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Abstract—We present a probabilistic framework for the
mathematical expression recognition problem. The developed
system is flexible in that its grammar can be extended easily
thanks to its graph grammar which eliminates the need for
specifying rule precedence. It is also optimal in the sense that
all possible interpretations of the expressions are expanded
without making early commitments or hard decisions. In this
paper, we give an overview of the whole system and describe
in detail the graph grammar and the parsing process used in
the system, along with some preliminary results on character,
structure and expression recognition performances.

Keywords-online, handwriting recognition, OCR, mathemat-
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I. INTRODUCTION

In spite of the ever-growing place of computers and other
digital devices in our lives, pen and paper is still the most
convenient way for communicating or recording informa-
tion. In particular, mathematical expressions are most con-
veniently entered by handwriting. Computer understanding
of handwritten text (handwriting or mathematical formulas)
is an ongoing research area. The difficulty is due to several
factors, including large variations in writing styles, the
size of the lexicon indicating the possible alternatives, and
ambiguity of certain shapes without semantic understanding
(e.g. ’O’ and ’0’).

Mathematical expression recognition includes two main
subproblems: character recognition for recognizing seg-
mented and tokenized symbols (numbers, letters, special
mathematical symbols) and structural analysis for under-
standing the structure of the expression from the spatial
relationships between the characters and the character recog-
nition output. Recognizing mathematical expressions is more
challenging compared to handwritten text in recognition due
to the complex semantics of mathematical expressions as
well as the 2-dimensional layout of the characters.

There are several approaches in literature for structural
analysis of mathematical expressions: procedurally coded
rules [1]; X-Y cuts based on projection profiles [2], [3];
baseline tree construction [4], [5]; stochastic context-free
grammars [6]; constraint attribute grammars [7]; hierarchical

decomposition parsing [8]; spanning tree generation on
weighted graphs [9]; and graph grammars [10]–[13]. Among
these approaches, graph grammars have certain advantages:
as put forward in [14], graph grammars by their nature are
2-dimensional representations that can represent a possibly
infinite number of patterns with finite number of rules,
when augmented with attributes. Indeed, graph grammars
are among the preferred approaches to formula recognition
in recent years. In [10], a graph grammar is added to an
existing system to relax their constraints about writing order
of symbols. Work in [11]–[13] are based on graph re-writing,
where a bottom up parser is used, collapsing matched nodes
into a single node at each rule application. For these systems,
the output of the parse process is a single node containing
all of the input symbols and corresponding to the intended
meaning of the expression.

Our system uses a probabilistic context-free graph gram-
mar that guides the system to find mathematically valid
interpretations and associate probabilities to each possi-
ble interpretation of the expression. The proposed system
distinguishes itself from the previous work in its proba-
bilistic approach: whereas previous graph-grammar based
approaches modify the initial graph with the application
of the chosen grammar rules irreversibly, our approach
entertains all possible interpretations of neighboring tokens
and eventually the expression. This is possible thanks to
its graph-grammar which eliminates the need for specifying
rule precedence, where all possible interpretations gener-
ated thus far are kept in an extended graph. Within this
framework, the disambiguation of all possible interpretations
of the expression is done at the end of the parsing, by
considering the likelihoods of the resulting interpretations.
The likelihood of an interpretation depends on the suitability
of the symbols spatial distribution for the rules used and the
and the likelihoods of the recognized symbols. The output
of our system is a list of the most-likely parses of the input,
along with their likelihoods. This is an important advantage
of the proposed system, as the user can simply choose the
correct parse from the list, rather than correcting the parse
result or rewriting the expression.
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The next section gives a brief description of graph gram-
mars and then our approach and experimental results are
described in subsequent sections. In the rest of the paper, we
use the term OCR to shortly refer to character recognition;
symbol and character interchangeably to refer segmented
characters; and node or token refer to the current group of
characters that form a subexpression.

