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Abs t rac t .  Direct Volume Rendering (DVR) is a powerful technique for 
visualizing volumetric data sets. However, it involves intensive computa- 
tions. In addition, most of the volumetric data sets consist of large num- 
ber of 3D sampling points. Therefore, visualization of such data sets also 
requires large computer memory space. Hence, DVR is a good candidate 
for parallelization on distributed-memory multicomputers. In this work, 
image-space paraJ]elization of Raycasting based DVR for unstructured 
grids on distributed-memory multicomputers is presented and discussed. 
In order to visualize unstructured volumetric datasets where grid points 
of the dataset are irregularly distributed over the 3D space, the underly- 
ing algorithms should resolve the point location and view sort problems 
of the 3D grid points. In this paper, these problems are solved using a 
Scanline Z-buffer based algorithm. Two image space subdivision heuris- 
tics, namely horizontal and recursive rectangular subdivision heuristics, 
are utilized to distribute the computations evenly among the processors 
in the rendering phase. The horizontal subdivision algorithm divides the 
image space into horizontal bands composed of consecutive scanlines. 
In the recursive subdivision algorithm, the image space is divided into 
rectangular subregions recursively. The experimental performance eval- 
uation of the horizontal and recursive subdivision algorithms on an IBM 
SP2 system are presented and discussed. 

1 I n t r o d u c t i o n  

Direct Volume Rendering (DVR) is a technique to create an image from the 
three-dimensional volume data  without generating an intermediate geometrical 
representation. Usually, volume data  is represented by 3D voxels which constitute 
the atomic pieces of the overall data  structure. One of the approaches used 
in direct volume rendering for visualizing these 3D voxel based data  sets is 
Raycasting, which is the basis of this research. This approach is an image-space 
approach and mainly uses ray shooting from each pixel of the image plane and 
sampling along its way [6, 7, 9]. In order to visualize unstructured volumetric 
data  sets, where grid points of the da ta  set are distributed irregularly over 3D 
space, the underlying algorithms should resolve the point location and view sort 
problems. The point location problem refers to the determination of the location 
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of the point of intersection of the ray with an individual voxel in the whole data 
set. The view sort problem refers to the determination of the correct intersection 
order of the ray with the voxels along its way. In this paper, the point location 
and the view sort problems are solved using a Scanline Z-buffer based algorithm, 
which is introduced by [1, 2] in volume rendering domain. The reason for this 
is to solve the problem of fast point location determination process and view 
sorting efficiently for unstructured grids. 

Although DVR is a common tool for visualization, it operates on volume data 
representation that requires a large amount of memory. DVR is also very slow 
since it requires massive computations for each image generation. So interactive 
speed rates are very hard to achieve. An important approach to solve the speed 
and memory problems of volume rendering is to employ parallel processing. Fur- 
thermore, many engineering simulations are usually run on parallel architectures 
because of simulation time and memory constraints. Therefore, visualizing the 
results on the same parallel architecture avoids the cost of transferring large 
volume of data to sequential graphics workstations for visualization process. 

Most of the work for parallelization of DVR has been carried out using struc- 
tured grids [3, 4, 5]. Recently some parallel methods have been developed for 
unstructured grids [1, 2] which form a basis for this research. These recent ap- 
proaches are done on shared memory architectures which does not solve many of 
the problems of volume rendering on distributed-memory architectures. These 
approaches use scattered decomposition for task distribution and hence can be 
effectively used in shared memory architectures. However, such decomposition 
schemes will incur large communication overhead in distributed-memory archi- 
tectures. 

Although parallel volume rendering of rectilinear grids has been accomplished 
to a great degree, domain mapping problem for unstructured grids is a crucial 
problem to be solved. This paper investigates the parallelization of Raycasting 
based DVR for unstructured grids. In this work, an image-space parallel algo- 
rithm for DVR on distributed-memory MIMD architectures is presented and two 
load balancing heuristics are proposed to distribute the load evenly in rendering 
phase. Experimental results on an 8 node IBM SP2 architecture are presented 
and discussed. This target architecture is a distributed-memory multicomputer. 
The nodes of the IBM SP2 are connected by a multi-stage interconnection net- 
work. 

