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ABSTRACT 

4 n  efficient algorithm is proposed to extract components of 
a composite signal. The proposed approach has two stages 
of processing in which the time-frequency supports of the 
individual signal components are identified and then the in- 
dividual components are estimated by performing a simple 
time-frequency domain incision on the identified support 
of the component. The use of a recently proposed t i m e  
frequency representation [l] significantly improves the per- 
formance of the proposed approach by providing very accu- 
rate description on the auto-Wigner terms of the composite 
signal. Then, simple fractional Fourier domain incision pro- 
vides reliable estimates for each of the signal components in 
O(N log N )  complexity for a composite signal of duration 
N .  

1. INTRODUCTION 

Analysis of multi-component signals have been an active 
research area since the introduction of the time-frequency 
concepts. The search for the signal components which have 
compact time-frequency supports typically starts with the 
careful examination of the time-frequency distribution of 
the composite signal. The Wigner distribution is the most 
commonly used time-frequency analysis tool which provides 
the highest resolution time-frequency characterization of 
the signal. However, because of its bilinear nature, the sup- 
ports of the actual signal components may not be visible 
in the presence of cross-terms of the Wigner distribution. 
For instance, if the signal s ( t )  is composed of m signal com- 
ponents, z , ( t ) ,  1 5 i 5 m, then the corresponding Wigner 
distribution [2]  can be written as: 
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where the high resolution auto-Wigner distributions cor- 
responding to  m individual signal components are accom- 
panied by m(m - 1)/2 cross-Wigner distributions [3]. As 
shown in Fig. 2(a), the cross-Wigner terms may partially or 
totally overlap with the auto-Wigner terms making it very 
difficult if not impossible to  detect and identify the time- 
frequency supports of the individual signal components. 

Since the cross-Wigner terms are oscillatory in nature 
[4],  2-D low pass filtering reduces the cross-term interfer- 
ence [ 5 ,  61. However, the resolution of the auto-Wigner 
terms may degrade considerably resulting in identification 
of significantly larger supports for the signal components. 
This not only causes extraction of more noisy signal com- 
ponent estimates but also signal components with closely 
spaced timefrequency supports to  be identified as only 
one signal component. Since the success of the component 
analysis is very much related to  the accurate identification 

smoothed Wigner distributions are not very suitable for 
the extraction of the signal components. The draMr-backs 
of smoothed-Wigner distributions in the analysis and ex- 
traction of individual signal components can be partially 
overcome with the use of signal dependent sliding window 
time-frequency representations [7]. However, the high com- 
plexity of the computation of these representations, and 
more importantly, the use of the same time domain filter- 
ing of all signal components occurring at the same time but 
different frequencies limits the success of these approaches. 

In this paper, the time-frequency supports of individ- 
ual components are identified by using a recently devel- 
oped time-frequency representation [l]. Since, in the new 
representation directional smoothing of arbitrarily chosen 
time-frequency regions is made possible, the interference 
of cross-Wigner terms can be greatly reduced with negli- 
gible distortion on the auto-Wigner terms. Therefore the 
reliable detection and high resolution identification can be 
performed very easily on the new tirne-frequency represen- 
t a t  ion. 

of the timefrequency supports of the signal components, 

2. AN EFFICIENT ALGORITHM FOR THE 
IDENTIFICATION AND EXTRACTION OF 

SIGNAL COMPONENTS 

Time-frequency based extraction of the individual signal 
components of a given multi-component signal can be con- 

697 



ducted in two stages. In the first stage detection and iden- 
tification of the individual signal components is performed 
on the time-frequency plane. Then, the signal components 
are estimated based on the obtained time-frequency infor- 
mation on them. As it is explained in the previous sec- 
tion, high resolution and accurate description of the t i m e  
frequency content of the individual signal components is 
essential in the over-all performance of the component ex- 
traction. Since, the currently used timefrequency repre- 
sentations do not provide such a description, the second 
stage of processing becomes significantly involved to  pro- 
vide reasonable results [8, 91. In the following, we propose 
to  use a recently introduced time-frequency representation 
in the first stage of the analysis. Since, this new represen- 
tations provides the required time-frequency information 
very precisely, the signal components can be extracted very 
efficiently. 