II. GRAPH GRAMMARS

Mathematical formulas are precise and the grammar of
mathematics strictly defines what is a proper mathemat-
ical expression and the correct parse (intended meaning)
of a given mathematical expression. A grammar consists
of production rules that indicate how terminals and non-
terminals defined in the grammar, are combined to produce
non-terminals as a result of the rule application. For instance
we can give a simple string grammar that defines rules
that makes up digits and integers as follows (here the 10
digits are the terminals, while digit and int are the non-
terminals):

digit⇒ 0|1|2|3|4|5|6|7|8|9
int⇒ {−}digit{digit}

Graph grammars provide a formalism for grammati-
cal processing of multi-dimensional data which cannot be
achieved by string grammars. Since their introduction to
solve picture processing problems, graph grammars have
been used in diverse areas such as concurrent systems,
databases, programming languages and biology [15]. In
mathematical expression recognition, a graph grammar is of-
ten used in conjunction with graph rewriting methods where
the initial graph constructed from the tokenized expression is
iteratively reduced to a single node graph corresponding to
the parse tree of the expression. In each iteration, a grammar
rule is selected and applied, when a subgraph of the current
graph matches the pattern graph of the rule; as a result
of the rule application, the current graph is transformed as
indicated by the rule.

Specifically, a rule r = (gl, gr, C,Em) consists of a
left-hand side graph gl and a right-hand side graph gr,
an applicability predicate C, and an embedding rule Em.
The applicability predicate C is a set of constraints on
attribute values of nodes and/or edges, and non-existence of
certain edges, that need to be satisfied, so as to be able
to apply the grammar rule. For instance, the application
predicate of a rule about superscripts indicates that two
neighboring tokens should have acceptable size and position
relationships. With applicability predicates, the application
of a production rule can be restricted even if the rule has a
match in the input graph. A production is the application
of a rule r to graph G to produce G′, which is denoted as
G⇒r G

′. With a production G⇒r G
′, an occurrence of a

subgraph gl in G is replaced with a subgraph gr to produce
G′, according to embedding rule Em, if the applicability

predicate C is satisfied. The embedding rule specifies how
to place the subgraph gr within the graph containing the
original subgraph gl. In string grammars, the placement of
the production is obvious, but in graph grammars, placement
of production graph gr has to be specified via the embedding
rule Em that describes how to handle dangling edges (edges
that lose one of their nodes after the gl is removed from the
graph) and how to connect produced graph gr to the existing
graph. A graph G = (n, e) is said to be in graph grammar
GG if and only if n ∈ N (nodes) and e ∈ E (edges) of
GG and there exists a derivation that can generate G with
rules from R. Here a derivation from graph G to graph G′

of grammar GG is defined as a sequence of productions
where G ⇒ri1 G1 ⇒ri2 G2... ⇒rik

G′. Figure 1 shows an
example rule r and a derivation from graph G to G′, where
nodes labeled a and c are replaced with node d if there is
a directed edge from a to c. The embedding rule indicates
that only edges towards c and edges outgoing from a should
be kept. The dashed nodes and edges in the rule r indicate
possible extra nodes and edges, which may or may not be
present in the actual

Figure 1. Application of rule r to graph g gives graph g′.

III. PROPOSED METHOD

An overview of the proposed system is illustrated in Fig 2.
The input expression is first segmented into isolated symbols
(a character or a stroke of a character) and each symbol
is recognized by the OCR engine explained in Section
III-A. Then an initial graph is constructed where the nodes
represent the recognized symbols and edges represent the de-
tected spatial neighborhood between symbols, as explained
in Section III-B.

The parse algorithm applies grammar rules to the current
graph, adding a new node and its edges in each iteration (see
intermediate tokens in Fig. 2). These new nodes or tokens
represent possible interpretations of neighboring tokens. The
parse process continues until there is no valid production
left.

Our grammar and the parse algorithm are explained in
sections III-C and III-D.
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Figure 2. Overview of the parsing process. The constructed tokens
correspond to the nodes in the graph while the edges are not shown for
clarity.

A. Segmentation and Symbol Recognition (OCR)

The input expression is first segmented into individual
characters based on time dimension, whereby a relatively
large time difference between two consecutive strokes or
characters is used to indicate character boundary. Then,
spatially overlapping symbols are re-grouped (e.g. the two
strokes of a ’+’ sign).

The OCR system is a combination of a Support Vector
Machine (SVM) and an Artificial Neural Network (ANN),
used in conjunction. It takes as input the segmented charac-
ters and outputs top-3 alternatives with associated confidence
scores. We have selected a subset from the LaViola data set
[5], shown in the Appendix.

