

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 365–373, 2014.
© Springer International Publishing Switzerland 2014

Safety Perspective for Supporting
Architectural Design of Safety-Critical Systems

Havva Gülay Gürbüz, Bedir Tekinerdogan, and Nagehan Pala Er

Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
havva.gurbuz@bilkent.edu.tr,

{bedir,nagehan}@cs.bilkent.edu.tr

Abstract. Various software architecture viewpoint approaches have been intro-
duced to model the architecture views for stakeholder concerns. To address
quality concerns in software architecture views, an important approach is to de-
fine architectural perspectives that include a collection of activities, tactics and
guidelines that require consideration across a number of the architectural views.
Several architectural perspectives have been defined for selected quality con-
cerns. In this paper we propose the Safety Perspective that is dedicated to en-
sure that the safety concern is properly addressed in the architecture views. The
proposed safety perspective can assist the system and software architects in de-
signing, analyzing and communicating the decisions regarding safety concerns.
We illustrate the safety perspective for a real industrial case study and discuss
the lessons learned.

Keywords: Software architecture design, software architecture modeling, soft-
ware architecture analysis, safety-critical systems.

1 Introduction

To address quality concerns in software architecture views, an important approach is
to define architectural perspectives that include a collection of activities, tactics and
guidelines that require consideration across a number of the architectural views [6]. In
this context, Rozanski and Wood define several architectural perspectives for selected
quality concerns such as security, performance, scalability, availability and evolution.
In order to capture the system-wide quality concerns, each relevant perspective is
applied to some or all views. In this way, the architectural views provide the descrip-
tion of the architecture, while the architectural perspectives can help to analyze and
modify the architecture to ensure that system exhibits the desired quality properties.

An important concern for designing safety-critical systems is safety since a failure
or malfunction may result in death or serious injury to people, or loss or severe dam-
age to equipment or environmental harm. It is generally agreed that quality concerns
need to be evaluated early on in the life cycle before the implementation to mitigate
risks. For safety-critical systems this seems to be an even more serious requirement
due to the dramatic consequences of potential failures. For coping with safety several
standard and implementation approaches have been defined but this has not been
directly considered at the architecture modeling level. Hence, we propose the Safety

366 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

Perspective that is dedicated to ensure that the safety concern is properly addressed in
the architecture views. The proposed safety perspective is defined according to the
guidelines as described by Rozanski and Woods [6]. The safety perspective can assist
the system and software architects in designing, analyzing and communicating the
design decisions regarding safety concerns. We illustrate the safety perspective for a
real industrial case study and discuss the lessons learned.

The remainder of the paper is organized as follows. Section 2 presents the pro-
posed safety perspective. Section 3 illustrates the safety perspective for an industrial
case study. Finally, section 4 presents the conclusion.

2 Safety Perspective

Rozanski&Woods provide the following guidelines [6] to define a new perspective:
• The perspective description in brief in desired quality
• The perspective's applicability to views
• The concerns which are addressed by the perspective
• An explanation of activities for applying the perspective to the architectural design.
• The architectural tactics as possible solutions when the architecture doesn't exhibit the

desired quality properties the perspective addresses
• Some problems and pitfalls to be aware of and risk-reduction techniques
• Checklist of things to consider when applying and reviewing the perspective to help make

sure correctness, completeness, and accuracy

Table 1 shows the proposed safety perspective description including the above
points. In the following we shortly discuss the each point.

Table 1. Brief Description of Safety Perspective

Desired
Quality

The ability of the system to provide an information about safety-related decisions and
ability to control and monitor the hazardous operations in the system

Applicability Any systems which include hazardous or safety-critical operations
Concerns Failures, Hazard, Risks, Fault Tolerance, Availability, Reliability, Accuracy,

Performance
Activities Identify hazards, Define risks, Identify safety requirements, Design safety model,

Assess against safety requirements
Architectural
Tactics

Avoid from failures and hazards, Define failure detection mechanisms, Mitigate the
failure consequences

Problems
and Pitfalls

Describing the fault tolerance, No clear requirements or safety model, Underestimated
safety problems

Table 2 shows how the safety perspective affects each of the architectural views as
defined by Rozanski and Woods [6]. For all the seven views the safety perspective
seems to be useful and can reshape the corresponding view. The activity diagram in
Fig. 1 shows the activities for applying the safety perspective. The first step includes
the identification of the hazards followed by the definition of risks. This is followed
by identifying and detailing the safety requirements. After the safety requirements
safety models are designed and the safety requirements are assessed. In the following
section we explain each activity using an industrial case study.

