided randomly at run time.
The third case was also a random selection with a cost limit. In
other words, each method was applied randomly only if it did not



decrease the frame rate under the given cost limit. The cost limit
was the same as the one used in automatic selection case. The
fourth case was the application of all the depth enhancement meth-
ods and in the last case, the methods that will be applied to the scene
were chosen using our algorithm.

Results: RMS error for each test case is calculated using Eq. 11,
where T is the set of estimations and R is the set of real positions.

ST — Ri)?

RMS(T) i

an

Figure 7 shows the RMS errors for each test case. As shown in the
figure, our algorithm gives the best results with RMS error of only
3.1%. Hence, it is even better than applying all the methods. A
possible reason for this result is that applying all the methods may
cause cue conflicts and confuse the subjects. Also, when all the
methods are applied, the frame rate decreases and this situation dis-
tracts the user. Therefore, we consider the third case as the strongest
competitor of our case because of the cost limit. The results show
that our algorithm results in more than 2 times better estimations
in depth, compared to the third case. We also performed a paired
samples t-test on the experimental data. We compared the results
of each test case to the results of our case and this statistical anal-
ysis show that the difference between our algorithm and the other
selection techniques is statistically significant (p < 0.05).

RMS Errors
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3. Cost limited random

4. Allmethods

RMS error
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Figure 7: RMS errors for objective depth judgement.
4.2 Subjective Experiments

We have also performed subjective tests for the tasks “depth per-
ception” and “shape perception” separately.

Subjects: For the depth judgement task, 21 subjects (17 males,
4 females) with a mean age of 24.2 were participated in the ex-
periment; and 11 subjects (9 males, 2 females) whose mean age
is 24.1, evaluated the scenes for the shape judgement task. The
subjects were among the voluntary graduate and undergraduate stu-
dents who have self-reported normal or corrected vision. They were
not informed about the purpose of the experiment.

Procedure: For each task, the subjects were shown a scene (Fig-
ure 8) and asked to grade the given scene between 0 and 100. At
the beginning, the subjects were informed about the procedure and
the grading criteria. They were told that they should evaluate the
ease of understanding the relative distances between the objects in
the scene, for the depth judgement; and the perception of the shapes
(curvatures, convexity/concavity, etc.) of the objects, for the shape
judgement. At first, the scene without any cues was shown to the
subjects and they were told that the grade of this scene is 50 and
they graded the other test cases by comparing them to the original
scene. Test cases were the same with the objective experiment.

Results: Our automatic selection framework suggested the meth-
ods keyboard control, room, multi-view rendering, and proxim-
ity luminance for the depth judgement task; while boundary en-
hancement, face tracking, bump mapping, Gooch shading, shadow,
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Figure 8: The scenes (without cues) for depth judgement (left) and
shape judgement (right) tasks.

and proximity luminance were suggested for the shape judgement
task. Here, the remarkable point is that shape-from-shading and
structure-from-motion cues are dominant among the selected meth-
ods for shape judgement task. The average grades for each task is
shown in Figure 9. Our algorithm has the highest grades for both
tasks: about 87 for depth and 73 for shape judgement. Since some
of the error bars are overlapping, we performed a paired samples t-
test for the results, which showed that our algorithm is statistically
(p < 0.05) better than the other selection techniques for both tasks.

Average Grades for Depth Judgement ~ Average Grades for Shape Judgement
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Figure 9: Results for subjective depth (left) and shape (right) judge-
ment tasks. (Error bars show the 95% confidence intervals.)

5 Conclusion

In this work, we have presented a framework that proposes meth-
ods for enhancing the depth perception in a given 3D scene. Our
algorithm automatically decides on the important depth cues using
fuzzy logic and selects the rendering methods which provide these
cues based on the Knapsack problem. In this depth enhancement
framework, we consider several factors: the target tasks, spatial
layout of the scene, and the costs of the rendering methods. Our
framework can either be used for automatically enhancing the depth
perception of a given scene, or as a component that suggests suit-
able rendering methods to application developers. Figure 10 shows
several examples of the results of our system.

We evaluated our system using objective and subjective experimen-
tal studies for depth and shape judgement tasks. According to the
results of the objective experiment for depth judgement, average
RMS error of our system is only 3.1%. In addition, subjective ex-
periments show that the scenes which are enhanced using our algo-
rithm have the highest scores among other test cases for both tasks,
with a statistically significant (p < 0.05) difference (Figure 9). On
the other hand, the main limitation of our system is not considering
the cue conflicts and the effects of animation.

One future direction is to perform more comprehensive experiments
such as testing other tasks and comparing with different selection
methods. Moreover, the rule base should be extended and more ren-
dering methods should be implemented. Another idea is to compare
the behaviour of our system for different multi-view technologies.
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