Preprocessing consists of size normalization which is done
on the online data to reduce artifacts whereby the coordinate
of each point is mapped into a fixed coordinate range. Then a
character image is created from these points by interpolation.
Feature extraction takes as input the image of the resized
character, ignoring time dimension. This is done to eliminate
temporal variations in the drawing of characters, as well
as allowing user corrections of symbols and formula that
may be done after the equation is completed. For both
classifiers, the input features consist of horizontal, vertical
and diagonal histograms of the symbol images; horizontal,
vertical and diagonal depths of the first black pixels of the
symbol images; number of black pixels in a 8 by 8 windows
over the whole symbol image; and ratio of width to height.

The success rate of the SVM system on this data is
92%. Although there are methods to generate posterior
probabilities from multi-class SVM classification, we used
an ANN to generate classification alternatives and obtain

reliable recognition confidence. The ANN classifier we used
is a 1-hidden layer feedforward neural network with 30
hidden neurons. The performance of this classifier is lower
compared to the SVM, with top-1 and top3 recognition
rates of 88% and 97%, respectively. Since the SVM is
more successful in the top-1 performance, the OCR system
uses the SVM output as the top-choice and gets the next
two choices and the confidences from the ANN. While the
accuracy is lower than state-of-the-art results, OCR was not
the main focus in this work.

B. Constructing the Initial Graph

The initial graph is generated from a list of tokens
obtained by the segmentation and passed through the OCR
engine. In this graph, a node correspond to a token and an
edge between two nodes indicate that these two nodes are
neighbors in the spatial layout of the expression. The process
can be explained precisely using the following definitions of
the graph elements:

Nodes: A node is a tuple n = (t, i, c, A) where t is the
type of the node; i is a unique identifier; c is the identifier
of the rule that constructed the node; and A is a set of
attribute values. The type of a node t is the lexical type
of the symbols, such as number, letter, operator. Each node
knows which rule constructed itself, so if needed, the whole
history can be generated. Each box in Fig. 4 represents a
node in the graph.

Edges: An edge is tuple e = (t, n1, n2) where t is the
type of the edge, n1 and n2 are nodes that are connected
together by the edge. There are three types of edges used in
the parse process:
• Spatial relationship edges indicate if two nodes are

neighbors (see definition below).
• Component edges between a non-terminal node and its

components, are used to generate the syntax tree after
the parse process.

• Production edges are the reverse of component edges,
linking a terminal or non-terminal node to a non-
terminal node that is produced using it.

The initial graph only have spatial relationship edges and
they determine the outcome, while others (component and
production edges) are used to keep track and speed-up the
parse process.

In the proposed system, spatial relationship edges do not
have any attributes since we do not distinguish between dif-
ferent types of neighborhood relationship (side, top, bottom
etc.); different neighborhood types are implicitly decided by
each rule’s applicability predicate. The advantage of our
approach is that by associating spatial relationship attributes
with applicability predicates of the rules, as opposed to
defining global definitions for spatial relationships, each
rule can have its own definition for spatial relationships
categories. In this way, rather than rigidly labeling two
symbols that are written with a weak y-offset with a side
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neighborhood edge, the subscript rule for instance decides if
the two symbols’ relative positions are sufficient to apply the
rule. Neighborhood itself is defined as having a clear line of
sight between the center points of their bounding boxes and
being at a distance smaller than a threshold value calculated
from the median size of the symbols in the expression.

Normally, a token has 3 best recognition alternatives
associated with it. However as shown in Fig.2, if a character
may belong to more than one type of symbol (e.g. ”+” may
be an operand or the symbol ”t”), then 2 tokens are generated
for it in order to simplify the parse process.

C. Grammar

We use a probabilistic, context-free 2D-grammar which is
based on the mathematical syntax, using the spatial layout
information in the applicability predicates of the rules. In
this grammar, a rule is a tuple r = (gr, gl, C) where gl is
the pattern graph, gr is the product graph and C is the appli-
cability predicate such that C : gm → {TRUE,FALSE}
where gm is a graph matched with gl. There is no embedding
rule because all rules follow the same embedding. Normally
a graph grammar rule indicates that gl is replaced by gr but
in our system, it indicates that gr is added to the graph (as
a new node) and gl is kept as it is.

The left-hand-side graph gl of each rule is a star graph (a
graph that has a central node and surrounding neighboring
nodes connected only to the central node), and the right-
hand-side graph gr is a single node. Fig. 3 exemplifies gl
and gr graphs of two simple grammar rules, where the ’+’
operator in rule r1 and α in rule r2 are the central nodes of
the rules.

Figure 3. Sample rules where ”|” depicts ”or”.