2 R a y c a s t i n g  B a s e d  D V R  

The high quality of the images produced by the raycasting approach makes it a 
desirable choice for DVR. In this approach a ray is shot from each pixel and tra- 
versed throughout the whole volume to determine the list of voxel intersections. 
Each voxel intersection means an entry/exit point of the ray with the voxel. 
For each voxel intersection, a sampling is computed at the midpoint of the ray 
between its entry and exit points by interpolating the scalar values at the grid 
points of the intersected voxel. The voxel intersections should be traversed in a 
predetermined order (front-to-back in our case) for the composition of sampled 
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color and opacity values. Ray shooting, sampling, and finally composition steps 
require the detection of the position of the sampling point in the whole data  and 
finding the next (therefore previous) voxels to be intersected with the ray for 
composition. These operations bring tremendous amount of computation to the 
process of raycasting. Therefore, finding the consecutive intersections and the 
locations of the sampling points should be done efficientlyi which we refer to as 
efficient point locating and view sorting operations. " 

In this work, we exploit the Scanline Z-buffer algorithm widely used in poly- 
gon rendering to resolve the point location and view sort problems. The same 
idea has been recently used in the parallelization of DVR on shared-memory 
multiprocessors [1, 2]. The standard Scanline Z-buffer algorithm is used for ras- 
terizing the polygons but the only deviation occurs in the rendering step where 
in volume rendering each pixel keeps a linked list of polygons for compositing 
and finding a final pixel color value. Therefore, the overall algorithm needs only 
polygonal data to be rendered. Note that volume data composed of tetrahedrals 
is already in polygonal form where each tetrahedral is composed of four triangles. 
The set of distinct triangles can be extracted easily from this tetrahedral data  
set. Therefore, for such data sets traversing triangles along the ray is equivalent 
to traversing the voxel data itself. For other types of data sets, triangulation 
should also be done by just connecting original sample points in a way that we 
will have a set of polygons in the final dataset. This operation once completed 
can be saved and used forever. Algorithms exist for triangulating a given volu- 
metric dataset [8]. Here, and hereafter, we will mainly assume triangles as our 
inputs for the sake of simplicity. The Scanline Z-buffer based algorithm is given 
in Fig. 1 as a flow-chart. 

In the proposed algorithm, we move from scanline to scanline and from pixel 
to pixel one-by-one. Initially, each polygon is placed into the y-bucket list of 
the first scanline that  the polygon is intersected with. The polygons intersected 
by the current scanline are put into the active polygon list. The x-intersection 
points of polygons with the current scanline generate spans of the polygons on 
that scanline. The generated spans are put into the x-bucket list and sorted 
with respect to minimum x-intersections using x-bucket sort. The calculations 
of intersections of polygons with the scanline, insertion and deletion operations 
on the active polygon list are done incrementally using inter-scanline coherency. 
For each pixel on the current scanline, the intersection of the ray shot from the 
pixel and spans that  cover that pixel are determined and put into the z-list, 
which is a sorted linked list, in the order of increasing z-intersection values. 
The z-intersection calculations, sorting of z-intersection values, insertion to and 
deletion from z-list are done incrementally using intra-scanline coherency. As we 
know the location of each intersection of the active polygon with the ray and 
as the list is built in an incremental fashion, we can say that  we just have an 
array of sorted intersections with a three dimensional line and a set of planes. 
For a single pixel, after the intersections are found, we can go through the list 
and take samples between each successive pair of triangles and composite it into 
the pixel color. 
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Fig. 1. Flow chart of the sequential algorithm. 

