
Memory Resident Parallel Inverted Index
Construction

Tayfun Kucukyilmaz, Ata Turk and Cevdet Aykanat

Abstract Advances in cloud computing, 64-bit architectures and huge RAMs
enable performing many search related tasks in memory.We argue that term-based
partitioned parallel inverted index construction is among such tasks, and provide
an efficient parallel framework that achieves this task. We show that by utilizing an
efficient bucketing scheme we can eliminate the need for the generation of a global
index and reduce the communication overhead without disturbing balancing
constraint. We also propose and investigate assignment schemes that can further
reduce communication overheads without disturbing balancing constraints. The
conducted experiments indicate promising results.

1 Introduction

Inverted index is the de-facto data structure used in state-of-the-art text retrieval
systems. Even though it is quite simple as a data structure, Web-scale generation of a
global inverted index is very costly [2]. Since the data to be indexed is crawled and
stored by distributed or parallel systems (due to performance and scalability
reasons), parallel index construction techniques are essential. Despite the popularity
of document-based partitioned inverted indices, term-based partitioning has
advantages that can be exploited for better query processing [4].

The following studies on index construction [3, 5, 6] extend disk-based
techniques for parallel systems. In [5, 6], authors propose a parallel disk-based
algorithm with a centralized approach to generate the global vocabulary. In [5]
authors analyze the merging phase of the inverted lists and present three algorithms.
In [3], authors start from a document partitioned collection and proposed a software-
pipelined inversion architecture.

T. Kucukyilmaz � A. Turk � C. Aykanat (&)
Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey
e-mail: aykanat@cs.bilkent.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II,
DOI: 10.1007/978-1-4471-2155-8_12, � Springer-Verlag London Limited 2012

99

With the advent of 64-bit architectures, huge memory spaces are available to
single machines and even very large inverted indices can fit into the total
distributed memory of a cluster of such systems, enabling memory-based index
construction. Given the current advances in network technologies and cloud
computing and the high availability of low cost memory, in-memory solutions for
parallel index construction should be considered seriously.

In this work, we propose an efficient, memory-based, parallel index construc-
tion framework for generating term-based partitioned inverted indices starting
from a document-based partitioned collection (possibly due to parallel crawling).
In this framework, we propose to mask the communication costs associated with
global vocabulary construction and communication with a term-to-bucket
assignment schema. Furthermore, we investigate several assignment heuristics for
improving both the final storage balance and the communication costs of inverted
index construction. Here, storage balance is important since it relates to query
processing loads of processors, whereas the communication cost is important since
it determines the running time of parallel inversion. Our contributions in this work
are prior to optimizations such as compression [7].

2 Parallel Inversion

Our overall parallel inversion scheme has the following phases: local inverted
index construction, term-to-processor assignment, and inverted list exchange and
merge. In this section we describe these three phases in detail.

The first task in our framework is generating local inverted indices for all
local document collections on each processor. As each processor contains a
non-overlapping portion of the whole document collection, this operation can be
achieved concurrently without communication.

After local inverted index construction phase, a term-to-processor assignment
phase has to follow. In order to achieve a term-to-processor assignment, normally
a global vocabulary has to be generated. This could be done by sending each term
string, in its word form, to a host processor, where a global vocabulary is
constructed. However in such a scheme, a particular term would be sent to the
host machine by all processors if all processors contain that specific term. Thus
we propose to group terms into a fixed number of buckets prior to the term-
to-processor assignment. Using hashing, each word in a local vocabulary is
assigned to a bucket. Afterwards, a host processor computes a bucket-to-processor
assignment and broadcasts this information to the processors.