The most important part of the decision to apply a rule
comes from applicability predicates. For most rules, the
angle and distance between symbols are checked, as well as
their sizes. Some rules may have further checks on attribute
values. For example, for the rule that checks for fractions,
gl has a central node which represents the horizontal line
symbol. The constraints used in the applicability predicates
are kept loose, in order to keep all likely interpretations of
the mathematical expression. For instance, the superscript
rule does not require that the superscript symbol is smaller
in size than the base, but that it is not (much) bigger.

Since the matched nodes are kept in the graph, each
rule also has a predicate that checks the non-existence of
a production edge that connects to a node which is same as
gr of the rule, to prevent matching same nodes again and

generating the same product. This somewhat complicates the
parse process and increases the complexity but removes the
need for defining precedence rules.

There are currently 17 rules in the grammar, including
mathematical rules for subscript, superscript, operator (’+’,’-
’, ’×’, and ’÷’), fraction, summation, and integral), as well
as few rules for combining symbols written in multiple non-
overlapping strokes (e.g. ’=’,’÷’). Some of the terminals
and non-terminals defined in the grammar is given in the
Appendix.

The developed system was designed mainly to convert
handwritten mathematical expressions into LaTeX for easy
entry of scientific articles; as such, the LaTeX code of the
correct parse is unambiguous. However, the system does not
know about mathematical precedence rules, so as a result
two or more likely parse alternatives would be generated
for an input which would only be resolved with precedence
rules (e.g. a+ b× c+ d). However, since the system offers
all likely interpretations to the user, the user may chose the
right interpretation among the several likely interpretations.

D. Parse Algorithm

Our parse algorithm is a fairly straightforward bottom-
up process. In each round, the algorithm checks what rule
of the grammar may be applicable for each token in the
graph. As illustrated in Fig. 4, there are initially 4 tokens
corresponding to 4 nodes in the initial graph; then, after the
first round, two new tokens (a2 and a+b) are generated and
added to the graph.

Specifically, two tasks have to be done by the parser: find-
ing a match for pattern graphs of the rules and embedding
the resulting product graph. Since the pattern graph of any
rule is a star graph in our system, when processing a node,
the parser looks for a matching rule which has the same
center node; then it checks for the neighboring nodes and
applicability predicates to finalize the matching process.

Figure 4. Nodes generated in each round, with their component edges.

Once a match is found, a new node is generated according
to the rule, which then gets connected to the existing graph
with component and production edges. Spatial relationship
edges are generated among newly produced nodes after
no possible production is left in the existing graph. Each
new node inherits the neighbors of its components and
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spatial relationship edges between new nodes are generated
separately.

In order to deal with the complexity of the parse process
where all possible local interpretations are kept, we use
the fitness (likelihood) of the token to decide whether to
expand that token (i.e. apply rules). Ideally this would be
done with A∗ search, but currently it is done by a fitness
threshold which is dynamically adjusted depending on the
total number of tokens and the fitness and coverage (how
many tokens of the input expressions are covered) of the
best token.

E. Disambiguating the Parse Results

The output of the parse process is a graph where all
possible productions are present. Furthermore, if the input
can be defined by the grammar, then at least one node
which covers all input symbols will be in the output graph.
Since component edges keep the history of productions, an
expression tree can be generated if one of the alternative
interpretation nodes is selected as the root and component
edges are followed until it reaches a terminal node.

We compute the likelihood, also referred as fitness, of
each parse alternative according to pre-learned spatial layout
and OCR output probability distributions. These distribu-
tions, for instance for the relative size differences of base and
subscript symbols, are learned offline from separate training
data. In short, the likelihood of each generated node is the
average log likelihood of the spatial relations that generated
the node and the likelihoods of the components which is the
probability of occurence of a symbol.

To give an example, for the input in Fig. 4, the likelihood
of the token a + b would depend on the likelihood of the
spatial layout of the symbols ’a’, ’b’ and ’+’, with respect to
the rule generating the addition. We model each spatial dis-
tribution statistics as a histogram and compute the likelihood
of a given distance between two symbols (e.g. x or y offset
between ’a’ and ’+’) with respect to this histogram. We also
use the character recognition probabilities to differentiate
between alternative parses a + b and atb which share the
same layout likelihood, but differ in the likelihood of the
letter ’t’. The likelihood of a more complex expression (e.g.
(a+ b)2) is computed by averagingthe log-likelihoods of its
components weighted by the number of components in each
component. The likelihood calculation is done at each rule
application.

