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ABSTRACT 

A new algorithm is proposed for reliable communication 
over HF tropospheric links in the presence of rapid chan- 
nel variations. In the proposed approach, using fractionally 
spaced channel outputs, sequential estimation of channel 
characteristics and input sequence is performed by utilizing 
subspace tracking and Kalman filtering. Simulation based 
comparisons with the existing algorithms show that the pro- 
posed approaches significantly improve the performance of 
the communication system and enable us to utilize HF com- 
munication in bad conditions. 

1. INTRODUCTION 

Digital communication systems usually suffer from inter- 
symbol interference, ISI. This phenomenon is known to be 
caused by the channel memory, which spreads the transmit- 
ted symbols in time, or due to time-varying multi-paths. To 
combat the limitation in performance due to such factor, 
blind channel equalizers are usually built within receivers. 
In the case of HF communication links, channel equalization 
becomes a difficult task due to the additive noise and the 
channel time-variation which leads to  a degradation in the 
performance of the equalizer as time progresses. Typically, 
a periodic transmission of a training sequence is utilized, 
reducing the channel bandwidth. Moreover, even with the 
use of such periodic sequences, the equalizer may fail and 
result in a down-link in poor conditions. 

Recent research in the subject, tried to come up with 
robust equalizers [l], [2], [3], and to avoid training sequences 
[4]. A commonly used technique is fractional sampling [5 ]  
which introduces channel diversity and reduces the noise 
variance [6]. In this paper, based on a slowly time-varying 
channel assumption, an iterative algorithm is proposed for 
the joint estimation of the input sequence and channel char- 
acteristics. Simulation based comparisons with the existing 
algorithms show that the proposed approaches significantly 
improve the performance of the communication system and 
enable us to utilize HF communication in bad conditions 
even at 10 dB SNR. 

2. INPUT SEQUENCE ESTIMATION AND 
CHANNEL IDENTIFICATION 

In HF communication, transmitted signals may be received 
through multiple paths in the atmosphere as they are re- 
flected by distinct ionospheric layers. A practical model for 
the HF  channel is shown in Fig. 1, where an improved ver- 
sion of the Watterson model [7] with diffuse layers is used. 
Specifically, the channel transfer function is described as 
a sum of shifted Gaussian functions, each of which corre- 
sponds to a distinct transmission path. The corresponding 
baseband channel model is: 

y(t) = Gi(t)[z(t) * f i ( t  - si)] (1) 
a 

where f i ( t )  = k e x p ( $ ) ,  Gi(t) is the amplitude dis- 
tortion term. 

Assuming oversampling with a factor of M, equivalent 
baseband model to the communication system is the single- 
input multiple-output, SIMO, system shown in Fig. 2. In 
the following, the input symbols z[n] are assumed to be 
of binary. The sequences vi[n] and yi[n] represent, respec- 
tively, the additive noise and the output of the sub-channels. 

In HF communication, as in most of the communica- 
tion systems, the ultimate purpose is to be able to estimate 
the transmitted symbol sequence as reliable as possible at 
the receiver. However, since the medium of transmission 
is the HF tropospheric channel, the receiver has to provide 
estimates to the input symbols in the absence of a precise 
channel transfer function. Another important problem in 
the HF communication is the identification and tracking of 
the time-varying HF channel response when the channel in- 
put sequence is unknown. In the following approach, the 
problems of blind channel identification and input symbol 
estimation are iteratively solved by making use of the solu- 
tion to one to get a solution to the other. 

2.1. Input Sequence Estimation 

Assuming that the individual channels are of finite order L, 
their outputs can be written as: 

yi[n] = hrnxn + ~i[n], i = 1,. . . , M ( 2 )  
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wherex, = [z[n],z[n-l], ........, ~ [ n - L + l ] ] ~  is thevector 
of channel inputs. The input sequence estimation problem 
can be stated as: 

given y,[n] = h:,x, + vi[n], for 1 i 5 M ,  
estimate 4 7 2 1  E { F A } ,  for n 2 0. 

The above formulation is nonlinear in the unknowns x, 
and hi,, which are in a multiplicative form. A straight for- 
ward approach would be the use of extended Kalman filter 
[8], but it has a high computational cost and does not take 
advantage of the binary nature of the input sequence. To 
overcome the nonlinearity problem, we provide an alterna- 
tive approach where the existence of an initial estimate to 
the channel response is assumed. Such an estimate can be 
obtained by using a short training period. Then recursively, 
the input sequence will be estimated by using the estimated 
channel and the channel estimate will be updated by u$ng 
the estimated input sequence. Once reliable estimates hi,, 
are given, the input sequence estimation can be recast in 
the following simplified form: 

given yiin] = ii:,x, + vi[n], for 1 5 i 5 M ,  
estimate 4.1 E { F A } ,  for n 2 0 .  