At the end of local inversion phase, each processor has a local vocabulary and a
set of inverted lists for its terms. However, different processors may contain
different portions of an inverted list for each term. For the final term-based
partitioned inverted index to be created, the inverted list portions of each term
should be accumulated to a single processor. To this end, each term in the global
vocabulary should be assigned to a particular processor. This term-to-processor

100 T. Kucukyilmaz et al.

assignment depicts an inverted index partitioning problem. Many different criteria
can be considered when finding a suitable index partitioning, but we focus on
balancing the storage loads of processors and minimizing the communication
overhead of the inversion process. The storage balance guarantees an evenly
distribution of the final inverted index. As the memory is assumed to be limited
throughout this work, with an even distribution of the storage loads, larger indices
can fit in the same set of processors. Storage balancing is also expected to infer
balancing on the query processing loads of the processors. Since inversion is a
highly communication-bound process, the minimization of the communication
overhead ensures that the inverted list exchange phase of the parallel inversion
process takes less time. In this work, we model the minimization of the commu-
nication overhead as the minimization of the total communication volume while
maintaining balance on communication loads of processors.

At the end of the bucket-to-processor assignment phase, all assignments are
broadcast to processors and processors exchange their partial inverted lists in an
all-to-all fashion. When sending the local inverted lists to their assigned processor,
the vocabulary should also be sent since processors do not necessarily contain all
vocabulary terms and do not know which terms will be retrieved from other
processors. Although such a communication incur additional costs, since the
processor-to-host bottleneck due to global vocabulary construction is already
avoided, this additional communication cost is easily compensated.

The inverted-list exchange between processors is achieved in two steps. In the
first step, the terms (in word form) and their posting sizes are communicated.
At the end of this step, all processors obtain their final local vocabularies and can
reserve space for their final local inverted index structures. Then the inverted lists
are exchanged. At the end of inverted list exchange, posting lists for each term are
merged and written into their reserved spaces in local inverted indices.

3 Bucket-to-Processor Assignment Schemes

In the forthcoming discussions we use the following notations: The vocabulary of
terms is indicated with T : The posting list of each term tj 2 T is distributed among
the K processors. wkðtjÞ denotes the size of the posting list portion of term tj that

resides in processor pk at the beginning of the inversion, whereas wtotðtjÞ ¼
PK

k¼1 wkðtjÞ denotes the total posting list size of term tj:
We assume that prior to bucket-to-processor assignment, each processor has

built its local inverted index I k and partitioned the vocabulary T ¼ ft1; t2; . . .; tng
containing n terms, into a predetermined number m of buckets. The number of
buckets m is selected such that m� n and m� K: Let B ¼ PðT Þ¼fT 1¼
b1; T 2¼b2; . . .; T m¼bmg denote a random term-to-bucket partition, where T i

denotes the set of terms that are assigned to bucket bi: In B; wtotðbiÞ denotes the
total size of the posting lists of terms that belong to bi:

Memory Resident Parallel Inverted Index Construction 101

In an m-bucket and K-processor system, the bucket-to-processor assignment can
be represented via a K-way partition PðBÞ¼fB1;B2; . . .;Bkg of the buckets
among the processors. In PðBÞ; wkðbiÞ denotes the total size of the posting list
portions of terms that belong to bi and reside in processor pk at the beginning of the
inversion. The performance of a bucket-to-processor assignment is measured in
terms of two metrics. The storage load balance and the communication cost. The
storage load SðpkÞ of a processor pk induced by the assignment PðBÞ is defined as
follows:

SðpkÞ ¼
X

bi2Bk

X

tj2bi

wtotðtjÞ: ð1Þ

The communication cost of a processor pk induced by assignment PðBÞ has two
components. Each processor must receive all portions of the buckets assigned to
itself from other processors. Thus total receive cost/volume of a processor pk is:

RecvðpkÞ ¼
X

bi2Bk

X

tj2bi

ðwtotðtjÞ � wkðtjÞÞ: ð2Þ

Each processor also sends all postings that are not assigned to it to some other
processor. The total send cost of pk is:

SendðpkÞ ¼
X

bi 62Bk

X

tj2bi

wkðtjÞ ð3Þ

Total communication cost of a processor is defined as the sum of its send and
receive costs.

The MCA scheme is based on the following simple observation [1]. If we
assign each bucket bi 2 B to processor pk that has the largest wkðbiÞ value, we will
achieve an assignment with globally minimum total communication volume.