3 P a r a l l e l  I m p l e m e n t a t i o n  

The parallel algorithm presented in this section is an image-space parallel al- 
gorithm. In image-space parallelism, the image plane is partitioned among the 
processors. Then, each processor runs a sequential volume rendering algorithm 
to generate the image for its local image plane sections. Each processor needs 

�9 the volume data which is covered by the view volume of the local image plane 
regions. Therefore, the volume data is also partitioned and distributed to the 
processors according to the partitioning of the image plane. The parallel algo- 
rithm consists of four main steps. 

At the first step, the global volume data is evenly partitioned and distributed 
among the processors so that each processor receives a distinct set of NT/P 
triangles (polygons), where NT is the number of triangles and P is the number 
of processors. 

At step 2, the image space is partitioned into P regions and each region is 
assigned to a processor. The partitioning of the image space should be done to 
achieve a good computational load balance. Two strategies to achieve this goal 
is presented and discussed in the next sections. The triangle set received at the 
first step is utilized to perform an adaptive division of the image plane. 

After the partitioning and assignment of the image plane, each processor 
needs triangles which fall into the view volume of the local image plane partition. 
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The local triangle data set may contain triangles that belong to image plane 
partitions assigned to other processors. Similarly, some of the triangles that 
are covered by the view volume of local image plane section may reside in the 
local memories of other processors. Therefore, at step 3, some of the triangles - 
hence, volume data - should be exchanged among the processors. Each processor 
finds the image plane region a triangle belongs to by performing projection 
and clipping operations and sends the triangle to the corresponding processor 
and receives triangles that fall into its local image plane region. Note that the 
triangles at the boundaries of image plane partitions will be shared by two or 
more processors. Hence, such triangles may be transmitted more than once. 

At step 4, each processor runs the sequential volume rendering algorithm 
for its local image plane section using new local volume data without further 
inter-processor communication. 

3.1 Load Balancing 

In many scientific applications, the volume data to be visualized is not regularly 
sampled and distributed in 3D space. Hence, the computational work load on 
the image space will also be irregularly distributed. In addition, different viewing 
locations will result in different work load distribution on the image space. Hence, 
a straightforward division of image plane into equal size regions may result in 
very poor load balance among the processors due to the nature of the volume 
data. Therefore, an adaptive division of image plane will generate better work 
load distribution and better processor utilization. 

There are three parameters that affect the computational work load in a im- 
age plane section. First one is the number of triangles, because the total work 
load due to clipping of a triangle to boundaries and insertion operations into 
y-bucket and active polygon lists are proportional to the number of triangles in 
a region. The second parameter is the number of scanlines each triangle spans. 
This parameter represents the computational work load associated with the con- 
struction of x-spans, and insertion of these spans into x-bucket list. The total 
number of pixels generated by rasterization of x-spans of a triangle is the third 
parameter affecting the computational load in a region. Each pixel generated 
adds computations required for sorting, insertions to and deletions from z-list, 
interpolation and composition operations. The y-span of each triangle gives the 
number of scanlines covered by the triangle. Hence, the number of triangles at 
each scanline can easily and correctly be calculated using y-span of each triangle. 
However, the length of the x-span at each individual scanline requires rasterizing 
edges of the triangle. This computational overhead can be decreased by using 
the bounding box of the triangle instead of triangle itself. The x-span length at 
each scanline is approximated by the x-span of the bounding box. 

The two subdivision heuristics presented in the following sections use these 
parameters to estimate the work load (WL)  in a region using Eq. (1). 

W L  = aNT + bNs + cNp (1) 
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where NT, N..r and Np represent the number of triangles, spans, and pixels, 
respectively, to be processed in, a region. The values a, b, c represent the relative 
computational costs of operations associated with triangles, spans, and pixels, 
respectively. 

3.2 Hor izonta l  Subdivis ion 

In this scheme, the image plane is subdivided into P horizontal bands of consec- 
utive scanlines such that each band has almost equal work load. The division of 
the image plane is carried out using the distribution of work load in y-dimension 
of the image plane. Dividing the image plane into bands of consecutive scanlines 
preserves the inter-scanline coherency to some extent. 

