

Representing Ultrasonic Maps Using Active Snake Contours

Kerem Altun and Billur Barshan

kaltun@ee.bilkent.edu.tr, billur@ee.bilkent.edu.tr
Department of Electrical and Electronics Engineering
Bilkent University, Ankara, Turkey

Introduction

- data from ultrasonic sensors are difficult to interpret because of:
 - large sensor beamwidth
 - multiple and higher-order reflections
 - cross-talk between sensors
- physical sensor models and intelligent processing techniques are needed to interpret and represent ultrasonic data properly

Ultrasonic Arc Map (UAM):

- collection of arcs spanning the sensor beamwidth at the measured ranges [1]
- UAMs can be processed by various techniques to improve accuracy of maps [2]
- resulting map still comprises a large number of points with possible outliers
- in this study, processed UAMs are represented parametrically to:
- represented parametrically to:
 further eliminate the outliers
- represent map points more compactly and efficiently

Euclidean Distance Transform (EDT)

Euclidean distance measure between two points $\mathbf{p}_i \in P$ and $\mathbf{q}_j \in Q$:

$$d(\mathbf{p}_i, \mathbf{q}_j) = \sqrt{(p_{xi} - q_{xj})^2 + (p_{yi} - q_{yj})^2 + (p_{zi} - q_{zj})^2}$$
$$i \in \{1, \dots, N_1\} \qquad j \in \{1, \dots, N_2\}$$

Euclidean distance transform (EDT):

$$D_Q(\mathbf{p}) = \min_{\mathbf{q}_j \in Q} \{ d(\mathbf{p}, \mathbf{q}_j) \} \quad j \in \{1, \dots, N_2\}$$

- P: the set of all points in the environment
- Q: the set of all map points acquired by a sensor

Active Contours (Snakes) [3]

A snake is a parametric curve $\mathbf{v}(s) = [\mathbf{x}(s) \ \mathbf{y}(s)]^\mathsf{T}$ with energy functional:

$$E_{\text{snake}} = \int_0^1 \left[E_{\text{int}}(\mathbf{v}(s)) + E_{\text{ext}}(\mathbf{v}(s)) \right] ds$$

(s \in [0,1]: normalized arc length parameter)

• internal energy penalizes elongation (by α) and bending (by β):

$$E_{\text{int}}(\mathbf{v}(s)) = \frac{1}{2} \left(\alpha \left\| \frac{d(\mathbf{v}(s))}{ds} \right\|^2 + \beta \left\| \frac{d^2(\mathbf{v}(s))}{ds^2} \right\|^2 \right)$$

- external energy is chosen as the EDT of the map
- goal: find the snake that minimizes total energy by solving the discretized Euler-Lagrange equations iteratively:

$$\mathbf{p}_{x}(n+1) = (\mathbf{A} + \gamma \mathbf{I})^{-1} \left(\gamma \, \mathbf{p}_{x}(n) - \kappa \, \frac{\partial U}{\partial p_{x}} \Big|_{[\mathbf{p}_{x}(n), \mathbf{p}_{y}(n)]} \right)$$

$$\mathbf{p}_{y}(n+1) = (\mathbf{A} + \gamma \, \mathbf{I})^{-1} \left(\gamma \, \mathbf{p}_{y}(n) - \kappa \, \frac{\partial U}{\partial p_{y}} \Big|_{[\mathbf{p}_{x}(n), \mathbf{p}_{y}(n)]} \right)$$

- n: iteration step
- α : elongation parameter
- β: bending parameter
- γ: Euler step size κ: external force weight
- ter
- \mathbf{p}_{x} , \mathbf{p}_{y} : coordinates of points on the snake
- $\bf A$: a penta-diagonal banded matrix depending on α and β
- U: potential function (chosen as EDT)

Parameter Optimization

- snake parameters: α , β , γ , and κ
- parameter optimization methods used:
 - uniform sampling of 4-D parameter space
 - particle swarm optimization (PSO) [4]

method	α	β	γ	κ
uniform sampling	4.20	0.60	0.60	1.80
PSO	7.7	10.24	2.99	6.19

Results

generic error criterion:

$$\mathcal{E}_{(P-Q)} = \frac{1}{2} \left(\frac{1}{N_1} \sum_{i=1}^{N_1} D_Q(\mathbf{p}_i) + \frac{1}{N_2} \sum_{j=1}^{N_2} D_P(\mathbf{q}_j) \right)$$

(``difference'' between two discrete point sets P and Q)

- P and Q may be chosen in many different ways
- snakes are fitted to point sets obtained with eight different UAM processing techniques [2]:

	PSO		uniform sampling	
	$\epsilon_{(\text{Sk-M0})}$	ε _(Sk-S0)	ε _(Sk-M0)	$\epsilon_{(Sk-S0)}$
PM	3.00	2.65	2.71	2.29
VT	3.32	3.16	2.81	2.51
DM	2.99	2.56	2.69	2.63
MP	5.55	5.87	4.82	5.14
BU	6.24	5.71	5.89	5.35
ATM-org	3.53	3.15	2.97	2.58
ATM-mod	3.12	3.04	3.11	3.02
TBF	3.90	4.33	4.00	4.63

M₀: laser map (very accurate, considered as ground truth)

 S_0 : snake fitted to the laser map

S_k: snake fitted to the points resulting from kth UAM processing technique

p_v (cm)

(sample results are shown)

- processed UAM (black)
- snake fitted to processed UAM (blue) (uniform sampling)
- snake fitted to the laser map (red)
- demonstrated that snakes can represent ultrasonic map points compactly and efficiently
- uniform sampling errors are in general smaller than PSO
- · smallest errors achieved with DM and PM, largest with MP and BU
- applicable to point-based maps obtained with other sensing modalities (e.g., laser, infrared, radar)

Acknowledgments

This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant number EEEAG-109E059.

References

- [1] D. Başkent, B. Barshan, "Surface profile determination from multiple sonar data using morphological processing," Int. J. Robot. Res., 18(8):788-808, 1999.
- [2] B. Barshan, "Directional processing of ultrasonic arc maps and its comparison with existing techniques," Int. J. Robot. Res., 26(8):797-820, 2007.
- [3] M. Kass, A. Witkin, D. Tersopoulos, "Snakes: active contour models," Int. J. Comput. Vision, 1(4):321-331, 1988.
- [4] J. Kennedy, R. Eberhart, "Particle swarm optimization," Proc. IEEE Int. Conf. Neural Networks, 4, pp.1942-1948, Nov./Dec. 1995.