The BLMCA scheme incorporates a storage balance heuristic to MCA [1]. This
scheme works in an iterative manner assigning one bucket to a processor at a time.
For each bucket, first the processor that will cause the minimum total communi-
cation is determined using MCA scheme. If this processor is not the bottleneck
processor (in terms of storage load) at that iteration, the bucket is assigned to that
processor. Otherwise, the bucket is assigned to the minimally loaded processor.

In BLMCA, two cost metrics, storage load balance and communication cost are
calculated and at each iteration an assignment decision that optimizes only one
of these metrics is made. The decisions of MCA and BLMCA regarding the
communication cost minimization only optimizes the total communication cost
and ignores the maximum communication cost of a processor. In order to mini-
mize maximum communication cost, we should consider both the receive cost of
the assigned processor and the send costs of all other processors.

To this end we define the energy E of an assignment PðBÞ based on the storage
loads and communication costs of processors. We define two different energy
functions for a given term-to-processor assignment PðBÞ:

102 T. Kucukyilmaz et al.

E1ðPðBÞÞ ¼ MaxfMax1� k�KfCommðpkÞg;Max1� k�KfSðpkÞgg ð4Þ

E2ðPðBÞÞ ¼
XK

1

ðCommðpkÞÞ2 þ
XK

1

ðSðpkÞÞ2 ð5Þ

Utilizing these energy functions, we propose a constructive algorithm that assigns
buckets to processors one-by-one. The energy increase in the system by K possible
assignments of each bucket are considered, and the assignment that incurs the
minimum energy increase is performed. That is, for the assignment of a bucket bi

in the given order, we select the assignment that minimizes EðPðBi�1 [fbigÞÞ �
EðPðBi�1Þ; where Bi�1 denotes the set of already assigned buckets. We call
E1-based and E2-based assignment schemes as E1A and E2A respectively in our
experiments.

4 Experiments

In order to test the performance of the proposed assignment schemes for parallel
inversion, we conducted two types of experiments. The first set of experiments are
simulations to report on the storage imbalance and communication volume
performances of the assignment schemes. The second set of experiments are actual
parallel inversion runs provided in order to show how improvements in perfor-
mance metrics relate to parallel running times. These experiments are conducted
on a PC-cluster with K ¼ 32 nodes, where each node is an Intel Pentium IV
3.0 GHz processors with 1 GB RAM connected via an interconnection network of
100 Mb/sec fast ethernet.

We conducted our experiments on a realistic dataset obtained by crawling
educational sites across America. The raw size of the dataset is 30 GB and
contains 1,883,037 pages from 18,997 different sites. The biggest site contains
10,352 pages while average number of pages per site is 99.1. The vocabulary of
the dataset consists of 3,325,075 distinct terms. There are 787,221,668 words in
the dataset. The size of the inverted index generated from the dataset is 2.8 GB.

Tables 1 and 2 compare the storage load balancing and communication
performances of the assignment schemes for K ¼ f4; 8; 16; 32; 64; 128g: We also
implemented a random assignment (RA) algorithm, which assigns buckets to
processors randomly, as a baseline assignment scheme. As seen in Table 1, MCA
achieves the worst final storage imbalance. This is expected since MCA considers
only minimization of the total communication cost, disregarding storage balance
and as seen in Table 2 MCA achieves lowest average communication cost.
BLMCA algorithm on the other hand, achieves best final storage imbalance. This
is also expected since the primary objective of BLMCA is to balance the processor
loads during the assignments instead of minimizing the communication costs. As
seen in Table 2, this storage balancing performance is achieved at the expense of
higher average communication values per processor. Experiments indicate that

Memory Resident Parallel Inverted Index Construction 103

E1A and E2A algorithms both achieve reasonable storage load balance that are
either close or better than the performance of RA scheme. Also as seen in Table 2,
for K values higher than 8, E2A achieves the lowest maximum communication
volumes. Table 2 also indicates that the average and maximum communication
costs induced by E2A are very close, which means that E2A manages to distribute
the communication loads among processors evenly.