Different approaches such as the Kalman filter [8] and the 
Viterbi algorithm can be suggested as solutions to the above 
formulation. In this paper we propose a sub-optimal but 
very efficient estimator for the input sequence. 

Given the past input symbols z[n  - K], . . . , z[n - L + 11, 
we define x9,, q = 1,. . . , 2 K  as the possible vector values 
of x, with the last K input symbols are fixed, i.e, x: = 
[ A . .  . A  z[n - K ]  . . . x[n  - L + 111’. Define the error terms 
as: 

= Yi[n-  I C ]  - h T , - i ~ E - k .  (3) 
Then estimate the input sequence as: 

where cr: is the variance of vi[n] which is assumed to be 
known. 

In [6], it’s shown that this approach can be implemented 
with a computational cost of ( L  + K ) M  in contrast to 
M L 2  + K M  multiplications fequired by a straight forward 
optimizer. Note that in (3), hi,,-1 was used as an estimate 
of all hi,,-k, k = 1,. . . , K .  Such an approximation is al- 
lowed as far as the variation in the channel response is slow 
enough. 

2.2. Channel identification 

The identification problem can be stated as follows : 

given yi[n] = xzhi,, + v.[n], for 1 < i 5 M ,  
estimate hi,, for n 2 0  and 15 i <  M .  

The above formulation is nonlinear in the unknowns x, 
and hi,, which are in a multiplicative form. Assuming that 

reliable estimates of the input sequence is obtained as a 
result of 4, the channel identification can be performed as : 

given y;[n] = %:hi,, +v;[n], for 15 i 5 M ,  
estimate hi,, for n 1 0  and 1 si 5 M .  

In the following, it is assumed that the channel char- 
acteristics remain stationary within the short duration of 
the channel response which is typically in the order of 10 
input symbol durations. This stationarity is modeled as 
a slowly time-varying low-ranked subspace which contains 
the most recent channel response vectors in it. By track- 
ing the variation of this channel response subspace, more 
reliable identification of the channel is made possible. In 
the proposed approach, by using the available estimates to 
the input sequence z[n],  an adaptive filter is used to get 
an estimate h, of the oversampled channel response vector 
h,. Then, a subspace tracker makes use of this estimate to 
update the subspace basis. Finally a more refined estimate 
h, is obtained by a projection onto the updated subspace. 

Estimates h, are obtained by using the following state- 
space representation : 

h, = h,-1 + b,, 

Y n  = Ghn + v n ,  

( 5 )  

(6) 
where b, is the innovation in h,, C, = [ c , , ~ ,  . . . , c , , M - I ] ~  

and c , , ~  = [z[n]OTz[n - 11 . . . z[n - L + 1]OTIT. The zero 
vectors in c , , ~  are of length M - 1 and the vectors c,,i, i = 
1,. . . , M are obtained by shifting the vector c , , ~  i times to 
the right in a circular manner. 

By using the Kalman filter [8] ,  the required estimate 
h, can be obtained in O((ML)3)  number of multiplica- 
tions. Fortunately, a reasonable trade-off between the per- 
formance and computational load can be made by tracking 
only one sub-channel, i.e., h y , , ,  and approximate the oth- 
ers with linear interpolations of the former. In this case, 
the state-space equations become : 

h ~ , ~  = h ~ , ~ - l  + d n ,  

Yn = Cnhg,, + v n  + v n .  

(7)  

( 8 )  
- 

where d, represents the innovation in h a , ,  and q,, is a 
noise vector compensating the approximation error intro- 
duced by linear interpolation. The measurement matrix 
C, = [ATx, , . . A L x , ] ~ ,  where the matrices Ai’s refer to 
the appropriate linear interpolation operators. A further 
simplification in the output equation (8) can be obtained 
by assuming all Ai’s as the identity operators : 

2 

- 

A 

Yn = Cnhy,n + v n  + v n ,  (9) - 
where C ,  = [x, . . . x , ] ~ .  As shown in [6], this simplifica- 
tion reduces the complexity of the Kalman filter to O(L2) .  

In all the previously described models, the innovation 
in the state vectors is modeled as an additive white noise. 
This implies that its covariance matrix is: 

Qd = ~ V ~ I L  , (10) 
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where 0,” is the noise variance. In [6], a more realistic form 
for Qd is proposed, which reflects the correlation between 
the innovation and the estimated state vector : 

l h ~ , ” ~ l ~ - ~ l l ~ + ~ l ~ h l ~ ~ ~ ~ ~ l l ~ + l ~ ~ , ~ ~ ~ ~ + ~ l l ~  
where kJ = 4 

The Kalman filter, although optimal in the MMSE sense, 
provides noisy estimates of the channel transfer function. 
To remove such a noise, we make use of subspace tracking 
methods. In other words, under the smooth time-variation 
assumption, the matrix H = [hn-.w . . . h,] is of low rank. 
Its column space is the same as the one of HHT which 
is the channel covariance matrix over a time interval of 
length N + 1 .  Hence by tracking the eigenspace of the chan- 
nel covariance matrix, based on the estimates given by the 
Kalman filter, we can remove most of the noise components. 
In the literature, various algorithms that can accomplish 
such a task were proposed. In our approach, we chose the 
algorithm LORAF 1 presented in [9], which is a low rank 
adaptive filter. This algorithm tracks the? dominant eigen- 
values of the covariance matrix Qi = E{h, h:}, and their 
corresponding eigenvectors. With an appropriate choice of 
T ,  the effective dimension of the subspace, the noise can be 
significantly removed from the signal. 