IV. EXPERIMENTAL RESULTS

The developed system is tested using a portion of the
mathematical expression database collected in association
with this work [16]. The full database contains 57 equations
each from 15 different users, chosen from common expres-
sions to match the ones used by Vuong et al [17]. Expression
lengths ranges from 7 to 30 characters in length. The test set
consists of 20 equations, each written by 5 different users.

The results are analyzed in terms of expression recogni-
tion accuracy (the LaTeX code generated for the equation is
correct); structure recognition accuracy (the LaTeX code is
correct except for OCR mistakes); and character recognition
accuracy, as illustrated in Table IV.

Task Accuracy Count
Correctly Recognized Expressions 17% 17/100
Correct Structural Analysis 50% 50/100
Correct Character Recognition 79% 1100/1410

Table I
OVERALL ACCURACY RESULTS (5 USERS X 20 EXPRESSIONS EACH)

Task Accuracy Ratio
Expression Length ≤ 10 25/100
Correctly Recognized Expressions 52% 13/25
Correct Structural Analysis 88% 22/25
Expression Length ∈ [11− 30] 75/100
Correctly Recognized Expressions 5,33% 4/75
Correct Structural Analysis 37,33% 28/75

Table II
RESULTS ANALYZED IN TERMS OF THE LENGTH OF THE EXPRESSIONS.

We see that equation recognition accuracy is low (17%),
which is not very suprising given the difficulty of the
problem; but structure recognition accuracy is also not very
high either (50%). This can be explained by the fact that both
overall and structure errors are affected significantly by OCR
accuracy. For instance if a parenthesis, the integral sign or
the plus sign is misrecognized, the structure analysis fails.
Unfortunately these special characters are among the ones
that also incur the largest OCR mistakes. Indeed, character
recognition accuracy for characters occuring in equations
is much lower compared to isolated character accuracy
developed in this work (79% vs. 91%). Table II shows the
distribution of errors according to length of the expressions.

Accuracy results reported in literature for online mathe-
matical expression recognition show a large variance (27-
75% for recognition and 91-98% for structure recognition
[16]). One must be careful in comparing results, as systems
differ in many aspects, from the complexity of the grammars
to the test database size and complexity. In addition to
different databases used, one important factor that increases
the accuracy among the reported results is feedback given
to the user while s/he is writing; resulting in a perfect
segmentation and OCR result. In a second test with 10
users and 4 expression from each, we tested this scenario
by manually tokenizing the expressions and entering the
correct OCR results, resulting in an 85% correct structure
recognition, failing typically only for long expressions by
time out.

V. CONCLUSION

We presented a system for mathematical expression recog-
nition, using a 2D-graph grammar that generates all likely
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parse alternatives of the expressions, along with their like-
lihoods. Given that mathematical expression recognition
problem is far from being solved, this is an important feature
since the user can select the correct alternative from this list,
rather than tediously correcting the input or the output. The
grammar used in the system is a star grammar that eliminates
the need for specifying rule precedence by having rules that
do not erase any node, making it very easy to extend the
grammar.

Exponential complexity of the parsers is a problem for
graph grammars. In our grammar, all gl are star graphs
which makes subgraph matching easier. Currently, the sys-
tem works in 1-10 seconds per expression for the majority
of the expressions, though there are occasional times when
the parser times out. We are in the process of implementing
a best-first search algorithm where the rule generation is
applied to the plausible interpretations (as indicated by the
computed likelihoods) first.
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APPENDIX

op : +|−
eq : = | < | > | ≤ | ≥ | →
α : (a...z)|α|β|γ|ε|π|µ|τ |∞
n : (0...9)
f : sin|cos|tan|cot
g1 :

∑
|
∏

g2 :
∫

g3 : lim

α<α,n,nα,Et,Ef ,Efr,Emt,Eop>

α<α,n,nα>

⇒ Et

α < α, n, nα,Et, Ef , Efr, Emt, Eop >⇒ nα

n<α,n,nα,Et,Ef ,Efr,Emt,Eop> ⇒ Et

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
g1

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
< α, n, nα, ..., Emt, Eop, Eg > ⇒ Eg

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
g2

<α,n,nα,Et,Ef ,Efr,Emt,Eop>
< α, n, nα, ..., Eg >

g2 < α, n, nα,Et, Ef , Efr, Emt, Eop >

⇒ Eg

. . .
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