Each processor calculates local work load distribution using local triangle 
information. The work load distribution for each parameter (triangle, span and 
pixel) is stored in separate arrays. The global work load distribution is calcu- 
lated by performing a global sum operation on these arrays. This global sum 
operation can be done in log2P steps for each array using the communication 
structure of the IBM SP2. At the end of global sum operation, each proces- 
sor has global work load distribution in y-dimension of the image plane. Using 
this work load distribution information, the image plane is divided horizontal 
bands. An example of horizontal subdivision scheme is illustrated in Fig. 2. After 
the division operation, each processor exchanges local triangle information with 
other processors according to the subdivision of the screen. The local triangles 
that project to the region of another processor are transmitted directly to that 
processor. 

In this scheme, the atomic task is defined to be a scanline, i.e., scanlines are 
not divided. In this way, intra-scanline coherency is not disturbed. However, the 
image plane is partitioned in only one dimension, namely y-dimension. Due to 
this restriction, the scalability of horizontal division scheme is limited by the 
number of scanlines. In addition, the work load at each region is determined 
by the work load at each scanline. Hence, if there are large differences in the 
work loads of scanlines, the load imbalance between regions may still be large. 
These limitations of the horizontal subdivision can be eliminated to some extent 
by using subdivision in both dimensions of the screen. The recursive rectangu- 
lar subdivision scheme that implements this idea is described in the following 
section. 

3.3 Recurs ive  Rec t angu la r  Subdivis ion 

In recursive rectangular subdivision (recursive subdivision) scheme, the image 
plane is divided into P rectangular regions in log2P steps. In this work, the num- 
ber of processors (P) is assumed to be a power of two. This scheme is similar 
to the horizontal division scheme. The same data structures and load balancing 
parameters are used. However, unlike horizontal division scheme, load distribu- 
tion in two dimensions are used to obtain a division. Therefore, data structures 
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Fig. 2. An example of horizontal (left) and recursive (right) subdivision for eight pro- 
cessors. The regions are separated by dotted hnes. 

used for load distribution in y-dimension are duplicated for load distribution in 
x-dimension. 

At the first step, each processor is assigned the whole screen as its local 
image region. Each processor, then, updates its local copy of the global work load 
arrays using the local object data. The work load distribution in two dimensions 
are obtained by performing global sum operations on these arrays. Then, each 
processor divides its local image region into two subregions either horizontally 
or vertically. The division that achieves better load balance is chosen. After the 
division, half of the processors are assigned to one of the regions, and the other 
half of the processors are assigned to the other region. After each processor is 
assigned to a image region, it exchanges volume data  with processors assigned 
to the other region. After this exchange operation, each processor has some 
portion of the volume data that  projects onto its local image region. The division 
operation is repeated for new image region using new local volume data. After 
Iog~P steps, each processor is assigned a unique rectangular region of the screen. 
An example of recursive subdivision is given in Fig. 2. 

Although there are similarities between two subdivision schemes, the over- 
heads introduced are not the same. In horizontal subdivision scheme, only inter- 
scanline coherence is disturbed while intra-scanline coherence is preserved. How- 
ever, recursive subdivision scheme may disturb both the inter-scanline and intra- 
scanline coherence. The disturbance in the inter-scanline and intra-scanline co- 
herency introduces run-time overheads which are hard to estimate a priori. In 
addition, the use of bounding box approximation may introduce more errors in 
recursive subdivision scheme than horizontal subdivision scheme. The number 
of triangles and number of spans in a region calculated by bounding box approx- 
imation may differ from the actual amounts for a rectangular region created by 
vertical subdivision. However, bounding box approximation does not introduce 
these errors in horizontal subdivision. Furthermore, unlike horizontal subdivision 
scheme, the volume data is exchanged during the division phase of the recursive 
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subdivision scheme. Hence, the volume data is not directly sent to the destination 
processors. It is stored in the memories of the intermediate processors at each 
step of the division until it reaches to the destination processor. This store-and- 
forward type of communication structure introduces memory-to-memory copy 
overhead. Therefore, although recursive subdivision scheme increases scalability, 
it may perform worse than horizontal subdivision scheme due to the errors and 
overheads introduced. 