In order to  demonstrate the efficiency of the new t i m e  
frequency representation, the fivecomponent signal whose 
Wigner distribution is shown in Fig. 2(a) is analyzed as de- 
tailed in [l] .  4 s  shown in Fig. 2(c), signal components can 
be easily detected and their supports can be accurately de- 
scribed. The supports of the individual signal components 
can be identified either manually or automatically by using 
adaptive thresholding methods. 

In the second stage of processing, the obtained informa- 
tion on the supports of the individual signal components is 
used to  design proper time-frequency incision techniques to  
extract the components directly from the signal. To demon- 
strate the required processing for the signal component ex- 
traction, consider the supports of auto-terms of the Wigner 
distribution of a composite signal as shown in Fig. 3. In or- 
der to  extract the signal component which is localized at the 
center of the time-frequency plane, a time-frequency inci- 
sion around this component should be performed. Among 
many alternatives, the simplest incision can be performed 
by first applying a frequency domain mask Hl(f) to S ( f )  
whose support is the same as the frequency axis projection 
of the signal component. Then, to the result a t imedomain 
mask, whose support is the projection of the signal compo- 
nent on the time-axis, can be applied to approximate the 
signal component. This way, the estimated signal compo- 
nent will have its timefrequency support approximately 
limited into the dashed-box around the desired signal com- 
ponent. Formally, the component estimate is obtained by: 

&(t )  = h2(t)[hl( t )  * s(t)]  =: x , ( t )  

In a more general case, if the supports of the auto- 
components in the timefrequency plane are as shown in 
Fig. 4 ,  then it is not possible to  extract z , ( t )  from s ( t ) ,  by 
successive masking in frequency and time domains. Because 
in this case there does not exist a rectangular region in the 
time-frequency plane, which contains only the the support 
of the ith auto-component but not the others. However, a 
viable solution in this case is first to  translate the origin of 
the time-frequency plane to  approximate center ( t t ,  f t )  of 
the ith auto-component as shown in Fig. 4 .  The required 
translation can be performed as: 

S ( t )  = s ( t  + t")e-J2"". (3) 

Note that the ith component of the signal S ( t )  is ?,(t) = 
zs ( t  + t ,)e-32"t'*. Then the fractional Fourier transform 
(FrFT) [lo] of this signal is 

&, ( t )  E { . P d } ( t )  Ka,  ( t ,  t')S(t') dt' , (4) 

where a,  = 24,/7r is the order of the FrFT and K,,(t,t ') 
is the kernel of the transformation given in [lo]. Since the 
WD of the a:h order FrFT of a signal is the same as the 
WD of the original signal rotated by angle of a,7r/2 in the 
clock-wise direction [lo], the W D  of S a ,  ( t )  is aligned with 
one of the axis as shown in Fig. 4. Thus after the elementary 
operations of translation and rotation in the time-frequency 
plane, the WD of 5r,a,(t) fits into a compact rectangular 
region as shown in Fig. 4(c). Therefore, as it was the case 
for the WD in Fig. 3 ,  the ith component of s ( t )  can be 
extracted in the transform domain by successive masking 

J 

as: 

( 5 )  

where h z ( t )  is the dual of time-domain mask and h l ( t )  is 
the inverse Fourier transform of the dual of frequency do- 
main mask H I ( ! ) .  After obtaining an estimate for Z,+, ( t ) ,  
an estimate of x, ( t )  can be easily computed by reversing the 
operations of translation and rotation in the time-frequency 
plane: 

In practice the required fractional Fourier transform can 
be directly carried on the given Nyquist rate samples of the 
composite signal s ( t )  by using the algorithm given in [ l l ] .  
As shown in [ll], the complexity of the fractional Fourier 
transform is the same as FFT. Therefore, the overall com- 
plexity of the proposed signal component extraction algo- 
rithm is O(N1ogN) for a component whose time domain 
support is of approximately N samples in duration. 

The required incision in the more general case shown 
in Fig. 4 can also be performed by using fractional Fourier 
domain filtering techniques given in [12, 13, 141. However, 
the proposed techniques in [12, 13, 141 are for noise suppres- 
sion. Therefore, there is a need for improvement in these 
techniques to  suppress both the noise and the other signal 
components. We are currently working on these improve- 
ments and planning to  report on the obtained results and 
their comparisons with the simple incision technique used 
in this work. 