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 367

Table 2. Applicability of Safety Perspective to Architectural Views

View Applicability

Functional View The functional view allows determining which of the system's functional elements
considered as safety critical.

Information View The information view helps to see the safety-critical data in the system

Concurrency
View

While designing the safety-critical systems, some elements need to be isolated or inte-
grated in runtime. Therefore this will affect the system's concurrency structure.

Development
View

Applying this view can help to provide a guideline or constraints to developers in order
to raise awareness for the system's safety critical elements.

Deployment View Applying this view can help to determine the required hardware, third-party software
requirements and some constraints for safety.

Operational View Safety implementation includes critical and complex operations. Therefore, operational
view needs to consider safety critical elements to describe system's operation properly.

Context View Applying this view can help to understand which types of users will use the system and
which external systems are necessary to make sure the system operates correctly.

Fig. 1. Applying the Safety Perspective

3 Case Study

In this section we show the application of proposed safety perspective approach by
using an avionics control system project of a company. To illustrate the application of
the proposed safety perspective we have selected "displaying aircraft altitude data" as
an example requirement for our case study. Altitude is defined as the height of the
aircraft above sea level. Pilots depend on the displayed altitude information especially
when landing.

3.1 Activities for Safety Perspective

This section explains how the activities given in Fig. 1 are applied to our case.

Identify Hazards
In order to identify and classify hazards, preliminary hazard analysis can be con-
ducted which should include the list of all hazards, their probable causes and conse-
quences, and the severity. Hazard severity levels are defined as catastrophic, critical,
marginal or negligible in [2]. Hazard identification activity is performed with domain
experts (avionics engineers and pilots), system engineers and safety engineers.

368 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

We have selected "displaying wrong altitude data" hazard related to selected re-
quirement as an example hazard to illustrate the remaining activities. The possible
causes of this hazard are loss of/error in altimeter device, loss of/error in communica-
tion with altimeter device and error in display device. Aircraft crash is identified as
the possible consequence of this hazard. Severity of this hazard is identified as cata-
strophic since possible consequence of the hazard is aircraft crash.

Define Risks
To define risks, estimation of probability of hazard occurrence for each hazard should
be carried out. In [2], occurrence definitions are defined as frequent, probable, occa-
sional, remote or improbable. Based on the hazard severity and hazard occurrence
class identification, risks should be assessed and categorized as high, serious, medium
or low [2]. After the risk definition, risk assessment should be conducted by methods
such as fault tree analysis, event tree analysis, simulation etc. For our case study, our
design criterion is to design the system such that the probability of occurrence of all
catastrophic failures should be improbable. Since the selected hazard is catastrophic
hazard, the probability of occurrence is improbable. According to severity category
and probability of occurrence, the risk category of the selected hazard is medium.

Identify Safety Requirements
After the hazard identification and risk assessment, software safety requirements
should be determined to construct a safety model. Safety requirements can be identi-
fied by using different methods such as preliminary hazard analysis [7], top-down
analysis of system requirements and specifications [7] and fault tree analysis [5].
Additionally, there are some other methods which combine the several existing tech-
niques to derive safety requirements. To illustrate this step, we produce "Probability
of displaying wrong altitude should be improbable" as a high-level safety requirement
related to selected hazard. Many low-level safety requirements can be generated from
this high-level safety requirement. Examples of the generated low-level safety re-
quirements are (1)"Altimeter data should be received at least two independent altime-
ter devices.", (2) "If the difference between two altimeter values received from two
altimeter devices is more than a given threshold, the altimeter data should not be
displayed and a warning should be generated.", (3)"Altimeter data should be shown
on at least two independent display devices ".