Table 3 shows the running times of our parallel memory-based index inversion
algorithm under different assignment schemes. In this table, it is assumed that the
local inverted indices are already created and the time for this operation is
neglected. As expected from the results presented in Table 1 and Table 2, MCA
induces the highest inversion time, RA, BLMCA, E1A, and E2A induce similar
inversion times and the E2A scheme achieves the lowest inversion times.

Table 1 Percent load imbalance values

Initial Final

K RA MCA BLMCA E1A E2A

4 4.4 12.1 38.3 0.0 6.1 5.5
8 11.7 09.9 60.0 0.1 18.2 14.4
16 18.2 27.4 66.2 1.7 27.2 20.0
32 44.1 29.6 83.0 5.4 35.2 31.1
40 32.2 37.0 77.4 6.2 38.4 31.4
64 44.7 56.6 92.2 11.5 46.9 33.7
128 65.3 94.7 95.6 15.7 64.1 40.4

Table 2 Message volume (send + receive) per processor (in terms of �106 postings)

RA MCA BLMCA E1A E2A

K Avg Max Avg Max Avg Max Avg Max Avg Max

4 131.19 145.71 122.09 150.26 127.45 128.62 124.76 125.29 131.24 131.36
8 76.55 90.58 71.45 119.75 73.40 75.97 72.02 74.53 76.67 76.79
16 41.01 49.25 38.32 77.11 39.22 43.44 38.52 42.33 41.60 41.66
32 21.19 28.75 19.82 71.13 20.28 26.03 19.94 25.08 20.54 21.61
40 17.05 23.96 15.99 44.79 16.32 20.01 16.03 19.22 17.04 17.71
64 10.76 17.77 10.09 74.27 10.34 15.42 10.15 14.75 10.86 11.89
128 5.42 11.97 5.09 65.59 5.22 10.98 5.12 10.02 6.81 7.95

Table 3 Parallel inversion times (in seconds) including assignment and inverted list exchange
times for different assignment schemes

K RA MCA BLMCA E1A E2A

4 69.19 81.34 68.63 68.67 68.49
8 51.42 66.76 46.45 46.59 45.74
16 35.89 60.82 33.04 32.90 32.48
32 19.31 49.45 18.20 17.91 17.20

104 T. Kucukyilmaz et al.

5 Conclusions

In this paper, a memory-based parallel inverted index construction framework was
examined. An extensive step-by-step experimentation of our model was presented
and further insight were provided using theoretical results and simulations. Also,
several problems involving the creation of this framework were identified.

References

1. Aykanat, C., Cambazoglu, B.B., Findik, F., Kurc, T.: Adaptive decomposition and remapping
algorithms for object-space-parallel direct volume rendering of unstructured grids. J. Parallel
Distrib. Comput. 67, 77–99 (2007)

2. Cho, J., Garcia-Molina, H.: The evolution of the web and implications for an incremental
crawler. In: Proceedings of the 26th International Conference on VLDB (2000)

3. Melink, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a distributed full-text index
for the web. ACM Trans. Inf. Syst. 19, 217–241 (2001)

4. Moffat, A., Webber, W., Zobel, J.: Load balancing for term-distributed parallel retrieval. In:
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 348–355 (2006)

5. Ribeiro-Neto, B., Moura, E.S., Neubert, M.S., Ziviani, N.: Efficient distributed algorithms to
build inverted files. In: Proceedings of the 22nd Annual International ACM SIGIR Conference
on Research and Development in IR, pp. 105–112 (1999)

6. Ribeiro-Neto, B.A., Kitajima, J.P., Navarro, G., Sant’Ana, C.R.G., Ziviani, N.: Parallel
generation of inverted files for distributed text collections. In: Proceedings of the 18th
International Conference of the Chilean Computer Science Society (1998)

7. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for text indexing.
ACM Trans. Database Syst. 23, 453–490 (1998)

Memory Resident Parallel Inverted Index Construction 105

	12 Memory Resident Parallel Inverted Index Construction
	Abstract
	1…Introduction
	2…Parallel Inversion
	3…Bucket-to-Processor Assignment Schemes
	4…Experiments
	5…Conclusions
	References