Once the eigenvalues and eigenvectors are obtained, the 
channel impulse response can be re-updated by projecting 
h, on to the subspace of eigenvectors : 

The three different state-space descriptions together with 
the two different formulations of Q d  (or Qb) suggest six 
different algor.it;lims that were explicitly stated and com- 
pared through different simulations in [6]. In this paper, 
we present the algorithm KFST, shown in Table 1, which 
is the best choice based on its performance and computa- 
tional cost. 

3. SIMULATION RESULTS 

In this section, simulation based comparison results of the 
proposed KFST algorithm and two other alternative ap- 
proaches are presented. The reference algorithms are de- 
noted as “FTF” and “Sl” (System l), which were proposed 
in [l] and [2], respectively. The former is an efficient fast 
transversal filter. The second describes the channel as lin- 
ear combination of a subspace basis and keeps track of the 
subspace vectors and the corresponding coefficients through 
recursive projections. However, the orthogonality property 
of the basis vectors might be lost as time progresses which 
requires periodic training intervals during which the Gram- 
Schmidt process is applied. 

Table 1: Channel identification algorithm, KFST 

In the simulations, we make use of 1000 bits of binary 
data with symbol spacing T and sampling period $. The 
channel transfer function is simulated as given in 1 by us- 
ing three shifted Gaussian functions, corresponding to three 
distinct tropospheric paths with total duration of 10 T. 
The oversampling factor is chosen as M = 8. We con- 
sider slow and rapid variations, SV and RV respectively. In 
both cases, it is assumed that the channel characteristics 
remain stationary within the short duration of the channel 
response which is typically in the order of 10 input sym- 
bol durations. The signal to noise ratio is chosen as 23 
dB and 10 dB and represented as H, high, and L, low, re- 
spectively. In each case, the algorithms are tested over ten 
different noise realizations. The error measure is defined as 

steady state. 
4721 = 20 log lhn-h711alle lh,l, , ,  and cave is the mean of ~ [ n ]  in the 

To examine the channel identification performance of 
the different algorithms, the latters were simulated in the 
open-eye case. The corresponding results are shown in Ta- 
ble 2. The fast transversal filter shows high channel error 
in the case of low signal-to-noise ratio. The algorithm S1 is 
simulated with two different values of its parameter b. For 
b = 0.0095, the average channel estimation error is slightly 
higher than the one given by KFST. As seen in this table, 
KFST has a robust performance under the different condi- 
tions. 

In the case of unknown input sequence, we couldn’t 
make any of the reference algorithms converge, even for 
slow time-variation and high signal-to-noise ratio. In fact, 
they show large burst errors and poor estimation of the 
channel response. however, as seen in Fig. 3, the proposed 
KFST algorithm establishes convergence with low bit error 
rates and robustly recovers from the committed bit errors. 

2707 



I SV/H SV/L RV/H 
FTF -20.747 -7.534 -17.978 
Sl(0.095) -17.412 -4.841 -4.956 
Sl(0.0095) -25.578 -20.140 -17.352 
KFST -24.086 -20.207 -21.374 

Table 2: Average logarithmic error (in dB), in the 
open-eye case: known input sequence. 

RV/L 
-7.351 
-4.956 
-16.468 
-17.214 

c a v e  

BER 

Table 3: Average logarithmic error (in dB), and bit-error 
rate in the blind case for KFST. 

-15.506 -12.638 -16.533 -11.148 
0 0 0 0.022 

4. CONCLUSIONS 

I I n  
’0 5CU 1000 1500 2000 2500 3ooo 3500 

The problems of input sequence estimation and blind chan- 
nel identification in HF communication are investigated. A 
sub-optimal delayed input sequence estimator is developed 
and a new channel identification algorithm, KFST, is pro- 
posed. The latter is a two-step estimator, making use of a 
cascade of a Kalman filter and a subspace tracker. Simu- 
lation results showed reliable channel identification in the 
open-eye case. In the blind case, the input sequence es- 
timator, operating together with KFST algorithm, had a 
robust behavior in recovering from input decision errors. 
When compared to alternative approaches, the proposed al- 
gorithm was superior. Even in bad tropospheric conditions 
when the channel is rapidly varying, the input sequence is 
estimated reliably. 
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Figure 1: A multi-path channel model with diffused iono- 
spheric layers. 
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