Design Safety Model
To present the safety-critical elements or components in the system a safety model is
needed that can be derived from safety requirements. One way to create a safety mod-
el of the system is defining an extension mechanism to UML models [3]. UML exten-
sion can be achieved by adding stereotype to UML diagrams. Another approach to
design a safety model is defining a domain-specific language [12]. Another way to
express safety model is using automata [14].

This activity is an iterative process. The models are created first and then they are
checked against the safety requirements. The models can be changed according to
these checks. We prefer to show two versions of the architecture for our case study.

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 369

The first version is designed without considering the safety requirements. It is
modified after safety requirements are identified, that is, after safety perspective is
applied, which results in the second version. The reasons of the modifications will be
explained in the next section (assessment section). The left part of the Fig. 2 shows
the deployment diagram of the first version, which includes one avionics control
computer (AvionicsComputer), one altimeter device (Altimeter), and one display
device (GR_Display). The deployment diagram of the second version, after applying
the safety perspective, is shown in the right part of the Fig. 2. The second version
includes two avionics control computers (AvionicsComputer1 and AvionicsCompu-
ter2), two altimeter devices (Altimeter_1 and Altimeter_2), and two display devices
(GR_1_Display and GR_2_Display). Avionics control computer contains following
modules: M1153 Manager (M1553), A429 Manager (A429), Navigation Manager
(NAV), Graphics 1 Manager (GR_1), Graphics 2 Manager (GR_2), Health Monitor
(Health_Monitor).

Fig. 2. Deployment View for the First Version (left) and for the Second Version(right)

M1553 Manager receives data from the devices connected to MIL-STD-1553
communication channels. Similarly, A429 Manager receives data from the devices on
the ARINC-429 communication channels. MIL-STD-1553 and ARINC-429 are two
widely known communication standards used in avionics systems. These two manag-
ers just receive the data and send it to the required modules. They do not make any
calculations on the data. Navigation Manager receives the altimeter data from M1553
Manager and A429 Manager and makes the range check and difference check calcula-
tions on the altimeter data. If the difference between two altimeter values received
from two altimeter devices is more than a given threshold, a warning data is pro-
duced. The altimeter data and warning data are sent to Graphics Managers. Graphics
Managers drive two graphical displays according to the received data. A well-known
standard called DVI is used to drive graphical displays. SC (Safety Critical) stereo-
type is defined to tag the safety-critical modules in the second version of the deploy-
ment diagram. SC stereotype differentiates the safety-critical modules from the rest of
the modules.

370 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

Assess Against Safety Requirements
After designing the system's safety model, it should be assessed to check whether it is
consistent with identified safety requirements. There is only one altimeter device and
one display device in the first version of the architecture so low-level safety require-
ments 1 and 3 are not satisfied. We adapted the first version and included one
additional altimeter device and one additional display device in the second version of
the architecture. There are two different altimeter devices and two different display
devices in the second version so low-level safety requirements 1 and 3 are satisfied.

Redundancy is also accomplished for the avionics control computer in the second
version of the architecture. There are two avionics computers which can communicate
to each other for heartbeat messages (through UDP protocol). They run according to
master/slave paradigm. Only one of the avionics computers can be master at a given
time. If slave avionics computer cannot receive heartbeat messages, it can become
master. Both of them can receive altimeter data and can display it on graphical display
devices but only the master computer does it.

Safety requirement 2 is also satisfied in the second version of the architecture. Na-
vigation Manager checks the altitude data and produces either the altitude data or a
warning for altitude. If altitude data is produced, it is displayed on both graphical
devices by Graphics Managers. If a warning is generated, a warning symbol is dis-
played on the graphical devices instead of altitude. Health monitoring is another
tactic which is applied in order to increase the safety of the system. Health monitor
checks the status of the modules. If there is a problem related with a module, it can
restart the module. Health monitors are also used to determine master/slave condition.
Heartbeat messages are sent and received by health monitors.