3. SIMULATIONS 

In this section we investigate the performance of the pro- 
posed algorithm by conducting computer simulations on a 
complicated composite test signal which is composed of 5 
chirp signals with Gaussian envelopes. 4s  shown in Fig. 1, 
it is not possible to  identify individual signal components 
of the composite signal. The corresponding Wigner distri- 
bution shown in Fig. 2(a) is very much cluttered with the 
cross-terms. Because of the significant overlaps between the 
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cross-terms and the auto-terms, the auto-terms shown in 
Fig. 2(b) cannot be identified. 4 s  shown in Fig. 2 ( c ) ,  by us- 
ing the first stage of the processing a significantly improved 
time-frequency representation of the composite signal can 
be obtained. 4s seen from this figure, as a result of the 
utilized directional filtering technique [l], the cross terms 
of the Wigner distribution are highly attenuated with little 
distortion on the auto-Wigner terms. As shown in Fig. 2(d), 
the error in the estimated auto-Wigner terms is negligible. 
Therefore, as a result of the first stage of processing, very 
accurate detection and support-identification of the signal 
components can be achieved. 

To illustrate the performance of the second stage of pro- 
cessing, we present results on the extraction of two chirp 
components of the composite signal shown in Fig. 1. The es- 
timated signal component corresponding to  the chirp com- 
ponent of the original signal near the origin of the time- 
frequency plane is shown in Fig. 5 (a). This result is ob- 
tained by performing time-frequency domain incision on a 
rotated time-frequency plane obtained by using fractional 
Fourier transformation of order 0.5 corresponding to  n / 4  
radians of rotation. The error in the estimated signal com- 
ponent is shown in Fig. 5(b). As seen from this figure, the 
extracted signal component is a very close approximation 
of the original signal component with a normalized error of 
E, = 8.2 x lo-* which is defined as: 

where z and 2, are the actual and estimated signal com- 
ponents in vector notation. 

The result of the estimated signal component corre- 
sponding to  the shorter chirp component with a time cen- 
ter right below the origin is shown in Fig. 6(a) .  This re- 
sult is obtained by first translating the origin of the time- 
frequency plane to  the center of the chirp component. Then 
the time-frequency domain incision over the estimated sup- 
port of the signal component is performed on a rotated 
time-frequency plane obtained by using fractional Fourier 
transformation of order 0.5 corresponding to  7r/4 radians 
of rotation. The difference plot of the estimated and ac- 
tual signal component is shown in Fig. 6 ( b )  to illustrate 
the accuracy of the algorithm. As seen from this figure, the 
extracted signal Component is a very close approximation 
of the original signal component with a normalized error of 
E, = 4.8 

4. CONCLUSIONS 

,4 turo-stage processing algorithm is proposed for the ex- 
traction of components of a composite signal. Based on a 
set of simulations, it is shown that the proposed two stage 
processing algorithm provides highly accurate estimates for 
the individual signal components. The use of a recently pro- 
posed time-frequency representation to  detect and identify 
the time-frequency donlain supports of the signal compo- 
nents play the key role in the success of the proposed ap- 
proach. In the second stage, the use of fractional Fourier 
domain incision greatly increases the efficiency of the algo- 
rithm. 
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Figure 1: The time domain representation of a multi- 
component signal s ( t ) ,  which is composed of 5 linear- 
frequency modulated chirp signals. 
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Figure 2: (a) The Wigner distribution of the signal s ( t )  
shown in Fig. 1, (b) the auto-components of the Wigner dis- 
tribution, (c) the slices of the Wigner distribution smoothed 
by using the data-adaptive directional filtering algorithm in 
[l], (d) the difference of the smoothed slices from the auto- 
components of the Wigner distribution. 
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Figure 3: The extraction of the component centered at the 
origin of the timefrequency plane by using frequency and 
time domain masks. 

Figure 4: The supports of the Wigner distribution (only 
auto-terms) of s ( t )  and its various transforms: (a) the WD 
of s ( t ) ,  (b) the WD of S ( t )  = s ( t+t , )e -32" f* t ,  (c) the WD of 
ia, = Fal[i](t), (d) the WD of 2 , ( t )  = Faf [h2(hl * & , ) ] ( t ) .  

Figure 5 :  (a) The estimate of the long chirp component in 
Fig. 2 (b) which is near the origin of the time-frequency 
plane, (b) the difference of the estimate from the actual 
signal component. 

Figure 6: (a) The estimate of the short chirp component in 
Fig. 2(b) with the time center ,just below the origin, (b) the 
difference of the estimate from the actual signal component. 
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