4 E x p e r i m e n t a l  R e s u l t s  

The implementations of the algorithms presented in this paper were done in 
C language using the message-passing constructs of IBM SP2. The algorithms 
were tested on a data  set composed of 409600 distinct triangles for two screen 
resolutions, 256x256 and 512x512. The timing results presented in the graphs 
are the average of viewings at three different view points for each of the screen 
resolutions. 

The speedup graphs for total execution time and rendering-phase are given 
in Fig. 3. As is seen from the figure, the horizontal subdivision scheme achieves 
higher speedup values than the recursive scheme. Although recursive scheme uti- 
lizes subdivision in both dimensions of the screen, vertical divisions of the screen 
regions disturb intra-scanline coherency. The intra-scanline coherency is a crucial 
factor in the execution time, because it involves incremental sorting, insertion, 
and deletion operations into z-lists. As is also seen from the figures, the speedup 
values increase with increasing resolution of the screen due to the increase in the 
accuracy of work load distributions. Speedup values of 4.78 for total execution 
time and 6.34 for rendering-phase are achieved using the horizontal scheme for 
screen resolution of 512x512 on 8 processors. 

Figure 4 illustrates the load-balance graphs for rendering phase. The load 
balance in the graphs is calculated as 100 x (1 - ((t,~a= - train) / tma=)), 
where trna+: and train denote the execution times of the maximally and mini- 
mally loaded processors, respectively. As is seen from the figure, the recursive 
subdivision scheme achieves better load balancing with respect to estimated run 
times, which are calculated using Eq. (1). On the other hand, the horizontal 
scheme achieves better load balancing performance in real execution times. This 
is due to the disturbance of both inter-scanline and intra-scanline coherence in 
recursive subdivision scheme. Note that  the load balance achieved in real exe- 
cution times is less than the one in estimated times. This is because of the fact 
that  the disturbance of both inter-scanline and intra-scanline coherency results 
in run-time overhead that cannot be predetermined before execution. As is seen 
from the figure, load balance in estimated run times increases with increasing 
screen resolution due to better accuracy. As is also seen from the figure, the 
load balance for real run times also increases with increasing screen size for 
this data set. However, the run-time overheads introduced due to disturbance in 
inter-scanline and intra-scanline coherency may affect this behavior. 
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5 C o n c l u s i o n s  

In this study, two image space subdivision methods  for direct volume rendering 
on distributed-memory multicomputers are compared. It is experimentally ob- 
served that horizontal subdivision scheme achieves better performance results 
than the recursive subdivision scheme. The horizontal subdivision scheme only 
disturbs inter-scanline coherency whereas recursive subdivision scheme disturbs 
intra-scanline coherency as well. Hence, recursive subdivision method introduces 
run-time overhead in the rendering phase more than the horizontal subdivi- 
sion. Unfortunately, the costs of  these run-time overheads cannot be determined 
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before execution. The intra-scanline coherency is much more crucial than the 
inter-scanline coherency. The intra-scanline coherency involves the incremental 
sorting of the linked lists with respect to z values of the intersections of the ray 
with volume elements. Hence, disturbance of this coherency results in re-sorting 
and re-calculation of these linked list values. In addition, a horizontal division 
of an image region only disturbs inter-scanline coherency, which affects only the 
scanlines at the boundaries of the two regions. However, a vertical division of an 
image plane disturbs the intra-scanline coherency at all scanlines in the region. 

Upon the deductions drawn from experimental results, we can conclude that 
horizontal scheme should be prefered to recursive scheme for small number of 
processors. However, for large number of processors, the recursive scheme is 
expected to achieve better performance results. 
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