3.2 Architectural Tactics

Architectural tactics can be considered as possible solutions when the architecture
does not exhibit the required quality properties addressed by the perspective. In order
to avoid from failures and hazards, one way is making the system as simple as possi-
ble. Another way is applying redundancy [13] by replicating the components in the
system. The other way is N-version programming proposed by Chen and Avizienis
[1]. By using N-version programming technique, different designs can be created for
each version of the system in order to determine design faults from safety perspective.
If hazards and failures occur, system should be able to detect them. In order to detect
the failures, failure detection mechanisms can be derived from safety requirements
[8]. Another tactic for failure detection is heartbeat [ref] which offers a mechanism
for periodically monitoring the aliveness and arrival rate of independent runnables. At
the architecture design level, based on the hazard identification and risk definition,
consequences of failures can be predicted and reduced/prevented. Redundancy and
replication also can be used in order to mitigate from the failure consequences.

Several architectural tactics are utilized for our case study. The first architectural
technique is redundancy. Several parts of the system are designed as redundant in

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 371

order to satisfy both safety requirements and high availability needs. This technique is
applied to avoid from failures and mitigate the failure consequences. Health monitor-
ing technique is applied for failure detection of the safety-critical modules. Table 3
summarizes the applied tactics. Similar tactics can be applied for other identified cata-
strophic hazards.

3.3 Checklist

In this section, we provide checklists in Table 4 for requirements capture and archi-
tecture definition to consider when applying and reviewing the perspective to help
make sure correctness, completeness, and accuracy. We have applied the checklist to
our case study. Results are presented in third column of Table 4. All items in the
checklist are answered as yes except for the item 9. Since our case study doesn't in-
clude any safe state, this question is answered as not applicable.

Table 3. Architectural Tactics for the Case Study

Tactic Avoid. Detect. Mitigate
If one of the altimeter devices produces wrong altimeter output, this
fault is detected by Navigation Manager and a warning is generated

  

If one of the display devices crashes and cannot display altitude data,
the other one continue to display it.

  

If master avionics computer is not available, the slave avionics comput-
er becomes master and starts to operate.

  

If a safety-critical module fails, this failure is detected by health moni-
tor. The module is re-started.

  

Table 4. Checklist Table

No Explanation Y/N/NA
1 Have you identified safety-critical operations in the system? Yes
2 Have you identified possible failures and hazards including causes and consequences

of them?
Yes

3 Have you worked through the hazard severity and occurrence information to define
the risks?

Yes

4 Have you identified availability needs for safety of the system? Yes
5 Have you worked through example scenarios with your stakeholders so that they

understand the planned safety risks the system runs?
Yes

6 Have you reviewed your safety requirements with external domain experts? Yes
7 Have you addressed each hazard and risk in the designed safety model? Yes
8 Is the design of safety model as simple as possible and highly modular? Yes
9 Have you identified safe states and fully checked and verified them for completeness

and correctness?
NA

10 Have you produced an integrated overall safety design of the system? Yes
11 Have you defined the fault tolerance of the system? Yes
12 Have you applied the results of the safety perspective to all effected views? Yes
13 Have domain experts reviewed the safety design? Yes

372 H.G. Gürbüz, B. Tekinerdogan, and N. Pala Er

3.4 Applicability to Views

Table 5 lists the application of safety perspective to the views for our case study.

Table 5. Safety Perspective Application for the Case Study

View Applicability to the case study
Functional Safety-critical modules are determined (see right part of the Fig. 2)
Information Safety-critical data is determined (altitude data)
Concurrency Not applicable
Development Requirement Standard, Coding Standard, Design Decisions, Reviews / Checklists and

common processing required are defined.
Deployment There are two avionics control computers, two altimeter devices and two display devic-

es. (see right part of the Fig. 2)
Operational Check the correctness of the loaded binaries, Software Configuration Management and

Software Problem Reporting for safety-critical defects are defined, maintenance and
user training are provided.

Context External devices related with safety-critical features are determined.

4 Conclusion

Safety-critical systems need to be carefully designed and analyzed because a failure
may result in death or serious injury to people, or severe damage to equipment. Here-
by, the architecture design plays a crucial role to support the overall design and reali-
zation of the system and ensure the required level of safety. Addressing quality
concerns at the architecture view level has been actually based on either defining a
new viewpoint [2] or using architecture perspectives [7], each with their own merits.
In our earlier work we have considered the explicit modeling of viewpoints for quality
concerns [9][10][11]. Unfortunately, so far no architectural perspective has been de-
fined for the safety concern. Based on the guidelines by Rozanski and Woods [7] we
have proposed a safety perspective that can be used in the design of safety-critical
systems. We have applied the safety perspective in a real industrial context. The safe-
ty perspective helps the designers to explicitly reason about and document the design
decisions regarding the safety concern. In this respect, the safety perspective appeared
not only to be useful as a guidance tool for assisting the safety engineer and the archi-
tect, but it also helped in the early analysis of the architecture. In our future work we
aim to apply the safety perspective for several other domains and consider the trade-
off analysis with the perspectives for other quality concerns. Further we also aim to
define a viewpoint for safety.

References

[1] Chen, L., Avizienis, A.: N-Version Programming:A Fault-Tolerance Approach to Relia-
bility of Software Operation. In: Fault Tolerant Computing, FTCS-8, pp. 3–9 (1978)

[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford,
J.: Documenting Software Architectures: Views and Beyond, 1st edn. Addison-Wesley
(October 2002)

 Safety Perspective for Supporting Architectural Design of Safety-Critical Systems 373

[3] MIL-STD-882D, Standard Practice for System Safety, Department of Defense (2000) (re-
trieved January 22, 2014)

[4] Pataricza, A., Majzik, I., Huszerl, G., Várnai, G.: UML-based design and formal analysis
of a safety-critical railway control software module. In: Proc. of Symposium Formal Me-
thods for Railway Operation and ControlSystems (FORMS 2003), Budapest, pp. 125–132
(2003)

[5] Ramezani, R., Sedaghat, Y.: An Overview of Fault Tolerance Techniques for Real-Time
Operating Systems. In: 3th International Conference on Computer and Knowledge Engi-
neering, pp. 1–6 (2013)

[6] Rausand, M., Hoylan, A.: System Reliability Theory, Models, Statistical Methods, and
Applications. Wiley, USA (2004)

[7] Rozanski, N., Woods, E.: Software Architecture Systems Working with Stakeholders Us-
ing Viewpoints and Perspectives, 1st edn. Addison-Wesley (2005)

[8] Software Safety Guide Book, NASA Technical Standard (2004)
[9] Sojer, D., Christian, B., Knoll, A.: Deriving Fault-Detection Mechanisms from Safety

Requirements. In: Computer Science- Research and Development, pp. 1–14. Springer
(2011)

[10] Sözer, H., Tekinerdogan, B.: Introducing Recovery Style for Modeling and Analyzing
System Recovery. In: 7th IEEE/IFIP Working Conference on Software Architecture,
Vancouver, Canada, February 18-22, pp. 167–176 (2008)

[11] Sözer, H., Tekinerdogan, B., Aksit, M.: Optimizing Decomposition of Software Architec-
ture for Local Recovery. Software Quality Journal 21(2), 203–240 (2013)

[12] Tekinerdogan, B., Sözer, H.: Defining Architectural Viewpoints for Quality Concerns. In:
Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 26–34.
Springer, Heidelberg (2011)

[13] Wasilewski, M., Hasselbring, W., Nowotka, D.: Defining requirements on domain-
specific languages in model-driven software engineering of safety-critical systems. In:
Lecture Notes in Informatics Software Engineering Workshopband, pp. 467–482 (2013)

[14] Wu, W., Kelly, T.: Safety Tactics for Software Architecture Design. In: 28th Annual In-
ternational Computer Software and Applications Conference, Hong Kong, pp. 368–375
(2004)

[15] Yu, G., Wei Xu, Z.: Model-Based Safety Test Automation of Safety-Critical Software.
In: International Conference on Computational Intelligence and Software Engineering,
pp. 1–3 (2010)

	Safety Perspective for Supporting
Architectural Design of Safety-Critical Systems
	1 Introduction
	2 Safety Perspective
	3 Case Study
	3.1 Activities for Safety Perspective
	3.2 Architectural Tactics
	3.3 Checklist
	3.4 Applicability to Views

	4 Conclusion
	References

